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Abstract. The Singular Function Boundary Integral Method (SFBIM) originally developed for Laplacian 
problems with boundary singularities is extended for solving two-dimensional fracture problems formulated as  
a biharmonic problem in terms of the Airy stress function. Our goal is the direct computation of the associated 
stress intensity factors, which appear as coefficients in the asymptotic expansion of the solution near the crack 
tip. In the SFBIM the leading terms of the asymptotic expansion are used to approximate the solution and to 
weight the governing biharmonic equation in the Galerkin sense. The discretized equations are reduced to 
boundary integrals by means of Green’s theorem and the Dirichlet boundary conditions are weakly enforced by 
means of Lagrange multipliers. The numerical results on a model problem show that the method converges 
extremely fast and yields accurate estimates of the leading stress intensity factors. 
 
 
1 INTRODUCTION 
 

The elastic field near the tip of a fracture in an elastic body is characterized by the stress intensity factors 
(SIFs).  These are the coefficients, αj, that appear in the asymptotic expansion of the Airy stress function u near 
the crack tip, which is of the general form 
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where (r, θ) denote polar coordinates centered at the crack tip.  The eigenvalues jβ ∈  and the corresponding 
eigenfunctions ( )jf θ  are known, whereas the SIFs are unknown, with the values depending on the global 
problem.  The first SIF, α1, plays a crucial role in the mathematical description of fracture, since  
 

12K πα= −              (2) 
is the opening mode SIF [1]. 
 

In the last few decades there has been a plethora of work aimed at reliably computing the SIFs.  The methods 
used include the finite element method (FEM) with post-processing [2–6], the FEM with local mesh refinement [7], 
enriched and generalized finite elements [8, 9], the method of fundamental solutions [10], as well as certain 
versions of the Trefftz method [11–14].  It should be noted that in most of the methods mentioned above, the SIFs 
are calculated as a post-solution operation, i.e. the solution u is approximated first and the SIFs are then 
calculated using the approximation to u.  If the calculation of the SIFs is the main goal of the computation, then 
it may be beneficial to use a method in which the SIFs are calculated directly.  The method of fundamental 
solutions, the Trefftz method and the SFBIM presented in this article fall in this category of “direct” methods. 
 

The objective of the present work is to extend the SFBIM to two-dimensional fracture problems.  The 
SFBIM was originally developed in [15] to solve Laplacian problems with boundary singularities aiming at 
resolving the convergence difficulties encountered with standard numerical methods in the vicinity of singular 
points.  In this method the solution is approximated by the leading terms of the local asymptotic solution 
expansion, which are also employed to weight the governing equation in the Galerkin sense.  Furthermore, the 
discretized equations are reduced to boundary integrals by means of the divergence theorem, and the Dirichlet 
boundary conditions are weakly enforced by means of Lagrange multipliers.  In addition to reducing the 
dimension of the problem by one, another important feature of the method is that the singular coefficients αj are 
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calculated directly (i.e. no post-processing is required) together with the discrete Lagrange multipliers.  The 
SFBIM has been applied to various problems with singularities, such as the Motz problem [16], the cracked-beam 
problem [17], and to Laplacian problems over L-shaped domains [18, 19], exhibiting fast convergence and yielding 
very accurate results, especially for the leading singular coefficients.  Since it yields direct estimates of the SIFs, 
the SFBIM appears to be an excellent candidate for solving fracture problems, which can be expressed as a 
biharmonic equation in terms of the Airy stress function.  To illustrate the extension of the method to such 
problems, we have chosen a two-dimensional fracture problem, originally studied by Schiff et al. [7]. 
 

2 THE MODEL PROBLEM AND THE ASYMPOTIC SOLUTION 

We consider here the model problem studied by Schiff et al. [7], which deals with a two-dimensional solid 
elastic plate containing a single edge crack, subjected to a uniform inplane load normal to the two edges parallel 
to the crack, while the remaining edges are stress free.  Using symmetry, the problem is formulated on  
Ω = (– 1, 1)× (0, 1) as a biharmonic equation for of the Airy stress function u(x, y) and is depicted graphically in 
Figure 1.  For simplicity the load in the original problem from [7] has been taken to be 1. 
 

 

Figure 1. The model fracture problem. 

The asymptotic expansion for u in the neighborhood of the singular point (0, 0) can be expressed in terms of an 
eigenfunction expansion of the form 
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where (r, θ) are the polar coordinates centered at (0, 0) and cj, dj correspond to the even and odd SIFs, 
respectively.  Using this notation, we have α1 = d1 in (2).  In expansion (3) the two sets of the so-called singular 
functions , 1, 2j

kW k = are given by 
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We note that the singular functions , 1, 2j
kW k = satisfy the PDE as well as the boundary conditions on SA and SB. 

 

3 THE SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD 

In the SFBIM the solution u is approximated by the leading terms of the asymptotic expansion.  By 
employing the first Nα terms in (3) the approximate solution u , is given by 
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where ic and id are the approximations to the SIFs.  Obviously, the total number of singular functions involved 
in the approximation is 2Nα.  It should be pointed out that the method is restricted to fracture problems with only 
one crack for which the asymptotic solution is available.  Moreover, the proposed approximation (7) is valid 
only if the domain of the problem is a subset of the domain of convergence of the asymptotic solution.  
Otherwise, the 
domain may be partitioned into subdomains over which separate approximations obeying appropriate 
compatibility conditions along the interfaces could be used. 
 

By applying Galerkin’s principle, the governing equation is weighted by the singular functions, which yields 
the following set of discretized equations: 

 

4 0 , 1, 2,..., , 1, 2.i
kuW dV i N kαΩ

∇ = = =∫          (8) 

Next, applying Green’s theorem twice and taking into account that the singular functions satisfy the governing 
biharmonic equation, the above integrals are reduced to boundary ones: 
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The Dirichlet boundary conditions are imposed by means of Lagrange multipliers.  In the case of Laplacian 
problems, the Lagrange multipliers replace the normal derivative /u n∂ ∂ .  In the case of biharmonic problems, 
another option is for the Lagrange multipliers to replace ( )2 /u n∂ ∇ ∂ .  In the current problem, Dirichlet 

boundary conditions appear along the three boundary parts of interest, i.e. SC , SD and SE , where the normal 
derivative of the solution is also specified.  Therefore, Lagrange multipliers have been chosen to replace 
( )2 /u n∂ ∇ ∂  at boundary parts SC, SD and SE.  These are partitioned into three-node elements and the 

corresponding Lagrange multipliers, denoted respectively by λC , λD and λE , are expanded in terms of quadratic 
basis functions jM : 
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where ,
C D

N Nλ λ  and 
E

Nλ  are the numbers of the discrete Lagrange multipliers ,j j
C Dλ λ  and j

Eλ  along the 

corresponding boundaries.  The discrete Lagrange multipliers appear as additional unknowns in the problem.  
The required ,

C D
N Nλ λ , 

E
Nλ  additional equations are obtained by weighting the Dirichlet boundary conditions 

along SC, SD and SE by the quadratic basis functions iM  in the Galerkin sense.  The following linear system of 
2
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0, 1,..., .
E

E

i

S
u M dy i Nλ− = =∫          (16) 

 

The above linear system can be written in block form as follows: 
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are the vectors of unknowns, and the entries in the coefficient matrix and right hand side can be read from 
equations (13) – (16).  It should be noted that the integrands in equations (13) – (16) are nonsingular and all 
integrations are carried out far from the boundaries causing the singularity.  Also, the stiffness matrix in (17) is 
symmetric but becomes singular if 2N Nλ α> , where 

C D E
N N N Nλ λ λ λ= + + . This last fact will be taken into 

consideration when choosing specific values for these parameters. 
 

4 NUMERICAL EXPERIMENTS 

In order to to implement the SFBIM, the boundary parts SC, SD and SE, i.e. the boundary parts away from the 
singularity, are subdivided into quadratic elements.  In particular, we use NC  elements for each of the 
boundaries SC and SE , and ND elements for boundary SD, which makes the total number of Lagrange multipliers 

2
C D E C D

N N N N N Nλ λ λ λ λ λ= + + = + , where 2 1
C CN Nλ = +  and 2 1D DN Nλ = + .  All integrals are calculated 

numerically by subdividing each quadratic element into 10 subintervals and using a 15 point Gauss-Legendre 
quadrature over each subinterval [18, 19].   
 

As mentioned above, the number of the singular functions NC should be greater than the number of Lagrange 
multipliers Nλ, because otherwise the stiffness matrix becomes ill-conditioned or singular.  On the other hand, 
large values of NC  should be avoided because the contributions of the high-order singular functions become 
either negligible (for r < 1) or very large (for r > 1) beyond the limits double precision can handle.  Since, at the 
moment, no a-priori way of choosing the “optimal” values for Nλ and NC exists, we have carried out systematic 
runs in order to study the effects the variation of these parameters would have on the numerical results. 
 

The effect of 2Nα on the leading SIFs can be observed in Tables 1 and 2 which show results obtained with  
Nλ = 39.  Initially, we observe fast convergence as 2Nα is increased, but at very high values of the latter (i.e. 
above 2Nα = 94) slow divergence is observed due to the inaccuracies introduced by the high-order singular 
functions.  Tables 3 and 4 show the effect of varying 

C D E
N N N Nλ λ λ λ= + + , when 2Nα = 94.  Again, fast 

convergence is observed initially but as Nλ approaches the value of 2Nα, the results start diverging slowly, which 
is attributed to the fact that the stiffness matrix becomes ill-conditioned.   
 

2Nα d1 d2 d3 d4 d5 d10 
70 2.12751291 – 1.03669169 0.0371710 0.1177493 – 0.1227288 – 0.01108 
80 2.12751343 – 1.03669221 0.0371701 0.1177510 – 0.1227319 – 0.01103 
88 2.12751347 – 1.03669218 0.0371701 0.1177511 – 0.1227313 – 0.01103 
90 2.12751342 – 1.03669217 0.0371701 0.1177510 – 0.1227316 – 0.01103 
92 2.12751342 – 1.03669217 0.0371701 0.1177509 – 0.1227316 – 0.01103 
94 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
96 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227314 – 0.01103 

100 2.12751343 – 1.03669219 0.0371702 0.1177509 – 0.1227315 – 0.01103 
110 2.12751347 – 1.03669237 0.0371705 0.1177508 – 0.1227315 – 0.01102 
120 2.12751343 – 1.03669229 0.0371705 0.1177508 – 0.1227314 – 0.01103 

Table 1 : Convergence of the leading odd SIFs di with 2Nα ; Νλ = 39. 

These computations suggest that the “optimal” values for the numbers of singular functions and Lagrange 
multipliers are 2Nα = 94 and Nλ = 39, respectively.  For higher values of 2Nα  (e.g., 2Nα = 120) satisfactory 
values of the SIFs are still obtained, but the quality of the global solution is not very good.  When comparing the 
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performance of the method with that in the case of Laplacian problems [16–19], we note that convergence is slower 
in the case of the biharmonic equation, which is reasonable since the latter is more complicated than the Laplace 
equation.  If the smoothness of the calculated Lagrange multiplier functions is used as an indication of the 
quality of the solution, then for the combination 2Nα = 94 and Nλ = 39, the calculated Lagrange multiplier 
functions along boundary parts SC, SD and SE are the smoothest possible (see Figure 2).  We note that for a 
slightly different value of Nλ the estimated values of the SIFs are essentially unaffected, while the calculated 
Lagrange multipliers exhibit oscillations. 
 

2Nα c1 c2 c3 c4 c5 c10 
70 0.16676222 0.0624426 – 0.1324729 – 0.0102230 0.1058502 0.004334 
80 0.16676181 0.0624440 – 0.1324747 – 0.0102203 0.1058466 0.004262 
88 0.16676181 0.0624439 – 0.1324746 – 0.0102211 0.1057471 0.004263 
90 0.16676182 0.0624439 – 0.1324745 – 0.0102208 0.1057474 0.004264 
92 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057474 0.004264 
94 0.16676184 0.0624439 – 0.1324745 – 0.0102209 0.1057472 0.004264 
96 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057471 0.004264 

100 0.16676184 0.0624439 – 0.1324745 – 0.0102207 0.1057470 0.004264 
110 0.16676179 0.0624441 – 0.1324753 – 0.0102196 0.1057450 0.004262 
120 0.16676181 0.0624440 – 0.1324751 – 0.0102200 0.1057457 0.004265 

Table 2 : Convergence of the leading even SIFs ci with 2Nα ; Νλ = 39. 

 
Nλ d1 d2 d3 d4 d5 d10 

7+13+7 2.12751309 – 1.03669185 0.0371707 0.1177516 – 0.1227324 – 0.01103 
7+17+7 2.12751334 – 1.03669214 0.0371702 0.1177509 – 0.1227318 – 0.01103 
7+21+7 2.12751338 – 1.03669217 0.0371702 0.1177507 – 0.1227319 – 0.01103 
7+23+7 2.12751343 – 1.03669217 0.0371702 0.1177510 – 0.1227314 – 0.01103 
7+25+7 2.12751343 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
7+27+7 2.12751342 – 1.03669217 0.0371702 0.1177509 – 0.1227315 – 0.01103 
7+29+7 2.12751347 – 1.03669213 0.0371703 0.1177513 – 0.1227309 – 0.01103 
7+31+7 2.12751346 – 1.03669213 0.0371703 0.1177513 – 0.1227310 – 0.01103 
7+33+7 2.12751335 – 1.03669221 0.0371701 0.1177506 – 0.1227324 – 0.01103 

Table 3 : Convergence of the leading odd SIFs di with Νλ ; 2Nα  = 94. 

 
2Nα c1 c2 c3 c4 c5 c10 

7+13+7 0.16676176 0.0624436 – 0.1324753 – 0.0102209 0.1058486 0.004267 
7+17+7 0.16676184 0.0624439 – 0.1324745 – 0.0102207 0.1058479 0.004264 
7+21+7 0.16676185 0.0624439 – 0.1324744 – 0.0102204 0.1057480 0.004266 
7+23+7 0.16676185 0.0624439 – 0.1324745 – 0.0102209 0.1057471 0.004264 
7+25+7 0.16676184 0.0624439 – 0.1324745 – 0.0102209 0.1057472 0.004264 
7+27+7 0.16676184 0.0624439 – 0.1324745 – 0.0102208 0.1057470 0.004263 
7+29+7 0.16676180 0.0624438 – 0.1324748 – 0.0102213 0.1057461 0.004263 
7+31+7 0.16676181 0.0624438 – 0.1324748 – 0.0102212 0.1057462 0.004262 
7+33+7 0.16676187 0.0624440 – 0.1324743 – 0.0102201 0.1057485 0.004262 

Table 4 : Convergence of the leading even SIFs ci with Νλ ; 2Nα  = 94. 

In Table 5 the converged values of coefficients di and ci , i = 1, …, 10 obtained with the SFBIM are compared 
with the most accurate values obtained by the collocation Trefftz method of Li et al. [14], who reported that the 
leading SIF d1 is converged up to the seventh significant digit.  The SFBIM appears to be more accurate as it 
achieves convergence up to the eighth significant digit.  Since Li et al. [14] do not provide information about the 
convergence of the other SIFs, in Table 5 we tabulate their computed values with one additional digit than the 
converged values of the SFBIM.  Nevertheless, there is excellent agreement between the results of the two 
methods.  Finally, Figures 3 and 4 show the surface plots of the approximate solution u  and its partial 
derivatives , ,x y xxu u u and yyu .  The effect of the singularity at (0, 0) is clearly visible in these profiles. 
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C E
N Nλ λ= = , 

25
D

Nλ = ) and Νλ = 43 (dashed, 9
C E

N Nλ λ= = , 25
D

Nλ = ). 

 
 
 

-1
-0.5

0
0.5

1 0
0.2

0.4
0.6

0.8
1

-0.5

0

0.5

1

1.5

2

2.5

y

Plot of u

x

u

 



Miltiades Elliotis, Georgios Georgiou and Christos Xenophontos. 
Figure 3.  Plot of the converged solution u . 
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Figure 4.  Plots of the first derivatives xu and yu  (top) and second derivatives xxu and yyu (bottom). 

 

5 CONCLUSIONS 

The singular function boundary integral method (SFBIM) has been developed for solving two-dimensional 
fracture problems in terms of the Airy stress function.  In this method the leading terms of the asymptotic 
solution are used to approximate the solution and thus the SIFs are calculated directly (i.e. no post-processing of 
the numerical solution is required).  The governing biharmonic equation is weighted by the singular functions in 
the Galerkin sense, and the discretized equations are then reduced to boundary integrals by means of a double 
application of the divergence theorem, which leads to a significant reduction in the computational cost.  Another 
attractive feature of the method is that integration is necessary only along boundary parts that are away from the 
crack tip.  The Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers which, 
depending on the type of the boundary conditions, may replace either /u n∂ ∂  or ( )2 /u n∂ ∇ ∂  in the integrands 
of the discretized equations.  The Lagrange multipliers are calculated together with the SIFs.  The SFBIM has 
been applied to a model problem proposed by Schiff et al. [7].  The numerical calculations showed that the 
method converges very fast with the number of singular functions and the number of Lagrange multipliers, and 
yields accurate estimates of the leading SIFs.  The value of the leading SIF, in particular, is converged up to 
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eight significant digits.  Our results agree well with the values obtained by Li et al. [14] using the collocation 
Trefftz method. 
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