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On the combined effects of slip, compressibility, and inertia on the Newtonian
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a b s t r a c t

We solve both the planar and axisymmetric extrudate-swell flows of a compressible Newtonian liquid
with Navier slip at the wall, using the finite-element method in space and a fully-implicit finite-differ-
ence scheme in time. Our aim is to investigate the combined effects of compressibility, slip, and inertia
on the shape of the extrudate and the extra pressure losses in the system (exit correction factor). The
numerical simulations show that compressibility at moderate and higher Reynolds numbers results in
stable steady-state solutions in which the extrudate surface is wavy, especially just after the die exit.
The stability of these oscillatory steady-states is investigated by means of time-dependent calculations.
At moderate Reynolds and slip numbers, interesting oscillatory extrudate shapes are observed due to the
fact that slip tends to reduce the extrudate contraction opposing the inertia effect. The final extrudate
swell ratios obtained at high Reynolds numbers and various slip numbers agree well with the theoretical
asymptotic values for the case of incompressible flow.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The role of wall slip in extrusion and other flows has been
emphasized in many, mostly experimental studies over the past
60 years [1–4] and has been reviewed by Denn [5] and, more re-
cently, by Hatzikiriakos [6]. Slip is usually associated with complex
fluids. However, Newtonian fluids may also exhibit slip, and this
phenomenon is of interest in the fields of microfluidic and micro-
eletromechanical devices, as pointed out by Neto et al. [7], who re-
viewed experimental studies on the slip of Newtonian liquids at
solid interfaces.

It is well established that the jet swells at low Reynolds num-
bers and contracts at moderate and higher Reynolds numbers. Slip
tends to reduce swelling in the former and contraction in the latter
case. Silliman and Scriven [8] were the first to carry out numerical
simulations of Newtonian extrusion using the Navier slip condition
instead of the traditional no-slip condition. They concluded that
slip at the wall reduces extrudate swell (at low Reynolds numbers),
might produce yet larger effects for non-Newtonian liquids, and
alleviates the apparent stress singularity at the die exit. Subse-
quent studies include those of Phan-Thien [9], Georgiou and Cro-
chet [10,11], Mitsoulis [4], and others.

In viscous liquid flows, compressibility becomes important
when a sufficient amount of fluid is subject to high pressures
[3,10,11]. Such flows occur in several industrial processes, such
as extrusion [3], injection blow molding [12], or in flows involving
relatively long tubes, such as in waxy crude oil transport [13].
Weakly compressible flows correspond to low values of the Mach
number, which is defined as the ratio of the characteristic speed
of the fluid to the speed of sound in the fluid (the incompressibility
limit corresponds to zero Mach number). Hatzikiriakos and Dealy
[14] noted that although the isothermal compressibility of molten
polymers is very small, it can have a dramatic effect on the time re-
quired for the pressure to level off in a capillary flow experiment.

Beverly and Tanner [15] were the first to investigate the effect
of compressibility in creeping, weakly compressible, extrudate-
swell flows of Newtonian as well as Maxwell and Phan-Thien Tan-
ner fluids. They presented preliminary results for both planar and
axisymmetric flows indicating that the extrudate-swell ratio de-
creases slightly with compressibility. Subsequently, Georgiou
[16] carried out calculations for zero and low Reynolds numbers
for an extended range of compressibility values and reported that
swelling is reduced only initially and then increases dramatically
to values corresponding to foam extrusion experiments [17]. Tali-
adorou et al. [18] noted that the minimum of the extrudate-swell
ratio is shifted to the left when the simulations are performed in
longer capillaries, as more material is compressed. Results for even
higher compressibility values have recently been reported by
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Mitsoulis et al. [19] but only for the creeping flow in short capillar-
ies with no-slip at the wall.

Compressibility effects become more pronounced in time-
dependent flows and/or when combined with slip and inertia.
Georgiou and Crochet [10,11] pointed out that compressibility
may not considerably affect the steady-state solutions but it
changes dramatically the flow dynamics. They considered time-
dependent compressible extrudate-swell flow with non-mono-
tonic slip at the wall and used a linear equation of state. They dem-
onstrated numerically that if the volumetric flow rate is in the
negative regime of the flow curve, self-sustained oscillations of
the pressure drop and of the mass flow rate at the exit are ob-
tained, and the extrudate surface becomes wavy, as is the case with
the stick–slip instability in polymer extrusion. The numerical sim-
ulations were later extended to include non-Newtonian (e.g. Car-
reau) fluids and the barrel region [20]. Taliadorou et al. [18]
studied the extrudate-swell flow of strongly compressible Newto-
nian fluids representing foams, using a linear and an exponential
equation of state. Their results confirmed once again that, as the
compressibility of the fluid is increased, the swelling decreases ini-
tially, and then it increases considerably, exhibiting also stable
steady-state free surface oscillations for moderate and higher Rey-
nolds numbers. Taliadorou et al. [18] note that oscillatory steady-
state solutions are also obtained when the fluid is allowed to slip
at the wall.

We have recently reviewed various factors affecting the extru-
date-swell flow of a Newtonian fluid issuing from either a planar
slit or a circular tube [19]. The effects of inertia, gravity, compress-
ibility, pressure-dependence of the viscosity, slip at the wall, and
surface tension have all been investigated individually in paramet-
ric studies covering a wide range of the relevant parameters. Since
previous studies are mostly concerned with low-Reynolds or even
creeping flows, in this paper we study the combined effects of wall
slip and compressibility with inertia. Recently, Russo and Phillips
[21] pointed out that even though the viscoelastic extrudate-swell
problem (the mechanism of which is unrelated to the viscoelastic
analog) is of higher interest for industrial purposes, the Newtonian
extrudate-swell problem also deserves a deep analysis that can
provide an important insight into the underlying physics. They also
noted that increasing inertia leads to increases of the normal stres-
ses and the normal stress difference while swelling is reduced.

The objective of the present work is to investigate by means of
numerical simulations the combined effects of compressibility,
slip, and inertia on Newtonian extrudate-swell flow, and report
both the extrudate swell or contraction and the excess pressure
losses in the system known as exit correction [4]. Special emphasis
is given on the oscillatory steady-state solutions at moderate and
higher Reynolds numbers when compressibility is taken into ac-
count. Their stability is verified by means of time-dependent calcu-
lations. Moreover, the asymptotic extrudate-swell ratios in the
case of Navier slip at the wall are derived and tested against the
numerical simulations.

2. Governing equations

We consider the time-dependent, two-dimensional (2D) planar
or axisymmetric extrudate-swell flow of a compressible Newto-
nian liquid assuming that gravity forces are negligible. Hence, the
continuity and momentum equation are as follows:

@q
@t
þr � ðquÞ ¼ 0; ð1Þ

q
@u
@t
þ u � ru

� �
¼ �rpþr � s; ð2Þ

where u is the velocity vector, p is the pressure, s is the viscous
stress tensor, t is the time, and q is the density. Under the assump-
tion of zero bulk viscosity, s is given by

s ¼ l½ðruÞ þ ðruÞT � � 2
3
lIr � u; ð3Þ

where I is the unit tensor, l is the constant viscosity, and the super-
script T denotes the transpose of a tensor. Substituting the viscous
stress tensor into the momentum equation, one gets

q
@u
@t
þ u � ru

� �
¼ �rpþ lr2uþ 1

3
lrðr � uÞ; ð4Þ

The equations of motion (1) and (4) are completed by an equa-
tion of state relating the density to the pressure. In the present
work, we use the following linear approximation

q ¼ q0½1þ bðp� p0Þ�; ð5Þ

where q0 is the density at the reference pressure p0 and b is the iso-
thermal compressibility, assumed to be the constant defined by

b � � 1
V0

@V
@p

� �
p0 ;T

; ð6Þ

where V is the volume, V0 is the specific volume at the reference
pressure p0, and T is the temperature.

2.1. Boundary conditions

The geometry and boundary conditions of the axisymmetric
extrudate-swell problem are shown in Fig. 1. The standard symme-
try conditions for zero radial velocity and shear stress along the
axis of symmetry are assumed, i.e. ur = 0 and srz = 0. Along the cap-
illary wall, the radial velocity is set to zero (no penetration) and the
axial velocity obeys Navier’s slip condition [4,19]:

uw ¼ asw; ð7Þ

where uw is the slip velocity, sw is the shear stress at the wall, and a
is a slip parameter depending on material properties. The inlet
plane is taken at a distance L1 sufficiently far upstream the exit so
that the flow can be taken as fully developed, i.e., ur = 0 and

uz ¼
1

4l
� @p
@z

� �
R2 1� r

R

� �2
þ 2la

R

� �
ð8Þ

where (�@p/@z) is the pressure gradient.
At a plane taken at a distance L2 sufficiently far from the die exit

so that the flow can be considered uniform, the total normal stress
and the shear stress are assumed to vanish, �p + szz = 0 and srz = 0.
Finally, on the free surface, it is assumed that surface tension is
zero, and vanishing normal and tangential stresses are imposed.
Additionally, the kinematic condition is applied:

Fig. 1. Geometry and dimensionless boundary conditions for the axisymmetric
Newtonian extrudate-swell flow with slip at the wall.

298 Z. Kountouriotis et al. / Computers & Fluids 71 (2013) 297–305



Author's personal copy

@h
@t
þ uz

@h
@z
� ur ¼ 0: ð9Þ

where h(z, t) is the position of the free surface.

2.2. Dimensionless equations

The governing equations are non-dimensionalized by scaling
the lengths by the radius R of the tube, the velocity vector by the
mean velocity U at the inlet of the tube, the time by R/U, the pres-
sure and the stress tensor components by lU/R, and the density by
q0. Hence, the continuity and momentum equations become

@q�

@t�
þ r� � ðq�u�Þ ¼ 0; ð10Þ

and

Re
@u�

@t�
þ u� � r�u�

� �
¼ �r�p� þ r�2u� þ 1

3
r�ðr� � u�Þ; ð11Þ

where the stars denote dimensionless variables and

Re � qUR
l

; ð12Þ

is the Reynolds number. The equation of state (5) becomes

q� ¼ 1þ Bp�; ð13Þ

where B is the compressibility number

B � blU
R

: ð14Þ

The dimensionless form of the slip equation is

u�w ¼ As�w; ð15Þ

where

A � al
R
; ð16Þ

is the slip number. De-dimensionalization does not change the
expression for the kinematic Eq. (9).

Finally the dimensionless velocity profile imposed at the inlet
plane is

u�z ¼
2

1þ 4A
ð1� r�2 þ 2AÞ: ð17Þ

The governing equations for the planar flow problem are simi-
lar. For example, the dimensionless fully-developed velocity im-
posed at the inlet is

u�x ¼
3

2ð1þ 3AÞ ð1� y�2 þ 2AÞ: ð18Þ

2.3. Asymptotic extrudate-swell ratios

The extrudate-swell ratio is defined as the ratio of the final
extrudate dimension, hf, to that of the die. Thus, in the case of
the axisymmetric flow, this ratio is defined by

v� � hf

R
; ð19Þ

For convenience, the stars denoting dimensionless variables are
dropped hereafter.

In the case of incompressible flow, the asymptotic limits of the
extrudate-swell ratio at infinite Reynolds numbers are estimated
by taking mass and momentum balances between the exit of the
die, where the flow is assumed to be fully developed, and at the

Fig. 2. Free surface profiles in incompressible axisymmetric extrudate-swell flow for various slip numbers and Re = 0, 2, 8, and 50. Note that the y-scale is not the same in all
graphs.
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extrudate region very far downstream where the flow is taken as a
plug. After some algebra it is not difficult to show that the asymp-
totic values of the extrudate-swell ratio for the axisymmetric and
planar cases are, respectively,

v1 ¼
1

1þ 1
3ð1þ4AÞ2

h i1=2 ; ðaxisymmetricÞ ð20Þ

and

v1 ¼
1

1þ 1
5ð1þ3AÞ2

: ðplanarÞ ð21Þ

In the case of no slip (A = 0), the above expressions yield the
asymptotic values of Harmon [22] and Tillett [23], i.e.,ffiffiffi

3
p

=2ð0:866Þ and 5/6 (0.833), respectively.

3. Numerical method

The Finite Element Method is used for solving the system of
governing equations and boundary conditions. The free-surface
profile is computed simultaneously with the velocity and pressure
fields (u-v-p-h formulation), and the mesh is updated at each iter-
ation step utilizing a spine scheme. Standard biquadratic basis
functions are used for the velocity components and bilinear ones
for the pressure. Moreover, a quadratic representation is employed
for the position h of the free surface. For the spatial discretization,
the standard Galerkin forms of the continuity, momentum, and
kinematic equations are used, while for the time discretization,
the standard fully-implicit (Euler backward difference) scheme

has been used. The resulting nonlinear system of discretized equa-
tions is solved with the Newton–Raphson iterative scheme with a
10�5 tolerance.

The length L1 of the capillary was taken to be equal to 5. For
creeping flow and moderate Reynolds numbers, the length of
the extrudate was taken to be L2 = 20. This was increased up to
L2 = 2000 for high Reynolds numbers, resolving the problem of
high wavelength of the free-surface oscillations present in inertial
flows. Mitsoulis et al. [19] recommended setting L2 = Re for
Re > 20.

4. Results and discussion

We first investigate the effects of inertia and slip on the incom-
pressible extrudate-swell flows of interest, setting as the base flow
that for which B = Re = A = 0. We study, in particular, the extrudate
swell ratio, v, and the dimensionless excess pressure losses, com-
monly known as exit correction, nex, defined as follows [24]:

nex �
DPw � DP0

2sw
; ð22Þ

where DPw is the overall pressure drop along the wall, DP0 is the
pressure drop based on the fully developed flow in the tube (or in
the channel) without the extrudate region, and sw is the wall shear
stress for fully-developed Poiseuille flow. The exit correction repre-
sents the extra pressure that is needed in extrusion due to the exit
flow and corresponds to a quantity readily measured in experi-
ments obtained from the overall pressure in the system. It turns
out that

(a)

(b)

Fig. 3. Extrudate-swell ratio as a function of the Reynolds number in (a)
axisymmetric and (b) planar incompressible extrudate-swell flow. The dotted lines
indicate the asymptotic limits.

(a)

(b)

Fig. 4. Exit correction as a function of the Reynolds number in (a) axisymmetric and
(b) planar incompressible extrudate-swell flow. The dotted lines indicate the
asymptotic limits for full slip.
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nex ¼
ð1þ 4AÞDPw

8
� L1 ðaxisymmetricÞ; ð23Þ

and

nex ¼
ð1þ 3AÞDPw

6
� L1

2
ðplanarÞ: ð24Þ

Results in the present work have been obtained for an extended
range of Reynolds, compressibility and slip numbers. These ranges
are: 0 6 Re 6 2000, covering the range from inertialess flow to the
end of the laminar flow regime; 0 6 B 6 0.06, covering the range
from incompressible flow to very compressible viscous flow; and
0 6 A 6 1, covering the range of flow with no-slip to macroscopi-
cally obvious slip at the wall (almost plug velocity profile).

The effects of the slip number on the steady-state incompress-
ible axisymmetric flow for Re = 0, 2, 8, and 50 and L2 = 50 are illus-
trated in Fig. 2. In general, slip tends to reduce swelling at low
Reynolds numbers and contraction at higher Reynolds numbers.
For moderate Reynolds numbers (e.g., Re = 8), the extrudate is
characterized by a necking, where the jet contracts initially and
then expands. Necking is reduced by slip. In Fig. 3, the calculated
extrudate-swell ratios for three different slip number (A = 0, 0.1,
and 1) are plotted versus the Reynolds number up to Re = 2000,
i.e., in the laminar regime, for both the axisymmetric and planar
flows. The extrudate swell ratio decreases rapidly for Re > 1
approaching nicely the asymptotic values given by Eqs. (20) and
(21). The exit corrections obtained with the same parameters are
plotted versus the Reynolds number in Fig. 4. In the case of no-slip,
the exit correction decreases monotonically to zero following a sig-
moidal shape, similar to that of the extrudate-swell ratio. For small
Reynolds numbers, slip reduces nex but this trend is reversed at
high Reynolds numbers when the exit correction becomes nega-
tive. As a result, a local minimum is observed at moderate Reynolds
numbers, which is shifted to the left and higher as the slip number
is increased.

In order to investigate the combined effects of compressibility
and slip on the extrudate-swell ratio we set B = 0.06 and consid-
ered three slip numbers: A = 0, 0.1, and 1. From our previous study
[18], it is known that in the compressible case the angle of expan-
sion and the swelling both increase with Reynolds number, and

Fig. 5. Free surface profiles in compressible (B = 0.06) axisymmetric extrudate-
swell flow for various slip numbers and Re = 0, 1, and 2. Note that the y-scale is not
the same in all graphs.

Fig. 6. Final extrudate-swell ratios for various slip numbers in axisymmetric
compressible extrudate-swell flow with B = 0.06. The dotted lines correspond to
incompressible flow (B = 0).

Fig. 7. Exit corrections versus Re for various slip numbers in axisymmetric
compressible extrudate-swell flow with B = 0.06.
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oscillations appear on the steady-state extrudate surface which de-
cay downstream. The amplitude and the wavelength of these oscil-
lations increase with compressibility. Since for high values of Re
the extrudate surface becomes highly oscillatory, computations
for the compressible case were restricted to low and moderate
Re. As illustrated in Fig. 5, where extrudate surfaces for Re = 0, 1,
and 2 are shown, slip reduces swelling alleviating the compress-
ibility effects, in agreement with previous studies [18]. Slip also
suppresses and eventually eliminates the free surface oscillations
observed at moderate Re.

In Fig. 6, we plot the computed extrudate-swell ratios versus Re.
The corresponding curves for the incompressible flow are also
shown for comparison purposes; these lines lie below their com-
pressible counterparts. While in the incompressible flow swelling
is reduced with Re, in the compressible case v increases sharply
after an initial plateau, which explains why only very low Re have
been considered for B = 0.06. Slip stretches the plateau delaying the
sharp increase of v to higher Re. When slip is strong (A = 1) swell-
ing is reduced anyway, and compressibility has no effect on v for
Re roughly less than 3. Similar conclusions can be drawn for the
exit correction factor, as illustrated in Fig. 7.

In Fig. 8 we plot the extrudate-swell ratio as a function of the
compressibility number for the three representative slip numbers
of interest (A = 0, 0.1, and 1) and Re = 0 and 10. We observe that
v passes through a minimum, which is a well-known effect of com-
pressibility. The results for the creeping flow without slip are the
same as those we reported earlier [16,18,19]; the points obtained
(with a rather coarse mesh) in the pioneering work of Beverly

and Tanner [15] are also shown. It should be noted that a different
velocity scale was used in [16], which caused shifting of the mini-
mum to the right. Taliadorou et al. [18] noted that increasing the
length of the capillary, and thus the volume of the material that
is being compressed, moves the minimum of the extrudate-swell
ratio to the left.

In creeping flow, slip reduces swelling and alleviates compress-
ibility effects. However, when the Reynolds number is increased to
Re = 10 (Fig. 8b), the range of feasible compressibility numbers is
reduced considerably, due to the appearance of the steady-state
free-surface oscillations. The dotted lines show the corresponding
results for the creeping flow (Re = 0); in this regime, v decreases
slightly with the compressibility number. The initial reduction of
the extrudate-swell ratio is weakened and the local minimum is
shifted to the right as the slip number is increased. Finally, at
non-zero Re the increase of v after the minimum becomes faster.
Similar results have been obtained for the planar extrudate-swell
jet, which is known to swell more than its axisymmetric counter-
part below a certain value of the compressibility number [18].
For the ranges of slip and Reynolds numbers examined, the exit
correction increases monotonically with compressibility as shown
in Fig. 9. As already deduced from Fig. 7, this increase becomes
sharper with inertia and less pronounced with wall slip. The curve
for A = 0 in Fig. 9a coincides with that we presented in [19] but dif-
fers from the results in [18] where the exit correction was calcu-
lated using the pressure difference along the symmetry axis
(instead of the wall).

The combined effects of inertia, compressibility, and slip are
also illustrated in Figs. 10 and 11, where the axisymmetric extru-
date-swell ratio and the exit correction factor are plotted versus

(a)

(b)

Fig. 8. Axisymmetric extrudate-swell ratio versus the compressibility number for
various slip numbers: (a) Re = 0; the points (+) are the values provided by Beverly
and Tanner [15]; (b) Re = 10; note that the range of B is much smaller and the dotted
lines are the predictions for Re = 0.

(a)

(b)

Fig. 9. Exit correction in axisymmetric extrudate-swell flow versus the compress-
ibility number for various slip numbers: (a) Re = 0; (b) Re = 10; note that the range
of B is much smaller and the dotted lines are the results for Re = 0.
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the Reynolds number in the interval [0,2] for different compress-
ibility and slip numbers. In the no-slip case and for small com-
pressibility numbers, v is a decreasing function of Re, while a
minimum is observed for higher values of B. The results in
Fig. 10a (no-slip) coincide with those in [18] which reached only
up to Re = 1. When slip is present (Fig. 10b and c) the range of
extrudate-swell ratios is reduced. When slip is strong, v increases
initially and exhibits a maximum.

As already discussed, at low Reynolds numbers increasing the
compressibility initially reduces and then enhances swelling
(Fig. 8). This effect is also illustrated in Fig. 12a where free-surface
profiles for the creeping flow (Re = 0) and different compressibility
numbers in the no-slip case (A = 0) are plotted. A similar trend is

observed at low Reynolds numbers. What is interesting, however,
is the existence of steady-state solutions in which the free surface
is oscillatory. These oscillations seem to decay downstream. For
Re = 5, the incompressible jet is known to contract initially.
Increasing the compressibility initially leads to further contraction
and then to swelling accompanied by free-surface oscillations
(Fig. 12b). Interesting shapes of the free surface may be obtained
for certain combinations of the compressibility and Reynolds num-
bers. For example, for Re = 10 and B = 0.015 (Fig. 12c), the free sur-
face contracts slightly after an initial kink. In a certain range of
compressibility numbers, the free surface practically exhibits only
one or two oscillations just after the die exit, which is consistent
with experimental observations. The phenomenon of the contrac-
tion of the extrudate after the initial expansion near the die exit
is common in extrusion experiments with different materials, e.g.
polymer [25] and starch-based [26] foams. Generally speaking, slip

(a)

(b)

(c)

Fig. 10. Axisymmetric extrudate-swell ratio for various compressibility numbers:
(a) A = 0 (no slip at the wall); (b) A = 0.1; (c) A = 1.

(a)

(b)

(c)

Fig. 11. Exit corrections in axisymmetric extrudate-swell flow for various com-
pressibility numbers: (a) A = 0 (no slip at the wall); (b) A = 0.1; (c) A = 1.
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suppresses both the swelling and the contraction of the extrudate.
In the case of compressible flow, it also suppresses the steady-state
free surface oscillations, as illustrated in Fig. 13, where the steady-
state free-surface profiles for the same Reynolds and compressibil-
ity numbers as in Fig. 12 and A = 0.1 are plotted.

The stability of the oscillatory steady-state solutions has been
investigated by means of time-dependent simulations using
meshes with different extrudate lengths. Representative results
for Re = 2, B = 0.06 (very compressible flow), and A = 0 (no slip)
are illustrated in Fig. 14. The volumetric rate condition was set at
Q0 = 0.5 and at t = 0 the volumetric flow rate was set to Q = 1. An
overshoot appears that grows considerably but travels and disap-
pears downstream. Oscillations are then developed on the free sur-
face, and a stable oscillatory solution is finally reached. Time-
dependent calculations with slip at the wall (i.e., for nonzero A)

showed that, as with the steady-state solutions, wall slip reduces
the size of the free-surface oscillations.

5. Conclusions

The combined effects of slip, compressibility, and inertia on the
extrudate-swell ratio and the exit correction factor in both the axi-
symmetric and planar extrudate-swell flows have been analyzed
by means of finite-element simulations. We have employed Na-
vier’s slip condition and a linear equation of state to relate the den-
sity to the pressure. The asymptotic values of the extrudate-swell
ratio for the incompressible flow in the presence of slip have been
derived. The numerical results indicate the following:

Fig. 12. Free surface profiles in compressible axisymmetric extrudate-swell flow
with no slip (A = 0) for Re = 0, 5, and 10. Note that the y-scale is not the same in all
graphs.

Fig. 13. Free surface profiles in compressible axisymmetric extrudate-swell flow
with slip at the wall (A = 0.1), for Re = 0, 5, and 10. Note that the y-scale is not the
same in all graphs.
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(a) In creeping flow as well as for moderate Reynolds numbers
at which the Newtonian jet actually contracts, the extru-
date-swell ratio increases with compressibility after passing
from a small minimum.

(b) Slip at the wall tends to reduce swelling at low Reynolds
numbers and contraction at higher Reynolds numbers,
weakening the above minimum and moving it to the right.

(c) The exit correction factor increases monotonically with
compressibility and its absolute value is reduced by wall
slip.

(d) As the Reynolds number is increased, nex initially decreases
and then passes through a minimum which is shifted to
the left as the slip number is increased.

(e) In compressible flow, stable steady-states are observed at
moderate Reynolds numbers in which the extrudate surface
exhibits oscillations that decay downstream. The free-sur-
face oscillations are suppressed by slip, as expected.

(f) The competition of slip and inertia at moderate slip and Rey-
nolds numbers leads to interesting stable extrudate shapes.

Acknowledgement

The authors are indebted to the ERASMUS program (subpro-
gram SOCRATES) for scientific visits to Cyprus related to this
project.

References

[1] Hill DA, Hasegawa T, Denn MM. On the apparent relation between adhesive
failure and melt fracture. J Rheol 1990;34:891–918.

[2] Piau JM, El Kissi N, Tremblay B. Influence of upstream instabilities and wall slip
on melt fracture and sharkskin phenomena during silicones extrusion through
orifice dies. J Non-Newtonian Fluid Mech 1990;34:145–80.

[3] Hatzikiriakos SG, Dealy JM. Wall slip of molten high density polyethylenes. II.
Capillary rheometer studies. J Rheol 1992;36:703–41.

[4] Mitsoulis E. Annular extrudate swell of Newtonian fluids: effects of
compressibility and slip at the wall. J Fluids Eng 2007;129:1384–93.

[5] Denn MM. Extrusion instabilities and wall slip. Ann Rev Fluid Mech
2001;33:265–87.

[6] Hatzikiriakos SG. Wall slip of molten polymers. Prog Polym Sci 2012;37:
624–43.

[7] Neto C, Evans DR, Bonaccurso E, Butt HJ, Graig VSJ. Boundary slip in Newtonian
liquids: a review of experimental studies. Rep Prog Phys 2005;68:2859–97.

[8] Silliman WJ, Scriven LE. Separating flow near a static contact line: slip at a wall
and shape of a free surface. J Comp Phys 1980;34:287–313.

[9] Phan-Thien N. Influence of wall slip on extrudate swell: a boundary element
investigation. J Non-Newtonian Fluid Mech 1988;26:327–40.

[10] Georgiou GC, Crochet MJ. Compressible viscous flow in slits with slip at the
wall. J Rheol 1994;38:639–54.

[11] Georgiou GC, Crochet MJ. Time-dependent compressible extrudate-swell
problem with slip at the wall. J Rheol 1994;38:1745–55.

[12] Guillope C, Hakim A, Talhouk R. Existence of steady flows of slightly
compressible viscoelastic fluids of White-Metzner type around an obstacle.
Commun Pure Appl Anal 2005;4:23–44.

[13] Vinay G, Wachs A, Agassant J-F. Numerical simulation of weakly compressible
flows: the restart of pipeline flows of waxy crude oils. J Non-Newtonian Fluid
Mech 2006;136:93–105.

[14] Hatzikiriakos SG, Dealy JM. Start-up pressure gradients in a capillary
rheometer. Polym Eng Sci 1994;34:493–9.

[15] Beverly CR, Tanner RI. Compressible extrudate swell. Rheol Acta 1993;32:
526–31.

[16] Georgiou GC. The compressible Newtonian extrudate-swell problem. Int J
Numer Meth Fluids 1995;20:255–61.

[17] Park CB, Behravesh AH, Venter RD. Low density microcellular foam processing
in extrusion using CO2. Polym Eng Sci 1998;38:1812–23.

[18] Taliadorou E, Georgiou G, Mitsoulis E. Numerical simulation of the extrusion of
strongly compressible Newtonian liquids. Rheol Acta 2008;47:49–62.

[19] Mitsoulis E, Georgiou GC, Kountouriotis Z. A study of various factors affecting
Newtonian extrudate swell. Comput Fluids 2012;57:195–207.

[20] Taliadorou E, Georgiou GC, Alexandrou AN. A two-dimensional numerical
study of the stick-slip extrusion instability. J Non-Newtonian Fluid Mech
2007;146:30–44.

[21] Russo G, Phillips TN. Numerical simulation of steady planar die swell for a
Newtonian fluid using the spectral element method. Comput Fluids
2012;39:780–92.

[22] Harmon DB. Drop sizes from low-speed jets. J Franklin Inst 1955;259:519–22.
[23] Tillett JPK. On the laminar flow of a free jet of liquid at high Reynolds numbers.

J Fluid Mech 1968;32:273–92.
[24] Tanner RI. Engineering rheology. 2nd ed. Oxford, UK: Oxford University Press;

2000.
[25] Naguib HE, Park CB, Reichelt N. Fundamental foaming mechanisms governing

the volume expansion of extruded polypropylene foams. J Appl Polym Sci
2004;91:2661–8.

[26] Moraru CI, Kokini JL. Nucleation and expansion during extrusion and
microwave heating of cereal foods. Comp Rev Food Sci Food Sav 2003;2:
147–65.

(a)

(b)

Fig. 14. Evolution of the free surface after perturbing the steady-state axisymmetric
solution for Re = 2, B = 0.06, and A = 0 (no slip) from Q0 = 0.5 to Q0 = 1: (a) t = 3, 5, 7,
and 9; (b) t = 15, 20, 25, and 30; the free surface pro_les at t = 0 and 1 are also
shown.
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