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Figure 1. A typical result for the variation of stress with time for an SSM slurry in a rotational experiment [12].
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Figure 2. Coherency parameter in a fully structured state (left) and in a fully broken state (right) [1].
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Figure 3. Schematic of the flow geometry. The material adjacent to the rotating shaft yields, while the material away from the shaft remains unyielded [1].
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Figure 4: The method of solution: the velocity distribution is fixed and the positions of the corresponding nodes are sought. The computational domain is in fact the length of the yielded domain [1].
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Figure 5. Shear stress versus shear rate at equilibrium for various Bingham numbers, α0=α1=α2=0.01 and n=0.5.
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Figure 6:  Flow curves obtained from steady rate sweep measurements with the colloidal star suspension 12828 in decane (95 mg/g) at three different temperatures, 6˚C (triangles), 12˚C (circles) and 30˚C (squares).  Filled symbols represent the data obtained with increasing shear from low to high; open symbols correspond to the ‘return’ experiment (ramp down).  The measurement time per shear rate was kept constant at 14.3 s [Taken from Ref. [27] with permission]
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Figure 7. Evolutions of the coherency parameter, the shear rate, the shear stress and the viscosity at the rotating surface, and of the length of the yielded domain for
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Figure 8. Distributions of the coherency parameter, the shear rate, the shear stress and the viscosity at equilibrium for 
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Figure 9a. Effect of the Bingham number B on the length of the yielded domain; 
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Figure 9b. Effect of the Bingham number B on the coherency parameter at the rotating surface; 
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Figure 10a. Effect of the Bingham number B on the shear stress at the rotating surface; 
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Figure 10b. Effect of the Bingham number B on the shear rate at the rotating surface; 
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Figure 10c. Effect of the Bingham number B on the viscosity at the rotating surface; 
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Figure 11a. Effect of 
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Figure 11b. Effect of 
[image: image32.wmf]0
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 on the coherency parameter at the rotating surface; 
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Figure 12a. Effect of 
[image: image35.wmf]0
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 on the shear stress at the rotating surface; 
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Figure 12b. Effect of 
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 on the shear rate at the rotating surface; 
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Figure 12c. Effect of 
[image: image41.wmf]0
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 on the viscosity at the rotating surface; 
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Figure 13a. Effect of 
[image: image44.wmf]n

 on the length of the yielded domain; 
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Figure 13b. Effect of 
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 on the coherency parameter at the rotating surface; 
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Figure 14a. Effect of 
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 on the shear stress at the rotating surface; 
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Figure 14b. Effect of 
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 on the shear rate at the rotating surface; 
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Figure 14c. Effect of 
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 on the viscosity at the rotating surface; 
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Figure 15a. Velocity distribution in the gap between the two concentric cylinders 
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Figure 15b. Velocity distribution in the gap between the two concentric cylinders 
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Figure 15c. Velocity distribution in the gap between the two concentric cylinders 
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Figure 16a. The time evolution of the length of the yielded domain for 
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Figure 16b. The time evolution of the shear rate at the rotating surface for 
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Figure 17. The minimum 
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 as a function of the outer radius for shear banding to occur.
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Figure 18. The effect of
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Figure 19. The effect of 
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 on the final shear band location for 
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Figure 20. The effect of 
[image: image90.wmf]0
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 on the final shear band location for 
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Figure 21. The effect of 
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 on the final shear band location for
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Figure 22. The effect of 
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 on the final shear band location for 
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Figure 23. Retreat time as a function of the Bingham number for various values of 
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Figure 24. Retreat time as a function of the Bingham number for various values of 
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Table 1. Final shear band location for various parameter combinations   
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Figure 1. A typical result for the variation of stress with time for an SSM slurry in a rotational experiment [12].

Figure 2. Coherency parameter in a fully structured state (left) and in a fully broken state (right) [1].

Figure 3. Schematic of the flow geometry. The material adjacent to the rotating shaft yields, while the material away from the shaft remains unyielded [1].

Figure 4: The method of solution: the velocity distribution is fixed and the positions of the corresponding nodes are sought. The computational domain is in fact the length of the yielded domain [1].

Figure 5. Shear stress versus shear rate at equilibrium for various Bingham numbers, α0=α1=α2=0.01 and n=0.5.
Figure 6:  Flow curves obtained from steady rate sweep measurements with the colloidal star suspension 12828 in decane (95 mg/g) at three different temperatures, 6˚C (triangles), 12˚C (circles) and 30˚C (squares).  Filled symbols represent the data obtained with increasing shear from low to high; open symbols correspond to the ‘return’ experiment (ramp down).  The measurement time per shear rate was kept constant at 14.3 s [Taken from Ref. [27] with permission]

Figure 7. Evolutions of the coherency parameter, the shear rate, the shear stress and the viscosity at the rotating surface, and of the length of the yielded domain for
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Figure 8. Distributions of the coherency parameter, the shear rate, the shear stress and the viscosity at equilibrium for 
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Figure 9. Effects of the Bingham number B on (a) the length of the yielded domain and (b) tge coherency parameter at the rotating surface; 
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Figure 10. Effects of the Bingham number B on (a) the shear stress, (b) the shear rate and (c) the viscosity at the rotating surface; 
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Figure 11. Effects of 
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 on (a) the length of the yielded domain and (b) the coherency parameter at the rotating surface; 
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Figure 12. Effects of 
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 on (a) the shear stress, (b) the shear rate and (c) the viscosity at the rotating surface; 
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Figure 13. Effects of 
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 on (a) the length of the yielded domain and (b) the coherency parameter at the rotating surface ; 
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Figure 14. Effects of 
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Figure 15. Velocity distribution in the gap between the two concentric cylinders 
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Figure 16. The time evolutions of (a) the length of the yielded domain and (b) the shear rate at the rotating surface for 
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Figure 17. The minimum 
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Figure 22. The effect of 
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Figure 23. Retreat time as a function of the Bingham number for various values of 
[image: image145.wmf]n

 

 and 
[image: image146.wmf]01

.

0

0

=

a

.

Figure 24. Retreat time as a function of the Bingham number for various values of 
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