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Abstract. We solve a Laplacian problem over an L-shaped domain using a singular function boundary integral 
method as well as the p/hp finite element method. In the former method, the solution is approximated by the 
leading terms of the local asymptotic expansion, and the unknown singular coefficients are calculated directly. 
In the latter method, these coefficients are computed by post-processing the finite element solution. The 
predictions of the two methods are discussed and compared with recent numerical results in the literature. 
 
 
1 INTRODUCTION 

In the past few decades, many different methods have been proposed for the numerical solution of plane 
elliptic boundary value problems with boundary singularities, aiming at improving the accuracy and resolving 
the convergence difficulties that are known to appear in the neighborhood of such singular points. These 
methods range from special mesh-refinement schemes to sophisticated techniques that incorporate, directly or 
indirectly, the form of the local asymptotic expansion, which is known in many occasions. In polar coordinates 
(r,θ) centered at the singular point, the local solution is of the general form 
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where µj are the eigenvalues and fj are the eigenfunctions of the problem, which are uniquely determined by the 
geometry and the boundary conditions along the boundaries sharing the singular point. The singular coefficients 
αj, also known as generalized stress intensity factors, are determined by the boundary conditions in the 
remaining part of the boundary. Knowledge of the singular coefficients is of importance in many engineering 
applications.  

In the Finite Element Method (FEM), which is the most commonly used method for solving structural 
mechanics problems, the singular coefficients are calculated by post-processing the numerical solution. 
Generally speaking, the most effective versions of the FEM are the high-order p and hp versions, in which 
instead of simply refining the mesh, convergence is achieved by: (i) increasing the degree of the piecewise 
polynomials in the case of the p version, and (ii) by increasing p and decreasing h in the case of the hp version. 
The reason for the success of these methods is that they are able to approximate singular components of the 
solution to elliptic boundary value problems (that arise, for example, at corners of the domain) very efficiently. 
For instance, the hp version, over appropriately designed meshes, approximates these singularities at an 
exponential rate of convergence[1]. 

In the past few years, Georgiou and co-workers[2-4] developed the Singular Function Boundary Integral 
Method (SFBIM), in which the unknown singular coefficients are calculated directly. The solution is 
approximated by the leading terms of the local asymptotic solution expansion and the Dirichlet boundary 
conditions are weakly enforced by means of Lagrange multipliers. The method has been tested on standard 
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Laplacian problems, yielding extremely accurate estimates of the leading singular coefficients, and exhibiting 
exponential convergence with respect to the number of singular functions. 

The objective of the present paper is to compare the predictions of the SFBIM against those of the p/hp 
version of the FEM. We consider as a test problem the Laplacian problem over an L-shaped domain solved by 
Igarashi and Honma[5] with a singular boundary integral method. The accuracy of the calculated singular 
coefficients is restricted to five significant digits. As shown below, the predictions of both the SFBIM and the 
p/hp FEM are of much higher accuracy. 

2 APPLICATION  OF  THE  SFBIM  TO  A  TEST  PROBLEM 

We consider the same Laplacian problem over an L-shaped domain as that solved by Igarashi and Honma[5]. 
This is shown in Figure 1. Taking into account the symmetry of the problem, we consider only half of the 
domain and note that even-numbered coefficients are zero. The local solution expansion around the singularity 
at O may be written as follows: 
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are the singular functions. 

Figure 1. Geometry and boundary conditions of the test problem 

 

The SFBIM is based on the approximation of the solution by the leading terms of the local solution 
expansion:  
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where Nα is the number of singular functions. It should be noted that this approximation is valid only if the 
domain Ω is a subset of the convergence domain of the expansion (2). Given that the singular functions W 

j are 
harmonic, applying Galerkin’s principle and the second identity of Green, we obtain the following discretized 
equations:  
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Since W 

j exactly satisfy the boundary conditions along S1 and S2, the above integral along these boundary 
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segments is identically zero. Along boundary S4 the normal derivative is zero. Finally, the Dirichlet condition 
along S3 is imposed by means of a Lagrange multiplier function λ, replacing the normal derivative. The function 
λ is expanded in terms of standard, polynomial functions M    

j, 
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where Nλ represents the total number of the unknown discrete Lagrange multipliers along S3. The basis functions 
M    

j are used to weight the Dirichlet condition along the corresponding boundary segment S3. We thus obtain the 
following system of Nα + Nλ discretized equations: 
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It is easily shown that the above linear system is symmetric. The integrands in Eq. (7) are non-singular and 
all integrations are carried out far from the boundaries causing the singularity.  

In Ref. [5], the quantity 

3 4

1

1
1

2 2
S S

x

u uC dS
n x∪ −

=−

∂ ∂ = = −  ∂ ∂ ∫ ∫ dy                                                 (9) 

referred to as the capacitance, was of interest; we will also consider this quantity in our computations. 
 

3 NUMERICAL RESULTS WITH THE SFBIM 

The Lagrange multiplier function λ used to impose the Dirichlet condition along S3 is expanded in terms of 
quadratic basis functions. Boundaries S3 and S4 are subdivided, respectively, into 2N and N quadratic elements 
of equal size. Thus, the number of Lagrange multipliers is Nλ = 4N + 1. The integrals in Eqs. (7) and (8) are 
calculated numerically by subdividing each quadratic element into 10 subintervals and using a 15-point Gauss-
Legendre quadrature over each subinterval. In computing the coefficient matrix, its symmetry is taken into 
account.  

Several series of runs were performed in order to obtain the optimal values of N  α and Nλ. Our search was 
guided by the fact that Nλ should be large enough in order to assure accurate integrations along the boundary 
(which is divided into smaller elements) but much smaller than Nα in order to avoid ill-conditioning of the 
stiffness matrix. On the other hand, Nα cannot be very high, given that the computer accuracy cannot handle the 
contributions of the higher-order singular functions which become very small for r < 1 or very large for r > 1. 
Hence, Nλ was varied from 4 up to 65 and Nα from a value slightly above Nλ up to 100. 

The convergence of the solution with the number of Lagrange multipliers is shown in Table 1, where we 
tabulate the values of α1, α2 and α5 and the capacitance C calculated with Nα = 60. We observe that the values of 
the singular coefficients converge rapidly with Nλ, , up to Nλ = 41, and that very accurate estimates are obtained. 
For higher values of Nλ , however, signs of divergence are observed, due to the ill-conditioning of the stiffness 
matrix. In addition to the divergence of the singular coefficients, another manifestation of ill-conditioning is the 
appearance of wiggles on the calculated Lagrange multiplier function[4]. The quality of the solution for Nα = 60 
and Nλ = 41 was checked by verifying that λ is smooth and free of oscillations (Figure 2). 

 

 
Nλ α1 α2 α5 C 
5 
9 

17 
25 
33 
41 
49 

1.12797118414119 
1.12798030920688 
1.12798039995306 
1.12798040098244 
1.12798040105726 
1.12798040105939 
1.12798038900362 

0.16993982990692 
0.16993376833638 
0.16993386409437 
0.16993386632558 
0.16993386650219 
0.16993386650225 
0.16993384321933 

0.00096430271538 
0.00091656933158 
0.00091515473431 
0.00091515689483 
0.00091515710753 
0.00091515709910 
0.00091522372105 

2.5585187 
2.5585226 
2.5585229 
2.5585231 
2.5585226 
2.5585231 
2.5556215 

Table 1: Convergence of the solution with Nλ ; SFBIM with Nα = 60. 
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Figure 2. Calculated Lagrange multipliers with Nα = 60 and Nλ = 41 

 
The values of the leading singular coefficients and the capacitance C calculated for Nλ = 41 and various 

values of Nα are shown in Table 2. Exponential convergence with respect to Nα is observed and extremely 
accurate estimates of the singular coefficients are obtained. Our calculations with different values of Nα and Nλ 
show that the optimal values are Nα = 60 and Nλ = 41. In Table 3, the converged values of the singular 
coefficients calculated with these optimal choices are present. The CPU time required for the above run is 1.6 s 
on an IBM RS6000 (Processor type: Power PC 604e/375 MHz).  

 
 

Nα α1 α2 α5 C 
45 
50 
55 
60 

1.12798046929652 
1.12798040111620 
1.12798040105939 
1.12798040105939 

0.16993391450191 
0.16993386693468 
0.16993386650225 
0.16993386650225 

0.00091337482002 
0.00091509465304 
0.00091515709909 
0.00091515709910 

2.5467734 
2.5585230 
2.5585231 
2.5585231 

65 
70 
75 
80 

1.12798040105939 
1.12798040105938 
1.12798040105929 
1.12798040105953 

0.16993386650223 
0.16993386650176 
0.16993386650304 
0.16993386650246 

0.00091515709917 
0.00091515710049 
0.00091515709264 
0.00091515710302 

2.5585231 
2.5585230 
2.5585230 
2.5585232 

 
Table 2: Convergence of the solution with Nα ; SFBIM with Nλ = 41. 

 
 

In Table 3, we see that the contributions of the higher-order terms are progressively vanishing. Note that the 
converged value of α1 (1.12798040105939) is accurate to fifteen significant digits, while the value provided by 
Igarashi and Honma[5] (1.1280) is accurate only to five significant digits. The improved accuracy is also 
reflected on the calculated value of the capacitance which is converged to eight significant digits, C = 
2.5585231. 

Finally, in Figure 3, we plot the errors in the calculated values of the leading singular coefficients for Nα = 60 
versus the number of Lagrange multipliers. The errors are based on the converged values tabulated in Table 3. It 
is clear that the SFBIM converges exponentially with Nλ , and the error is reduced rapidly down to machine 
accuracy.  
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i αi Ref. [5] 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

 1.12798040105939 
 0.16993386650225 
-0.02304097399348 
 0.0034711966582 
 0.0009151570991 
-0.0001128038345 
 0.0000877165245 
 0.0000277603137 
-0.0000044161578 
 0.0000027539457 
 0.0000009219619 
-0.0000001554459 
 0.0000001088408 
 0.0000000379699 
-0.0000000066619 
 0.000000004711 
 0.00000000168 
 0.00000000030 
 0.00000000022 
 0.00000000008 

1.1280 
0.1699 
-0.0230 
0.0035 
0.0009 

C  2.5585231 2.5585 

Table 3: Converged values of the leading singular coefficients; SFBIM with Nλ = 41 and Nα = 60. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Convergence of the SFBIM with Nλ ; Nα = 60 
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4 NUMERICAL RESULTS WITH THE p/hp VERSION OF THE FINITE ELEMENT METHOD 

In this section we present the results of solving the same test problem, using the p/hp version of the FEM a 
geometrically graded mesh seen in Figure 4. This is, to our knowledge, the most effective technique for 
approximating the solution to elliptic boundary value problems with corner singularities in the context of the 
FEM. We refer to the book of Szabo and Babuska[6] for more details on corner singularities and geometrically 
graded meshes in conjunction with the p and hp versions of the FEM. Once the solution is obtained, the singular 
coefficients are obtained as a post-solution operation. In particular, the algorithm for computing the αj’s is based 
on an L2-projection of the finite element solution into the space of functions characterized by the asymptotic 
expansion in terms of the eigenpairs, which are computed using a modified Steklov method[7,8]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. (a) Geometrically graded mesh over the domain Ω; (b) Mesh detail near the re-entrant corner 

 
The computations were performed using the commercial FEM package STRESSCHECK (E.S.R.D. St. 

Louis, MO) on an IBM Pentium III machine. Since this is a p version package, the geometrically graded mesh 
was constructed a priori and the polynomial shape functions were taken to have degree p = 1,…,8, uniformly 
over all elements in the (fixed) mesh. The CPU time was approximately 9 s for the calculation of the finite 
element solution, uFE, and about 2 s for the calculation of the singular coefficients. Table 4 shows the potential 
energy as well as the (estimated) percentage relative error in the energy norm, 

( )

( )

100
EX FE E

EX E

u u
Error

u
Ω

Ω

−
= ×                                                               (10) 

indicating that the solution uFE is computed accurately. Table 5 shows the computed singular coefficients, which 
were obtained using the finite element solution corresponding to p = 8. These results show that the p version of 
the FEM (on geometrically graded meshes) seems to perform quite well when compared with the results 
obtained using other methods found in the literature.  
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p DOF Energy Error (%) 
1 
2 
3 
4 
5 
6 
7 
8 

 10 
 39 
 74 
127 
198 
287 
394 
519 

1.3385078 
1.2819648 
1.2806200 
1.2793571 
1.2792877 
1.2792738 
1.2792690 
1.2792667 

21.52 
4.60 
3.26 
0.85 
0.43 
0.28 
0.20 
0.15 

Table 4: Values of the potential energy and the percentage relative error in the p/hp method 

The capacitance C, defined by Eq. (9), was calculated using the finite element solution uFE corresponding to  
p = 8, by employing a 5-point Gaussian quadrature (to ensure the integral in Eq. (9) is evaluated exactly). We 
obtained C = 2.557256, an approximation which is not as good as that obtained using the SFBIM. We believe 
this is due to the pollution effects that are influencing the extraction of the data of interest (see e.g. Ref. [6]). 
Pollution is a phenomenon that occurs when singularities are present in the solution of an elliptic boundary value 
problem. These singularities cause the numerical method to yield inaccurate results away from the singularity 
point (as is the case here), when certain quantities of engineering interest are computed. The p version of the 
FEM is especially susceptible to pollution effects (in contrast to the h and hp versions). We repeated the 
calculation using a more refined mesh near the re-entrant corner, as seen in Figure 5. The newly computed 
singular coefficients are shown in Table 5 and the capacitance is recomputed as C = 2.558588, which is a much 
better approximation. The refined mesh required 691 degrees of freedom (for p = 8) as opposed to 519 used 
before, and the CPU time increased by 1 s.  

 
 

i αi, DOF=519 αi, DOF=691 
1 
2 
3 
4 
5 

 1.12797960 
 0.16993396 
-0.0230434 
-0.0034780 
 0.0009115 

 1.12798010 
 0.16993387 
-0.0230419 
-0.0034755 
 0.0009126 

C 2.557256 2.558588 

Table 5: Values of the leading singular coefficients obtained with the p/hp finite element method 

 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

Figure 5. Refined mesh 
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5 CONCLUSIONS 

We have solved a Laplacian problem over an L-shaped domain using both the SFBIM and the p/hp finite 
element method, and studied the convergence of the solution with the numbers of singular functions and of 
Lagrange multipliers, and the number of degrees of freedom, respectively. With the SFBIM the leading singular 
coefficients of the local singularity expansion are calculated explicitly, whereas with the p/hp-FEM they are 
calculated by post-processing the numerical solution. 

Fast convergence is achieved and highly accurate results are obtained with both methods, which perform 
considerably better than other techniques found in the literature (e.g. that of Igarashi and Honma[5]). Given that 
there are no known exact values for the singular coefficients, the very good agreement between the SFBIM and 
the p/hp FEM serves as validation for the computational results presented here. We should point out that, in 
terms of efficiency, the SFBIM is a better choice, since the singular coefficients are computed directly and no 
post-processing is necessary. On the other hand, the FEM can be applied to a much wider class of problems than 
those that can efficiently and effectively be handled by the SFBIM. We should mention that currently there is no 
mathematical theory that establishes the observed exponential convergence rate of the SFBIM. This is the focus 
of our current research efforts. 
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