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The singular function boundary integral method (SFBIM) is applied for the numerical
solution of a 2-D Laplace model problem of a perfectly elastic wedge beam under plane
stress conditions. The beam has a point boundary singularity, it includes a curved boundary
part and is subjected to non-trivial distributed external loading. The implemented solution
method converges for this special model problem extremely fast. The numerical estimates
attained for the leading singular coefficients of the local asymptotic expansion and the
stress and strain fields are highly accurate, as verified by comparison with the available
analytical solution.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In the area of linear elasticity, there exist many problems described by the Laplace equation in either two or three
dimensions. When boundary singularities are present, caused either by an abrupt change in the boundary conditions or
by a re-entrant corner, one needs to compute the singular coefficients of the solution expansion in the neighborhood of
the singularity, which is intended to represent the Airy stress function U. In the case of a plane problem in polar coordinates,
this expansion is of the form:
Uðr; hÞ ¼
X1
j¼1

bjr
kj f jðhÞ; ð1Þ
where the polar coordinates (r, h) are centered at the singular point. The eigenvalues kj and the eigenfunctions fj of the prob-
lem are determined by the boundary conditions along the boundary parts causing the singularity. The values of the unknown
singular coefficients bj, determined by the boundary conditions at the rest of the boundary, are of significant importance in
many applications. In fracture mechanics these coefficients are also known as generalized stress intensity factors [1].

In the past few decades, many special numerical methods have been proposed for the solution of elliptic boundary value
problems with boundary singularities, in order to overcome difficulties related to the lack of adequate accuracy and to poor
convergence in the neighborhood of singularity points. Remedies used were special mesh refinement schemes, multigrid
methods, singular elements, p/hp finite elements and many other techniques (see, e.g. [2–5]). An extensive survey of the
treatment of singularities in elliptic boundary value problems is provided in the review article by Li and Lu [6].
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Certain techniques incorporate the form of the local asymptotic expansion [7]. For example, Georgiou and co-workers [8,9]
developed a singular finite element method, in which special elements are employed. With their method, the radial form of
the local singularity expansion is employed, in the neighborhood of the singularity, in order to resolve the convergence dif-
ficulties and improve the accuracy of the global solution. In the Finite Element Method (FEM), the singular coefficients are
calculated by post-processing of the numerical solution. Especially with high-order p and hp FEM versions, fast convergence
is achieved by: (i) increasing the degree of the piecewise polynomials (in the case of the p version) and (ii) by decreasing the
characteristic size h of the elements and increasing p (in the case of the hp version). Such methods proved very successful in
solving elliptic boundary value problems with a boundary singularity [10,11]. Also, some interesting post-processing proce-
dures have been proposed for the calculation of the singular coefficients from the finite element solution [3,4].

In the past two decades, Georgiou and co-workers [12–18] developed and tested the Singular Function Boundary Integral
Method (SFBIM), in which the unknown singular coefficients are calculated directly, thus giving directly the approximation
of the Airy stress function in Laplacian and biharmonic problems of plane elasticity, or the stream-function in biharmonic
problems of fluid mechanics. Recently, an extension of the method has been made for 3-D elliptic problems of elasticity
[17]. With the SFBIM the solution is approximated by the leading terms of expansion (1) and the Dirichlet conditions on
boundary parts away from the singularity are enforced by means of Lagrange multipliers. Numerical studies, as well as the-
oretical analyses, demonstrated that the SFBIM exhibits exponential convergence with the number of singular functions and
can achieve high solution accuracy [12–18].

In the present work, the SFBIM is applied for the solution of a 2-D Laplace model problem of a perfectly elastic wedge beam
under plane stress conditions. The beam has a curved boundary part, the center of curvature of which does not coincide with
the point of boundary singularity. The distributed external loads applied to the beam impose non-standard boundary condi-
tions, which would be difficult to handle in the framework of the classical FEM or other approaches. The analytical expression
of the Airy stress function for this problem is known, which allows for objective accuracy assessment of the implemented
numerical method. Hence, our objectives are: (a) to efficiently solve this special model problem without transforming it into
an equivalent biharmonic problem (with the angle of the wedge being less than 3p/4, it is impossible to find a real function for
the local solution expansion); and (b) to study the convergence and the accuracy of the SFBIM. The model problem is described
in Section 2. In Section 3, the formulation of the SFBIM is presented. Section 4 reports and discusses the numerical results
obtained and demonstrates the fast convergence of the SFBIM. Finally, the conclusions are summarized in Section 5.

2. A model problem with a point boundary singularity

We consider the plane stress problem of the 2-D unit-thickness wedge beam schematically illustrated in Fig. 1. The beam
has two free straight boundary parts, which are subjected to distributed normal and shear loads, as well as a supported
curved boundary part. More specifically, distributed normal pressures p(r) act vertically and horizontally along the boundary
segment OA of length L, while a distributed shear load s(r) acts along the inclined boundary segment OB. External loading
consists of these distributed loads only; there are no concentrated external forces on the structure. Moreover, the self-weight
of the beam is ignored. The third boundary segment AB, which is fixed-supported and curved, is part of the circumference of
a circle with center at point K and radius R; the y-coordinate of K is equal to H/2, which is half the length of chord AB. The
singularity of this problem is at the free tip O of the wedge, which lies at the intersection of the two straight loaded boundary
segments OA and OB. The center K of the circle defining the curved boundary part AB is far away from the singular point O.

The physical boundary conditions of this model problem are as follows:
rrr ¼ �pðrÞ ¼ �3r � 0:01r7; rhh ¼ pðrÞ ¼ �rrr ; rrh ¼ 0 on OA
rrr ¼ rhh ¼ 0; rrh ¼ sðrÞ ¼ 3r � 0:01r7 on OB
ur ¼ uh ¼ 0 on AB

9>=
>;; ð2Þ
where the stresses rrr, rhh and rrh and the displacements ur and uh can easily be deduced from U(r, h) expressed in polar
coordinates. Note that all expressions are dimensional; distributed loads are expressed in kN/m and lengths in m
(L = 3 m, R = 10 m). Fig. 2 gives a graphical presentation of the distributed loads p(r) and s(r) acting along boundaries OA
and OB, respectively, in order to provide a view of the non-trivial loading conditions of the structure analyzed. The material
Fig. 1. Schematic illustration of the 2-D wedge beam.
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of the wedge beam is assumed to exhibit perfectly elastic behavior; the structure is made of a typical aluminum alloy with
Young’s modulus E = 70 GPa and Poisson’s ratio m = 1/3. The type of problem studied in the present paper is of interest in
engineering applications [19].

With the wedge angle being a = p/6, the corresponding eigensolutions are
Fig. 2.
kj ¼ 3ð2j� 1Þ; f jðhÞ ¼ cosðkjhÞ; j ¼ 1;2; . . . ð3Þ
Hence, the local solution reads
Uðr; hÞ ¼
X1
j¼1

bjQ j; ð4Þ
where
Q j ¼ rkj cosðkjhÞ ð5Þ
are known as the singular functions. With the particular choice of the boundary condition along AB, it turns out that only the
first two singular coefficients are non-zero: b1 = 1/2 and b2 = 1/7200. In other words,
Uðr; hÞ ¼ 1
2

r3 cosð3hÞ þ 1
7200

r9 cosð9hÞ: ð6Þ
According to Kirchhoff’s uniqueness theorem, the above solution is unique [19].
In terms of U, the mathematical problem to be solved is the following:
r2U ¼ 0 in X ð7Þ

subject to the following boundary conditions:
@U
@h
¼ 0 on OA

U ¼ 0 on OB
U ¼ 1

2 r3 cosð3hÞ þ 1
7200 r9 cosð9hÞ on AB

9>>=
>>;: ð8Þ
3. The singular function boundary integral method

With the SFBIM, the solution of the model problem analyzed is approximated by the leading Ns terms of the local
asymptotic expansion (4):
�Uðr; hÞ ¼
XNs

j¼1

�bjQ j; ð9Þ
Graphical presentation of the distributions of the normal load p(r) and the shear load s(r) acting along boundary parts OA and OB, respectively.
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where the overbars denote approximate quantities. The governing equation (7) is weighted, in the Galerkin sense, by the
singular functions Qi and integration is performed over the whole domain X. Hence, the discretized problem reads
Z

X
Q ir2 �UdV ¼ 0; i ¼ 1;2; . . . ;Ns: ð10Þ
By applying Green’s second identity, the dimension of the problem is reduced by one:
Z
@X

Qi
@ �U
@n
� �U

@Q i

@n

� �
ds ¼ 0; i ¼ 1;2; . . . ;Ns; ð11Þ
where n denotes the direction normal to the boundary. Since the singular functions Qi satisfy the corresponding boundary
conditions, the above integral is zero along OA and OB. Therefore, one needs to integrate only far from the singularity:
Z

AB
Qi
@ �U
@n
� �U

@Q i

@n

� �
ds ¼ 0; i ¼ 1;2; . . . ;Ns: ð12Þ
There remains to impose the Dirichlet boundary condition along AB. To achieve that, a Lagrange multiplier function l is
employed, which replaces the normal derivative of �U. The boundary AB is divided into NE quadratic elements and the
Lagrange multiplier function is approximated by means of quadratic basis functions Pj:
�l ¼
XNl

j¼1

�ljPj; ð13Þ
where Nl ¼ 2NE þ 1. The quadratic basis functions are also used to weigh the Dirichlet boundary condition along AB. The
following linear system of equations is thus obtained:
Z

AB
Qi �l� �U

@Q i

@n

� �
ds ¼ 0; i ¼ 1;2; . . . ;Ns ð14Þ
and
 Z
AB

Pi
�Uds ¼

Z
AB

Pi
�U
��
ABds; i ¼ 1;2; . . . ;Nl: ð15Þ
Eqs. (14) and (15) constitute a linear system of Ns + Nl equations. This can be written in block form as follows:
Ks Kl

KT
l O

" #
Xs

Xl

� �
¼

O

Fl

� �
; ð16Þ
where the left matrix is the stiffness matrix, Xs and Xl are the vectors of the unknown singular coefficients and Lagrange
multipliers, respectively, while the right-hand-side represents a load vector. The stiffness matrix is symmetric and becomes
singular when Ns < Nl.

4. Numerical results

The elements of the stiffness matrix and the load vector are calculated by means of numerical integration. Each boundary
element is subdivided into 10 subintervals and a 15-point Gauss–Legendre quadrature is used over each subinterval. As
already mentioned, the number of singular functions Ns should be greater than or equal to the number of Lagrange multi-
pliers Nl, in order to avoid ill-conditioning or singularity of the stiffness matrix. On the other hand, however, large values
of Ns should be avoided because the contribution of the high-order singular functions becomes either negligible (for r < 1)
or very large (for r > 1), beyond the limits double precision arithmetic can handle. Systematic runs have been carried out,
in order to study the effects of both Ns and Nl on the numerical results. Several combinations of Ns and Nl have been tried
until the optimal pair was found. After several trials, the optimal choices were found to be Ns = 15 and Nl = 15.

Table 1 presents the values of the first three singular coefficients calculated with Ns = 15 and various values of Nl 6 Ns.
Very fast convergence is observed and very accurate values are obtained, as in previous applications of the SFBIM (e.g. [6–9]).
In Table 2, the number of Lagrange multipliers is fixed to Nl = 15 and the number of singular functions is varied. It is clear
that the optimal value of the latter is Ns = 15. Results start diverging for higher values of Ns due to the fact that the contri-
bution of higher order terms of the solution expansion approximation become significant as the value of Ns increases after it
attains a certain value. As illustrated in Table 3, the converged values of the singular coefficients, calculated with the optimal
choices Ns = 15 and Nl = 15, are the same as the exact values up to 9 significant digits. The converged coefficients of order 3
and higher are essentially zero in agreement with the exact analytical solution. It is noted that these highly accurate results
are obtained by forming and solving a linear system of just Ns + Nl = 30 equations, which highlights the very low demands of
the SFBIM in processing time and computer memory.

Once the singular coefficients are estimated with sufficient accuracy and thus U is adequately approximated, the
corresponding stresses can be calculated:



Table 1
Convergence of the approximations of the singular coefficients with Nl; Ns = 15.

Nl �b1
�b2

�b3

3 0.494033603 0.000137603 0.00000000122
5 0.499254214 0.000137854 0.00000000024
7 0.499875746 0.000138674 0.00000000011
9 0.499975388 0.000138826 0.00000000013

11 0.499993831 0.000138869 �0.00000000003
13 0.500000188 0.000138888 0.00000000000
15 0.499999999 0.000138889 0.00000000000

Table 2
Convergence of the approximations of the singular coefficients with Ns; Nl = 15.

Ns �b1
�b2

�b3

15 0.499999999 0.000138889 0.00000000000
16 0.499999120 0.000138883 0.00000000000
17 0.499997614 0.000138881 �0.00000000001
18 0.499997032 0.000138882 �0.00000000003
19 0.499994534 0.000138877 0.00000000018
20 0.499973215 0.000138794 0.00000000119
21 0.499865002 0.000137308 0.00000000184

Table 3
Converged values of the approximations of the leading singular coefficients (calculated for Ns = Nl = 15) compared against the exact analytical results.

j �bj bj

1 0.499999999 0.500000000
2 0.000138889 0.000138889
3 0.000000000 0.000000000
4 0.000000000 0.000000000
5 0.000000000 0.000000000

Table 4
Values
approxi

rrr

rhh

rrh

err

ehh

erh
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of stresses (in kPa) and strains at the middle K of the curved boundary segment AB. The error is calculated as the absolute difference of the exact and
mate solutions.

Exact solution Approximate solution Error

16.2006 16.2004 2 � 10�4

�16.2006 �16.2004 2 � 10�4

21.6395 21.6394 1 � 10�4

3.0781 � 10�7 3.0781 � 10�7 <10�12

�3.0781 � 10�7 �3.0781 � 10�7 <10�12

4.1115 � 10�7 4.1115 � 10�7 <10�12

Fig. 3. Distributions of the stresses rrr, rhh and rrh along the curved boundary AB.



Fig. 4. Stress contours for rrr and rrh (in kPa).
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rrr ¼
1
r
@U
@r
þ 1

r2

@2U

@h2 ¼ �3r cosð3hÞ � 0:01r7 cosð9hÞ; ð17Þ

rhh ¼
@2U
@r2 ¼ 3r cosð3hÞ þ 0:01r7 cosð9hÞ ¼ �rrr; ð18Þ

rrh ¼ �
@

@r
1
r
@U
@h

� �
¼ 3r sinð3hÞ þ 0:01r7 sinð9hÞ: ð19Þ
As shown in Table 4, the numerical values of the stresses at the middle K of arc AB almost coincide with the analytical ones.
This is also the case with the values of strains at the same point also tabulated in Table 4. These are calculated by means of
Hooke’s generalized equations:
err ¼
1
E
ðrrr � mrhhÞ; ð20Þ
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ehh ¼
1
E
ðrhh � mrrrÞ; ð21Þ
erh ¼
1

2G
rrh; ð22Þ
where G = E/2(1 + m) is the shear modulus of the material of the beam. The stresses of the wedge beam are graphically illus-
trated in Figs. 3 and 4. In particular, distributions along the curved boundary AB for all stress components are shown in Fig. 3,
while contours for stresses rrr and rrh over the whole analyzed domain are depicted in Fig. 4. The stress contour for rhh is the
opposite of the one for rrr, as it holds that rrr + rhh = 0 at any point of the analyzed domain.

5. Conclusions

In this work, the singular function boundary integral method (SFBIM) has been implemented for efficiently solving a
model problem of a 2-D perfectly elastic wedge beam with a point boundary singularity and a curved boundary part. The
convergence of the method has been studied by varying the numbers of singular functions and Lagrange multipliers. With
the SFBIM, the leading singular coefficients of the local singularity expansion are calculated explicitly; this constitutes an
important advantage over other numerical methods, which require post-processing of the solution to obtain the singular
coefficients. It has been numerically demonstrated that, for the special model problem analyzed in the present paper, the
SFBIM achieves fast convergence and highly accurate results.

As the complexity of the problems tackled in engineering applications is continuously increased and the resulting han-
dling demands approach the limits of computational resources, there is a constant need for efficient and effective numerical
solution methods offering both computing speed and accuracy. It is still common in engineering applications to use classical
finite element software, which may offer the capability to solve many quite different problems, but may also struggle to
reach an adequate solution for problems posing certain difficulties. Hence, further developing and making available numer-
ical methods like the SFBIM is an important step towards overcoming such difficulties. Along this line, in the present work
the SFBIM has been successfully applied and tested on a special model problem with non-standard boundary conditions. The
demonstrated capability of the SFBIM to attain fast solutions without compromising accuracy can be a very helpful feature
especially when successive linear analyses are required, e.g. in the solution of non-linear and/or dynamic problems. Efficient
numerical methods like the SFBIM can be particularly useful in drastically accelerating the extremely demanding computa-
tions of reanalysis problems encountered in sensitivity analyses, Monte-Carlo simulation-based approaches, design optimi-
zation, etc.

The favorable numerical behavior of the SFBIM can be exploited also in other ways. Combining the SFBIM with standard
numerical methods, such as the FEM, appears to be an interesting extension of the method. For example, Chen et al. [20]
recently proposed two model order reduction techniques for Poisson singularity problems and presented the analytical
investigations of accuracy and stability in the reduced models. Hence, among the future plans of the authors is to present
hybrid methods simultaneously taking advantage of the strengths of the SFBIM and other numerical approaches.
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