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Abstract--The method of fundamental solutions (MFS) is a well-established boundary-type nu- 
merical method for the solution of certain two- and three-dimensional elliptic boundary value problems 
[1,2]. The basic ideas were introduced by Kupradze and Alexidze (see, e.g., [3]), whereas the present 
form of the MFS was proposed by Mathon and Johnston [4]. The aim of this work is to investigate the 
one-dimensionai analogue of the MFS for the solution of certain two-point boundary value problems. 
In particular, the one-dimensional MFS is formulated in the case of linear scalar ordinary differential 
equations of even degree with constant coefficients. A mathematical justification for the method is 
provided and various aspects related to its applicability from both an analytical and a numerical 
standpoint are examined. (~) 2001 Elsevier Science Ltd. All rights reserved. 

Keywords--Method of fundamental solutions, Two-point boundary value problems. 

1. I N T R O D U C T I O N  

We consider the linear two-point boundary value problem 

y '  = A(x)y,  x • (a,/~), (1.1) 

where y : (a,/~) --* R n, A(x) is an n × n matrix, subject to the boundary conditions 

B a y ( a )  + B~y(/~) = c, (1.2) 

where Ba and B/~ are constant matrices and yT = [Yl,Y2,... ,Y,,]. If the matrix Y(x)  is a 
fundamental matrix of the system of differential equations, that  is, Y~ = A Y  and Y nonsingular, 
then the solution of the problem is 

y(x)  = Y ( x ) d  = Y(x)Q- lc ,  (1.3) 

where the matr ix Q is given from 

Q = BaY(a)  + B~Y(B). (1.4) 
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Provided the matrix Q is nonsingular, there exists a unique solution to the two-point boundary 

value problem. 
Let us now consider the scalar nth-order two-point boundary value problem 

dnu (n) + . . .  + dou (°) = O, x E (~, ~),  
(1.5) 

S u  = c, 

where B u  = c corresponds to the n-boundary conditions at the points x -- c~ and x --/?, 

b~,sU(~-~)(~)+ ~ h~,,(s-1)(~ . . ,  (1.6) -i,S- ~ j  ---- ci, i = 1, . n. 
j=l,...,n S=l,...,n 

If we set 
Yi = u(~-l), i = 1 , . . . , n ,  (1.7) 

and 
0 1 0 ..- 0 / 
0 0 1 .-.  0 

A =  0 0 0 . . .  1 ' 

do d l d2 dn-  1 

d,~ dn dn dn 

then (1.5) becomes equivalent to (1.1),(1.2). (See [5,6].) 

(1.s) 

Clearly, there could be numerical complications if the matrix Q given by (1.4) is poorly con- 
ditioned. We also observe that  if Y ( x )  is a fundamental matrix and P a nonsingular constant 
matrix, then Y ( x ) P  is also a fundamental matrix. 

2. T H E  O N E - D I M E N S I O N A L  M F S  

The solution of the scalar equation is expressible in terms of fundamental kernels (which in the 
one-dimensional case play the role of fundamental solutions as in [4,7,8]) 

n n 

~(~) = ~ K s  (~, x,) + ~ o~Ks(x, x~), (2.1) 
j = l  j = l  

where Xp and Xq are points outside the interval [(~, f~] with 

zp < ~ < Z < zq (2.2) 

and the family of fundamenta l  kernels { K  s (x, Y)}S=I ..... n spans the space of solutions of L u  = O, 
i.e., the set { K j ( x ,  X p ) , K s ( x ,  Xq)}j=l ..... n is a fundamental set of solutions. The kernels are 

expected to be of the form 
KS(x ,  Y) = t~S(ix - Yl)- 

Such a set of fundamental kernels exists for differential operators of even degree with constant 
coefficients which is.the case under consideration. (See Proposition 3.) From now on, we shall 
assume that  the order of the linear scalar operator is 2n. 

The fundamental matrix of the equivalent first-order linear system is Y ( x )  = (Yi,s)i,j=l ..... n 

and consists of the elements 

Yi,j ~- g J  i - l )  (X, Xp), 

Yi,n+s = gJ  ~- 1) (x, xq), 

j----1 . . . .  ,n,  i - - - -1 , . . . , 2n  and 

j = l , . . . , n ,  i = 1 , . . . , 2 n .  
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The  solut ion in terms of  fundamenta l  solutions is given by 

y (x )  = Y(x)o" = Y ( x ) Q - Z c ,  (2.3) 

where now o "T [a~ , . . .  P q = , an, a l , . . .  , aq]. A case of  part icular  interest is when the  matr ices  B~, 

B~ are diagonal  with 

1, i f / = l , . . . , n ,  

( B ~ ) i i =  0, i f i = n + l , . . . , 2 n ,  

, [ 0 ,  i f i = l , . . . , n ,  
(B~),,  

1, i f i = n + l , . . . , 2 n .  

In  this case, the  solution and its first n - 1 derivatives are prescribed at  the  end points  x = a 

and x -- j3. 

3 .  S P E C I A L  C A S E S  

We first consider two-point  bounda ry  value problems in which the  governing equat ion  is 

d2nu 
Lu = ~ = 0. (3.1) 

In  part icular ,  we are concerned with expressing the solution of  the  b o u n d a r y  value problem 

u (2n) = 0, (3.2) 

uO)(a) = aj, u(J)(B) = bj, j = 0 , . . . , n -  1 

in te rms  of  fundamenta l  solutions for different values of  xp and Xq. 

The  above b o u n d a r y  value problem is always nonsingular.  

PROPOSITION 1. The boundary value problem (3.2) has a unique solution for any  n and  a n y  

choice of  the constants aj and bj, j = 1 , . . . ,  n. 

PROOF. I t  is sufficient to  show tha t  (3.2) has a solution for every choice of  a j ,  bj where all bu t  

one are zero and  the  nonzero element is equal to  one. 
We observe t h a t  ~(x)  = ( x -  a) n-z  ( x -  ~)n satisfies the differential equat ion and  the  b o u n d a r y  

condit ions 

~ ( k ) ( a ) = 0 ,  k = 0 , . . . , n - 2  and ~o (k) ( f~)=0,  k = 0 , . . . , n - 1 ,  

but  

By  set t ing 

~ D ( n - 1 ) ( ~ )  ~ 0.  

~O(n-- 1) (0~) ' 

then  ~a ,= - l (X)  and all its derivatives up to  order  n - 2 vanish at x = a and up to  order  n - 1 at  
x = fL The  (n - 1 )  t h  derivative at  x = a is equal to  one. 

The  funct ion ~a ,n -2 (x )  satisfying .(2,,) wa,n-2 = 0 and the  b o u n d a r y  condit ions 

¢ ( J )  ( a  ~ = 5j n -2  and  • (j) tf~ = 0, j = 0, n - 1, O~,n - -2k  ] , Wa,n--2~, J • • • 

could then  be cons t ruc ted  as a linear combinat ion  of  (x - a )n '2 (x  -- b) n and ~Oa,n_l (X ). 
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In this manner,  we can construct the set of functions 8 = {~a,j,  ~ , j  }j=0 ..... n -  1 which form a 
basis for the space of solutions of u (2n) = O. In particular, the solution of (3.2) could be writ ten 

a s  

j=O,...,n--1 j=O,...,n--1 

Uniqueness follows from the observation tha t  if 

¢ ( x ) =  co,jv°,j(x)+ E 
j=O,...,n--1 j=O,...,n--1 

then 
¢(J)(a)  = ca,j, ¢(J)(~) = c~,j, j = 0 , . . . , n -  1, 

which completes the proof. | 

A natural  1 set of fundamental  kernels for (3.2) is 

1 Ix - yl 2 j -1  
Kj(x,y)  = 2 ( 2 j -  1)! ' j = 1 , . . . , n .  (3.3) 

PROPOSITION 2. The set of kernels { K 1 , . . . ,  Kn} constitutes a fundamental set of kerne/s for 
the equation u (2n) = 0 for every Xp ~ Xq. 

PROOF. I t  is sufficient to show that  the monomials 1 , x , . . .  ,x  2n-1, which consti tute a funda- 
mental  set of solutions of the equation u (2n) = O, are spanned by the set of kernels { K 1 , . . . ,  K~}. 
More specifically, we should show tha t  they are spanned by the functions 

1 (x - xp) 2j-1 1 (xq - x) 2j-1 
g j ( x ,  xp)= 2 ( 2 j - l ) !  ' gj (x ,  xq)= 2 (2-j--~.  ' j = l , . . . , n .  

This can be proved inductively. For j = 1, the functions 

1 1 
g l  (x, Xp) = -~ (x - X p ) ,  g l  (x, Xq) = ~ (Xq -- X), 

span the space of all polynomials of degree less than 2. Assuming tha t  the functions {Kj(x,  xp), 
Kj  (x, xq)}j=l ..... t span the space of all polynomials of degree less than  21, then clearly the degree 
of p(x) = Kl+l(X, Xp) - Kl+l(x, xq) is 21, whereas the degree of Kj(x,  xp) is 2l + 1. Therefore, 
the polynomials {Kj(x,  Xp), Kj(x,  xq)}j=l ..... t+l span the space of all polynomials of degree less 

than  21 ÷ 2 and the proof is completed. | 

3.1. E x a m p l e  1 

Let us consider the simplest possible case of 

U" ~- 0, 

= go, 
x Z), (3.4) 

u (Z)  = g l .  

1The coefficients of t he  kernels are  chosen in order  to  satisfy the  following. If u is given by the  formula 

f S 3 K j ( x , y ) f ( y ) d y  ( ~ j f ) ( x ) ,  u(~) = .  = 

where  f is continuous,  then  u satisfies 
uC2~)(x) = I(x), 

d2J i.e., L K j  -~ 5(2 -- y) and the  integral opera tor  K:j is a right inverse of  t he  differential opera tor  dx--~" 
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The analytical solution of this problem is 

u(x) = g' - g °x  +/~gl  - ago (3.5) 

4 2 The fundamental solution of the operator L _= ~-~ is 

1 
K1 ( x , x  v) = "~ Ix - Xp[, 

and the solution can be expressed in terms of fundamental solutions as [4] 

u(x) = K1 (x, xp) a p + Kl (X ,  Xq)a q, x • [o~, f~]. 

The imposition of the boundary conditions yields 

K1 (ct, xp)aP + gl(ct, Xq)a q = go, 

K1 (~, xv) a~ + KI(/~, xq)a q = gl. 

The solution of the system gives 

and 

go K1 (j3, Xq ) - gl K1 ( oG Xq ) 
qP = K1 (o~, xp) KI(~, xq) - KI(OL, xq)K1 (~, xp) 

(3.6) 

(3.7) 

(3.8) 

glK1 (o~, xp) - goK1 (13, xp) (3.9) 
a~ = K1 (o~, xp) K1(~3, Xq) - K1 (o~, xq)K1 (~, xp)" 

Substitution of these expressions in the MFS solution leads to the identical expression we have 
for the exact solution. There is cancellation of all terms involving xq and Xp. 

Consider now the mixed boundary value problem 

u" = o, x • (a ,  ~) ,  
(3.1o) 

u(,~) = ~o, u'(Z)  = g'~, 

u(x) ' = g l  x 4- go  - -  oLg~. 

the analytical solution of which is 

(3.11) 

The analysis of the MFS solution is similar to the Dirichlet case. The satisfaction of the boundary 
conditions leads to the following expressions: 

(3.12) 

(3.13) 

goKi (z, Xq) - gI K1 ( c~, Xq ) 
an = K1 (a, xv) Ki(f~, xq) - Kl(a, xq)K i (j3, xv) 

and 
gIK1 (oL, xp) - goK~ (l~,xp) 

aq = K1 (a, xp)K~(/3,Xq) Kl(C~,xq)K i (/~,Xp)" 

Substitution of al p and a~ in the MFS solution leads again to the exact solution. 

3.2. E xamp le  2 

Consider now the fourth-order equation 

u "  = o, x • (~, B), (3.14) 
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subject to the boundary conditions 

u(a)  = go, u'((~) = g~, u(~)  = gl, u'(/3) = g'l. (3.15) 

The analytical solution of the above problem is 

! ~3(gl--go)  ) (X--O0 2 ( 2 9 1 -  g0~ (Z--C~) 3 
~ ( ~ ) = g o + ~ 0 ( x - - ) + \  ~ - ~  2g~-g~ ) - ~  + 9 ~ + ~ I -  -Z- :W]  (Z ~): 

d 4 The fundamental solution of the operator L ~_ ~ is 

K2 (x, xp) = ~ Ix - Xp{ s • (3.16) 

The solution can be expressed in terms of the fundamental solutions of the biharmonic and 
Laplace operators as [9], i.e., 

u(x)  = Ks  (x, Xp) a p + K2(x ,  Xq)a q + K1 (x, Xp) a p + K1 (x, Xq)a q, x • [a, ~]. (3.17) 

The imposition of the boundary conditions leads to a 4 > 4 system of the form 

Ax = c, (3.18) 

where 

A = 

1 1 (Xq - a )  i ~1 (~ _ zp)3 ~ (xq - a) 3 ~ (~ - xp) 

1 ( a  - xv )  2 1 1 1 

1 1 1 
(f~ - xP)3 V2 (xq - ~)3 ~ (f~ - xp) ~ ( ~  - ~) 

1 1 (xq - ~)2 1 1 ( Z - x ; )  ~ - ~  ~ -5  

P q x = [a2, a2, a p, cry] T, and i t T C ---- [go, g0,gl,gl] • 

4. M O R E  G E N E R A L  E X A M P L E S  

In this section, consider two-point boundary value problems in which the governing equation 
is of the form 

L u  = = O, 
j-~0 

where wj are constants and wn # O. It can be shown that  such operators always possess a set of 
fundamental kernels. 

n W" d2j be a differential operator and p i ( t )  ~-- ~ / = 0  wJ t2j its PROPOSITION 3. Let L = ~ j = 0  3 ~  n 
characterist'ic polynomial  with roots as follows: 

1. real: ± r j ,  j = 1 , . . .  ,p with multiplicities # j ,  j = 1 . . . .  ,p, respectively, 

2. pure ly  imaginary (nonzero): ± i s j ,  j = p + 1 . . . .  ,p  + a with multiplicit ies # j ,  j = p + 

1 . . . . .  p + a, respectively, 
3. complex  (nonreal and not  imaginary): :krj ± isj, j = p + a + 1 , . . .  ,p  + a + T wi th  

multiplicit ies # j ,  j = p + a + 1 , . . . ,  p + a + T, respectively, 
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where  p + a + 2r  = n. T h e n  the kernels 

1 Ix - yl ~-* e rAx-vl 
K S ' ~ ( z ' Y ) = 2  (u -  1)! r 5 (4.1) 

with j = 1 , . . . , p ,  v =  1 , . . . , # 5 ,  

11x-yl s i n ( s s I x - y l )  
KS'~(x 'Y)  = 2 (u - 1)! s~ ' (4.2) 

with  j = p + l , . . . , p + a ,  y= 1 , . . . , # 5 ,  and 

1 Ix - yl ~-1 e ~lx-yl  cos (sSlx - Yl) 
K~C'~(x 'Y )=2  (u 1)! + s  5 - -  2 

1 Ix - yl u-1 e rjlx-~l sin ( s j lx  - y[) 
8 

K; ,~ (x , y )  = 2 (u 1)! ~ 3 2 . + s j  - -  2 

(4.3) 

with  j = p + a + 1 , . . . ,  p + a + r, u = 1 , . . . ,  #5, const i tute  a fundamenta l  set  o f  kernels t'or L at  

the  poin ts  Xp and xq provided 

p+a+r 

ajar with kj 6 Z. (4.4) 
x q - x p ¢  ~ sj ' 

j=p-I-1 

PROOF. I t  is sufficient to show tha t  the above kernels span the  space of  solutions of  L u  = O. 

More specifically, it is sufficient to  show t h a t  the  functions 

with j = 1 , . . .  , p  + a and u = 1 , . . .  , # j ,  together  with the functions 

= g ; A x ,  xq), 
8 = 

cons t i tu te  a fundamenta l  set of  solutions of  L u  = 0. This  can be readily derived from Proposi-  

t ion 2. 1 

4.1. E x a m p l e  1 

We consider the  two-point  boundary  value problem 

u"  + A2u = 0, x 6 (a,  ft), (4.5) 

= go ,  = 91 ,  

the  analyt ical  solution of  which is 

u(x )  = (go cos A¢~ - gl  cos Aa) sin Ax + (gl sin Aa - go sin Af 0 cos Ax 

sin A(a - B) 
( 4 . 6 )  

4 2 
The  fundamenta l  solution of  the  opera tor  L -- ~-~ + A 2 is [8] 

K1,1 (x, xp) = 2~ sinA Ix - xpl.  (4.7) 
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T h e  impos i t i on  of  t he  b o u n d a r y  condi t ions  leads to  following express ions  for a p a n d  a~: 

go sin )~(xq - ~ )  - g l  sin )t(Xq - ~ )  

aP = sin ~ (c~ - xp )  sin )~(xq - ]~) - sin $ ( x q  - a )  sin )~ .(f~ - x p ) '  
(4 .8 )  

gl sin )~ ( a  - Xp) - go sin ~ (f~ - xv) 

aq = sin ~ ( a  - xv) sin )~(xq - ~ )  - sin )~(xq " ( ~ )  sin ~ (f~ - xv)" 
(4.9) 

P r o b l e m s  in t he  so lu t ion  occur  for the  values of Xp and  xq  for which the  d e t e r m i n a n t  of  t he  

sy s t em vanishes ,  i.e., when 

D = sin A ( a  - Xv)  sin A(Xq - / 3 )  - sin ~(Xq - -  Ol) sin A (~  -- Xp) = 0 

o r  

COS/~ (Xq --  Xp  -[- ]~ - -  01) --  COS)t (Xq --  Xp  --  ~ "[- 0l) = O. 

This  occurs  when  
nTr 

Xq --  Xp  = T '  n E N. (4.10) 

In  t he  case of  t he  mixed  b o u n d a r y  value p rob lem 

u" + ~2u = 0, x E (~, f~), 
, (4.11) 

u ( ~ )  = go,  u ' ( ~ )  = g l ,  

t he  ana lys i s  of  the  M F S  solut ion is s imi lar  to  the  Dir ichlet  case. T h e  po t en t i a l l y  t r oub l e some  

d e t e r m i n a n t ,  

D = )~ sin X(a - Zq) cos )~ (~ - xv) - ~ sin ~ ( a  - Zp) cos )~(~ - Xq),  

th is  vanishes  when 

sin ~ (Xp - xq - ~ + a )  - sin ~ (xq  - Xp - 1~ + v~) = O, 

or when  
n~r 

Xq --  Xp  ~ - ~  , 

Final ly ,  in t h e  case of  the  N e u m a n n  p rob lem 

n e N. (4.12) 

u"  + J2u  --  0, x E (~, ~),  (4.13) 

u ' ( a )  = g~, u'(f~) = gl ,  (4.14) 

t he  d e t e r m i n a n t  of  the  sys tem,  

D = A 2 cos A(~ - Xq) cos ~ (f~ - Xp) - ,X 2 cos )~ (~ - Xp) cos X(f~ - xq)  

vanishes  when  

i.e., when  

cos)~  (c~ - ~ + x v - x q )  - c o s  ~ ( a  - :~ - xp  + z q )  = O, 

n ~  
xq - x v = -~- ,  n E N. (4.15) 

These  res t r i c t ions  on the  choice of  x v and  xq a p p e a r  because  of the  fact  t h a t  the  funct ions  

~ I ( X )  ---- K I , 1  (X ,  Xp )  and  ~2(x)  ---- K l , l ( X ,  Xq )  

are  l inear ly  d e p e n d e n t  if 

.~ (xq - x v )  = mr ,  ~ e N.  
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4.2. E x a m p l e  2 

We consider the homogeneous rod problem [10] 

U Ilu - -  A4U = 0~ 

subject to the boundary conditions 

= go,  = 

The analytical solution is of the form 

x E (c~, 8), (4.16) 

= g l ,  u ' ( 8 )  = g l .  ( 4 .17 )  

z e 8 ] ,  

u(x)  = Rsin Ax + ScosAx + Te ~ + Ve  -Ax, 

where the constants R, S, T, and V can be determined from the boundary conditions. 
solution can be expressed in terms of the fundamental solutions 

u(x)  = g l ,1  (x, xp) cr p + KI,1 (x, Xq)O'l q -'~ 1(2,1 (x, xp) crg + K2,1 (x, Xq)Crg, 

where 
e-),lz-~l 

KI,Z (z,  y) = A 

and 

The 

sin(AJx - y[) 
K2,1(x ,y )  = A 

The satisfaction of the boundary conditions leads to a 4 × 4 system Ax = c, where x = 
p q p [ o l ,  T,  

1 
Ae A(a-x.) Ae -'x(z',-a) l s i n A ( ~ - x p ) ~ s i n A ( x q - a )  A 

- e  -~'('~-x,') e -~(~',-'~) cos A (~ - xv) - cos A(xq - c~) 

A =  ~ e - A ( z - x ' )  ~ e-A(x~-f~) l s i n A ( 8 - x v ) A  ~ s i n A ( x q - 8 )  

- - e  -A(f~-xp)  e - A ( x q - ~ )  c o s  A ( 8  --  Xp) --  c o s  A(Xq --  8 )  

and c = [go, g~, gl, g~]T Problems in the MFS solution occur when the determinant of the system 
D = det(A) vanishes. It can be found that  this occurs when 

?~gr 
Xq - xp = ~ - ,  n E N. (4.18) 

As in the previous example, these restrictions on the choice of Xp and Xq appear because of the 
fact that  

~ I ( X )  ---- g 2 , 1  (X, Xv) and ~2(x) = K2,1(X, Xq) 
are linearly dependent if 

A (xq - xp) = ~Tr, ~ ~ N. 

4.3. E x a m p l e  3 

A two-point boundary value problem which is even more pathologically ill-posed is the one 
governed by the equation 

U(4) + (A2 _j_/~2) U(2) _{_ A2~t2 u = 0. (4.19) 

In this case, the fundamental kernels 

K I , 1  (x ,  y) = sin(A[x " y [ )  and g2,1 (x, y) = sin(#[x - y[) 
2A 2# 

span the solutions of (4.19) only when 
glTl" g271 " 

Xq - x v # ~ + - - ,  for ~1,~2 e N. 
# 

Remarkably, in the case A/# ~ Q, the set of pairs (xp, Xq) for which our problem is ill-posed are 
dense in R 2. 
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5. N U M E R I C A L  R E S U L T S  

In order to examine the influence of the position of the sources xp and xq on the conditioning of 

the matrix resulting from the application of the MFS and the accuracy of the MFS solution, we 
considered the two-point boundary value problem (3.2) in the specific case when a = - 1 ,  fl = 1, 

for n = 1,2, 3,4. In each case, the boundary conditions were taken to correspond to the exact 
solution u(x) = x 2n-1. The sources xp and Xq were placed symmetrically at xp = - 1  - e and 

xq -- 1 + e where e was taken to be a variable parameter. The calculated MFS solution was 

compared with the analytical solution and the error calculated at 101 equidistant points on 

[-1,  1]. For each value of e, we calculated the largest absolute error in the solution. We also 

examined the condition number of the matrix A as e was varied. In particular, we calculated 

an estimate for the condition number nA of A in the L °° norm using the NAG pair F07ADF- 
AGF [11]. The graph of the condition number estimate versus e for n -- 1, 2, 3, 4 is presented in 
Figure 1. It was observed that the condition number estimate behaves like O(e4n-3). In Figure 2, 

we plot the maximum absolute error versus e for n = 1,2, 3, 4. In this case, we observed that  the 
maximum absolute error behaves like O(e2n-1). Similar results can be observed in the case of 

more general examples studied in Section 4. 
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Figure 1, Log-log plot of the condition number ~ vs. e. 
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Figure 2. Log-log plot of the maximum error vs. ~. 
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