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Abstract. We solve the time-dependent, compressible extrudate-swell flow of a shear-thinning fluid that obeys the Carreau constitutive model, using finite elements in space and a fully-implicit scheme in time. Full-Newton iteration is employed, i.e., the unknown position of the extrudate surface is calculated simultaneously with the velocity and pressure fields. Slip is assumed to occur along the die wall following a nonmonotonic slip equation relating the wall shear stress to the slip velocity, as suggested by extrusion experiments with polyethylene melts. Steady-state solutions corresponding to the negative-slope branch of the slip equation are linearly unstable. The numerical calculations at fixed volumetric flow rates demonstrate that the combination of compressibility and nonlinear slip leads to periodic solutions in the unstable regime. Self-sustained oscillations of the pressure drop are obtained and high-frequency, small amplitude waves are generated on the free surface which is also oscillating around its steady-state position, as is the case with experiments.

1
INTRODUCTION

The objective of this work is to investigate by means of numerical simulations whether the compressibility-slip instability mechanism can explain quantitatively the wavelength and the amplitude of the free surface oscillations that are observed during the extrusion of polymer melts. Other mechanisms of instability proposed in the literature, such as the combination of elasticity and nonlinear slip and the constitutive instability mechanism, are reviewed by Achilleos et al. [1].

The compressibility-slip mechanism has been tested by Georgiou and Crochet[2,3] in the Newtonian case, with the use of an arbitrary nonmonotonic slip equation. These authors numerically solved the time-dependent compressible Newtonian Poiseuille flow with nonlinear slip at the wall, showing that steady-state solutions in the negative-slope regime of the flow curve are unstable, in agreement with linear stability analysis. Self-sustained oscillations of the pressure-drop and of the mass flow rate at the exit are obtained, when an unstable steady-state solution is perturbed, while the volumetric flow rate at the inlet is kept constant. These oscillations are similar to those observed experimentally with the stick-slip extrusion instability. Georgiou and Crochet[3] extended their calculations to the extrudate-swell problem to obtain oscillations of the free ssurface in the unstable regime. The amplitude and the wavelength of the free-surface waves increase with compressibility. 

In the present work, we proceed to more realistic numerical simulations of a shear-thinning fluid with an empirical slip equation that is based on the experimental measurements of Hatzikiriakos and Dealy[4,5] with a high-density polyethylene melt. We solve the time-dependent, compressible, axisymmetric extrudate-swell flow of a Carreau fluid with slip at the wall, using finite elements in space and finite differences in time. 

In Section 2, the governing equations and the slip equation are presented. The boundary and initial conditions are discussed in Section 3, and the numerical method is briefly described in Section 4. In Section 5, the numerical results are presented and discussed.

2
GOVERNING EQUATIONS

The geometry of the axisymmetric extrudate-swell flow is shown in Figure 1. Letting p, v, and ( denote the pressure, the velocity vector, and the stress tensor, respectively, the continuity and the momentum equations for time-dependent compressible, isothermal viscous flow in the absence of body forces are as follows:
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Figure 1. Geometry and boundary conditions of the extrudate-swell flow.
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(2)

where ( is the density. For compressible, generalized Newtonian with the bulk viscosity neglected, the stress tensor is written as:
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(3)

where I is the unit tensor, d is the rate-of-deformation tensor, defined as
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(4)

η is the viscosity, which is a function of the second invariant, IId, of d, and the superscript T denotes the transpose. Based on the excellent superposition of the data obtained from capillaries of various length-to-diameter ratios, Hatzikiriakos and Dealy [1] concluded that the pressure had a small effect on the viscosity of the polymers they used. The pressure dependence of the viscosity is thus neglected in this work. 


For a power-law fluid,
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(5)

where K is the consistency index, and n is the power-law constant. An important limitation of the above model is the prediction of infinite zero-shear-rate viscosity. This results in severe convergence difficulties in regions of the flow field where IId is very small. (These include regions that are generally easy to solve, such as regions of uniform flow.) This problem is avoided by using the Carreau model which generalizes the power-law model as follows:
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where η0 is the zero-shear-rate viscosity, (( is the infinite-shear-rate viscosity, and λ is a time constant for which we have η0 λ n-1 = K. In this work, we use the values n= 0.44 and K=0.0178 M Pa sn, provided by Hatzikiriakos and Dealy[4,5] (resin A at 180 0 C). We also assume that η0= 0.03 M Pa s and ((=0.

The above equations are completed by an equation of state relating the pressure to the density. We use the first-order expansion:
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(7)

where β is the isothermal compressibility, and ρ0 is the density at the reference pressure p0. Hatzikiriakos and Dealy[5] provide the value β=9.923 10-4 (MPa)-1.

2.1
The slip equation
We use the following three-branch multi-valued slip model
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(8)

where υw is the relative velocity of the fluid with respect to the wall, σw is the shear stress on the wall, υc2, is the maximum slip velocity at σc2, and υmin is the maximum slip velocity at σmin. The third branch is the power-law slip equation suggested by Hatzikiriakos and Dealy[5] for the right branch of their flow curve. The first branch results from the slip equation they propose for their slope curve after substituting all parameters for resin A at 1800C and taking the normal stress as infinite. (Taking the normal stress equal to zero results in a slip curve which almost overlaps with the third branch.) Finally, the second negative slope branch, which corresponds to the unstable region of the flow curve for which no measurements have been possible, is just the line connecting the other two branches. A plot of the slip equation (8) is shown in Fig. 2.
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Figure 2. The nonmonotonic slip law, based on the experimental data of Hatzikiriakos and Dealy[5] 

2.2
Nondimensionalization

To non-dimensionalize the governing equations, we scale the lengths by the radius R, the velocity by the mean velocity V in the capillary, the pressure and the stress components by η0 λ n-1 Vn / Rn, the density by ρ0, and the time by R/V. With this scaling, the continuity and momentum equations become
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and
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(10)

where all variables are now dimensionless, and Re is the Reynolds number defined as
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The dimensionless form of the stress tensor for a Carreau fluid is
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where
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The equation of state also becomes
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where B is the compressibility number,
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The dimensionless form of the slip equation is
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(16)

where
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and the dimensionless values of υc2 and υmin correspond to
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respectively. It should be noted that the volumetric flow rate is scaled by πR2V. Typical values of the dimensional numbers are tabulated in Table 1. These have been calculated by taking the value 500 s-1 for the apparent shear rate 
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Table 1 : Typical values of the dimensionless numbers.
3
BOUNDARY AND INITIAL CONDITIONS

The boundary conditions of the extrudate-swell flow are shown in Figure 1. Along the axis of symmetry, we have the usual symmetry conditions. Along the wall, the radial velocity vanishes whereas the axial velocity satisfies the slip equation (16). At the inlet plane, we assume that the radial velocity component υr, vanishes and that υz is given by: 
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where 
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 is the unknown slip velocity and Q is the volumetric flow rate at the inlet. The additional equation required for the calculation of the inlet velocity at the wall is provided by the fact that 
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Provided that υw is a monotonic function of Q, one can easily calculate the velocity profile at the inlet for any value of Q. At the outlet plane, we assume that both the normal and tangential total stress components are zero. Finally, on the free surface, we assume that the surface tension is zero and impose vanishing normal and tangential stresses. Additionally, the unknown position h(z ,t) of the free surface satisfies the kinematic condition:
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As for the initial condition, we start with the steady-state solution of the stick-slip flow (i.e., for flat free surface) and release the free surface at t=0.

4
THE NUMERICAL METHOD

We use the finite element formulation for solving the time-dependent free-surface problem under study. The density is eliminated by means of the equation of state (14). The unknown position of the free surface is calculated simultaneously with the velocity and pressure fields. We use the standard biquadratic-velocity (P²-Cº) and bilinear-pressure (P¹-Cº) elements with a quadratic representation for the position h of the free surface. For the spatial discretization of the problem, we use the Galerkin forms of the continuity, momentum and kinematic equations. For the time discretization, we use the standard fully-implicit (Euler backward-difference) scheme.

5
NUMERICAL RESULTS

The length L1 of the capillary was taken to be equal to 20 (as in the experiments of Hatzikiriakos and Dealy[4,5]). For the extrudate region, we considered two different lengths, L2=5 and 20, depending on the wavelength of the free surface oscillations. The finite-element meshes were refined near the wall and the exit of the capillary. The mesh with L2 =5 consisted of 243(13 elements.

In Fig. 3, we show the (steady-state) flow curves corresponding to both slip and no slip with Re=1.43 10-5 and B=1.54 10-4. The reduction of the pressure drop due to slip is appreciable at higher volumetric flow rates, especially beyond the left positive-slope branch. Here -(P is the pressure drop along the wall (the pressure drop along the plane of symmetry is slightly lower). 
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Figure 3. Flow curve for Re=1.43 10-5 and B=1.54 10-4 

An expected result of the presence of slip is the reduction of the swelling. This reduction is enhanced as the volumetric flow rate is increased, as illustrated in Fig. 4, where we plot the steady free-surface profiles calculated for five different values of Q, corresponding to the points indicated on the flow curve of Fig. 3. A slight swelling reduction is also observed in the no-slip case. This is due to the increase of the actual Reynolds number.
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Figure 4. Representative  free surface profiles for the volumetric flow rates indicated in Fig. 3.

In the time-dependent calculations, pressure-drop and mass-flow-rate oscillations are obtained when an unstable steady-state is perturbed. In addition, waves appear on the free surface. In Fig. 5, we show representative free-surface profiles obtained with Re=0.1, B=1.54 10-4 and Q=1.5 during one complete cycle (from a pressure-drop maximum to the next one), after the periodic solution is established. In addition to the motion of the free surface waves in the flow direction, the free surface oscillates in the radial direction as well, in agreement with experimental observations. Swelling is maximized at pressure-drop maxima.
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Figure 5. Evolution of the free surface during one cycle after the periodic solution is established. The broken line shows the steady-state position of the free surface; n=0.44, Re=0.1, B=1.54 10-4 and Q=1.5

Finally, the effect of Re on the free surface waves is illustrated in Fig. 6, where we show representative free surface profiles obtained with B=1.54 10-4, Q=1.5 and Re=0.1 with L2=20, and Re=0.01 and 0.001 with L2=5. The amplitude and the wavelength of the free surface waves are reduced as Re approaches zero. Due to the small size of the free-surface oscillations, no simulations have been attempted for smaller values of the Reynolds number. 
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Figure 6. Free surface waves for different Reynolds numbers: (a) Re=0.1; (b) Re=0.01; (c) Re=0.001; n=0.44, B=1.54 10-4 and Q=1.5
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