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Preface 
 
 

The 5th International Congress of the Greek Association of Computational 
Mechanics (GRACM) will be held in Limassol, Cyprus during 29 June - 1 July 2005. 
The previous conferences in the series were held in Athens, 1992; Chania, 1996; 
Volos, 1999; and Patras, 2002. 

Since their inception, the conferences have grown in size and scope covering more 
and wider areas of Computational Mechanics. In addition to the 8 invited plenary 
papers, 107 contributed papers from 12 countries have been accepted for presentation 
in GRACM05. These papers covered a wide range of topics: Solid and Structural 
Mechanics, Mechanics of Materials, Structural Dynamics and Earthquake 
Engineering, Stability and Chaos, Fracture Mechanics, Fluid Mechanics and 
Hydraulics, Aerodynamics, Transport phenomena, Electromagnetism, Biomechanics, 
Inverse Problems in Mechanics, Structural Control and Optimization, Artificial 
Intelligence and Expert Systems, System Identification, Numerical Methods and 
Algorithms, Finite Elements, Boundary Elements and Finite Differences. 

The fifth Congress heralds new and innovative activities in a number of areas of 
Computational Mechanics and addresses the important issue of where the 
developments stand today and what the future will be in the applications of research 
developments for the solution of complex problems of modern technology. 

The aims of the Congress are to encourage graduate student participation as well as 
to become a forum for critical discussion so as to lead to an assessment of past 
developments and future application and research needs. The outcome is expected to 
help researchers and engineers to shoulder important responsibilities toward the use of 
computational methods and mathematical models for the solution of a wide range of 
Engineering problems, and to pursue advanced research for the understanding and 
definition of the issues that remain to be addressed. 

We thank the authors of the plenary and contributed papers for timely submission 
and participation in the Congress, the reviewers of the papers, the members of the 
Scientific Committee and the members of the Organizing Committee for their support 
and guidance. We also express our appreciation to the technical and financial 
cosponsors, including the Department of Civil & Environmental Engineering and the 
Department of Mathematics & Statistics of the University of Cyprus, the Hyperion 
Systems Engineering, the Cyprus Tourism Organization and the Department of 
Antiquities, Cyprus. Thanks are also due to the vice-president of GRACM, professor 
A. Boudouvis, and to all members of the Executive Board of GRACM for their 
continuous support and close cooperation.  

An electronic color version of these Proceedings can be found at  
http://www.ucy.ac.cy/~gracm05/e-Proceedings.htm 

 
 
Georgios Georgiou 
Panos Papanastasiou 
Manolis Papadrakakis        June 2005 
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SOME ASPECTS OF COMPUTATIONAL MODELLING OF SAFETY CRITICAL 
CONCRETE STRUCTURES  

Nenad Bićanić*, Chris Pearce*, Colin Davie†, Dimitrios Kourepinis* 
* *Department of Civil Engineering 

University of Glasgow 
Glasgow, G12 8LT 

e-mail: bicanic@civil.gla.ac.uk, web page: http://people.civil.gla.ac.uk/~bicanic/ 
 

†School of Civil Engineering and Geosciences,University of Newcastle upon Tyne 
 

Keywords: concrete cracking, numerical manifold method in modelling discontinuities, thermo-hygro-
mechanical modelling of concrete at high temperature  

Abstract. Aspects of computational modelling of safety critical concrete structures are considered. The 
Numerical Manifold Method is discussed as one of the representatives of novel discontinuous modelling 
strategies. The need for multiphysics modelling frameworks is argued through the development of a 
comprehensive thermo-hygro-mechanical coupling (T-H-M), in order to account for the development of 
spallation pressures at exposures to high temperatures. Finally, a simulation of ageing process in prestressed 
concrete pressure vessels is considered. 
 
 
1 INTRODUCTION 
 

Computational modelling of structural concrete (plain, reinforced and/or prestressed) and concrete structures 
with nonlinear finite elements has been a subject of research, development and practical industrial relevance for 
nearly forty years. Despite such a long ‘track record’ it has often been argued that the impact on engineering 
practice of extensive research in constitutive modelling of concrete as well as in nonlinear solution algorithms 
has been relatively moderate – the difficulties lay mainly in translating the continuous field quantities from 
nonlinear finite element analyses into the design code related data, like crack widths, crack spacing, residual 
section capacities, damage levels etc.  Nonlinear analyses are almost exclusively applied in a safety assessment 
of non standard and/or safety critical structures.  

On this occasion, it is perhaps fitting to revisit the introduction to the seminal paper by John Argyris et al[1] 
from the second SMIRT conference in 1973 and reflect on how much has changed over the many years in 
between  

 
“This paper describes recent developments in the nonlinear deformation and ultimate load 

analysis of prestressed concrete reactor vessels using finite elements. First, a number of finite 
element models are called into attention for the idealization of composite structures such as 
reinforced and prestressed concrete components. Then different inelastic constitutive models are 
proposed for the behaviour of concrete in the pre- and post-failure regime. Subsequently various 
numerical techniques are examined for the solution of nonlinear problems, especially with regard 
to their distortion of the constitutive model. In conclusion these modelling techniques are applied 
to the analysis of four typical examples, the nonlinear deformation analysis of a concrete 
specimen subjected to biaxial compression, the crack analysis of a thick-walled concrete cylinder, 
the overload analysis of the THTR 1 : 5 scale model, and the ultimate load analysis of a concrete 
top closure model” 

 
It is interesting – to say the least – to note that the current issues remain surprisingly similar, despite the fact 

that many advances have indeed happened in the meantime. The early, often intuitive developments to account 
for the most significant nonlinear effects – associated with concrete cracking – have gradually been replaced 
with complex concepts which have brought together various modelling formulations and theoretical 
frameworks, and where strict boundaries between the traditional concepts like plasticity, damage mechanics or 
fracture mechanics no longer apply. Recent developments comprise various novel constitutive models which are 
cast in a more rigorous thermodynamic setting and these developments, associated with more robust and stable 
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algorithms, have increased confidence and helped to narrow the gap between the research and practice, as 
demands for complex and sophisticated nonlinear analyses of concrete structures grow. 

An increased demand for reliable, robust and - above all - industry relevant analyses has identified marked 
differences in numerical predictions emanating from different constitutive models and have highlighted an 
apparent lack of experimental data to fully support capabilities of sophisticated analyses. This has in turn led to a 
whole series of well documented comparative studies[2,3] and more complex benchmark model problems - on the 
material point level (Fig 1), on the component level, as well on the full scale structures (Fig 2) [4,5]. 

 
 

Figure 1. Wide range and marked differences in predictions, Willam’s Material Point Test 
(from Ghavaminan et al 2004) 
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Figure 2.  Sandia National Laboratories, Robin Analysis of a 1:4 Scaled Pre-stressed Concrete Containment 

Vessel Model, 2000 
 
In the overall context of continuing advancement in computational modelling of safety critical structures 

(e.g. series of regular specialist conferences EURO-C, FRAMCOS and CONCREEP), there are two broad 
aspects that have recently attracted considerable research attention  

(a) a more direct modelling of the discontinuous nature of concrete cracking and an increased mathematical 
rigour in both capturing and kinematically resolving emerging discontinuities (strain localisation, cracks, 
embedded discontinuities) through non standard discretisation strategies, and  

(b) an inceased importance and potential of multiphysics (multifield) and multiscale modelling frameworks, 
as it transpires that some crucial macroscopic manifestations cannot always be adequately described by 
considering only the macro level, especially in consideration of exceptional and/or extreme conditions or 
degradation processes.  
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Many exciting development can be cited in both of the two above mentioned areas of interest – however, in 
the following, some apects associated with research conducted at Glasgow will be briefly considered. 
 
2  MODELLING DISCONTINUITIES AND THE NUMERICAL MANIFOLD METHOD   
 

The Numerical Manifold Method (NMM) [6,7], a relatively recent Partition of Unity method[8], casts a 
potentially powerful unified continuous-discontinuous modelling framework by integrating aspects of 
traditional, hierarchical and Extended Finite Element methods, with which there are strong parallels. To date, the 
original NMM has been extended in order to exploit its potential to improve the level of approximation up to any 
theoretical level[7,9,1013], either globally or locally and without remeshing, while preserving the ability to 
undertake integration of the discretised system of equations explicitly. 

 
One of the particularly interesting aspects of NMM with respect to its potential in computational failure lies 

in its ability to deal with displacement discontinuities naturally, without the need for remeshing, while 
preserving the ability to undertake integration explicitly. Arbitrary displacement discontinuities can be 
implemented in the NMM using discontinuous partitions of unity in a computationally efficient manner, without 
the need for remeshing or interface elements.  
 
2.1 NMM Discretisation 
 

The essence of NMM lies in constructing the finite space as an assemblage of sub-domains of overlapping 
covers (or supports). Similar to meshless methods, a cover is a nodal domain of influence. The common area of 
an arbitrary number of overlapping covers constitutes an element. In 2R , the approximation to the unknown 
function, say displacements, within an element (defined by n nodes i) is given as: 

 ( ) ( )
1

n

i i
i

u w a
=

= ∑ x x  (1) 

where iw  is the cover weighting function associated with node i, ia  is the cover function and n is the 
number of overlapping covers. The cover weighting functions iw  form a partition of unity; hence, they must 
satisfy the following conditions 
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where 2Ri ∈Ω is a cover, which may not necessarily be a sub-set of 2R∈Ω . 

In general, ia  are polynomials of any order and therefore (1) can be rewritten as: 

 ( )
1

n

i i
i

u T d
=

=∑ x  (3) 

where id  contains only the coefficients of the polynomial function ia  and therefore represent the fundamental 
unknowns. 

 
The element stiffness matrix can be written as 
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where K* ,e is a 4th order coefficient array and it is assumed in this case that all nodes are associated with the 
same order N of the cover displacement function.  
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The term Sn1n2 represents a simplex integral[9] 
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2.2 Crack Modelling 
 
Where the cover (or support) of a node is completely cut by a discontinuity, that node is duplicated by an 

additional node that is unconnected to its parent. For example, consider the element in Figure 3(a), where the 
covers of nodes 1 and 2 are deemed to have been cut by the discontinuity. These nodes are highlighted by a 
double circle. Node 1 lies to the ‘left’ of the discontinuity and thus is renamed 1+ and is duplicated by an 
additional node 1–. Node 2 lies to the ‘right’ of the discontinuity and therefore is renamed 2– and duplicated by 
an additional node 2+.  

The displacement fields to the ‘left’ and to the ‘right’ are now described by separate displacement functions 
 
 ,    where      &+ − + − − −= + = =+ +u u u u M a u M a  (8) 

+a  and −a  denote the cover displacement functions which, in the case that the cover functions are constant, 
represent two alternative sets of nodal displacements. M+ and M– represent the standard cover weighting 
functions modified by the Heaviside function (H) 
 

 ( ); 1i i i iM HM M H M+ −= = −  (9) 

 
Clearly, 1M +  is equal to the original cover weighting function 1M  on the left of the discontinuity and equal 

to zero on the right of the discontinuity. Conversely, 1M −  is equal to zero on the left of the discontinuity and 

1M  on the right of the discontinuity (Figures 3b, 3c). Therefore, the condition that the weighting functions must 

form a partition of unity is still satisfied. In the case that the cover of a node has not been cut i i iM M M+ −= = . 
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Figure 3. (a) Element cut by discontinuity. (b) Cover weighting function associated with node 1+, (c) Cover 
weighting function associated with node 1-. 
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It is computationally convenient to consider that the two displacement fields &+ −u u  are associated with 
separate but identical overlapping elements, denoted as e+ and e– (Figure 3a). Note that in Figure 3(a) node 1+ is 
identical to node 1 and has only been renamed for notational convenience. Thus, element e+ comprises nodes 1 
and 3 of the original mesh and the additional node 2+, which is unconnected to the original mesh. Essentially, the 
displacement discontinuity has been introduced arbitrarily into the body of the element via an enhancement of 
the nodal degrees of freedom. 

An example problem presented by Jirasek[11] has been considered here as an illustration. Although the 
introduction of arbitrary displacement discontinuities in NMM has been suggested in the relevant specialist 
literature, it has rarely been undertaken in practice. The problem in Figure 4 illustrates a crack with a curved 
trajectory that would be introduced into the model based on some criterion (here arbitrarily). Figure 4(a) 
illustrates not only the discontinuity but also those nodes whose cover or support has been cut by the 
discontinuity. Figure 4(b) shows how the structure would behave without a discontinuity and Figure 4(c) with 
the discontinuity. In Figure 4(c) the duplicate elements are shown to illustrate how two separate elements are 
required to capture the displacement jump across the discontinuity. If those parts of each element which 
correspond to the zero weighting function (Figures 4b, 4c) are removed, a more realistic representation of the 
fracture is revealed – Figure 4(d). Figure 4(e) shows displacement contours which again illustrate the 
displacement discontinuity. Furthermore, the above formulation also allows crack closure and therefore contact 
between crack surfaces can be modelled using a variety of standard contact techniques. 

 
 

(a) (b) (c)

(d) (e)  

Figure 4. 

a) NMM mesh plus location 
of discontinuity. Nodes 
with cut covers are 
highlighted. 

b) Deformed mesh without 
fracture. 

c) Deformed mesh with 
fracture. No clipping of 
elements. 

d) Deformed mesh with 
fracture. Elements clipped. 

e) Displacement contours 

 
The strong parallels between NMM and XFEM[12] refer to the manner of how the displacement 

discontinuities are introduced. In essence, the NMM captures the jump in the displacement field using 
discontinuous displacement functions to the ‘left’ and to the ‘right’ of the discontinuity in order to restore the 
partition of unity requirement. The XFEM technique, on the other hand, introduces an additional degree of 
freedom at each node by directly enriching the trial function Error! Reference source not found.. In both 
methods the resulting stiffness matrix can be symmetric and there is a bandwidth increase due to the introduction 
of discontinuities. 

 ( ) ( ) ( )
1 1

n m
j

i i j i
i j

u N d G d
= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑x x x  (10) 

 
where n  is the total number of nodes, iN  the standard finite element shape functions, id  the nodal degrees of 
freedom, m  the number of enriched nodes, 

jG  the enrichment functions containing the Heaviside function and 
j

id  the additional degrees of freedom associated with node i  and enrichment function j . 
A distinctive difference between the two methods stems from the requirement in XFEM to partition the 

elements affected by the crack, yet without introducing any additional degrees of freedom other than j
id , so 

that numerical integration of the weak form can account for the discontinuities on either side of the cracked 
surface. In the NMM, no additional steps need to be taken for integration purposes due to the the multivariate 
polynomial form of the cover displacement functions and the inherent ability to undertake integration explicitly, 
even for higher-order elements, using simplexes. 
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However, if the effects of partial or branched cracking are to be captured in NMM, the trial function needs to 

be modified directly, leading to an approach identical to XFEM. Nevertheless, the effect of partial cracking may 
also be potentially accounted by a reasonably fine mesh. While additional crack tip functions in XFEM are 
meant to negate this requirement, the enhanced degrees of freedom will not be activated in the first place if the 
mesh is not fine enough i.e. if a support is too large to be completely cut by a crack. 

As shown by Jirasek[11], XFEM can be recast in a format very similar to that described here. This means that 
the substantial amount of research that has been carried out with regard to XFEM (such as tracking 
discontinuities and resolving crack branching in 2D and 3D) can be utilised in further developments of the 
NMM in providing a rational prediction of actual crack widths. 

 
3    MULTI-PHYSICS FORMULATIONS FOR CONCRETE AT HIGH TEMPERATURES 

 
Consideration of multiphysics is clearly needed when the behaviour of concrete at high temperature needs to 

be considered.  
Despite it’s low tech image, concrete is a complex, multi-phase material, consisting of aggregates bound by a 

highly porous, hygroscopic solid cement paste skeleton, which can be up to 68% pore space by volume (~28% 
gel pores ≤ 2.6nm in diameter and up to 40% capillary pores in the range of 1µm in diameter). Under normal 
environmental conditions the pore space is filled with fluids, typically including dry air and water. The water is 
characteristically present in the form of vapour, liquid and adsorbed water, which is physically bound onto the 
surface of the solid skeleton. 

Concrete can experience high temperatures through a number of accidental or deliberate scenarios, e.g. fire 
or high temperature industrial applications.  In all these scenarios the concrete and the fluids within it will, to 
some degree, undergo the processes described above and damage may occur. The severity of the damage will 
depend on numerous factors including the intensity of heating, the material and physical properties of the 
concrete and the environmental conditions to which the concrete is exposed over its lifetime. 

The behaviour of concrete under exposure to high temperatures is greatly dependent on its composite 
structure and in particular, on the physical and chemical composition of the cement paste, which is a highly 
porous, hygroscopic material. At room temperature, the pores in the paste may be fully or partially filled with 
fluids typically including free (evaporable) water, water vapour and dry air. On the surfaces of the pores the free 
water exists as adsorbed water, physically bound to the solid, and as such does not behave as a liquid.  The solid 
skeleton of the paste itself is composed of various chemical compounds and chemically bound water.  

When exposed to high temperature, heat is transported through the material, resulting in changes in the 
chemical composition, physical structure and fluid content of the cement paste which in turn result in changes to 
the overall mechanical properties (strength, stiffness, fracture energy, etc.) and physical properties (thermal 
conductivity, permeability, porosity, etc.) of the concrete. When exposed to high temperatures, heat is conducted 
and convected through the material, leading to various changes in the fluids, including phase changes (both 
evaporation and condensation) and transportation, through several mechanisms including pressure driven flow 
and diffusion. Furthermore, the fluid content may be affected by temperature dependent changes in the structure 
of the concrete. These may be chemical changes such as (de)hydration, or physical changes, for example to the 
porosity and permeability of the concrete, all of which have a direct effect on the fluid transport behaviour. 

As these processes act on the pore fluids, they result in changes to the pore pressures.  These pressures have 
a direct mechanical affect on the concrete in that they modify the effective stress state. Through this mechanism, 
pore pressures are generally thought to be a major contributing factor to the development of damage, and 
spalling. 

 
3.1 Mathematical Formulation - Governing Equations 
 

A computational model for concrete subject to thermal loading needs to consider as many of the above 
(mostly non-linear) phenomena and their coupled interactions, as possible[14,15]. The governing mass 
conservation equations to describe heat and moisture transport in concrete containing free (evaporable) water, 
water vapour and dry air can be defined by (11-13). Furthermore, the energy conservation for the system can be 
defined by (14). 
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From equations (11-14), a system of coupled differential equations can be derived in terms of the chosen 

primary variables; e.g. temperature, T, gas pressure, PG, and the vapour content, Vρ
~ . It may be noted that the 

convection term, ( ) TC ∇⋅vρ in equation (14), is ignored on the assumption that the transfer of energy by 

convection is accounted for within the empirical relationship for the thermal conductivity, k(T). 
 
The mass fluxes of dry air, water vapour and free water can be expressed in terms of pressure and 

concentration gradients (re Darcy’s Law and Fick’s Law) (15-18). The water flux equation is affected by the 
capillary pressure and the model adopted for the diffusion of adsorbed water  
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The free water content in the concrete is determined from sorption isotherms, as defined by Bažant and 

Kaplan[16], which are a function of the concrete cement content and the relative humidity (PV /PSat) and 
temperature in the pores (16).  The gas volume fraction can then be determined from equation (19b): 
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The dry air and water vapour are assumed to behave as ideal gases and their pressures and partial densities 

are considered to be additive (re Dalton’s law) (21-22): 
 

VAG ρρρ ~~~ +=   VAG PPP +=       (21) 

TRP VVV ρ~=   TRP AAA ρ~=       (22) 
 
The liquid pressure is the difference between the gas pressure and the capillary pressure (23). The two 

remaining variables, fundamental to this modified formulation, are the coefficient of bound water diffusion, DB, 
given[17] by the empirical relationship (24), and the capillary pressure, PC, which is calculated via the Kelvin-
Laplace Equation (25). 

 

CGL PPP −=         (23) 
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From the governing equations (11-14) a system of coupled differential equations can be developed, with 
reference to an appropriate set of primary variables, such that, in matrix-vector form (26) 
 

( ) 0=∇⋅∇− uKuC      (26) 
 
where     ( )Tu VGPT ρ~=  
 
After algebraic manipulation, the system of governing differential equations can be written in the form below 
(27). 
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with the LHS matrices 
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and the RHS matrices  
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3.2 Simulation of Ageing in Concrete Pressure Vessels 

 
Ageing of concrete nuclear reactor pressure vessels (Figure 5) is a subject of renewed interest. During their 

normal working life the internal chambers of these vessels are exposed to temperatures up to ~80°C, with an 
ambient temperature on the outside.. Some of these vessels have currently been in operation for more than 30 
years Another consideration for these vessels is the possibility of accidental and unplanned excursions of 
exposure to higher temperatures (up to ~400°C), as may be experienced due to a loss of cooling water. 

 
 

 

Reactor

30.328m 

35.622m 

Concrete Pressure 
Vessel 

Steel Liner 

Cooling and 
Steam pipes 

Reactor Top Cap (fuel 
rod access) 

Figure 5. Section through Cylindrical Concrete Nuclear Reactor Pressure Vessel 
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Simulations to follow focus on the heat and moisture transport in concrete nuclear pressure vessels and the 

direct effect that this could have on their structural integrity, both under normal operating conditions and under 
temperature excursions. The investigation was carried out using the fully coupled hygro-thermal-mechanical 
numerical model developed during the MAECENAS[18] project and described in detail in Davie et al[19]. 
Although reference is made to the mechanical consequences of the transport behaviour, mechanical behaviour is 
not fully considered here.  

Detailed 3D and Axisymmetric finite element meshes, representative of a specific type of nuclear pressure 
vessel were developed for use during the MAECENAS project (Figures 6a, 6b). However, an initial coupled 
hygro-thermal-mechanical model presented here was conducted on a smaller mesh, equivalent to a slice through 
the full axi-symmetric mesh (Figure 6c).  

In order to reproduce the external conditions experienced by a nuclear pressure vessel, Cauchy type 
boundary conditions to simulate the free exchange of heat and fluid with the atmosphere were applied at the 
outside face of the mesh, while for the inside face, only a prescribed (Dirichlet type) temperature boundary was 
defined.  Boundary conditions were not defined for the fluid phases in order to represent the sealed conditions 
imposed by the steel liner on the inside of the vessel. The top and bottom sides of the mesh were considered as 
symmetric boundaries to represent the large, continuous structure above and below the ‘slice’. 

The first of the two parametric series comprised 5 analyses in which a 33 year heating cycle (from data 
recorded for an existing pressure vessel) (Figure 7a) was applied to the inside face and the resulting fluid 
transport behaviour monitored.  

The parameters investigated were the initial permeability K0, and the initial porosity 0φ , of the concrete.  It 

should also be noted that both permeability K, and porosity, 0φ , increase irreversibly with increasing 
temperature. The second study involved two further analyses in which heating cycles representative of typical 
temperature excursions were applied (Figures 7b, 7c) and again the resulting fluid transport behaviour was 
monitored. All other parameters were kept constant and a summary of all the analyses can be found in Tables 1 
and 2. 

 
Series Analysis Initial Permeability, K0 Initial Porosity, 0φ  Temperature Profile 

1 1 5.0 × 10-17 m2 0.099 Standard 
1 2 1.0 × 10-21 m2 0.099 Standard 
1 3 2.0 × 10-18 m2 0.099 Standard 
1 4 2.0 × 10-18 m2 0.090 Standard 
1 5 2.0 × 10-18 m2 0.120 Standard 

Table 1 - Summary of Analyses for Parametric Series for Standard Temperature Profile (Figure 7a) 
 

5.026m 

1.0705m 

a) b) c) 

Inside face Outside face 

Open boundary 
Atm. conditions 
- Temp = 15°C 
- Pressure = 0.1MPa 
- Rel. Humidity = 70% 

Sealed boundary 
- Prescribed heating 

cycle 

Figure 6. MAECENAS Pressure Vessel FE meshes a) One Quarter 3D Mesh (20 noded elements), b) Axi-
symmetric Mesh (8 noded elements), c) Axi-symmetric ‘Slice’ Mesh (8 noded elements) 
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Figure 7. (a) Standard Heating Cycle, (b) Excursion 1 Heating Cycle, c) Excursion 2 Heating Cycle  
 

Series Analysis Initial Permeability, K0 Initial Porosity, 0φ  Temperature Profile 

2 1 2.0 × 10-18 m2 0.099 Excursion Scenario 1 
2 2 2.0 × 10-18 m2 0.099 Excursion Scenario 2 

Table 2 - Summary of Analyses for Parametric Series for Exceptional Temperature Scenarios (Figure 7a) 
 
As discussed previously, the development and the level of pore pressures in the concrete were of particular 

interest.  However, for simplicity only gas pressures, which can be shown to be largely analogous with the 
overall pore pressure behaviour, are reported here. 

 
PARAMETRIC SERIES 1 - As can be seen from the results shown in Figures 8 and 9 the gas pressures 

predicted at the inside face of the pressure vessel over its 33 year life, vary considerably depending on the initial 
values of both permeability and porosity. As it would be expected, both higher permeabilities and higher 
porosities lead to lower maximum predicted pressures as fluids can move more easily away from the hot face, 
towards the atmosphere.  

Despite the variations, the magnitudes of the gas pressures (~0.2-0.8MPa) are generally not high enough to 
exceed the tensile strength of the concrete and cause structural damage on their own.  However, in conjunction 
with mechanical stresses produced during operation of the reactor, these pressures may become significant and 
should be taken into account.  

Of more immediate concern is the gas pressure predicted with the lowest permeability (1.0 × 10-21m2). After 
33 years this has reached ~1.4MPa and continues to rise.  While not enough to cause fracture of the concrete on 
its own, this pressure may threaten the structural integrity of the steel liner in the vessel. If this liner is ruptured, 
radioactive gases will escape into the concrete and eventually into the atmosphere.  

While both parameters can be seen to have a significant effect, the porosity can often be related to the design 
mix of the concrete and is therefore readily known and accounted for.  However, values for permeability are less 
easily estimated and vary considerably (over about 4 orders of magnitude) in the literature [2, 3].   This 
uncertainty is clearly a concern when its potential effects are considered. 
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Figure 8. Gas Pressure Histories for the 33 years cycles. Standard temperature profile. Influence of changing 
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Figure 9. Gas Pressure Histories for the 33 years cycles. Standard temperature profile. Influence of changing 

initial porosity for constant permeability 
 
 
PARAMETRIC SERIES 2 - As can be seen from Figure 10, the two transient temperature excursions have 

a significant effect on the predicted gas pressures.  During both excursions, pressures of ~10MPa were 
predicted.  If these values were realistic they would potentially compromise the structural integrity of the 
pressure vessel both by causing fracturing, since the pressure will exceed the tensile strength of most concretes, 
and by rupturing the steel liner. 
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Figure 10. Gas Pressure Histories for the 33 years cycles. Two representative exceptional transient 

temperature profiles 
 
A further point of note is that in both cases the gas pressures predicted after the temperature excursion are 

considerably lower than those predicted under the normal operating heat cycle (Figure 10 inset).  This is because 
the permeability and porosity of the concrete have been increased significantly by the irreversible damage 
caused by the temperature excursion and the fluids can more easily flow away from the inside face of the 
pressure vessel.  It should also be noted, however that, although the temperature excursions reached the same 
temperatures and therefore caused the same permeability and porosity increases, the gas pressures predicted after 
the two incidents were different.  This highlights the importance of considering the full heat and fluid transport 
history of a concrete structure when predicting the potential effects on its structural integrity. 
 
4.   CONCLUSIONS 

Two aspects of computational modelling of safety critical concrete structures are considered. The Numerical 
Manifold Method is discussed as one of the representatives of novel discontinuous modelling strategies where 
the discretisation space is enhanced by discontinuous partition of unity functions without the need to modify the 
form of the original trial function. This results in an ability to undertake explicit integration for any level of the 
approximation, together with the ability to enhance the level of approximation locally or globally, up to an 
arbitrary order. The multiphysics modelling framework is argued through the development of a comprehensive 
thermo-hygro-mechanical coupling (T-H-M), in order to account for the development of spallation pressures at 
exposures to high temperatures. Capillary pressure and adsorbed water diffusion are incorporated into a 
computational model in order to investigate their influence on the finite element analysis of heat and moisture 
transfer in concrete exposed to high temperatures. Comparative studies were carried out by a simulation of 
ageing process in prestressed concrete pressure vessels.  
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Abstract. In this paper we present a multi-element generalized polynomial chaos (ME-gPC) method, which can 
achieve hp convergence in random space. ME-gPC is based on the decomposition of random space and 
generalized polynomial chaos (gPC). Using proper numerical schemes to maintain local orthogonality on-the-
fly, we perform gPC locally and adaptively. The key idea is to combine the polynomial chaos method of h 
version and p version. ME-gPC shows good performance in dealing with problems related to long-term 
integration, large perturbation and discontinuities. Benchmarks and applications of ME-gPC in fluid dynamics 
are presented.. 
 
 
1 INTRODUCTION 

In past decades, spectral/hp element methods for deterministic problems have been greatly advanced;  
orthogonal polynomials are used as a powerful tool  for high accuracy and efficiency. Recently, orthogonal 
polynomials have received great attention in uncertainty quantification (UQ) in the context of  polynomial chaos 
(PC). Polynomial chaos originated from homogenous chaos first defined by Wiener as the span of Hermite 
polynomial functionals of a Gaussian process. Ghanem and Spanos first combined Wiener-chaos with a finite 
element method to model uncertainty in solid mechanics[1,2,3], A more general framework, termed generalized 
polynomial chaos (gPC), was proposed in [4] by Xiu and Karniadakis based on the correspondence between the 
PDFs of certain random variables and the weight functions of orthogonal polynomials of the Askey scheme. The 
family of gPC includes Wiener-chaos as a subset and supplies optimal bases for stochastic processes represented 
by random variables of commonly used distributions, such as uniform distribution, Beta distribution, etc. In [5] 
and [6], polynomial chaos was combined with wavelets to deal with discontinuities for uniform random inputs 
for which standard PC or gPC fail to converge. Due to the polynomial chaos basis, fast (exponential) 
convergence is achieved as in the deterministic case, which is referred to as p convergence. 

The decomposition of random space into elements is another technique to model uncertainty; it was first 
proposed by Deb, Babuska and Oden[7, 8] within the framework of deterministic finite element method. This 
method is based on the discretization of random space and employs the finite element basis to approximate the 
random field, whose accuracy relies on the h refinement in random space. Based on gPC and the decomposition 
of random space, multi-element generalized polynomial chaos (ME-gPC) was propose in [15, 12], which can 
achieve hp convergence in random space for arbitrary PDFs. ME-gPC implements the decomposition of random 
space in the context of probability theory and maintains local orthogonality numerically on-the-fly, which yields 
a simple and effective way to perform gPC locally and adaptively. The adaptive ME-gPC has been used to deal 
with stochastic problems related to long-term integration and discontinuities[12,15]. 

In the next section of this paper we overview the essential properties and procedure of gPC. Subsequently, 
we present the ME-gPC procedure, including the decomposition of random space, construction of orthogonal 
polynomials and an adaptive criterion. Lastly, benchmarks and applications of ME-gPC in fluid dynamics are 
discussed. 

 

2 MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS 

2.1 Overview of generalized polynomial chaos (gPC) 
The original polynomial chaos was first proposed by N. Wiener[9]. It employs the Hermite polynomials in 

terms of Gaussian random variables as the trial basis to expand stochastic processes in the random space. 
According to the theorem by Cameron and Martin[10] such expansion converges for any second-order processes 
in the L2  sense; gPC employs more types of orthogonal polynomials from the Askey family. It is a 
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generalization of the original Wiener’s Hermite-chaos and can deal with non-Gaussian random inputs more 
efficiently.  

Let ( )P,,FΩ  be a probability space, where Ω  is the sample space, F is the σ -algebra of subsets of Ω  

and P  is a probability measure. Let ξ  be a dR -valued random variable defined on such a probability space. A 

general second-order random process ( ) ( )PLR ,,2 FΩ∈ω  can be expressed by gPC as 
 

( ) ( )( )∑
∞

=

Φ=
0

ˆ
i

iiaR ωω ξ                                                                           (1) 

 

where ω  is the random event and ( )ξiΦ  denotes the gPC basis of degree p  in terms of the random variable 

ξ . The family {Φi} is an orthogonal basis in ( )PL ,,2 FΩ with an orthogonality relation 
       

ijiji δ2Φ=ΦΦ                                                                         (2) 
 

where ijδ  is the Kronecker delta, and ⋅⋅,  denote the ensemble average. Here, the ensemble average can be 

defined as the inner product in the Hibert space in terms of the random vector ξ  
       

( ) ( ) ( ) ( ) ( )∫= ξξξξξξ d2121 wgggg                                                 (3) 
       
or 
       

( ) ( ) ( ) ( ) ( )∑=
ξ

ξξξξξ wgggg 2121                                            (4) 

       
for the continuous and discrete case, respectively, where ( )ξw  denotes the weight function, which corresponds 
to a probability measure. 

For a certain random vector ξ , the gPC basis { }iΦ  can be chosen in such a way that its weight function has 

the same form as the probability distribution function ( )ξf  of ξ . The corresponding types[4] of classical 

orthogonal polynomials { }iΦ  and their associated random variable ξ  are listed in Table 1. Given sufficient 
regularity of the solution, gPC leads to fast (exponential) convergence to the statistics, such as mean and 
variance[4]. 

 
 Random variables ξ  Wiener–Askey chaos { }iΦ  Support 

Continuous Gaussian Hermite-chaos ),( ∞−∞  
 Gamma Laguerre-chaos ),0[ ∞  
 Beta Jacobi-chaos ],[ ba  
 Uniform Legendre-chaos ],[ ba  

Discrete Poisson Charlier-chaos },2,1,0{  
 Binomia Krawtchouk-chaos },,1,0{ N  
 Negative binomial Meixner-chaos },2,1,0{  
 Hypergeometric Hahn-chaos },,1,0{ N  

Table 1:  Correspondence of the types of Wiener–Askey polynomial chaos and their underlying random 
variables (N≥0 is a finite integer) 
 
2.2 GPC Procedure 

We now present the gPC method using the following general PDE system 
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where ( )ωξ  indicates a random vector, L  is an operator in the physical space and B  is an operator on the 
boundary of physical domain D . 

To employ gPC, we first project  u  and the force term f  onto the polynomial basis { }iΦ  in the following 
form 
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00
, ffuu ,                                                        (6) 

 

where pN  indicates the number of basis modes given by 

( ) 1!!)!( −+= dpdpN p                                                              (7) 

with d  being the dimension of random vector ξ .  Then we substitute eqn. (6) into eqn. (5) and obtain 
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By performing a Galerkin projection and taking into account the orthogonality of polynomial chaos basis, we 
obtain 
 

( ) pkkk
N

i ii
k NkuL
t

u p ,,1,0,, 2
0

==ΦΦΦ+
∂

∂ ∑ =
f ,                            (9) 

 
which is a deterministic system of PDEs. Any classical numerical schemes, e.g., finite difference and finite 
element method, can be employed to solve such a system. A similar procedure can be applied to the boundary 
and initial conditions to complete eqn. (9). 
 
2.3 Decomposition of random space 

gPC is efficient for many problems. However, by simply increasing the polynomial order may not be the 
most efficient way to improve accuracy, e.g., problems related to random frequencies. For such cases, we need 
to discretize the random space as the deterministic spectral/hp element method does in the physical space. We 
assume that ξ  is defined on [ ]ii

d
i baB ,1=×= , where ia  and ib  are finite or infinite in R  and the components 

of ξ  are identical independent distributed (IID) random variables. We define a decomposition D  of B as 
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where Njik ,,2,1,, = . Based on the decomposition D , we define the following indicator random 
variables 
       

⎩
⎨
⎧ ∈

=
.0
,if1
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B

B
I

k

ξ
                                                                (11) 

       
It is obvious that 
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( ) ( )∫==
k

k

B
B fI ξξ d1Pr ,                                                     (12) 

       
where ( )ξf  is the PDF of ξ . In each random element kB  we define a new random variable kξ  subject to a 
conditional PDF 
       

( ) ( )
( )1Pr

1ˆ
=

==
k

k
B

Bkk I
fIf ξξ .                                                       (13) 

       
Instead of considering ξ  in the whole random space by gPC, we can first approximate the random filed locally 

with respect to kξ  within each random element kB , then reconstruct the original random field. Once we obtain 
the localized random field, we can compute any statistics using the Bayes’ theorem 
       

( )( ) ( ) ( ) ( )( ) ( )∫ ∑ ∫
=

==≈
B

N

i
B BkkB

k
kk

IfugIdfug
1

d1ˆˆ1Pr ξξξξξξ ,                   (14) 

 

where ( ) ( )PLg ,,2 FΩ∈⋅  is any function of random field ( )ξu , and ( )kku ξˆ  denotes the approximated local 

random field in element kB . 
To avoid overflow[12] in numerical implementation we usually re-scale the random elements with finite 

boundaries by the following transformation 
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where we map the random variable kξ  defined in element k  to a random variable kY  defined in [ ]d1,1− . The 

PDF of kY  can be obtained as 
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After such a transformation is employed, we can perform gPC locally with respect to kY . Compared to the 

original random inputs ξ , the degree of perturbation related to the local random inputs kY  has been decreased 

effectively by the factor ( ) 2,, ikik ab −  in each random dimension. Note that such a mapping is usually 

unnecessary for random elements with at least one infinite boundary since these elements are related to a very 
small factor ( )1Pr =

kBI . 

 
2.4 Construction of orthogonal polynomials 

The orthogonal gPC basis on the entire random space will, in general, lose local orthogonality with respect to 
the local PDF ( )kf y . The only exception is Legendre-chaos due to the nice properties of uniform 
distribution. Thus, we have to perform numerical construction to maintain the local orthogonality. For 
simplicity, here we only discuss the construction of one-dimensional orthogonal polynomials, since the high-
dimensional basis can be obtained using tensor products of one-dimensional basis. 

It is a distinctive feature of orthogonal polynomials, compared to other orthogonal systems, that they satisfy a 
three-term recurrence relation, 
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where ( ){ }tiπ is a set of (monic) orthogonal polynomials, 
 

( ) ,1,0      ,   termdegree-lower =+= itt i
iπ                              (18) 

 

and the coefficients iα  and iβ  are uniquely determined by a positive measure ( )tσ , which corresponds to a 
probability measure in the construction we propose herein. 

For a continuous measure ( )tσ  there are two classical methods to compute the recurrence coefficients iα  

and iβ : the Stieltjes procedure and the modified Chebyshev algorithm[13]. For a discrete measure 
 

( ) ( ) Mitxtwt
M

i
iiM ,,1,0,dd

1
=−= ∑

=

δσ                                                (19) 

 
with δ  being the Dirac delta function, we have another choice: the Lanczos algorithm[14, 13]. 

Using the above procedures, the recurrence coefficients iα  and iβ  can be computed iteratively using the 
following stopping criterion[13] 
 

1,,1,0,1 −=≤− − nis
i

s
i

s
i εβββ ,                                                   (20) 

where s  indicates the iteration step and ε  the relative error. To show the efficiency of such a numerical re-
construction, we decompose the PDF of Beta distribution ( )4,1B  and Gaussian distribution ( )1,0N  into 

equidistant elements, construct orthogonal polynomials in each element and project ( ) 110 += xxg  onto these 

local basis. We record the time cost and the normalized ∞L  error on quadrature points, which are shown in 
Table. 2.  It can be seen that the numerical re-construction is fast and accurate. Compared to the cost of gPC 
solver, such cost is negligible in practice.  

 
 

 Beta distribution: )4,1(B  Gaussian Distribution: )1,0(N  
N  Error time (sec) Error time (sec) 
1 7.98e-11 <0.01 1.50e-10 <0.01 
2 2.58e-12 <0.01 4.94e-11 <0.01 
4 2.38e-13 <0.01 1.53e-11 <0.01 
6 4.58e-13 <0.01 4.66e-13 <0.01 
8 3.53e-13 <0.01 3.60e-13 <0.01 

10 7.45e-13 0.01 1.10e-12 0.01 
102 9.45e-13 0.08 8.28e-13 0.08 
103 1.00e-12 0.79 9.37e-13 0.84 
104 3.69e-12 7.92 4.51e-13 7.87 
105 9.28e-13 76.43 4.09e-13 78.74 

Table 2:  Normalized ∞L errors on quadrature points and time cost for a uniform mesh with N  elements. 

The relative error for the recurrence coefficients was set to be 1310− . Only the middle element [ ]6,6−  was 
decomposed for Gaussian distribution. The computations were performed on a 1.5GHz AMD CPU 

 
2.5 Adaptive criterion 

For many problems, such as long-term integration and discontinuities, adaptivity is a necessary technique to 
obtain good result with less effort. It is well known that in deterministic methods the co-continuity between two 
elements should be kept for second-order differential operators. However, such a continuity is not required in 
the decomposition of random space because most of the statistics we are interested in, e.g., mean and variance, 
are defined as integrations with respect to a probability measure and the probability measure of the interface 
between two random elements is zero. Based on such observations, we here construct a criterion for h-type 
refinement using the properties of orthogonal polynomials. 

We assume that the gPC expansion of a random field in element k  is 
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where p  is the highest order of polynomial chaos. From the orthogonality of gPC we can obtain the 
approximate local variance given by polynomial chaos with order p  
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The approximate global mean u  and variance 2σ  can be expressed as 
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By noting that the error of mean is usually much smaller than that of variance, we neglect the error contribution 
from 0,ˆku  and express the exact global variance as  
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where γk  is the error of local variance. We define the decay rate of relative error of polynomial chaos in each 

element as follows 
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Based on kη  and the scaled parameter ( )1Pr =
kBI , we implement h-type refinement if the following 

criterion[15,12] 
 

( ) 10,1Pr 1 <<≥= γθη γ
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is satisfied, where γ  and 1θ  are prescribed constants. For high-dimensional random inputs, we can choose the 
most sensitive random dimensions for refinement. We define the sensitivity for each random dimension as 
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where we neglect the subscript k  for clarity, and the subscript pi,∗  denotes the mode consisting only of the 

random dimension iξ  with polynomial order p . All random dimensions which satisfy 
 

ddrr jdji ,,2,1,10,max 2,,2,12 =<<≥
=

θθ                                   (28) 

 
will be split into two equal random elements in the next time step while all other random dimensions will remain 
unchanged. By implementing decomposition selectively we can reduce the total element number while gaining 
efficiency. 
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3 NUMERICAL RESULTS 

In this section, we first demonstrate the hp convergence of ME-gPC by a benchmark problem, then apply 
ME-gPC to stochastic flow past a stationary cylinder. 

3.1 Benchmark (Stochastic ODE) 

We consider the performance of the ME-gPC method for the following simple ODE equation[4,12,15] 
 

( ) ( ) 0;0,
d
d uuu

t
u

=−= ωωκ ,                                             (29) 

 

where ( )ωκ  is a random variable. The exact solution can be easily found as 
 

( ) ( )teutu ωκω −= 0; .                                                                (30) 
 
Using ME-gPC with uniform meshes, we study the following two cases: 

(1) κ is a uniform random variable defined in ]1,1[− . 

(2) κ is a Beta random variable ( )4,1B  defined in ]1,1[− . 
For case (1), we employ Legendre-chaos in each random element; for case (2), the local orthogonal basis is 

constructed numerically. In Fig. 1, we show the convergence of ME-gPC at 5=t  for case (1) with p-
convergence on the left and h -convergence on the right. It can be seen that ME-gPC exhibits exponential 
convergence while the index of algebraic convergence reaches asymptotically a constant. The convergence of 
the ME-gPC method at 5=t  for case (2) is shown in Fig. 2. For both case (1) and case (2) the index of 
algebraic convergence for the variance goes asymptomatically to ( )12 +p , which means that the 

error )1(2 +−∝ pNε . This is consistent with the error estimate given in [7]. From the theory of deterministic 
finite element method[7], it can be shown that the index of algebraic convergence is ( )12 +p  for any PDF. 
Furthermore, such an index is also valid for the h -convergence of mean of any PDF, which is not shown here. 
When computing the recurrence coefficients iα  and iβ  iteratively, a relative error 1310−  is imposed for case 
(2). From the plot of p -convergence in Fig. 2, it can be seen that the maximum accuracy ME-gPC can achieve 

is ( )1310−O , which implies that the constructed orthogonal polynomials are very accurate. 
 

3.2 Application of ME-gPC in Fluid Dynamics: Flow Past Cylinder with Random Inflow 

ME-gPC method is applied to a random two-dimensional flow past a stationary cylinder. The mesh of the 
physical space is shown in Fig. 3. We employ deterministic spectral/hp element method[16,11] to solve the system 
of deterministic PDEs introduced by the Galerkin projection in ME-gPC. Periodic conditions are specified in the 
crossflow direction and tenth-order Jacobi polynomials are employed in each element to provide a high accuracy 
in physical space.  

The inflow velocity is σξ+= uu  and cross-flow velocity 0=v , where σ  is a constant and ξ  is a 
random variable with zero mean and unit variance. The Reynolds number Re is based on the mean value u of 
the inflow velocity and the diameter of the cylinder. In this work, we set 100Re = , 0.1=u  and 1.0=σ  

and assume that ξ  is of uniform distribution in ]3,3[− . 
We first simulate the deterministic flow past the cylinder with uu =  and 0=v  up to 1000=t , then 

impose the aforementioned random boundary conditions.  In Fig. 4 and 5, we show the mean and variance of the 
drag coefficients given by gPC and ME-gPC, respectively. The solutions are periodic with decreasing amplitude. 
Since the inflow velocity is uniformly distributed in ]31.01,31.01[ +− , the Reynolds number will be 

correspondingly uniform in ]310100,310100[ +− . Thus the frequencies of the solutions should also be 
random and depend on the random inputs. Compared to the results given by ME-gPC with 8,20 == pN , 
gPC with 8=p  begins to diverge at 1012≈t  and gPC with 15=p  begin to diverge at 1020≈t . Thus, to 
obtain the convergence of gPC, we have to increase the polynomial order quickly. More specifically, if the 
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variation of random frequencies is large (from a finite value to infinity), gPC usually begin to diverge after a 
short-term integration[15] and increasing the polynomial order can help little for the convergence. Thus, 
increasing the polynomial order is not the most efficient way to obtain accuracy for a long-term integration.  For 
such cases, ME-gPC can extend the performance of gPC effectively by the decomposition of random space. 

 

4 CONCLUSIONS 

In this work we present a multi-element generalized polynomial chaos (ME-gPC) method to deal with 
differential equations with random inputs. ME-gPC can achieve hp  convergence in random space and improve 
the performance of gPC by the decomposition of random space, which is shown by a benchmark problem and an 
application of ME-gPC in fluid dynamics. 
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Figure 1:  Convergence of ME-gPC for the simple ODE with κ being a uniform random variable. Left: p -

convergence; Right: h -convergence. 
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Figure 2:  Convergence of ME-gPC for the simple ODE with κ being a Beta random variable. Left: p -

convergence; Right: h -convergence. 
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Figure 3: The size of the computational domain is ]9,9[]25,15[ DDDD −×−  and the cylinder is at the 

origin )0,0(  with diameter 1=D .  The mesh consists of  412 triangular elements.  
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Figure 4: Mean of drag coefficients given by gPC and ME-gPC. The deterministic (time averaged) drag 

coefficient is about 1.38 with 0=σ . 
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Abstract Thin film processing plays a key role in many technologies. The processes through which thin
films are being manufactured bring together various aspects of fluid flow engineering. In this paper, the
focus is on Chemical Vapor Deposition (CVD) processes for thin film deposition from gaseous precursors.
After a short introduction into the role of fluid flow, heat and mass transfer in CVD processing, the paper
addresses several challenges for computational fluid mechanics and heat transfer engineering in thin film
processing. These challenges relate to (i) laminar and transitional mixed convection flow; (ii) rarefied gas
flow; (iii) wall-to-wall thermal radiation; and (iv) multi-scale phenomena.

1. INTRODUCTION

Thin film processing constitutes an important technology for the manufacturing of e.g. thin films on
wafers in the IC-industry, anti-reflection and spectrally selective coatings on optical components, and
anti-corrosion and anti-wear layers on mechanical tools and equipment [1]. In virtually all thin film
processes, the objects to be treated are placed inside a reactor chamber and exposed to a (reactive) fluid
(gas or liquid) flow. Inside the reactor chamber, large temperature differences are often present, with the
temperature of the treated objects differing from that of the reactor walls and the fluid flow.

The design of thin film processing equipment such that the surface processes take place selectively on
the desired surfaces only, at a high rate, with a high spatial uniformity and an efficient use of resources is a
thermal fluid flow optimization problem with many complicating factors. In this paper, several challenges
for computational fluid flow and heat transfer engineering related to the design and optimization of
thin film processes and equipment will be discussed. The focus will be on Chemical Vapor Deposition
(CVD) processes for the deposition of thin solid films through chemical reactions from gaseous precursors.
However, many of the issues discussed here apply to many other surface treatment processes as well.

Section 2 provides a short introduction into the basics of Chemical vapor Deposition and the role
of hydrodynamics, heat and mass transfer and chemistry in these processes. Section 3 discusses the
use of numerical simulation techniques for modeling CVD processes and equipment. In section 4, some
challenges for computational fluid flow and heat transfer modeling with respect to CVD process and
equipment design and simulation are discussed.

2. CHEMICAL VAPOR DEPOSITION

2.1 Principles of CVD

In CVD processes a thin solid film is deposited from gaseous precursors through chemical reactions at
the surface. Reactive gases are introduced into the controlled environment of a reactor chamber in which
the substrates on which deposition takes place are positioned. Depending on the process conditions,
homogeneous reactions may lead to the creation of gaseous intermediates. The precursors and reactive
intermediates diffuse to and adsorb on the surface, were heterogeneous reactions lead to film growth.

1
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Figure 1: CVD for the coating and manufacturing of sub-micron structures.

The energy required to drive the chemical reactions is usually supplied thermally, by heating the sur-
faces/objects to be coated.

Typical operating temperatures are between 500 K and 1500 K. Reactant gases can be diluted in
an inert carrier gas, or used undilutedly. Typical operating pressures are from 10 Pa to 1 atm. CVD
processes have been reviewed in e.g. refs. [2]-[5].

Usually, the quality demands on deposited thin films are quite stringent, particularly regarding the
uniformity of film thickness and composition as well as its morphology. Perhaps the most important
advantage of CVD over other deposition techniques is its capability of conformal deposition, i.e. the
capability of depositing films of uniform thickness on highly irregularly shaped and patterned surfaces.
This makes CVD techniques particularly suited for the manufacturing, coating and modification of small
(nano to sub micron scale) structures (See Fig. 1). Today, CVD is even developing to be the most
important technique for the manufacture of carbon nano-tubes and nano-wires ([6]-[8]).

2.2 Hydrodynamics, transport phenomena and chemistry in CVD processes

CVD processes are essentially chemical surface processes. With a high degree of simplification the rate
R of these processes is described by

R = ksCs (1)

with ks the reaction rate constant which strongly depends on the surface temperature TS and Cs the
reactant concentration close to the surface. In order to achieve a uniform deposition rate R, both Ts and
Cs should be uniform along the surfaces. Local surface temperatures and near-the-surface reactant con-
centrations are related to set inlet process conditions through reactor dependent interactions between gas
flow, (radiative) heat and mass transfer, and chemical reactions. Therefore, identical process conditions
will lead to different film deposition characteristics in different reactors designs. This makes the design
and optimization of CVD equipment a task for thermal and fluid flow engineers.

As a simple example illustrating the interaction between hydrodynamics, transport phenomena and
chemistry in CVD, consider the highly simplified stagnation flow CVD reactor configuration in Fig. 2.
The reactant gas, diluted in an inert carrier gas, is fed into the reactor through a porous plate. This leads
to a uniform gas velocity perpendicular to the substrate surface, which is kept at a uniform temperature
Ts. The reactant gas reacts at the substrate surface to form a solid film. Homogeneous gas-phase reactions
are assumed to be negligible. The situation is one-dimensional, axial coordinate only.

A highly simplified description of the hydrodynamics and transport in this CVD reactor leads to the
following picture: Above the substrate, a boundary layer with thickness δ is formed, where the axial
velocity rapidly decreases. At the substrate, the axial velocity is zero. As a result, the reactant supply
through the boundary layer is mainly due to diffusion, with diffusivity D. Outside the boundary layer,
the bulk reactant concentration equals C∞. Thus, the reactant supply flux J through the boundary layer
equals
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Figure 2: A simplified representation of a stagnation flow CVD reactor.

Figure 3: A few examples of different CVD reactor designs.

J =
D (C∞ − Cs)

δ
(2)

In steady state, the this flux must be equal to the deposition rate R from Eqn. 1. This leads to

R =

(

ksδ

D
+ 1

)−1

ksC∞ (3)

with ksδ/D is the surface Damköhler number Das. For large Das, deposition is limited by the maximum
rate at which the reactant can be transported to the surface (transport limited regime). For small Das,
deposition is limited by the surface reaction rate (kinetically limited regime). In practice, CVD process
operation is performed at an intermediate regime, in which both transport and reaction kinetics play a
role.

In realistic multi-dimensional CVD reactors, thermal and hydrodynamic non-idealities will lead to
variations in the bulk reactant concentration C∞, in the boundary layer thickness δ, and in Ts leading
to variations in ks. As a result, the deposition rate will be non-uniform. Moreover, in processes in
which homogeneous gas phase reactions in the heated boundary layer lead to the formation of reactive
intermediates, a non-uniform boundary layer thickness and surface temperature will lead to variations in
the amounts of reactive intermediates formed.

The key issue in designing CVD reactors is to optimize their thermal and hydrodynamic behavior in
such as way, that the deposition rate is high and spatially uniform, and that the film is of good quality.
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Dimensionless group Typical magnitude
Reynolds 10−2 − 102

Grashof 0− 107

Reactor Scale Knudsen 10−6 − 10−1

Micro Scale Knudsen 10−1 − 104

Table 1: Dimensionless numbers in CVD.

Depending on the process characteristics, the nature and geometry of the objects to be coated, and the
required film properties, this leads to various designs. A few examples from the semi-conductor industry
are shown in Fig. 3.

3. MODELING OF CVD PROCESSES AND EQUIPMENT

3.1 Principles of CVD simulation

The application of new materials, the wish to reinforce new ceramic and fibrous materials, the tremendous
miniaturization and increase in complexity of semiconductor products, the manufacture of nano-sized and
nano-structured objects and materials, etc. lead to a continuous need for new CVD processes, and ever
increasing demands on the performance of CVD equipment.

It has been recognized in a early stage [9], that simulation models based on computational fluid
dynamics can be of great help in the optimization of CVD equipment and processes. Besides, CVD
simulation models may provide fundamental insights in the underlying physico-chemical processes, and
can be used in the interpretation of experimental data and in relating local operating conditions to film
properties.

Ideally, a computational fluid dynamics model for CVD model describes all relevant physicochemical
processes in the reactor, and relates these phenomena to the properties of the deposited films. Such
a model will generally include: (i) A gas phase chemistry model, which gives the reaction paths and
rate constants for the homogeneous reactions, which influence the species concentration distribution near
the deposition surface through the production/destruction of chemical species. (ii) A surface chemistry
model, which describes how reactions between these species and free sites and adsorbed species on the
surface lead to the growth of a solid film. In order to model these chemical processes, the macroscopic
distribution of the gas flow and temperatures in the reactor must be known. Therefore, the core of
a CVD model is formed by (iii) a gas flow and transport phenomena model, complemented by (iv) a
thermal (wall-to-wall) radiation model, describing the gas flow and the transport of energy and species
in the reactor and setting the thermal boundary conditions.

Together, the above model components describe the macroscopic behavior of the process. Apart from
macroscopic process characteristics, in thin film processing the interest is mostly in microscopic film prop-
erties. Also, the surfaces to be coated are often non-uniform on microscopic length scales. To model these
small scale phenomena, microscopic models are added to the macroscopic models. Obviously, microscopic
models will generally be of a molecular nature, in contrast the the continuum based macroscopic models.
The coupling of models at different scales is a topic of recent interest and a challenge that is further
discussed in section 4.4.

3.2 CVD simulations models: a literature review

Early CVD models aimed at predicting growth rate and uniformity through simplified analytical descrip-
tions of transport phenomena and chemistry in the reactor [12, 13].

In the late 70’s and early 80’s, the papers by Wahl [14], Jensen and Graves [15] and Coltrin and
coworkers [16] marked the beginning of the computational era in computational CVD equipment modeling,
allowing for a much more realistic description of hydrodynamics, transport phenomena and chemistry.
Following these landmark publications, many computational CVD studies have been performed in the
80’s and early 90’s, which can roughly be categorized as: (i) Hydrodynamic models, aiming at simulating
multi-dimensional flow and transport phenomena in relation to process operation and equipment design,
in combination with simple models for the CVD chemistry. Most of these studies addressed classical
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Figure 4: Computed isotherms in the oxy-acetylene torch reactor.
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Figure 5: 2−D simulations and LIF-measurements [10] of radial H profiles directly above the surface.

reactor configurations (see Fig. 3), such as horizontal rectangular duct reactors (e.g. [17]-[21], vertical
impinging jet and rotating disk reactors (e.g. [22]-[26]), pancake reactors (e.g. [27]-[28]), barrel reactors
(e.g. [29]-[30]), planetary reactors (e.g. [31]-[32]), and hot-wall multi-wafer LPCVD reactors (e.g. [15],
[33]-[35]). Many studies were devoted to low pressure single wafer reactors of the stagnation flow type
(e.g. [36]-[40]). Studied CVD processes included atmospheric pressure CVD of epitaxial Si and of B,
SiC and CdTe, MOVPE of GaAs and InP , and low pressure deposition of doped and un-doped poly-Si,
tungsten, silicon-dioxide and silicon-nitride. (ii) Chemistry models, aiming at unraveling homogeneous
and heterogeneous reaction mechanisms, in combination with simple zero or 1-dimensional reactor models.
Such models have been made for CVD of e.g. epitaxial silicon [25], B-doped silicon [41], silicon-dioxide
[42], silicon-carbide [43], cadmium-telluride [44], gallium-arsenide [45, 46], silicon-germanium [47], TiSi2
[48], tungsten [49, 50], and diamond [51, 11]. (iii) Microscopic models, describing the interaction between
(molecular) transport phenomena and deposition within sub-micron trenches and contact holes on wafers
for semiconductor manufacturing ([52]-[56]).

Since the late 90’s, enabled by the ever increasing computer performance, it has become possible to
combine detailed descriptions of transport phenomena and reaction chemistry into a single computational
model (e.g. [40], [46], [57]-[60]). To an increasing extent, theoretical and computational chemistry tools
are being used to determine reaction pathways and kinetics, both in the gas and at the surface (e.g.
[41],[61]-[65]). Also, significant efforts have been made to integrate equipment scale and feature scale
models into multi-scale CVD models (e.g. [66]-[70]). More detailed overviews of the development of CVD
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Figure 6: Diamond growth rate as a function of surface temperature as predicted by the model (line) and
measured [11] (symbols).

simulation models in the past decades can be found in [71] and [72].
In recent years, successful attempts have been made in using simulation not only to optimize hydro-

dynamic reactor design and eliminate flow recirculations [19, 24] and to predict and optimize deposition
rate and uniformity [15, 20, 73, 74], but also to optimize temperature uniformity [75, 76], to predict
and control formation and transport of particles [77, 78], to scale-up existing reactors to larger wafer
diameters [79, 80], to optimize processing conditions with respect to deposition conformality [53], to
predict the influence of process conditions on doping rates [81], to evaluate loading effects on selective
deposition rates [82], to study the influence of operating conditions on selectivity loss [58], etc. Today,
CVD simulation models are being used routinely by process engineers and equipment manufacturers.

3.3 Example: Modeling CVD of crystalline diamond films

Crystalline diamond possesses many superior physical properties, e.g., hardness, optical transparency,
large electronic band-gap and high carrier mobilities (doped), wear and chemical resistance and thermal
conductivity, which can be exploited in various technological applications [83]. With oxy-acetylene com-
bustion CVD, mono-crystalline diamond layers can be grown [84] at high growth rates and low costs. The
reactor consists of an ordinary welding torch, fed with a slight super-saturation of acetylene. The torch
is pointed towards a cooled substrate, on which diamond is deposited. The main drawback of diamond
growth by means of this technique is that the growth area is as yet limited to ∼ 20mm2. Scale-up is not
trivial, and requires a detailed knowledge of the interaction between hydrodynamics, temperatures and
chemistry. Computational modeling may be of aid in obtaining such knowledge, and in designing and
optimizing reactor geometries.

Okkerse and coworkers [11, 85, 86] constructed a 2−D model of the reactor, based on the simultaneous
simulation of (i) the multi-reaction combustion chemistry in the flame, (ii) the multi-reaction deposition
chemistry, and (iii) the multicomponent transport phenomena,

The gas-phase chemistry mechanism used was based on that of Miller and coworkers [87]. Through
sensitivity analysis, it was reduced to a 27 species, 119 reactions mechanism [11]. Based on quantum-
mechanical calculations by Skokov and coworkers [88, 89, 90] a surface reaction mechanism was developed
consisting of 67 elementary reactions between 41 adsorbed species [11]. These two chemistry models were
combined with a 2−D hydrodynamics model.

Figure 4 gives an example of the calculated temperature profiles. The 2−D flame simulations were
compared to qualitative in situ gas species concentration measurements by Klein-Douwel and coworkers
[10], obtained with the aid of Laser Induced Fluorescence (LIF). In Fig. 5 the radial distribution of atomic
hydrogen just above the substrate as computed with the 2−D model is compared to LIF measurements.
Fig. 6 shows a comparison between model predictions and experimental data for the film growth as a
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Figure 7: Symmetry breaking in a stagnation flow CVD reactor (from [91]).

function of surface temperature.

4. CHALLENGES FOR COMPUTATIONAL MODELING IN CVD PROCESS AND

EQUIPMENT DESIGN

4.1 Laminar and transitional mixed convection gas flows

Reynolds numbers in Chemical Vapor Deposition reactors are usually quite low (see table 1), and as
a consequence the gas flow is usually laminar. These low Reynolds numbers in combination with quite
large temperature differences can lead to significant interactions between forced an free convection in CVD
equipment. Especially at higher pressures, mixed convection can be an important factor influencing gas
flow, chemistry, heat and mass transfer.

A general picture of the relevant dimensionless group(s) that determine the mixed convection behavior
in CVD equipment is still lacking. This is mostly due to the large variety in geometries and configurations
being used. Roughly, three gas flow directions can be distinguished: horizontal, vertically upward and
vertically downward. Often, the substrates to be coated are rotated to improve deposition uniformity.
This creates additional gas flow patterns. Each gas flow configuration can be combined with horizontal,
vertically upward and vertically downward temperature gradients. In addition, horizontal and vertical
density differences may be present due to concentration gradients, especially when a heavy reactant gas,
diluted in a light carrier gas, is depleted at a reaction surface [92]. So at least four dimensionless groups
play a role: the forced flow Reynolds number Re, the rotational Reynolds number Reω, the thermal
Grashof number Gr and the solutal Grashof number GrC .

In horizontal CVD reactors (see fig. 3) heated from below, a combination of transversal and longitu-
dinal rolls is observed [19, 20]. The occurrence of longitudinal rolls seems to depend on Gr only, but the
entrance length for these rolls to develop depends on Re. Also, the sidewall temperatures have a large
influence. The occurrence of transversal rolls or recirculation flows at the upstream edge of the heated
bottom was found to depend on Gr/Re for low Re and on Gr/Re2 for larger Re ([19, 93]). In rotating
disk reactors, with a cold gas flow being sucked vertically downward towards a horizontally spinning

heated susceptor, the relevant mixed convection parameter was found to be Gr/Re
3/2
ω [94]. When in such

a configuration a forced vertically downward gas flow is combined with a spinning induced gas flow, the
mixed convection parameter is reported to be Gr/ReReω [95]. For radially outward gas flows between
two heated horizontal disks, it is difficult to define a characteristic velocity scale and Reynolds number,
as it is still a matter of debate whether the observed longitudinal rolls are determined by Gr and Re, or
by Gr only [96, 97]. It is clear that a complete picture is still missing.
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(B) Time = 2.2

Figure 8: Reactor geometry (upper left), instantaneous rz velocities (lower left), and instantaneous
heat transfer (right) in a stagnation flow CVD reactor operated under buoyancy driven turbulent
flow conditions (From [100]).

Mixed convection at the relatively low Re and Gr numbers as encountered in CVD reactors may lead
to surprising flow phenomena that are only partly understood and that may have a large impact on the
process characteristics. One such phenomenon is that of multiple stability of mixed convection flows: At
one specific combination of Re and Gr, both a buoyancy dominated and a forced flow dominated solution
of the flow equations may be stable. A small change in either of these parameters may cause a bifurcation
to the other solution branch [98, 99]. Another example is the existence of stable, non-symmetric flow
solutions in axi-symmetric geometries with axi-symmetric boundary conditions [91], see Figure 7. It has
been shown that the symmetry breaking is due to buoyancy alone, and does not result from an interaction
between forced and free convection.

Although the gas flow in Chemical Vapor Deposition reactors is usually laminar, there are various
good reasons for studying transitional and turbulent mixed convection flows in CVD equipment, and
their interaction with chemistry, heat and mass transfer.

Firstly, in large scale, cold-wall CVD reactors turbulence may be caused - unintentionally - by buoy-
ancy effects. In the IC industry, wafer diameters and reactor dimensions are increasing, and there is a
tendency to use higher operating pressures, not only for the purpose of increasing the deposition rate,
but also to enhance film conformality. Since the Rayleigh number increases quadratically in the pressure,
and cubically in the reactor dimensions, buoyancy induced turbulence can be expected to become of
increasing importance. In a single-wafer cold-wall reactor (see Fig. 3), for example, with a cold gas flow
impinging vertically on a horizontally placed heated susceptor, the Rayleigh number may easily exceed
105 when nitrogen at atmospheric pressure is used as a carrier gas. In a barrel reactor (see Fig. 3), op-
erated at atmospheric pressure with a nitrogen carrier gas, the Rayleigh number for the vertical annulus
between the wafer holder and the reactor wall may easily exceed 108. For large scale atmospheric CVD
equipment used to coat large numbers of e.g. machine parts and tools, the Rayleigh number may even
be much higher. Secondly, there may be interesting opportunities in employing turbulent flow properties
for efficient and uniform deposition of unstable chemical species.

By means of large Eddy Simulations, Van Santen and coworkers [100] studied mixed convection tur-
bulence and heat transfer in cold-wall Chemical Vapor Deposition reactors of the rotating disk/stagnation
flow type (see upper left part of Fig. 8) for inlet Reynolds numbers from 60 to 300, rotational Reynolds
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Figure 9: Heat flux to the susceptor surface in an stagnation flow CVD reactor;
Included are 1-D (SPIN) and 2-D (Fluent) continuum simulations (Kn → 0), and
simulations in the rarefied regime by means of DSMC at Kn = 0.1−1.0. (From [101])

numbers from 0 to 24× 103, Rayleigh numbers from 2× 105 to 106, and H/D aspect ratios from 1/6 to
1. In Fig. 8 (lower left part), a snapshot of the projection of the rz−velocity field at a specific instant
in time has been plotted for H/D = 0.2, Re = 10, and Ra = 106. A turbulent chaotic flow is found
between the wafer and the reactor inlet, that resembles plain turbulent Rayleigh-Bénard convection. In
CVD, the heat transfer to the susceptor surface, that conditionally can be related to the deposition rate,
is an important quantity. The instantaneous heat transfer at the susceptor surface, of which an example
has been plotted in Fig. 8 (right), is highly non-uniform, due to the turbulent flow conditions. However,
The time averaged Nusselt number was found to be reasonably uniform and about a factor five higher
than would be the case in the absence of buoyancy induced turbulence.

From the above it may be clear that the low Re, low Gr mixed convection gas flows encountered in gas
phase materials processing equipment are as yet only partly understood and still hold many challenges
for thermo fluids science and engineering.

4.2 Rarefied gas flow modeling

Many film materials manufacturing processes are operated at reduced pressures. The main reasons for
this are to increase diffusion and to suppress gas phase reactions (and thus improve process control and
uniformity and conformality of the film thickness). At a pressure of ∼ 100Pa, the mean free path length
l of gas molecules is of the order of 0.1mm, as compared to 0.1µm at atmospheric pressure. In order to
be able to describe the gas as a continuum, the mean free path length should be ∼ 100 times smaller than
the characteristic dimensions L of the reactors, i.e. the Knudsen number Kn = l/L should be smaller
than 0.01. When the distances between closely stacked objects and surfaces in CVD reactors are of the
order of millimeters, this criterion is easily violated under low pressure conditions (see Table 1). But even
under atmospheric pressure conditions, the continuum approach does not hold inside sub-micrometer
structures in and on the coated surfaces. In addition, there is a tendency to operate CVD processes at
even lower pressures of 1− 10Pa. At these pressures, the molecular nature of the gas must be accounted
for even at the scale of the entire reactor chamber.

For the modeling of gas flows in the continuum regime (Kn < 0.01), models based on the Navier-
Stokes equations for continuum fluid dynamics are applicable. Free molecular flows at ultra-high-vacuum
conditions (Kn > 10) can be modeled through line-of-sight-type models. For the intermediate pressure
(Kn = 0.01− 10) ranges, neither of the approaches is suitable. These are the regimes that are important
at the sub-micron structures scale in atmospheric pressure CVD, and at the reactor scale in (very) low
pressure CVD. Models for this regime should be based on the Boltzmann equation. Its mathematical
intractability however necessitates rather rigorous simplifications, even when numerical solutions to the
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discretized Boltzmann equation are sought. Alternative techniques are based on Monte-Carlo computer
simulations on the molecular level. The most well-known method is the Direct Simulation Monte Carlo
Method by Bird [102]. Figure 9 shows the influence of the Knudsen number on the heat flux to the
susceptor in a stagnation flow CVD reactor in the transition regime, as compared to the heat flux for
continuum conditions [101]. The heat flux decreases with increasing Kn. At the same time, the heat flux
uniformity is improved.

The simulation of flow, chemistry, heat and mass transfer in rarefied reacting gas flows as encountered
in materials processing equipment is a task with many challenges for the application and extension of
DSMC methods. These include: (i) the modeling of surface and gas phase reactions with large, complex
reactant molecules; (ii) the accurate modeling of trace species concentrations, which play an important
role in e.g. doping and contamination; (iii) collection of experimental data and development of theoretical
models for (thermal) accommodation coefficients of the various gas molecules and the solid services
encountered in materials processing equipment; and (iv) the development of hybrid continuum/rarefied
flow solvers capable of simulating gas flow with large variations in local Kn numbers.

The computational expenses of Monte-Carlo rarefied gas simulations increase rapidly with decreasing
Knudsen number (∼ Kn−3), limiting the practical applicability of the method to the transition and
Knudsen regimes. With the arrival of powerful parallel computer architectures, these limits are now being
pushed into the near-hydrodynamic regime. On the other hand, the range of validity of continuum models
can be extended to higher Knudsen numbers through the use of modified (slip and temperature jump
boundary conditions and modified transport properties [103, 104]. This is attractive, since continuum
models are considerably less computationally demanding than Monte-Carlo simulations. For simple
geometries, the necessary modifications of the boundary conditions in continuum models are known, but
a more generic approach is still lacking.

4.3 Wall-to-wall radiation heat transfer modeling

Most Chemical Vapor Deposition processes are thermally activated and therefore the temperature distri-
bution in the reactor is a key parameter. Temperature distributions play a role in three different ways:
(i) Gas temperatures determine the chemical reaction rates in the gas phase. (ii) Surface temperatures
determine the reaction rates of heterogeneous chemical reactions at the surface. (iii) The temperatures
of the walls in a CVD reactor determine the gas flow pattern in the reactor.

The three main heat transfer mechanisms in CVD reactors are wall-to-wall thermal radiation, con-
vective heat transfer and solid conduction. The most challenging part for computational modeling is the
wall-to-wall radiation heat transfer. Materials on which thin films are being deposited generally exhibit a
complex optical behavior. Emissivities strongly depend on film thickness (which varies during the deposi-
tion process) and surface temperature and exhibit a large spectral variation. Although reasonable results
have been obtained by assuming diffuse reflection [105], in fact many materials used in CVD exhibit a
partly diffuse, partly specular reflection behavior. Thus, thermal radiation modeling in CVD involves the
modeling of wall-to-wall radiation in complex geometries, with partly diffuse-specular walls, the optical
properties of which are a strong function of wavelength, temperature and deposited film thickness.

Clearly, Monte-Carlo ray tracing methods are the obvious choice for such type of modeling [76, 106,
107]. Theoretical models to compute the optical properties of bulk materials and thin films from the so-
called complex refractive index of the materials are known and the spectral dependence of this refractive
index of many materials can be found in e.g. [108, 109]. For many materials, however, data are lacking.
Particularly difficult is the temperature dependence, which is especially important for semiconductors.
The full implementation of wall-to-wall radiation models, taking into account all the temporal and spatial
variations in optical properties mentioned above, and their coupling to fluid flow solvers is not a trivial
task. The computations are computationally demanding, especially for transient simulations. The use of
lamp heating, necessitating the modeling of radiation within and from the lamps and the lamp houses,
further complicates matters significantly.

In many CVD and other thin film processes, the surfaces to be treated are patterned or structured on
various length scales. In e.g. IC fabrication, the average optical properties of the centimeter sized dyes
on a wafer are clearly distinct from those of the surrounding material. Within the dyes, the microscopic
structure of the IC introduces variations in optical properties at a sub-micrometer scale, whereas clustering
of these structures leads to variations at the scale of ∼ 10 − 100µm. Modern nano-structured materials
exhibit spatial property variations the scale of a few nanometers. With optical and thermal radiation
wavelength between ∼ 0.5 and ∼ 5µm, the modeling of wall-to-wall radiation to and from such patterned
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surfaces is a quite challenging task for micro-scale heat transfer science and engineering.

4.4 Multi scale modeling

In CVD, and in thin film surface processing in general, physical and chemical processes take place at
largely differing length scales. Important properties of the films such as adhesion, morphology and purity,
are determined by processes at molecular (i.e. nanometer) scale, such as molecular adsorption, chemical
reactions, nucleations and island growth. At themacroscopic (i.e. reactor) scale, gas flow, (radiative) heat
transfer and species diffusion determine process characteristics such as overall film uniformity and reactant
consumption. In between these two extremes, additional length scales are often introduced due the close
packing of large numbers of objects to be coated, the complex shape of surface geometries, patterning
and structuring of surfaces, and small scale variations in optical, thermal and chemical properties of
surfaces. This is e.g. most obviously the case in IC manufacturing, where the average surface properties
of the centimeter sized dyes (i.e. the IC’s to be) on a wafer are clearly distinct from those of the
surrounding material. Within the dyes, the microscopic structures of the IC (the so called features)
introduce variations in surface properties at a sub-micrometer scale. It is at this sub-micron scale that
the quality of the products is determined. With the continuous increase in wafer diameters and the
continuous decrease in pattern line widths in semiconductor manufacturing, the ratio between equipment
scales and product scales continues to increase, see Fig. 10. Currently, it is of the order of 106. This
ratio is increased to 107 − 108 when molecular scales are also included.

Clearly, such differences in scales cannot be resolved within a single simulation model. As an example,
the maximum ratio between domain size and (uniform) grid cell sizes in 3-dimensional CFD simulations
for fluid flows with heat and mass transfer currently is about 500. This ratio approximately doubles
every 5 years, leading to a ratio of 106 around the year 2060! Therefore, a hierarchy of different models
for different scales must be used. This is not a trivial task, since models at different scales will be of a
very different nature and communication between the models is not straightforward. One example of the
problems encountered is the coupling between micro scale molecular models and macro scale continuum
models. Also, the typical time scales for the two types of modeling lay far apart. The coupling between
the smaller and the larger scales is bi-directional. The larger scales determine the local supply of heat
and mass to the surface. But consumption rates of reactants and optical and thermal surface properties
are determined by phenomena and structures at the smallest scales, thus setting the boundary conditions
for the larger scale phenomena. Ideally, a full dynamic coupling between models for all different scales
should be established.

The first approach towards full integration of macroscopic reactor scale and microscopic feature scale
models was presented in [66]. In an iterative approach, pseudo steady state species concentrations at the
reactor scale were given as input to a micro scale simulator, which then returned a homogenized net flux
of each species back to the reactor scale. Also, mesoscopic scales were introduced in between the reactor
and the feature scale, to provide information regarding spatial variations of species concentrations and
fluxes at the scale of individual dies and clusters of features. In [68, 69] this approach was extended
to transient cases. Another approach has been the effective reactivity function formulation described in
[70, 110]. Here, the reactor and feature scale simulations are linked together using an effective reactivity
ε, calculated from a molecular Monte Carlo simulation, which includes effects of both surface variations
and molecular transport inside sub-micron features. The reactivity of each set of features is then linearly
superimposed to obtain ε. Whereas the above studies addressed the coupling between the reactor scale,
the (cm) die scale and the (µm) feature scale, in [111, 112, 113] the focus was on coupling reactor scale
simulations to molecular scale simulations.

Clearly, promising results have been obtained in coupling models for the different scales in CVD.
However, a fully integrated dynamic coupling between models for all relevant scales is still a terrific chal-
lenge. Also, the attempts so far have mainly addressed the coupling between mass fluxes and deposition
at the various scales. There is a clear need for an extension of these types of approaches towards ther-
mal modeling at different scales, integrating macroscopic conjugate and radiative heat transfer models
to micro-heat transfer models, with optical and thermal properties varying in time and at length scales
comparable to thermal radiation wavelengths and molecular free paths lengths.

5. CONCLUSIONS AND OUTLOOK

In Chemical Vapor Deposition and other surface treatment processes for the manufacturing of thin
films and small structures, the product quality is primarily determined by chemistry. However, in order to
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Figure 10: Ratio between the diameter of wafers and the typical line-widths in IC
manufacturing.

make chemical processes proceed in a uniform manner and to control them on the widely varying length
scales that play a role, sophisticated thermal and fluid flow equipment engineering is needed. Reactants
and heat must be transported to the treated objects and surfaces in such a way, that surface temperatures
and near-surface species concentrations are uniform and well controlled. Modeling and simulation are
important tools to help in the complex design and optimization of equipment and processes.

In the last two decades thermal and fluid flow modeling has had a large impact on the field of CVD,
especially when combined with chemistry modeling: Not only on the way in which processes are developed
and operated, but possibly even more on the way in which CVD researchers conceptualize the various
processes in a CVD reactor.

This paper has discussed examples of challenges yet to be tackled by the heat transfer and fluid
flow community in order to resolve technological and modeling problems in designing equipment for the
manufacture of smaller and smaller structures. In order to be really successful, these efforts should
be conducted in close multi-disciplinary collaboration with chemists, materials scientists and chemical
reactor engineers.
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Abstract. This paper presents a Cohesive Zone Model (CZM) approach for investigating dynamic crack
propagation in homogeneous and Functionally Graded Materials (FGMs). The failure criterion is incor-
porated in the CZM using both a finite cohesive strength and work to fracture in the material description.
A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gra-
dation is approximated at the element level using a graded element formulation. A numerical example is
provided to demonstrate the efficacy of the CZM approach, in which the influence of the material gradation
on the crack branching pattern is studied.

1 INTRODUCTION

Functionally graded materials or FGMs are a new generation of engineered composites characterized by
spatially varied microstructures and smooth variation of mechanical/thermal/electromagnetic properties.
This new concept of engineering the material microstructure and recent advances in material processing
science allows one to fully integrate the desirable properties of individual material phases and acquire
optimized structural performance [1].

Fracture mechanics of FGMs has been an active area of research during recent years[2]. Compared to
the classical linear elastic fracture mechanics (LEFM) and some other existing fracture models, Cohesive
Zone Models (CZMs) provide advantages of allowing spontaneous crack nucleation, crack branching and
fragmentation, as well as crack propagation without an external fracture criterion[3, 4].

CZMs incorporate a cohesive strength and finite work to fracture in the description of material behav-
ior, and allow simulation of near-tip behavior and crack propagation. The concept of “cohesive failure”
is illustrated in Figure 1, in which a cohesive zone, along the plane of potential crack propagation, is
present in front of the crack tip. Within the extent of the cohesive zone, the material points which were
identical when the material was intact, separate to a distance ∆ due to influence of high stress state at the
crack tip vicinity. The cohesive zone surface sustains a distribution of tractions T which are function of
the displacement jump across the surface ∆, and the relationship between the traction T and separation
∆ is defined as the constitutive law for the cohesive zone surface.

CZMs can be categorized into two major groups: intrinsic and extrinsic. In the intrinsic CZM (as
employed in the numerical example), the traction T first increases with increasing interfacial separation
∆, reaches a maximum value δ, then decreases and finally vanishes at a characteristic separation value
δc, where complete decohesion is assumed to occur. In contrast, the extrinsic CZM does not display the
initial ascending branch of the curve. A brief discussion on the characteristics of each model is presented
in Section 3.

The CZM approach has the promise of simulating fracture process where cracking occurs sponta-
neously. The fracture path and speed become natural outcome of the simulation rather than being spec-
ified ad hoc or a priori. In this paper, a novel cohesive zone model developed for FGMs[6] is adopted to
simulate dynamic crack growth in FGMs.

2 NUMERICAL SCHEME

This section briefly outlines the essential components of the numerical scheme, namely, the FEM
framework incorporating CZM, the dynamic updating scheme and the material gradation.

To incorporate a CZM into the numerical scheme for dynamic fracture, the cohesive element is
developed and positioned along the potential path or region of crack propagation, and attached to the
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Fig. 1: Schematic representation of cohesive zone model concept; (a) A plate containing crack; At po-
tential crack propagation path e.g., as circled in (b), cohesive element is inserted, as shown in (c), which
follows the specified cohesive zone model shown in (d) for normal traction; (e) cohesive zone in Mode I
case.

volumetric elements, which follows a cohesive traction-separation relationship as shown in Figure 1. In
contrast, the conventional finite element, which is now called “bulk element”, follows conventional stress-
strain relationships (continuum description). The constitutive law of cohesive elements is inherently
embedded in the finite element model, so that the presence of cohesive elements allows spontaneous crack
propagation.

The FEM formulation incorporating cohesive elements is derived from the principle of virtual work,
and discretized using the explicit central difference time stepping scheme to update displacements u,
accelerations ü and velocities Úu as follows:

un+1 = un +∆t Úun +
1

2
(∆t)2ün (1)

ün+1 = M−1(F−Rint(n+1)) +Rcoh(n+1)
) (2)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (3)

where ∆t denotes the time step, M is the lumped mass matrix, F is the external force vector, Rint and
Rcoh are the global internal and cohesive force vectors, which are obtained from the contribution of bulk
and cohesive elements, respectively. Large deformation formulation is employed[6].

To treat the material nonhomogeneity inherent in the problem, graded elements, which incorporate
the material property gradient at the element level, are introduced. In this investigation, the scheme
proposed by Kim and Paulino [7] is adopted. The same shape functions are used to interpolate the un-
known displacements, the geometry, and the material parameters, and thus the interpolations for material
properties (E, ν, ρ) are given by

E =
m
∑

i=1

Ni Ei, ν =
m
∑

i=1

Ni νi, ρ =
m
∑

i=1

Ni ρi (4)

where Ni are the standard shape functions.
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3 INTRINSIC VERSUS EXTRINSIC COHESIVE ZONE MODELS

The distinction between intrinsic and extrinsic CZMs is the presence of initial elastic curve, as shown in
Fig. 3. Intrinsic CZMs assume that, e.g. in pure tension case, traction Tn first increases with increasing
interfacial separation ∆n, reaches a maximum value Tmax

n , then decreases and finally vanishes at a
characteristic separation value δn, where complete decohesion is assumed to occur. On the other hand,
extrinsic CZMs assume that separation only occurs when interfacial traction reaches the finite strength
Tmax
n , and once the separation occurs, the interfacial cohesion force monotonically decreases as separation

increases.
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Fig. 2: Comparison of two typical intrinsic and extrinsic CZMs: (a) bilinear intrinsic cohesive zone model[5]

in pure tension and pure shear, respectively; (b) initially-rigid extrinsic cohesive zone model[4] in pure
tension and pure shear, respectively.

A brief comparison of the two types of CZMs (intrinsic and extrinsic) is summarized as follows:

• The Intrinsic model requires that all cohesive elements be embedded in the discretized structure
at the beginning of simulation, and the mesh connectivity remains unchanged during the whole
simulation process.

• The Intrinsic model allows easy implementation, however, it introduces artificial compliance de-
pending on the area of cohesive element surfaces introduced and the cohesive element property. If
the crack grows along a pre-defined path, the adverse effect is relatively minor, while for simulations
involving cohesive element inserted in a large area, the result can be (highly) non-convergent for
different mesh discretizations. Moreover, this approach usually necessitates adoption of very high
cohesive strength, e.g., Tmax

n = E/10 (which is not physical for macroscopic, i.e. engineering-scale,
applications).

• For extrinsic models, cohesive elements are adaptively inserted into the mesh. This usually requires
complicated mesh updating schemes for the modified mesh by renumbering nodes and elements.

• Extrinsic models avoid the artificial compliance effect, which is present in intrinsic models. The
critical fracture stress adopted is usually much lower than that used in intrinsic models. For example,
in their work, Camacho and Ortiz[4] used a value around Tmax

n = E/600.

The above observations are made in general regarding the intrinsic and extrinsicmodels (not confined
to the two models illustrated in Fig 3). Different types of CZMs within each group are developed based
on various considerations, and one may have certain advantage over the other for specific problems. For
example, the above bilinear CZM has an adjustable initial slope, which provides the user more control
on the artificial compliance than a model with fixed initial slope. Some of these issues were addressed
in more detail in the work by the authors[6], where mesh convergence studies were carried out for both
cracks along pre-defined path and cracks along arbitrary path.

4 COHESIVE ZONE MODEL FOR FGMS

We propose a new FGM cohesive zone model [6], which is a combination of the models by Xu and
Needleman[3] and Jin et al.[8]. It avoids effective quantities and thus uses the actual quantities to describe
the relationship between normal traction-separation and tangential traction-separation.
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Assume that the energy potential of each individual material phase takes the exponential form [3]:

φi(∆) = φni + φni exp

(

−∆n

δni

){[

1− ri +
∆n

δni

]

(1− qi)

(ri − 1)
−
[

qi +
(ri − qi)

(ri − 1)

∆n

δni

]

exp(−∆2
t

δ2ti
)

}

(5)

in which superscripts i (i = 1, 2) denote the two individual material phases (e.g., metal and ceramic
respectively), and parameters ∆ = [∆n,∆t] denote the displacement jump across the cohesive surface in
normal and tangential directions. Other parameters in the expressions that respectively refer to material
phase i are explained hereby without subscript notation: parameters φn and φt are the energies required
for pure normal and tangential separation, respectively; δn and δt are the critical opening displacement for
normal and tangential separation, which are related to the cohesive normal strength Tmax

n and tangential
strength Tmax

t as

φn = eTmax
n δn, φt =

√

e/2Tmax
t δt, (6)

where q = φt/φn, and r is defined as the value of ∆n/δn after complete shear separation with Tn = 0.
The cohesive traction force vectors associated with material phases 1 and 2 in the 2-D case comprise

traction in normal and tangential directions as T1 = [Tn1, Tt1] ,T2 = [Tn2, Tt2] , and can be derived
directly from the energy potentials as

T1 = −∂φ1/∂∆, T2 = −∂φ2/∂∆. (7)

The resulting normal and shear traction components are illustrated in Figure 3 (a).
Let TFGM =

[

TFGM
n , TFGM

t

]

denote the traction force vector across the cohesive surfaces of a two-
phase FGM, which comprises normal and tangential traction force components. The cohesive traction
TFGM is approximated by the following volume fraction based formula

TFGM(x) =
V1(x)

V1(x) + β1[1− V1(x)]
T1 +

1− V1(x)

1− V1(x) + β2V1(x)
T2 (8)

where the parameter V1(x) denotes volume fraction of the material phase 1, while β1 and β2 are two
cohesive gradation parameters that describe the transition of failure mechanisms from pure material phase
1 to pure material phase 2, and should be calibrated with experimental data. Figure 3 (b) compares the
normal traction-separation laws for two material constituents.
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Fig. 3: (a) Exponential cohesive zone model[3] in pure tension and pure shear; (b) cohesive zone model in
pure tension case, for two material phases with strength ratio Tmax

n2 /Tmax
n1 = 0.35, and critical displace-

ment ratio δn2/δn1 = 0.15, where δni denotes normal separation at peak normal traction for material i.

5 NUMERICAL EXAMPLE

In this section, a test example is provided to illustrate the application of the cohesive model intro-
duced above to both homogeneous and FGM systems through investigation of dynamic crack branching
phenomenon for a plane strain plate containing an initial central crack subjected to tensile velocity
loading.
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Fig. 4: Branching problem; (a) geometry and boundary conditions of a plate containing a central crack
subjected to velocity loading; (b) Mesh descretization of the dynamic branching problem with half of the
original geometry modelled due to symmetry along the y axis.

5.1 Problem Description

The computation is carried out for a center cracked rectangular plate as shown in Figure 4 (a).
Symmetric velocity loading v0 = 5m/s is applied along the upper and lower surfaces. To explore the
influence of material gradation on crack branching patterns, three material gradation profiles are studied,
as listed in Table 1: case 1: both the bulk and cohesive properties are considered for homogeneous
materials; case 2: hypothetical “FGM”, with homogeneous bulk material and linearly graded cohesive
properties along y direction. case 3: FGM with both the bulk and cohesive properties linearly graded in
y direction.

Due to symmetry of the geometry, material gradation and loading condition with respect to y axis,
only the right half of the geometry is modelled for the numerical simulation, along with proper boundary
condition to account for the symmetry at x = 0. The domain is discretized with 40 by 40 quads each
divided into 4 T3 elements, as depicted in Figure 4 (b). Cohesive elements are inserted inside a rectangular
region right to the initial crack, as shown with the thicker lines. The other material parameters for the
CZM are: q = 1, r = 0, and β1 = β2 = 1.

Table 1: Three material gradation profiles for plate containing central crack.

y position E ν ρ GIc Tmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

case 1: homog. −1/2W to 1/2W 3.24 0.35 1190 352.3 324 0.4
case 2: graded 1/2W 3.24 0.35 1190 528.4 486 0.4

Tmax −1/2W 3.24 0.35 1190 176.1 162 0.4
case 3: graded 1/2W 4.86 0.35 1190 528.4 486 0.4
E & Tmax −1/2W 1.62 0.35 1190 176.1 162 0.4

5.2 Results for Various Material Gradation Profiles

Case 1: homogeneous PMMA material. Symmetric branch pattern is obtained (Figure 5 (a)). The
crack begins to branch at abranch = 1.05mm, and further branches occur when the cracks approach the
edge. Although crack branching can only take place either parallel to the coordinate axes or at ±45◦, the
overall branching angle is less than 45◦ from the x axis. In the example, the overall branching angle is
about 29◦, calculated by approximating the main branch as a straight line.

Case 2: Variation of cohesive strength. In this example, the cohesive strength Tmax is lower at
the bottom surface and higher at the top surface, which means weaker fracture resistance at the lower
region. Therefore, the crack branching is expected to be more significant at the lower part of the plate,
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(a) homogeneous, t = 10.6µs (b) graded Tmax, t = 10µs

(c) graded Tmax, t = 8.25µs (d) graded E and Tmax, t = 10µs

Fig. 5: Crack branch pattern for various material gradation profiles; loading velocity at v0 = 5m/s;
(a) final crack pattern at t = 10.6µs for homogeneous plate (case 1); (b) final crack pattern at t = 10µs
for graded plate (case 2); (c) attempted crack branching at t = 8.25µs for graded plate (case 2); (d) final
crack pattern at t = 10µs for graded plate (case 3).

as shown in Figure 5(b). The initial crack branching location is roughly the same as the homogeneous
case (cf Figure 5(c)). As the lower region of the plate is weaker in resisting fracture, the crack branch
towards the lower region dominates, and shields the upward one from developing further.

Case 3: Graded bulk and cohesive properties. In this example, both bulk and cohesive properties
vary linearly in y direction. On one hand, the weaker cohesive resistance favors the crack branching
into the y < 0 region. On the other hand, stress developed in the stiffer region (y > 0) is higher than
that at the compliant region, which may promote the crack branching into the y > 0 region. These two
mechanisms compete with each other in influencing crack branching pattern. The final crack pattern is
plotted in Figure 5 (d).

6 CONCLUSIONS

This paper presents a numerical scheme incorporating CZM to investigate dynamic fracture behavior
of homogeneous and FGMs under dynamic loading. Two basic types of elements are employed in the
present investigation: graded elements in the bulk material, and graded intrinsic cohesive elements to
model fracture. Discussion on the pros and cons of the intrinsic and extrinsic CZMs are also presented.
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Xu and Needleman[3] model was extended to treat FGMs, which eliminates the dependence upon effective
quantities, and may provide certain advantages when mixed-mode effect is prominent.

As illustrated in the study, the cohesive element approach is promising for modeling generalized
fracture without predefined external fracture criteria. Further numerical issues, including the artificial
compliance introduced in the system by incorporating cohesive elements, were studied and related results
reported in a recent publication by the authors[6].
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Abstract. Different discrete element models (DEM) for the simulation of cohesive geomaterials like concrete, ce-
ramics or marl will be presented. Starting from a basic polygonal two-dimensional DEM model for non-cohesive
granular materials, more complex models for cohesive materials are obtained by inclusion of beam or interface
elements between corresponding particles. The last step in the series of increasing complexity is the realization
of a microstructure-based simulation environment which utilizes the enhanced DEM models. With growing model
complexity a wide variety of failure features of geomaterials can be represented. A validation of these discrete
models with regard to qualitative and quantitative aspects enriches the plan of the paper. Thereby, extracts of the
extensive simulation program are reported in order to clarify the respective subject matter.

1 INTRODUCTION
A steadily increasing interest in a preferably exact description of geomaterials demonstrates in a formidable man-
ner that the modeling of these materials still poses a challenge to the research community, as it was since ancient
times. The research is driven, on one hand, by the natural endeavor to find an optimal exploitation of the load
capacity of engineering structures and, on other hand, to advance the design of new artificial geomaterial-based
materials. The last point parallels the developments in neighboring engineering disciplines like aeronautical-
and space technology or mechanical engineering. These artificial materials combine the advantages of their con-
stituents, while compensating their disadvantages. Two examples are high strength and textile reinforced concrete.
From a physical point of view geomaterials like concrete, ceramics or marl can be considered as cemented gran-
ulates forming a heterogeneous macroscopic solid. In order to predict the remaining load capacity after reaching
the ultimate load a substantiated knowledge of the underlying failure mechanisms is essential. For example, this
knowledge may be based on micromechanical observations.
The failure mechanisms of geomaterials are characterized by complex failure modes and, furthermore, they show
a highly anisotropic bias due to their inhomogeneous microstructure. The growth and coalescence of microcracks
in cohesive geomaterials lead to the formation of macroscopic crack patterns. Finally, this results in a frag-
mentation into separate particle clusters forming a solid-granulates mix. Behaving quasi-brittle under load these
materials are characterized by a localization of deformations in narrow zones, as shown for concrete in tension in
figure 1 (a) or the biaxial failure of marl according to (Marcher 2002) in figure 1 (b). Since localization phenom-
ena like cracks or shear bands occur, the material cannot be treated as continuous in the usual manner. If fracture
and fragmentation of the solid occurs, the creation and continuous motion of the evolving crack surfaces appar-
ently represent discontinuous phenomena and are difficult to handle. Therefore, most continuum models, and in
particular those ones based on continuum damage mechanics, cannot account for the discrete nature of material
failure in a natural way and need some extension, confer (Kuhl 2000). Alternatively, discrete particle models like
discrete element methods (DEM) have been developed. As the name DEM suggests, a solid is replaced by a dis-
continuous particle composite which allows for a detachment of bonds between particles (if initially present) and
a re-contact of open surfaces. In order to simulate and quantify the full range of geomaterials from non-cohesive
ones like sand to cohesive ones like concrete, ceramics or rock, starting from the pioneering work by (Cundall
and Strack 1979) different types of discrete element models have been elaborated, see (Cundall 2001) for a recent
review. Starting with a basic polygonal two-dimensional DEM model for non-cohesive granular materials, more
complex models for cohesive materials are obtained by inclusion of beam or interface elements between corre-
sponding particles. As the quantification of previously presented beam enhanced DEM models is an arduous task,
see (Kun and Herrmann 1996a; Kun and Herrmann 1996b; Kun et al. 1999; D’Addetta et al. 2001; D’Addetta
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(a) (b)

Figure 1: (a) Failure mechanism of concrete in tension and (b) marl under biaxial loading (courtesy of (Marcher
2002)).

et al. 2002), the standard (non-cohesive) version of the DEM model, see (Tillemans and Herrmann 1995), is aug-
mented by interface elements between the particle edges. The formulation and numerical implementation of this
interface enhanced DEM model is presented in detail. Tension and compression simulations of cohesive quadratic
particle composites are utilized to validate the model. The next step is the realization of a microstructure-based
simulation environment which utilizes the foregoing enhanced DEM models, confer (D’Addetta 2004). The mi-
crostructure can be included, if different properties of the cohesive components (beam or interface) are assigned
with respect to their position, i. e. inside the matrix, inside the aggregate and between aggregate and matrix. With
growing model complexity a wide variety of failure features of geomaterials can be represented. Furthermore,
the inclusion of an artificial microstructure which regards for stiffer aggregates embedded in a less stiffer matrix
enables a coherent quantification of the model.
In a parallel line, homogenization techniques have been introduced which allow to relate microscopic quantities,
like the contact forces and displacements, to corresponding macroscopic quantities, like stresses and strains, con-
fer (D’Addetta 2004; D’Addetta et al. 2002; D’Addetta et al. 2004; Ehlers et al. 2003). The development and
numerical implementation of adequate homogenization approaches by means of a micro to macro transition from
the particle to the macro level supplements the formal definition of the DEM models. Homogenization proce-
dures have been developed which allow for a transfer from a simple Boltzmann continuum based particle model
to a more complex continuum with microstructure, see (D’Addetta 2004) for a detailed overview. The numerical
realization of the transitions towards enhanced continuum theories like micropolar, see (D’Addetta et al. 2002;
D’Addetta et al. 2004; Ehlers et al. 2003), and gradient models, see (D’Addetta 2004), is verified from a microme-
chanical viewpoint. The quantities of the micro or particle scale are linked to comparable continuum mechanical
quantities on the macro scale and, thus, average dynamic and kinematic quantities are derived. Starting point
of these homogenization approaches is the argument of scale separation between the characteristic scales of a
particle assembly, namely that of a macroscopic body, a representative volume and an individual particle. Use
of these arguments yields simplified equilibrium conditions for a representative volume element (RVE) on an
intermediate scale. For brevity, no details concerning this topic are given here. Interested readers are referred to
the noted literature.
The paper is organized as follows: Section 2 provides a brief outline of the theoretical background of a standard
(non-cohesive) form of the DEM model supplemented by a discussion on the modeling of cohesion within par-
ticle models. In section 3 the extension to an interface enhanced DEM model along with some representative
simulation results is sketched. Afterwards, section 4 presents the formulation of a microstructure-based DEM
environment which utilizes the interface enhanced model according to section 3. Again, simulation results are
used to validate the proposed method. We conclude with a summary of the attained insights and an outlook on
future perspectives.

2 STANDARD DEM MODEL
The starting point of our DEM model development is a two-dimensional DEM code with convex polygonal par-
ticles based on the work of (Kun and Herrmann 1996a; Kun and Herrmann 1996b) and (Tillemans and Herrmann
1995). As this standard DEM model has been presented elsewhere in more detail, see the references above or
(D’Addetta et al. 2001; D’Addetta et al. 2002; D’Addetta 2004), the model is only briefly outlined here.

2.1 Outline of the Model
The individual particles can be considered as rigid bodies. They are not breakable and not deformable, but they
can overlap when pressed against each other. Three degrees of freedom, two translational and one rotational
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one, are assigned to each particle center, confer figure 2 (a). The local deformational behavior of the particles is
approximated by an elastic repulsive force related to the overlapping area of contacting particles, grey shaded in
figure 2 (a). The contact force is decomposed with respect to the local coordinate system of the contact zone

f� � ��� n� ��� t � (1)

The normal and tangential components of the contact force vector f � are defined by

��� � �
����

��
������������� � ��� � �min ������� �������� � 	 ��

�
��� � (2)

The coefficients �	 and �
 refer to the viscous dissipative damping and 	 is chosen according to Coulomb’s
friction law. Thereby, for 	 
 � the present scheme allows for a non associated plasticity law, as schematically
shown in figure 2 (b) for three characteristic situations. If the grey shaded flow surface is left as for force point 3�,
the force state is reflected back in vertical direction onto the surface confined by the Coulomb criterion 	� �

�. ��

denotes the elastic modulus of the particles and�� the overlapping area of two contacting polygons. This overlap
represents up to some extent the local deformation of the polygons, comparable with the Hertzian contact law for
spherical particles. The relative velocity at the contact zone, the effective mass and the characteristic length of the
contact region of two contacting particles � and � are given by

v��� � v� � v� � ���� �
����

�� ���
�

�

��
�

�

��
�

�

��
� (3)

�� and �� define the diameters of circles of equivalent areas as the polygons � and �. The forces and resulting
moments are inserted into the equations of motion, which are solved numerically for each particle with the aid
of the Gear-Predictor-Corrector time integration scheme, confer (Allen and Tildesley 1987). The dynamical basis
of the DEM implies the solution of the equation of motion at discrete time steps �� for each particle � of all
particles� within the sample. For each individual particle � one obtains

M� �x� � f� � g� � with M� �

�
���
�� � �

� �� �

� � ��

�
��� and f� �

���
���

f��� � (4)

M� represents the diagonal generalized mass matrix and �x� the generalized acceleration of particle �.� � describes
the mass of polygon � (translational degrees of freedom) and � � describes the mass moment of inertia of polygon �
(rotational degree of freedom). f � in equation (4) stands for all interaction forces between two contacting particles
and g� specifies the gravitational forces of the same particle. In the case of a simple (non-cohesive) particle
contact f� is expressed by equation (4)�, i. e. this generalized force vector contains solely contact forces. Thereby,
�� denotes the number of particle contacts of a particle �. Cohesive forces, as introduced in the coming sections
will be simply added on the right hand side of equation (4).
The application of this basic (non-cohesive) DEM model has proven to be capable to qualitatively picture the
behavior of cohesionless granular materials like sand. The localization of shear bands along with the formation
of complex failure pattern was studied by means of dense and porous samples and reflected experimental ob-
servations in an astonishing manner. More information on the applied model can be found in (D’Addetta et al.
2001; D’Addetta et al. 2002) and descriptive simulation results on cohesionless particle samples can be found in
(D’Addetta 2004; D’Addetta et al. 2004; Ehlers et al. 2003).
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Figure 2: (a) Geometry of the contact and (b) interpretation of contact force logic in terms of plasticity law.
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2.2 Discussion of Cohesion Modeling
The model presented so far allows for the application to non-cohesive granular materials like sand, stone or
rock heaps, but also vegetables. Admittedly, most geomaterials are more or less cohesive. Therefore, a model is
demanded which is capable to describe this kind of materials and represent cohesion. In other words, attractive
forces between particles are necessary to bond these particles together to some extent. Usually, the physical effect
of cohesion is limited for tension.
Several ways of incorporating cohesion into particle models are feasible. The implementation strongly depends
on the chosen particle shape and problem class: The easiest way in the case of circular particles is the introduction
of attractive potentials like in molecular dynamics (MD). In this regard, the most prominent law that accounts for
attractive action between particles is the Lennard-Jones potential adopted from physical chemistry, see among
others the description in (Allen and Tildesley 1987). Another way, only reasonable for circular particles, is based
on an extension of the Hertz contact law for “negative” overlaps. An implementation is rather straightforward
as the primary geometric variable defining the contact of circles is the distance between the particle centroids,
see e. g. (Donzé and Magnier 1995). In contrast to circles, the geometric definition of polygonal particles in
contact is by far more complex. This is the case since more than one geometric variable describing the contact
and the position of the individual bonded edges is involved. The distinction between a point contact (circles) and
line contact (polygons) must be drawn. Therefore, alternative options have to be considered. Two different ap-
proaches that account for cohesive bonds between two polygon edges have been implemented in the present DEM
model: In the first approach beam elements between the centers of mass of neighboring particles are introduced
and constitute a beam enhanced DEM model. This approach will not be given in detail here as it was extensively
discussed in the past, see (Kun and Herrmann 1996a; Kun and Herrmann 1996b; Kun et al. 1999; D’Addetta et al.
2001; D’Addetta et al. 2002). The simulation results with a beam enhanced DEM model show that the general
failure behavior of cohesive frictional materials like concrete is qualitatively very well represented. In particular,
the beam enhanced DEM model is capable of simulating typical inherent failure mechanisms of cohesive geo-
materials. Furthermore, it has proven to be very well suited for a visualization of these mechanisms which are
technically difficult to observe in experiments. Admittedly, a realistic softening behavior cannot be obtained in
the simulations, due to the included breaking law of the beam elements, i. e. the failure appears mostly brittle
in the context of normalized load-displacement diagrams. So far the qualitative picture of the beam enhanced
model is satisfactory, but the quantification remains still a demanding task. As an alternative, we introduce an
interface enhanced DEM model where continuous interfaces along common particle edges represent the bonding
component. The next section will be dedicated to this topic.

3 INTERFACE ENHANCED DEM MODEL
In order to represent the cohesion between particles in a DEM model, an approach borrowed from FE-technology
is adopted, see (D’Addetta 2004) for more details. It makes use of so-called interface elements that are directly
defined at the particle edges. In that, the model is made more complex: Instead of simple elastic beams with
an oversimplified brittle failure law as in earlier versions of this DEM model, see the references in the previous
section, more elaborate interface elements with a popular constitutive law on the basis of the plasticity theory are
used here. The realization of this interface enhanced model is influenced by a former work of (Vonk 1992) and
follows the plasticity formulation introduced therein. The motivation to use this material law in the context of
the DEM follows the principle that a proven and established macroscopic material law may be at least much that
successful in modeling the failure on a smaller scale as in a continuum model. Apparently, this approach pictures
the real physics involved in the debonding process of bonded granulates far better than the beam enhancing
approach.
A variety of models for the representation of the interaction between the constituents of two- and more-phase
particle composites via interface elements have been proposed since the late 1960’s. The works by (Goodman
et al. 1968) and (Ngo and Scordelis 1967) have been pioneering as they were among the first ones to introduce
discontinuities into numerical models in the context of the FEM either as continuous or lumped interface ele-
ments. On the one hand, lumped interface elements evaluate a force-relative-displacement constitutive relation at
a nodal point. Insofar, to a certain extent they exert a similar behavior as simple springs. No further assumptions
with regard to tractions and relative displacement distributions across the interfaces are made. On the other hand,
the formulation of continuous interface elements (line, plane or shell type) implies a continuous relative displace-
ment field and a traction-relative displacement constitutive relation. Following these lines interface elements have
been the focus of intensive studies in the context of FEM.

3.1 Basic Idea
The interface layer is regarded as infinitely thin in the initial stage. Since the particles are undeformable by
definition, use is made of the key assumption that the deformation of the interface is constrained to be linear. In
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Figure 3: Idealization of interface in (a) undeformed stage and in (b) deformed stage.

analogy to the previously introduced beam model this fact represents the Bernoulli-hypothesis of a planar cross-
section to some extent. The interface can be discretized and is represented in a lumped sense by a fixed number of
normal and tangential spring sets with stiffnesses �� and ��. These springs are attached along the common edge
of two initially bonded particles � and �, as shown in figure 3 (a). The current location of start and end points of
the springs relative to the bond are initially fixed and evaluated after each time step. It is important to note that
the interface shown in figure 3 (a) has a visible initial thickness for visualization reasons only. Ongoing relative
motion of the particles leads to a finite value of relative deformation for each spring, i. e. overlapping of particles
and, thus, contraction of springs (negative relative deformation) is also allowed. The relative deformation of the
bonds is represented by the extension and contraction of the springs, as indicated in figure 3 (b). As further
assumption the numerical integration of the constitutive law of the spring sets, which are noted integration points
in the sequel, yields an approximated stepwise constant stress distribution over the edge. This procedure compares
that for the computation of stress resultants in beams. The constitutive law used throughout this chapter is a non-
associated Mohr-Coulomb type softening plasticity model defined by two yield surfaces according to (Vonk 1992)
and is discussed in more detail in section 3.2. A failure, or more precisely detachment, of the bonds is achieved, if
all integration points of the interface layer are completely softened. It should be kept in mind that no extra contact
force according to equation (1) is created, as long as a bond between two particles exists. This means that once
the bond is completely detached, a “standard contact” according to section 2 is assumed to control the interaction
between two particles. The forces evaluated in the integration points can be combined to a bond force vector and
transferred to the mass centers of the involved particles, thus, giving rise to a moment. The bond force vector then
takes the form f��� � �� ���� � ���� ����	
 and enters the equation of motion. Therefore, the generalized
interaction force vector in equation (4) is reformulated

f� �
���
���

f��� �
������
���

f����� � (5)

Additionally to ��, noting the number of particle contacts of a particle �, � ��� denotes the overall number of
existing bonds of a particle �.

3.2 Mohr-Coulomb plasticity model
The principal ingredients of a plasticity formulation are the yield condition, the flow rule and the hardening law (if
needed), compare (Jirásek and Bažant 2001). In the present context the basic idea of a strain-driven formulation
from classical plasticity is straightforwardly transferred to a “relative displacement-driven” formulation. The
actual state of the spring set is determined by the total relative displacement u, the plastic relative displacement
u� and the softening variable �. Here, the range of validity is restricted to small strains and, following the above
logic, small relative displacements. Hence, an additive elastic-plastic split of the relative deformation u of one
spring set is admissible

u � u� � u� with u �

�
��

��

�
� (6)

The stress-relative deformation law for the elastic part yields

�
�� � �

� �K��� � u with K��� �

�
� �� �

� ��

�
� � (7)
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Figure 4: (a) Failure surface and (b) plastic potential of interface constitutive law in biaxial stress plane.

where ��� is the trial stress state, that may lie outside the flow surface � . �� and �� represent the normal and
tangential spring stiffnesses. The flow rule is denoted by


u� � 
�g��� �� (8)

with the plastic multiplier 
�. g��� �� represents the direction of the plastic flow and depends upon the fact whether
an associated or non-associated flow rule is included. Since associated flow rules for pressure-sensitive materials
like geomaterials are often unrealistic a non-associated one is used, i. e. the direction of plastic flow is prescribed
by the gradient of the plastic potential � in the form g��� �� � �����. In general, plastic flow occurs if the yield
function ���� �� and its derivative both vanish: � � � and 
� � �. The consistency condition 
� � � then yields	

��

��




�� � 
� � � with � � �

	
��

��


	
��

�u�



�

	
��

��



� (9)

where � expresses the hardening parameter. Further elaboration, including a combination of equations (6) to (9)
results in a relation between stress and relative displacement rates and, finally, in the corrected stress state� along
with the plastic multiplier 
�
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The procedure in equation (10) operates as a one-step return mapping algorithm, so that no iteration is needed.
However, a simple one-step algorithm that yields an explicit solution for the corrected stress state is only possible
if linear yield surfaces, linear plastic potentials and linear softening evolution laws are chosen. The bracket terms
in equation (10) are either of scalar or vectorial order.
The initial behavior of the spring sets is assumed to be linear elastic and to depend on the spring constants � �

and ��. Therefore, no coupling of the springs in the elastic regime is assumed. The softening of a spring set starts
when the stress state � � ��� ��	


 reaches the yield surface that in the present context could be viewed as a
failure surface. The initial failure surface in the biaxial stress plane is given in figure 4 (a) by graph 1� and is
symmetric with respect to the normal stress. Since the failure mechanisms dominated by shear and tension differ
substantially in geomaterials, it is advisable to model them separately. This implies the bounding of the elastic
domain by two distinct failure surfaces, usually termed two- or in the general case multi-surface plasticity. Indeed,
this does not substantially change the treatment presented above for one single surface, except the singularities
in the failure surface at the segue of different failure surface segments, i. e. a unique flow direction cannot be
specified. The solution of this problem has been treated by (Koiter 1953) or (de Borst 1987), confer (D’Addetta
2004) for more details. In short, in analogy to equation (8) the flow rule


u� � 
��
���
��

� 
��
���
��

(11)

is adapted to capture the flow directions defined by the two plastic potentials along with the essential constraints

�� � � and 
�� � �.
In the present case the failure surface resembles a two-surface Mohr-Coulomb type plasticity criterion. The tensile
failure is governed by ����

� 
 � and an angle � which define the yield surface ��. Whereas the shear failure is



Gian Antonio D’Addetta and Ekkehard Ramm

��

��

��

��

��

��

��

��

b�

a�

c�

1�

2�
�

�

� �

�

case a�: �� active case b�: �� active

case c�: �� & �� active

u�
�
� ���

���
��

u�
�
� ���

���
��

u�
�
� ���

���
��

u�
�
� ���

���
��

u�

Figure 5: Representation of return mapping algorithm.

controlled by a classical Mohr-Coulomb failure envelope with cohesion ����
� 
 � and friction angle � 
 �

which define the yield surface ��. In the compressive regime (for negative ��) the trapezoidal or triangle (in
the final state) formed by the flow surfaces is open, as no failure is possible in pure compression. With ongoing
softening the failure surface shrinks to an intermediate stage ( 2� in figure 4 (a)) and ends up on the classical Mohr-
Coulomb failure surface without any cohesion � � � � and tension limit �� � �, expressed by 3� in figure 4 (a).
The functional representation of the failure surfaces is given by

�� � �� � �� ��� � ��� ������
� � � � �� � �� ���� �� � ���������

� � � � (12)

In order to describe a non-associated plasticity along the lines of the two-surface formulation, two plastic potential
surfaces are introduced:

�� � �� � ��� ������
� � � � �� � �� ���� �� � ��� ������

� � � � (13)

The plastic potential surfaces are also symmetric with respect to the normal stress, as visualized in figure 4 (b).
Figure 5 represents the one-step return mapping algorithm based on equation (10) in more detail for the following
three different cases: Yield surface �� active (case a�), yield surface �� active (case b�) and combined activation
of yield surfaces �� & �� (case c�). Starting from an elastic or plastic stress state ��, an elastic predictor step
yields a non valid trial stress state outside of the yield surface � ��. The following plastic corrector step towards
the yield surface in direction of the perpendicular to the plastic potential results in a valid stress state on the yield
surface �. As explained above, the special case of a projection in the influence area of the corner (case c�) is
treated by a linear combination of both directions. Graph 1� in figure 5 denotes the yield surface at the start of
the step and graph 2� that one at the end of the step. The representation includes a shrinking of the yield surface
from 1� to 2� due to softening.
The softening of the spring set is described by the parameter � which represents the actual state of damage: �
ranges from 0 in the undamaged state to 1 in the fully damaged state. The softening behavior is driven by the
plastic deformation ��� and ��� of the spring sets in form of predefined fracture energies � ��� and ����. In the
case of a two-surface plasticity this involves two different softening evolutions for tension and shear either, see
figure 6 (a) and (b). Pure tensile softening ends after a fracture energy � ��� has been released and pure shear
softening ends after a fracture energy���� has been released. In the decoupled case, i. e. if only one mechanism
is active, the softening variable for the tensile and shear loading is defined by

� �
�

����
� � ���

��� � � �
�

����
� � ���

��� � (14)

with ��� � ����
� ��� and��� � �

���
� ���, see figure 6. The plastic part of the deformation starts at ��� and ��� . These

evolutions are coupled in that, both tensile strength ����
� and cohesion ����

� decrease at the same time and at
the same rate. This yields an isotropic shrinkage of the failure surfaces, as shown in figure 4 (a). A simultaneous
tensile and shear softening is treated as linear combination of both, as depicted in figure 6 (c). Therefore, the
definitions in equation (14) are formally coupled

� �
�

����
� � ���

��� �
�

����
� � ���

��� � � � (15)

By definition, in combined softening ��� is solely determined by the plastic deformation due to tensile loading
(surface 1 - �� & ��) and not by the normal part of the plastic shear deformation. For this reason, the dilatant
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Figure 6: (a) Evolution law for tensile, (b) shear and (c) combined softening.

behavior with shear loading does not influence the softening since it is physically not justified in combined
softening. The predefined fracture energies for mode I and II softening enter the above equations through the
integral expression of the graphs in figure 6 (a) and (b). This formalism may be interpreted in the sense of the
cohesive crack concept, see e. g. (van Mier 1997), where the crack opening is replaced by the components of the
plastic relative displacement. The evolution laws of the normal and tangential stresses
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are inserted into the conditional equations of the fracture energies
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3.3 Numerical realization
The numerical realization of the plastic interface model in the context of the DEM model is a straightforward
task. Each spring set is described by the material law and along each common edge a fixed number of spring
sets, termed integration points, are chosen. From there, it is important to define a reference edge where the
corresponding relative displacement-force law is evaluated. Different possibilities are feasible: One way is the
definition of the reference line in between the bonded edges by connecting the midpoints of the deformation
vectors of the bond, as shown in figure 7 (a). Admittedly, the length of the reference line is generally smaller
than the bond width � and induces a more demanding numerical treatment as the alternative approach which is
followed here and shown in figure 7 (b): One bond is chosen as reference edge and the local coordinate system
with the normal vector n is fixed along this bond. Particle � can be considered as the master and the other one
as the slave particle. For this case, the relative deformation of the start and end point of the reference edge are
split up into a normal and tangential part. The normal and tangential relative deformation distribution between
the start and end point of the reference edge are linearly approximated. The actual complete relative deformation
u is evaluated at each integration point and is processed in an incremental format �u by subtracting the complete
relative deformations of two successive time steps. The straightforward implementation of the elastic predictor
step for the calculation of the trial stress state in equation (7) implies the determination of the spring forces at

(a) (b)

reference edge reference edge

integration points integration points��

���
�t t

n n

���
���

���

���
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Figure 7: Numerical integration - Two different possibilities of definition of reference edge.
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compression driven

tension driven
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Figure 8: Difference between interface and particle contact: (a) Deformed situation (interface activated) and (b)
after complete interface failure (activation of contact).

each integration point � of the bond
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�
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��� denotes the number of integration points along the reference edge and is fixed for all polygon’s bonds. The
position of the integration point � is determined in the local coordinate system by the normalized coordinate �
ranging from �����	. In order to evaluate the yield conditions � ����������� ��������� � in equation (12) the local
stresses at each integration point are computed

���� ��� �
� ��� ���

�����
� ���� ��� �

� ��� ���

�����
� (18)

If the yield surfaces ���� are left, a plastic corrector step is necessary. Therefore, the type of back projection
mode (determination which yield surface/s is/are active) has to be evaluated. Equation (10) yields the corrected
stress state at the integration point. Afterwards, an a-posteriori check is performed, because it cannot completely
be excluded that erroneously a corner regime is predicted, although this is actually not the case. This behavior
may appear, as the final position of the yield surface is not known a-priori, see (de Borst 1987). In particular,
for stress states in the influence region of the corner a transition from a tensile to a shear state may be obtained.
Thereafter, the corresponding forces at the integration points are calculated via an inversion of equation (18). The
new forces, the actual relative deformation and the state of softening are saved as history variables for the next
time step. All forces along a bond are summed up and transferred to the center of the master particle giving rise
to a moment. A force and moment with the same absolute values are applied to the slave particle. An interface
is detached or eliminated, if at all integration points of this interface the softening is completed, i. e. ��� � �
according to

��� �
�

�

��
��

����d� �
�

���

�	��
���

����� � (19)

When the softening at all integration points has reached its limit, the bond is detached. A standard contact as
described in section 2.1 is assumed whenever two initially bonded particles with broken bond come again into
contact, see the schematic figure 8, i. e. no re-introduction of interfaces is applied.

3.4 Numerical results
The interface enhanced DEM model is involved in the simulation of standard loading setups. The structured
validation of this model, first, on the integration point level and, second, by simple loading setups of quadratic
rows with a thickness of one particle are presented elsewhere, see (Vonk 1992) and (D’Addetta 2004). As these
preliminary test programs have been successful, larger samples with variable particle shapes are simulated in
uniaxial tension and compression.

Tension simulations
As mentioned earlier, a parameter identification of the beam enhanced DEM model parameters with respect to a
quantification of the load-displacement behavior of geomaterials is not convincing at all. The following examples
will highlight that the bond description via interfaces is capable to represent the softening not only in very simple
tests, as shown before, but also in the context of standard experiments. The softening behavior is investigated
by means of a comparative study of rectangular plates with the width 40 cm and a variable height of 10 cm 1�,
20 cm 2�, 30 cm 3�, 40 cm 4�, 64 cm 5� and 72 cm 6�. Thus, the amount of included particles ranges from 400 to
2880. First, the results of a uniaxial tension simulation are presented. The specimens are vertically loaded under
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constant strain rate conditions by applying the load in a strain driven format via a constant increase of the velocity
of the particles at the top and bottom of the plate. Thereby, we follow the procedure firstly described in (Potapov
et al. 1995), as it ensures that disturbing initial dynamic effects are reduced to a tolerable level, see the discussion
by (Kun et al. 1999). The parameters and material properties of the model have been chosen in order to obtain
results that are as close as possible to experimental results obtained from the literature. However, only limited
information on the “real” values of the bond strength and the corresponding softening behavior is available in the
literature. Therefore, no attempt was undertaken to fit the material parameters more closely than needed.
Uniaxial tension experiments by (Evans and Marathe 1968) as well as (van Mier 1997) are considered for a
quantitative comparison. The normal and tangential stiffness of the interfaces are chosen as � � � ���� kN�cm2

and �� � ��� kN�cm2. Moreover, the density was chosen as �� ��� g�cm3 and the time step as � � � � ���� s.
The shape parameters of the plasticity model are � � ����Æ, � � ��Æ and � � �Æ, except the maximum yield
stress ����

� � ����
� � ���� kN�cm2 and the softening parameters ���� � ���� � ���� kN�cm2 and ���� �

���� � ���� kN�cm2. The yield stresses for each interface are statistically distributed around��� % the average
value defined above. Parameters of the contact model according to section 2 like those concerning the viscous
damping and friction are set to zero (�	 � �, �
 � �, 	 � �) and the contact stiffness to �� � ��� kN�cm2.
The stress-strain curves for the six simulations 1� to 6� are plotted in figure 9 (a) along with the experimental
results by (Evans and Marathe 1968), which are included as a grey shaded band. It becomes clear that the stress-
strain relation is a non-objective measure of the softening, i. e. the longer the specimen the steeper is the post-
peak behavior. Nevertheless, the normalized load-displacement relations in figure 9 (a) generally elucidate the
transition from a linear relation to a horizontal tangent up to a complete overall softening of the sample. The
stresses are measured in the form of a normalized load as ratio of the reaction force of the boundary particles
and the specimen width. The strain is measured via a determination of the ratio of the actual length and the
initial length of the specimen. The mesh/length dependence of the strain is one of the main reasons why data of
tension tests (of experimental as well as simulation nature) is typically displayed by a stress or load vs. crack
width diagram in the literature. The axial deformation is evaluated in a comparable format as in experiments
by a measuring device of fixed length ��� � � cm for all simulations. This means that not the elongation of
the complete specimen, but the extension of a fixed area of the specimen containing the macroscopic crack is
evaluated. The extension of this fixed area compares to the crack width � , see the inset of figure 9 (b). Thus, if
a stress-� diagram is plotted, all curves coincide and the softening effect is the same regardless of the height
of the sample, compare figure 9 (b). Moreover, these results have been compared with experimental results in the
form of the stress-average-crack opening diagram of a concrete with a maximum aggregate size � ��� � ��� cm
according to figure 3.49 of (van Mier 1997). The numerical results fit qualitatively as well as quantitatively well
the experimental ones. However, the height of the tail in the softening region could not completely be recast, as the
stress drops below the experimental value in the later simulation stages. In the experiments still a considerable
stress transfer is obtained in the later softening regime. The reason for this is quite conceivable and can be
traced back to the maximum size of aggregates contained within a sample. Moreover, following the discussion
in (van Mier 1997) this behavior is an indirect effect of crack face bridging which provides a crack toughening
mechanism. In order to enclose the feature of crack face bridging and a corresponding stress transfer even in a
later softening stage, one may include a distinct microstructure which for example regards for stiffer aggregates
embedded in a less stiffer matrix. This path will be followed in the next section. An alternative concept takes into
account a higher dispersion of bond stiffness and/or yield stresses.
A cutout of the deformed sample 4� in figure 10 at four different time steps a�, b�, c� and d� according to the
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Figure 9: (a) Stress-strain and (b) stress-displacement diagram of tension test.



Gian Antonio D’Addetta and Ekkehard Ramm

(a) (b)

0 1��

a�

b�

c�

d�

Figure 10: Simulation output in the post-peak regime: (a) Final stage d� and (b) detail of macroscopic crack of
stages a� to d�.

stress-strain curve in figure 9 (a) emphasizes the distinct macroscopic crack opening as well as the evolution of
softening. The bonds are represented by a line between the respective particles. The scale defines the transition
from a non-softening stage to a fully softened stage just before elimination of the bond (black). The state of
softening of the bonds ��� in figure 10 (b) is computed based on equation (19) as the average of the softening
of all springs (i. e. integration points) representing this bond. One can see that at stage d� the macroscopic crack
has completely formed. However, three interfaces positioned perpendicular to the primary load transfer direction
(marked by circles) sustain the load and yield a non-vanishing stress of curve 4�.

Compression simulations
Next, uniaxial compression tests of plates with different geometries using the same parameter set as for the
tension simulation are carried out. Therefore, a similar load setup as discussed before for the tension case but
with interchanged loading direction is applied. Different boundary conditions are studied. Here, we will discuss
the result of a specimen with an unrestricted boundary which represents a situation with very low friction at
the boundary. Therefore, the particles forming the upper and lower boundary of the specimen are completely
free to move, e. g. like a loading by teflon platens or platens with brushes. For brevity, the stress-strain diagram
and a comparison with experimental result is not given, compare (D’Addetta 2004) for more details. The failure
evolution of the unrestricted compression simulation is visualized by means of the output at two time stages 1�
and 2� in figure 11, which capture the situation around peak load. Once again, the bonds between the particles
are represented by a line between them. Time stage 1� refers to a situation just before the peak and stage 2� to
a situation after formation of a failure pattern. The gradual development of inclined localization zones, as shown
in figure 11 (b) has started long before the peak value is reached and yields a sudden breakdown of the particle
composite. This result agrees quite well with the experimental results on cubical specimens by (Vonk 1989;
Vonk 1992). However, the softening behavior is less pronounced in compression with respect to the experimental
results by Vonk. The simulation output of a restricted sample (high friction case, not given here) resembles the
same hourglass failure mode coupled with en-enchelon cracks as observed in simulations with the beam enhanced
DEM model in (D’Addetta et al. 2001; D’Addetta et al. 2002; D’Addetta 2004) as well as in experiments.
Note that the additional complexity of the bond description compared to the beam one is accompanied by a
higher sensitivity of the parameter choice with respect to the post-peak failure. This implies that the more or
less “controlled” failure in compression as obtained with the beam enhanced DEM model, e. g. compare the
results in (D’Addetta et al. 2001; D’Addetta et al. 2002; D’Addetta 2004), is not reproducible with the interface
enhanced DEM model in the present form. For example, a continuation of the loading after formation of a failure
pattern like that presented in figure 11 yields a complete disintegration of the initially bonded particle assembly.
Thus, no conical rest pieces as in the experiments, e. g. in the form of fragments composed by bonded particles,
remain after complete cracking. In the context of this destabilizing effect the following two points are worth
to be further investigated: First, the formulation of the interface model has to be enhanced. For example an
inclusion of a physical coherent damping or comparable stabilizing contribution to the interface forces may
provide for a stable simulation path in the later post-peak regime. Furthermore, a second, probable reason for
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Figure 11: Failure evolution of compression simulation.

the found behavior is the missing rotational resistance of two bonded granulates in the interface enhanced model
compared to a consideration of it in the beam enhanced model. There, the rotational resistance is considered via
the corresponding stiffness entry in the Timoshenko stiffness matrix and the corresponding rotational breaking
parameter. The effect of the rotational resistance inherent within the beam enhanced DEM model has already been
emphasized as a basic microdeformation mechanism for the simulation of geomaterials by (Oda and Kazama
1998).

3.5 Discussion of cohesion modeling
Two approaches that account for cohesion between two polygon edges have been implemented in the context of
the DEM model according to section 2.1. In the first, rather simplistic approach (not presented in detail here)
beam elements between the centers of mass of neighboring particles have been introduced, confer (Kun and
Herrmann 1996a; Kun and Herrmann 1996b; Kun et al. 1999; D’Addetta et al. 2001; D’Addetta et al. 2002). As
an alternative, a model based on continuous interfaces along common particle edges was proposed in the past
section.
The approach based on the introduction of beam elements has shown to be capable to represent most inher-
ent fracture mechanisms of cohesive frictional materials, see the simulation results in (D’Addetta et al. 2001;
D’Addetta et al. 2002; D’Addetta 2004). The simulations fit qualitatively well experimental observations. How-
ever, the quantification of the corresponding parameters with respect to the output of experiments like stress-strain
curves is still unsatisfactory, confer the discussion in (D’Addetta 2004). This is primary due to the choice of the
two beam breaking parameters. Although physically plausible from the micromechanical point of view, these pa-
rameters cannot be identified with any known (micro) material parameters of geomaterials. Hence, at the present
stage, a pure parameter search would end up in a curve fitting without winning any new knowledge on the physics
behind it. Anyhow, it should be kept in mind that this model is very well suited for a visualization of typical fail-
ure mechanisms appearing in the testing of cohesive geomaterials. The interface enhanced DEM model shows
the advantage to picture the real physics involved in the debonding process of bonded granulates far better than
the beam enhanced one. However, this is only possible at the expense of a higher computational cost which is
required due to the increased complexity of the model and a higher sensitivity of the simulation results with re-
spect to the chosen parameters. The inclusion of the more complex bond representation favors the quantification
of the model to experimental results, i. e. the post-peak softening is better reproducible and quantifiable than in
the case of the beam enhanced DEM model. Though, still some features like the softening behavior at a later
simulation stage in tension as well as a less pronounced softening in compression are to be clarified. Therefore,
the complexity of the enhanced DEM model is further enhanced by defining a microstructure-based simulation
environment.

4 MICROSTRUCTURE-BASED DEM MODEL
The inclusion of a microstructure is thought to remedy the mentioned “problem” points. This chapter comprises
simulations with the interface enhanced DEM model where the particle mesh represents an artificial microstruc-
ture. Therefore, stiff macro particles that are composed by an agglomeration of a finite number of particles are
embedded in a soft matrix, which is also represented by a composition of particles. In order to include a “real”



Gian Antonio D’Addetta and Ekkehard Ramm

(a) (b)

matrixmatrix

“interface

aggregate

macro
particle

Figure 12: (a) Definition of particle properties (cohesive components suppressed) and (b) definition of properties
of cohesive component.

microstructure corresponding digital image processing software has to be connected to the mesh generation mod-
ule of the DEM program. Since at the present stage an easily realizable implementation is sought, this way is
not followed here. Instead, an alternative, approximative implementation is carried out by creating an “artificial”
microstructure, see (D’Addetta 2004) for more details. In that, the procedures proposed in in the framework of
the FEM by (Carol et al. 1997; Stankowski 1990; Vonk 1992) are principally paralleled, as these publications
concern the creation of artificial two-phase materials using polygonal aggregate shapes. Furthermore, the present
approach is related to that of (Schlangen and van Mier 1992), see also (van Mier 1997), where circular aggregate
particles are generated based on a statistical distribution which is related to grading curves of concrete. Thus,
the composition of a real microstructure of concrete-type materials as shown in figures 1 (a) is treated in an ap-
proximate and artificial way here. It is not thought that the simulation results based on a “real” and an “artificial”
two-phase microstructure differ that much though. First, the procedure applied for the creation of an artificial
microstructure is given. Afterwards, we will present simulation results of uniaxial compression and tension load
setups and a concluding discussion of the attained insights.

4.1 Generation of a microstructure
The generation of an artificial microstructure is based on the formulation of macro particles, i. e. one macro
particle is composed by an accumulation of a finite number of polygonal particles which are denoted as micro
particles. An initially created polygon mesh is overlaid by a mesh composed of larger particles. Certainly, as
mentioned before, the geometry of a known microstructure, e. g. by means of electron microscopy images, could
be included as an overlaying mesh. This option is not considered here, however, is in the realm of possibility
in future implementations. Several possibilities to create an overlaying mesh that ought to represent this virtual
microstructure are conceivable, see (D’Addetta 2004). After generating a corresponding particle assembly (dense
or porous), the particles are scaled down and rotated in a statistical fashion. The scaling down of these (macro)
particles by a variable factor is controlled by the desired proportion of aggregate to matrix volume. In order to
obtain the overlaying mesh of larger particles the afore mentioned mesh is scaled up. This scaling up depends
on the favored size of aggregates. Finally, this mesh is laid over the (underlying) dense particle mesh and repre-
sents the pattern for the definition of the macro particles. Based on this information the (micro) particles of the
underlying mesh are flagged as being inside or outside the macro particles. The macro particles represent the stiff
aggregates and the remaining particles define the matrix. As example the contiguous particles colored in light
grey in figure 12 (a) are identified as the macro particles and the particles colored in dark grey as the matrix ma-
terial. The corresponding cohesive components are classified as follows, compare also the sketch in figure 12 (b):
Inside the aggregate �!� (middle grey), inside the matrix ��� (light grey) and defining the “interface layer” be-
tween aggregate and matrix ��� (black). This “interface layer” should not be confused with the interface elements
used within the interface enhanced DEM model. The first one describes a real material interface layer (between
aggregate and matrix), while the last one represents a model interface in form of a component of the enhanced
DEM model. Finally, the values of the stiffnesses of the interface element (��� ��), the corresponding fracture
law (����

� � ����
� ) or both stiffness and fracture law parameters, are chosen accordingly. In order to consider the

microstructural properties of a concrete-type material like concrete as best as possible, benefit was made from the
extensive knowledge of the group of van Mier. This knowledge comprises the simulation of microstructures via
pure beam lattice models starting from the first publication by (Schlangen and van Mier 1992), compare also (van
Mier 1997). The respective parameter ratios between �!�, ��� and ��� are estimated based on the corresponding
ratios introduced in the context of lattice models. In that, an analogous approach of calibrating the stiffnesses and
fracture law parameters noted in (van Mier et al. 1995) is partially followed. In order to prevent aggregate (i. e.
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macro particle) cracking at the present stage the ratios noted in (van Mier et al. 1995) are partly adopted. The
following choices were made:
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(20)

The matrix values ���� are used as input values and the other values, ���� and ����, result from equation (20).
Keep in mind that the choice of parameters is only influenced by the fitting of the softening behavior and without
consideration of a detailed, because unknown, knowledge of the “real” micromechanical parameters. Despite the
advanced measuring devices and setups available in laboratories, the “real” parameters of the phases �!�, ���
and ��� actually remain in the dark, i. e. no precise and experimentally verified values of the phases’ stiffness,
yield strength and softening law are available. In order to fit experimental results of concrete-type materials these
parameters may be estimated on the basis of a macroscopic view of the problem: One supposes that the known
macroscopic parameters of concrete are identical to the microscopic ones. For example, the fracture energy of the
interface elements is identified as the experimentally measured, macroscopic one and so forth. An alternative and,
in the authors opinion, more promising way is the estimation of these parameters on the basis of the insights of
section 3 and utilizing the experience of the group of van Mier in the context of the micromechanical simulations
of concrete-type materials.

4.2 Numerical results
It is a moot point whether the inclusion of a material description based on an artificial microstructure as intro-
duced in the previous section instead of the “model” material may help to overcome the deficiencies of the beam
and interface enhanced DEM models. Recall that the “model” material in section 3 included nearly identical
stiffnesses and failure laws of the cohesive components. Compression and tension simulations of an artificial mi-
crostructure based on the interface enhanced DEM model presented in section 3 have been carried out. The model
parameters have been fit to the compression experiments by (Vonk 1989) under consideration of equation (20).

Compression simulations
The load setup and measuring procedure was already discussed in the context of the tension simulation in sec-
tion 3.4. Note that the parameter choice is the result of a parameter fitting to experimental results on concrete in
absence of more detailed information on the micromechanical parameters. The following matrix parameters have
been used: The normal and tangential stiffnesses are chosen as ��

��� � ���� kN�cm2, ��
��� � ��� kN�cm2 and

the fracture energies as ����
��� � ����� � ���� kN�cm2, ����

��� � ����� � ���� kN�cm2. The yield stresses
are statistically distributed for each interface about ��� % the average value. On average one gets � �

������� �
���� kN�cm2, ��������� ����� kN�cm2. Corresponding values for the aggregate and the interface layer between
aggregate and matrix are obtained via equation (20). The shape parameters are unaltered with respect to the choice
in section 3 and are noted � � ����Æ, � � ��Æ and � � �Æ. The general parameters of the DEM model are also
unchanged: The density was chosen as �� ��� g�cm3, the time step as � � � � ���� s, the viscous damping and
friction are set to zero (�	 � �, �
 � �, 	 � �) and the contact stiffness amounts to �� � ��� kN�cm2.
Seven compression simulations with the same amount of aggregates and almost identical aggregate/matrix ratios
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Figure 13: (a) Stress-strain diagram of simulations and Vonks’s experiments and (b) eliminated bonds at stage 2�.
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Figure 14: Graphical output of compression simulation.

have been carried out. The only difference between these simulation sets is the starting number of the random
number generator for the generation of the underlying particle mesh. The quadratic 75 cm 	 75 cm sample used
in simulation series "���� is composed by 5501 particles and a total of 16489 interface elements between all
particles within the sample. The microstructure is created by use of 46 macro particles. The composition of the
sample includes a total of 2896 particles representing the aggregates and a total of 2605 particles representing the
matrix. Thus, the fraction of aggregate volume to complete volume is 0.525.
The simulations are confronted with the experiments of (Vonk 1989; Vonk 1992) by means of the nominal stress
vs. nominal strain diagram and, in particular, the associated softening branch. The stress-strain curves of all sim-
ulation series "���� with � � ����� are averaged via a superposition of the corresponding data files. This average
curve is symbolically denoted by �"�����. In figure 13 (a) the comparison of �"�����, simulation series "����

and (Vonk 1989)’s tests on concrete with different boundary conditions is presented. After linearly increasing in
the first part of the loading program the average stress-strain curve �"�� ��� turns into a nonlinear regime up to
the peak. Afterwards, in contrast to the simulation results presented in the previous chapters the softening regime
is less pronounced, i. e. it follows the predicted experimental results quite well. The continuous failure of inter-
face elements yields a decrease of the stresses with increasing strains. The average simulation result �"�� ��� lies
near the limit curves of the low friction boundary cases (teflon/brushes) in the post-peak regime. In summary, the
inclusion of artificial microstructures has proven to be an important feature for a realistic representation of the
post-peak softening behavior in terms of the stress-strain relation.
In order to give a detailed view of the failure within the specimen snapshots of simulation series "�� �� are consid-
ered. The softening stadium of the interface elements is monitored at two time steps 1� and 2� in figure 14. These
simulation stages document the course of the nonlinear and softening branch of curve "�� �� in figure 13 (a).
The simplified picture of the composite structure of the sample in figure 13 (b) highlights the crack propagation
through the specimen shortly after peak load. The dark grey color denotes the aggregate particles and light grey
the surrounding matrix. Bear in mind that the aggregates are represented by a finite amount of (macro) particles.
For this reason, the shape of the aggregates is irregular. The black lines represent the real geometry of the interface
elements that have been eliminated in the course of the simulation, i. e. ��� � �. These lines connect the start and
end point of an eliminated interface element and represent the corresponding particle edges. The tensile splitting
type failure, mostly along the boundaries of the aggregates, is obvious. Two crack zones in the left and right
part of the specimen initiate the macroscopic failure of the particle sample. In figure 14 the brighter background
area represents the aggregates, while the darker background displays the matrix. The scale included in this figure
refers only to the softening of the interface elements marked by the line connections between bonded particles.
Please note that if an interface element reaches a stage ��� 
 �, the corresponding line connection in figure 14 is
eliminated. Thus, the dark grey colored matrix particles become visible in regions where the failure localizes, i. e.
the overlaying interface element mesh has been partially dissolved in these zones. In the course of simulation at
stage 1� two macroscopically failure zones form, see figure 14 (a). The continuous debonding results in the final
failure mechanism in form of a complete disintegration of the matrix material in these zones, compare stage 2�,
see figure 14 (b). The final failure at stage 2� pictures the reality quite well, compare the fractured samples by
(Vonk 1992).

Tension simulations
The load setup and strain measurement of the tension simulation is accommodated according to section 3.4.
Irrespective of the different material parameters of the target concretes to be compared with, the same DEM
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Figure 15: (a) Stress-displacement diagram of simulations and experiments by van Mier and (b) eliminated bonds
at stage 1�.

parameters as used in the compression simulations are considered in the tension simulations. In tension the ex-
periments by (van Mier 1997) with a concrete with a maximum aggregate size ���� = 1.6 cm are considered,
compare also figure 9 (b). Simulations with different aggregate sizes and varying dispersions of the yield stresses
have been performed. The yield stresses have been statistically distributed for each interface element around���
%, ��� % and��� % the average values. The exemplary results detailed below are concerned with a simulation
series with a dispersion of the yield stresses of���% and inclusion of 220 aggregates. Thus, the aggregate size is
smaller compared to the compression simulations. Smaller aggregate sizes have been considered to accommodate
the smaller maximum aggregate size of the target material in mind. In the context of the realized implementa-
tion, the higher the amount of aggregates is chosen, the smaller is the corresponding aggregate size. This yields
a higher volume fraction of matrix particles and, finally, a smaller effective stiffness of the composite sample.
The 75 cm 	 75 cm test sample was composed by 2145 particles representing the aggregates and 3354 particles
representing the matrix. The fraction of aggregate volume to the complete volume amounts to 38.4 % and the
ratio of aggregate to matrix volume to 0.623.
Figure 15 (a) compares the described simulation series and experimental results of a concrete with a maximum
aggregate size ���� = 1.6 cm according to (van Mier 1997). The crack width � is measured as difference
between the top and bottom particles, since two macroscopically observable cracks appear, see figure 15 (b).
The sample height is assumed as a representary crack zone with a finite width. The simulated peak stress is
less than the experimental one by a factor of 2, if the parameter set of the compression simulation is used. One
reason for this difference is the uncertainty of the parameter choice, since the extraction of “real” parameters
from laboratory tests for a definition of the model parameters is not straightforward. Another reason concerns the
different target concretes used for the comparisons in the compression and tension simulations. Therefore, the
corresponding curves are given in a normalized format by scaling the stresses by the respective maximum stress.
Anyhow, the course of the simulated and experimental curves agree qualitatively well. The post-peak behavior
is more ductile than predicted by the experiments. Probably, the fracture energy choice was slightly to high.
This is not astonishing at all, as the parameters have been pre-optimized for the compression simulations and
the corresponding material parameters. As the concrete tested by Vonk differs from that used by van Mier with
regard to the different key material parameters, this behavior is quite comprehensible. The snapshot in form of the
simplified picture of eliminated interface elements in figure 15 (b) highlights the crack propagation through the
specimen. As expected, only cracks in the horizontal direction and, thus, perpendicular to the loading direction
are obtained. The cracks appear mostly at the “interface layer” between aggregate and matrix and fit quite well to
the cracking in concrete, compare figure 1 (a).

5 CONCLUSION
The advancement and implementation of a polygonal two-dimensional discrete element model (DEM) has been
carried out in a structured form. Starting from a basic DEM model for non-cohesive polygonal particles, the
complexity of the model was successively increased in order to include a coherent representation of cohesive
particle assemblies. This coherent representation implied a qualitative as well as quantitative reproduction of
characteristic features of cohesive geomaterials. As a quantification of beam enhanced DEM models represents
an arduous task, interface elements between the particles have been inserted in order to form a cohesive bond.
The last step in the series of increasing complexity was the realization of a microstructure-based simulation
environmentwhich utilizes the foregoing enhanced DEM models. With growing intricacy and, therewith, freedom
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of the models a wide variety of features typically observed in cohesive frictional materials could be represented in
a satisfactory manner. In detail, it was shown that microstructure-based interface enhanced DEM simulations are
an effective approach to remedy the deficiencies of non-microstructure simulations. The inclusion of an artificial
microstructure via the definition of corresponding stiffnesses and yield stresses has shown up to be an important
feature for a realistic representation of the post-peak softening behavior in terms of the stress-strain relation. With
increasing complexity and, therewith, freedom of the model all characteristics of a cohesive frictional material
can be represented. However, the increasing complexity is at the expense of the choice and definition of material
and model parameters. Starting from the standard DEM model with a total number of 6 parameters and the
beam enhanced DEM model with 9 parameters over the interface enhanced DEM model with 13 parameters,
the microstructure-based interface enhanced DEM model includes the definition of 18 independent parameters.
This fact may be seen as a disadvantage of the procedure, as typically material parameters should be physically
coherent and directly determined by experiments. Indeed, alternative models which account for a simplified form
of the microstructure and enable a reduction of the number of parameters, but still allow for a quantification of
the softening regime are also conceivable: for example, by a physically coherent distribution of yield strengths
and stiffnesses of the interface elements.
As future perspective, the procedures for a quantification of the parameters should be advanced. In this sense,
the relation between the micromechanical properties of geomaterials and the corresponding model parameters
has to be further elaborated. This implies a consideration of special experimental setups to gain more knowledge
on parameters like the micromechanical yield strength or the corresponding ratios for the aggregate, matrix and
“interface layer” components. In order to achieve this, very simple composite (model) materials should be created,
e. g. regular polygonal particles embedded in a soft matrix with glue between matrix and particles. Due to the
clear knowledge of all micromechanical material and, therewith, model parameters, a comparison of simulation
and experiment should get much easier. If this point is satisfactorily solved, a real microstructure-based DEM
environmentmay be considered. Then, an interface module between a digital image processing tool that is capable
to handle electron microscopy images and the mesh generation module of the DEM program may be incorporated.
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Abstract.  This paper is concerned with the fundamental aspects of the computational approach to the solution of 

inverse problems using the methods of analysis for the direct problems.  After some brief review on current work on 

computational approach to the inverse problems, it presents several investigations on the inverse problems in 

engineering mechanics with emphasis on work by author's group using the boundary element method as a basic 

technique. 

 

 

1 INTRODUCTION 

Computational methods of analysis based on the finite difference, finite element, and boundary element 

methods have been so well developed that we can easily solve the initial- and boundary-value problems, which are 

to be called the direct problems.  It has been increasingly attracting the attention of scientists and engineers to 

apply the computer analysis software well established for the direct problems to the corresponding inverse 

problems [e.g., 1-4]. 
There are many inverse problems around the world, in which we should estimate the reasons from the 

observed results.  However, from the engineering point of view, the inverse problem can be stated such that some 

information on the initial and/or boundary conditions, domain shapes, material constants, etc. are not entirely 

known, and this lacking information should be identified by using additional information which is usually given as 

measured data. 

If we consider a system which is mathematically modeled as an initial- and boundary-value problem, we may 

classify the corresponding inverse problems into the following: 

1. Estimation of the initial and/or boundary conditions 

2. Determination of domain shapes 

3. Estimation of sources 

4. Estimation of material constants 

5. Estimation of governing differential equations 

In this paper, we shall first explain fundamentals of the computational approach to the solution of inverse problems 

using the methods of analysis for the direct problems, and then show several investigations on the inverse 

problems by author's group. Finally, the paper is concluded by some remarks toward more fruitful and more 
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successful analysis of the inverse problems. 

 

2 METHODS OF INVERSE ANALYSIS 

The inverse problem under consideration is modeled as a parameter identification problem. In a computational 

approach to this inverse problem, we first assume the values of parameters in an appropriate manner and then carry 

out analysis of the direct problem. The results obtained are compared with the measured data given as additional 

information, and the parameter values are then modified so that an appropriate cost function is minimized in an 

iterative manner.  The cost function is usually defined as a square sum of differences between the measured and 

computed data.  We may express the cost function as follows: 

 )(zWW =   (1) 

where z is a vector of parameters, and denoting by M the number of parameters we have 

 { } T
21 Mzzz L=z   (2) 

where the superscript T denotes the transpose of a matrix. We can apply the standard procedures of optimization [5] 
for the solution of the above-modeled inverse problems of parameters identification.  The filter theory can also be 

implemented for the solution of the optimization problems. 

In the inverse problems of estimating defects, e.g. cracks or cavities, which is the main subject of NDT 

(non-destructive testing), we may select as the parameters to be detected the quantities which are related to the 

locations and shapes of the defects.  If the defect is modeled as an ellipse or a sphere, the number of parameters can 

be reduced and then inverse analysis can be easily carried out[6].  Although we may choose all the nodes located on 
the defect surface as the parameters, it would usually lead us to a large amount of computation time for inverse 

analysis and to unstable computation which yields less successful results. Hence, such inverse analysis could not 

be recommended.  It is true that the smaller the number of parameters is, the more effective the performance of 

inverse analysis is. 

The finite element methods have been best developed as computational software for direct problems, and 

naturally there are many of such investigations on the inverse problems [1-4].  In optimal shape design, however, we 
have to search the shape in an iterative manner, and careful attention should be paid to re-meshing at each iterative 

step of inverse analysis so that accuracy of computational results is not reduced.  The boundary element methods 
[e.g., 7,8] can provide a more convenient tool for the problems of shape optimization design, because discretization 
by the method is confined within the boundary surface.  In addition, it is reported that the BEM can give more 

accurate numerical results than the finite element or finite difference methods, if appropriate care is taken for 

singular integrals. This advantage is very important and makes the BEM more attractive than other methods, 

because in inverse analysis only a limited number of measurements are available and hence the computational 

results should be kept to be accurate at each iterative step.  From these reasons the boundary element methods have 

been employed for inverse analyses, and many successful results have been reported in Refs.[1-4]. 

 

3 PARAMETERS IDENTIFICATION WITH TWO-STEP INVERSE ANALYSIS 

3.1 Two-Step Inverse Analysis 
There are many investigations in which computational software so far developed for direct analysis is 

successfully applied to the solution of inverse problems.  We now show a boundary element analysis of some 
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inverse problems on an elastic plate subjected to dynamic loadings.  In another paper[9] attempt has been made to 
use the measured data of bending displacement for the same inverse analysis.  Instead of using the displacement 

measurements, we shall use to identify the parameter values of the elastic plate using the measured data of strains 

on the plate surfaces.  The extended Kalman filter[10] is applied to improve the assumed parameter values in an 
iterative manner.  The square sum of differences between the measured strain and the calculated one at some 

selected points on the plate surfaces is defined as a cost function to evaluate convergence.  The strain responses are 

calculated by use of the boundary element method. 

Successful identification of the parameters by an inverse analysis based on sensitivity analysis depends on 

assumption of the parameter values as close as possible to the target values to be estimated.  Careful attention is 

paid to first assumption of the parameter values.  Roughly approximate values of the parameters are first estimated 

by finding a minimum cost function for a finite number of combinations in the parameter space without sensitivity 

analysis, and then a sensitivity-based procedure is applied.  This process is repeated until a successful estimation 

can be made. 

The usefulness of the two-step inverse analysis mentioned above is demonstrated through calculation of some 

inverse problems of the circular plate subjected to a dynamic load[11].  It is interesting to note that the proposed 
method of inverse analysis can be equally applied to elastic plates with arbitrary shapes, dynamic loads and 

boundary conditions. 

Numerical procedures available for optimization and inverse analysis can be applied to the present inverse 

problem.  To obtain an accurate solution of the inverse problem, we shall use in the following an inverse analysis 

based on the extended Kalman filter[10].  Success in this approach would deeply depend on how the initial values 
of parameters are assumed as closely as possible to those to be identified:  A successful solution can be expected if 

the values of parameters are appropriately assumed at the beginning of iterative computations. Otherwise, however, 

the solution procedure would fall in a local minimum of the cost function or no successful solution would be 

obtained.  It is extremely difficult or almost impossible to assign appropriately the initial values of parameters for 

a successful identification.  

To circumvent the above difficulty, we shall employ in this study a two-step inverse analysis:  First, we 

estimate an approximate set of parameter values by searching an optimal combination in an appropriate range in 

the parameter space.  Then, we carry out inverse analysis based on the Kalman filter, using the parameter values 

found in the first-step inverse analysis mentioned above.  A more detailed explanation of the proposed two-step 

inverse analysis will be given in the following. 

First, several values of each parameter to be identified are selected due to a priori information and depict a 

map of finite number of parameter combinations.  We next compute the cost function for the discrete number of 

parameter combinations, and then find the optimal combination which gives the minimum value of the cost 

function.  With these values of parameters thus roughly estimated, we then proceed to the next step of inverse 

analysis using the extended Kalman filter.  In the second step of inverse analysis, the parameter values estimated in 

the above manner are used as the their initial values.  If the inverse analysis can be carried out successfully in the 

second step, no return to the first step is required.  However, unless the inverse analysis indicates any convergence 

toward an expected minimum value of the cost function, return to the first step is required.  In this case, we try to 

find an optimal combination of parameters within a narrower range compared with the first trial.  After a few trials 

of this process, a successful estimation could be expected almost always. 
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3.2 Application to Material Parameters Identification 
 To demonstrate the usefulness of the proposed solution procedure for the inverse problems under 

consideration, we shall apply it to identification of material constants (Yong's modulus and density of mass) of the 

elastic plate[11].  We shall consider the circular plate of radius a=0.5[m] and thickness h=0.01[m] with the whole 
edge clamped.  For numerical simulation's sake, we first compute via the BEM software the dynamic responses of 
the elastic plate under the given dynamic load, P(t) =100H (t)[N] at the center of plate, assuming that Young's 

modulus E = 2.0 ×1011[Pa], Poisson's ratio ν = 0.3 and the density of mass ρ = 7.8 ×103[kg/m3 ]. 
The boundary and the circular domain are discretized 

as shown in Fig.1, where the circular boundary is 

divided uniformly into 8 quadratic boundary elements 

of an equal size and the inner circular domain is 

divided into 16 internal cells with quadratic 

interpolation functions.  For the numerical Laplace 

inverse transform, we place 20 sampling points in the 

time axis with an equal interval.  

  The computational results thus obtained are used 

as the averaged values of measured data.  It is assumed 

that in the example under consideration the normal 
strain εx in the axis x is measured at the center point 

A and the mid-point of radius C, and that these 

measured data include the errors with variance 

σ 2 =10−20. In this numerical example, the exact  

 

Figure 1.  Discretization of circular plate

values of the material constants are known as E0 and ρ0,and hence we assume that the non-dimensional 
material constants defined as E /E0 and ρ /ρ0 fall within an appropriate square rigion, for example, 9 × 9 in 

the parameter space. The cost function is calculated for the non-dimensional material constants at a finite number 

of nots, say 4 × 4 ,from which we can colclude that the non-dimensional material constants 
E /E0 = 2.25, ρ /ρ0 = 2.25 can provide the minimum value of the cost function. Then, we try to do inverse 

analysis of the second step based on the extended Kalman filter and BEM, using the above values of material 

constants.  The results obtained are summarized in Table 1.  Unfortunately, inverse analysis fails to estimate the 

material constants even after 15 iterations under the above rough estimation of parameter values.  In the above case, 

we have to again go back to the first step of inverse analysis.  We now assume a narrow region of search aound the 

first trial, and repeat the first step analysis.  Through this computation, the material constants 
( E /E0 =1.125, ρ /ρ0 =1.125) are estimated. Using these material constants, we repeat precise inverse analysis of 

the second step.  Then, we can eventually arrive at the target values of material constants as summarized in Table 2 

after 11 iterations.  It is interesting to note that the present two-step inverse analysis is also successful for the cases 

with larger measurement errors.  To decide an appropriate search region of the parameter values for the first step of 

inverse analysis, we can make use of a priori information as much as possible.  Such a priori information can be 

used for reduction of the range of parameter values to be searched in the first step. 
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Table 1.  Estimated results of material constants (1st trial) 

 

 

 

 

 

Table 2.  Estimated results of material constants (2nd trial) 

 

 

4 AN APPLICATION OF CELLULAR  AUTOMATA 

4.1 Approximate Estimation of Parameter Values 
It is true that if the initial guess of parameter values is appropriate, the extended Kalman filter or other 

techniques available for optimization problems can be successfully applied to a wide variety of the inverse 

problems.  Therefore, it is essentially important to assess approximate values of the parameters.  At this end, we 

may apply a two-step inverse analysis in which first a rough estimation of the parameters is made, and then based 

on this estimation a second step of inverse analysis is carried out to improve the solution of the inverse problem 

under consideration.  There are several approaches for the first step of inverse analysis.  We may use for this 

purpose the method of designed experiments, cellular automata, GA, etc.  If a rough estimation of the parameters 

is sufficient, we can use this estimation as the final solution and there is no need for the second step of inverse 

analysis.  In this article, we show an application of the cellular automata to estimating the part of the boundary 

shape by the measured temperatures.  This is an extension of the similar procedure proposed for optimization of an 

acoustic field[12]. 
In the cellular automaton (CA), the domain of interest is discretized into a number of uniform cells.  Some 

quantity which represents the cell state is assigned to each cell, and then is modified by a transition rule under the 

condition that a local rule for cells is satisfied.  An optimal solution can thus be found in an iterative manner.  A 

concrete procedure of the CA will be briefly explained in the following application. 

In general, triangular or rectangular cells can be used for a two-dimensional region.  In the following 

application, rectangular cells are employed and the domain of investigation is discretized into cells of a uniform 

size.  The Moore neighbor cells are defined so that the target cell is surrounded by the neighbor eight cells.  Then, 

we introduce a local rule determining a mutual relation between the neighbor cells for the current state of iterative 

computation.  The most favorite shape of the boundary is selected through a transition rule and this shape is used 

for the next iterative computation to search a more suitable shape for the transition rule.  Eventually, the optimal 

shape of the boundary can be estimated through such an iterative computation. 

 

4.2 Estimation of Erosion Line of Refractory Brick in Blast Furnace Hearth 
It is assumed that the blast furnace is axi-symmetric and the refractory brick of the furnace is in a steady heat 

conduction state.  The temperature field can be estimated through the boundary element method for solving the 

Rough Estimation of initial values Final estimation by extended Kalman filter 
E /E0  ρ /ρ0  E /E0  ρ /ρ0  Iterations 
2.25 2.25 -8447 -8421 15 

Finer estimation of initial values Final estimation by extended Kalman filter 
E /E0  ρ /ρ0  E /E0  ρ /ρ0  Iterations 
1.125 1.125 1.0000 1.0000 11 
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steady-state heat conduction problem of axi-symmetric body[13].  Attention is paid to finding the erosion line of 
the refractory brick in the blast furnace hearth.  The meridional cross-section of blast furnace is divided into a 

series of square cells as shown in Fig. 2.  The meshed region is composed of three kinds of cells: “Alive”, 

“Remaining” and “Dead” in which the remaining cells are not changed and always remain as “Alive”.  Assuming 

the alive cells we may produce s shape of the internal line of the refractory brick.  For this computation we now 

introduce a local rule as shown in Fig. 3.  When the local rule holds for the current target cell, we change the state 

of the target cell from “Alive” to “Dead” or “Dead” to “Alive” and then boundary element analysis is carried out.  

If the target cell is “Alive”, we apply the rule 1 to add a cell; If the target cell is “Dead”, we apply the rule 2 to 

delete it.  In addition, an empirical rule is also applied to avoid an unacceptable shape of the erosion line. 

 

 

Fig. 2 Analysis model and cell division 

 

 
Fig. 3 Local rules 

 

It is assumed that the temperature is measured at selected points on the outer boundary of the blast furnace 

hearth as shown in Fig. 2 by small circles.  In numerical simulation, such measured temperatures are created from 

the computed temperature by BEM analysis for the target shape of erosion line.  The cost function for evaluating 

the optimal shapes of the erosion line is defined in this study as the square sum of differences between the 

measured and computed temperatures as mentioned above.  Namely, the non-dimensional expression of the cost 

function is written as follows: 

W =
ui − ˆ u i

ˆ u i

 
  

 
  i=1

N
∑

2

 (9) 

where ui is the computed temperature, ˆ u i  the measured and N the number of measuring points.  The outline of 

inverse analysis is summarized in the following: 
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1. Carry out BE analysis for the assumed initial shape of erosion line, and calculate the cost function. 

2. When the target cell is “Alive” and not “Remaining”, change the cell state from “Alive” to “Dead according 

to the Rule 1.  Carry out BE analysis and compute the new cost function. 

3. If the new cost function is smaller than the previous one, save the cell state. 

4. Do the same check as above for all the cells for the initial shape of erosion line, and save the state of cells 

corresponding to the least cost function as the next “initial” shape of erosion line. 

5. Repeat the steps (2) to (4) until the variation of the cost function falls within a given tolerance. 

6. Change the local rule to the Rule 2 and repeat the steps (2) to (5), applying the rule only when the target cell 

is “Dead” and not “Remaining”. 

7. The shape of internal boundary corresponding to the least cost function is regarded as the final results on 

the estimated shape of erosion line. 

 

We now show some of the numerical results.  Five 

initial shapes with a different height of bottom line of 

the refractory are assumed for the erosion line as 

shown in Fig. 5.  Inverse analysis is carried out for 

each initial shape, and the final estimated shape is 

determined so that the converged value of the const 

function is minimum.   

Figure 6 shows the convergence properties for the 

five initial shapes of erosion line, while Fig. 7 does the 

final estimated shape and the initial one.  It is 

interesting to note that the present estimation can be 

easily improved if a more sophisticated inverse 

analysis, such as the one based on the extended 

Kalman filter theory[14], is applied to further inverse 
analysis using the present estimation as the initial 

shape of erosion line. 

 

 
Fig. 5 Five initial shapes with different bottom 

heights 

 

 
Fig. 6 Less successful estimation 

 
Fig. 7 Successful estimation 
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 Figure 6 shows a less successful estimation, whereas Fig.7 does a fairly good estimation from the initial shape 

with 2m bottom line.  It is also confirmed that through the above five initial shapes a wide range of erosion lines 

can be successfully estimated. 

 

5 CONCLUDING REMARKS 

This paper has briefly reviewed the current research on the inverse problems with emphasis on the boundary 

element method, and introduced some of the topical investigations along this line.  It is shown that the 

optimization methods without sensitivity analysis are robust so that they can provide almost always an 

approximate solution of the inverse problem.  To improve the thus obtained solution, we may successfully apply 

the optimization procedures based on sensitivity analysis.  It can be concluded that the two-step inverse analysis 

mentioned above is applicable to a wide range of the inverse problems. 

Due to space limitation the present paper has introduced only a limited number of investigations in current 

research on the inverse problems.  The interested reader can refer to the proceedings of recent international 

conferences on the inverse problems. 
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Abstract. A three-part study composed of analytical, numerical and experimental investigation is de-
scribed for investigating failures in micro-electronic devices. The point of departure is the exact solution of
the elasticity system in the vicinity of 2-D singular points, characterized by an asymptotic expansion com-
posed of eigenpairs and their coefficients called generalized stress intensity factors (GSIFs). High-order
finite element methods for computing them for 2-D singular points, including anisotropic and multi-
material interfaces is presented. These methods are being utilized for validating a simple proposed failure
criterion for micro-electronic devices by experimental observations.

In the second part of the paper we extend the knowledge on 2-D singular points to edge singularities
in 3-D elastic domains where asymptotic expansions are somewhat different compared to the 2-D singu-
larities. Because the known Cherepanov-Rice J-Integral ceases to be path independent in 3-D domain, a
new extraction technique (Quasi-Dual Extraction Method (QDEM)) for edge stress intensity functions is
presented.

1 Introduction

Predicting and preventing failure initiation at V-notch tips and delaminations in anisotropic compos-
ites, is of increasing importance in such seemingly different areas as structural mechanics and electronic
packaging. The common link is the displacements in linear elastostatics in two dimensions in the vicinity
of any singular point, which are expanded in a series having coefficients used in engineering practice to
predict failure initiation [1]:

u =
L∑

�=1

A� rα�

{
u

(�)
1 (θ)

u
(�)
2 (θ)

}
+ ureg =

L∑
�=1

A� rα�u(�)(θ) + ureg (1)

The associated stress field is singular as r → 0 for α� < 1:

σ =
L∑

�=1

A� rα�−1

⎧⎪⎨
⎪⎩

σ
(�)
11 (θ)

σ
(�)
22 (θ)

σ
(�)
12 (θ)

⎫⎪⎬
⎪⎭+ σreg =

L∑
�=1

A� rα�−1σ(�)(θ) + σreg (2)

where (r, θ) are cylindrical coordinates of a system located in the crack tip, A� are the coefficients of
the asymptotic expansion (called the generalized stress intensity factors - GSIFs), α� and u(�)(θ) are
eigenpairs which depend on the material properties, the geometry, and the boundary conditions in the
vicinity of the singular point. The first two exponents α1 and α2 are equal to 1/2 for crack tips. L may
be taken as large as required, and the remainder ureg is a vector of smooth functions. Usually “mode
I” stress intensity factor, KI = A1 ∗ √2π associated with the “symmetric crack mode”, determines the
onset of failure in fracture mechanics. Under special circumstances, power-logarithmic stress singularity
may exist [2], however these are not addressed herein.

The key to a successful failure analysis is to develop methods to compute reliably the characteristics
of the solution near singular points, i.e., to determine the eigenpairs and the GSIFs. This is because
failure theories directly or indirectly involve them. For general singular points in elastostatics, neither
the eigenpairs nor the GSIFs are known explicitly.

Nowadays most of the available methods for the computation of eigen-pairs and GSIFs are applica-
ble to crack singularities in isotropic materials, do not provide any desired number of stress intensity
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factors, and fail when the eigenpairs are complex. They are difficult or even impossible to incorporate
into standard finite element programs. A high-order FE method which combines the computation of
the eigenpairs and the extraction of the coefficients of the asymptotic expansion for singular points in
anisotropic inhomogeneous 2-D domains (which may have multi-material interfaces) with any opening
angle is presented. A short description of the methods followed by a numerical example demonstrates its
efficiency and accuracy is given in Section 2.

Failure laws are associated with the elastostatic solution in the vicinity of the V-notches and multi-
material interfaces. We utilize the ability to compute eigen-pairs and GSIFs for predicting and eventually
preventing mechanical failures that may occur in the passivation layer of micro-electronic devices during
the fabrication process in Section 3. A sufficiently simple and reliable failure law, named strain energy
density SED criterion, for predicting failure initiation (crack formation) in the above mentioned cases is
provided and validated by experimental observation.

We have also validated the SED criterion by performing experiments on specimens at the macro
level as reported in [3,4]. The validity of the SED criterion has been compared to several known failure
initiation criteria at reentrant corners in brittle elastic materials, and documented in Section 4.

Finally, in Section 5 we discuss 3-D domains where we show that the asymptotic expansion of the
elasticity system in the vicinity of an edge contains more than the 2-D eigenpairs, and therefore special
methods for the computation of the quantities of interest are formulated.

2 Singularities in two-dimensional domains

The departing point is the elastic solution in the vicinity of a singular point which is detailed in the
following two subsections.

2.1 Determination of eigenpairs by the modified Steklov method

First, the modified Steklov method for determining the eigenpairs in the neighborhood of the singular
point is described. For a detailed discussion we refer to [5].

We denote the two displacements in the x1 and x2 directions by u1 and u2 respectively. The normal
and tangential tractions (resp. displacements) on a boundary, will be denoted by Tn and Tt (resp. un and
ut).

Let us consider a domain Ω∗
R shown in Figure 1, where r, θ are the coordinates of a cylindrical

coordinate system located in the singular point. In Ω∗
R the solution is regular such that high-order
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Figure 1: Domain and notations for modified Steklov formulation.

finite elements are expected to attain a superconvergent rate. On the boundaries Γ1 and Γ2 we consider
homogeneous boundary conditions which can represent zero tractions, or zero displacements:

un = 0 or Tn = 0
ut = 0 or Tt = 0

}
on Γi , i = 1, 2, (3)

In Ω∗
R, u1 and u2 may be represented as follows:

u
∆

=
{

u1

u2

}
= rα

{
s1(θ)
s2(θ)

}
. (4)
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Under special (exceptional) circumstances, u may also have additional terms as:

rαln(r)
{

s1(θ)
s2(θ)

}
.

These cases occur when a special combination of the material properties and the geometry occur and are
not treated herein. Details on these cases can be found for bi-material corners and interface cracks in [2].

Using (4), on Γ3 we have:
(∂u/∂ν) = (α/R)u , on Γ3, (5)

and a similar condition on Γ4. The boundary conditions on Γ3 and Γ4 are Steklov boundary conditions,
so that the obtained problem is an eigen-value problem.

The weak formulation of the elasticity system, after substituting (5) for the boundary conditions is
called the modified Steklov weak form (see detailed derivation in [5]):

Seek α ∈ C , 0 �= u ∈ H1(Ω∗
R) × H1(Ω∗

R),
B(u,v) − (NR(u,v) + NR∗(u,v)) = α (MR(u,v) + MR∗(u,v)) , ∀v ∈ H1(Ω∗

R) × H1(Ω∗
R) (6)

where H1(Ω∗
R) is the usual Sobolev space, and is restricted to H1

0 (Ω∗
R) if homogeneous displacements

boundary conditions are prescribed,

B(u,v) def=
∫ ∫

Ω∗
R

([D]v)T [E][D]udΩ, MR(u,v) =
∫
θ

[
vT [A1]T [A3][E][A5]u

]
r=R

dθ, (7)

NR(u,v) =
∫
θ

[
vT [A1]T [A3][E][D(θ)]u

]
r=R

dθ , (8)

and [A1], [D], [A3], [A5], [D(θ)] are given as follows:

[A1] =
[

cos θ sin θ
− sin θ cos θ

]
, [D] =

⎡
⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2

∂
∂x1

⎤
⎦ , [A3] =

[
cos2 θ sin2 θ sin 2θ

− 1
2 sin 2θ 1

2 sin 2θ cos 2θ

]
,

[A5] =

⎡
⎣cos θ 0

0 sin θ
sin θ cos θ

⎤
⎦ , [D(θ)] =

⎡
⎣− sin θ ∂

∂θ 0
0 cos θ ∂

∂θ

cos θ ∂
∂θ − sin ∂

∂θ

⎤
⎦ ,

and [E] is the material matrix. MR∗(u,v) and NR∗(u,v) are the same as in (7) and (8) except that the
integrand is evaluated on r = R∗.

Remark 1 The domain Ω∗
R does not include singular points, hence no special refinements are required

if the finite element method is used.

Remark 2 Negative eigen-values and their associated eigen-functions (the dual eigen-pairs) are obtained
because the domain Ω∗

R does not include singular points. These are necessary for extracting the stress-
intensity functions by the dual singular function method [6,7].

Remark 3 The formulation of the weak form was not based on the assumption that the material is
isotropic, and in fact can be applied to multi-material anisotropic interface.

The domain Ω∗
R is divided into finite elements through a meshing process. Denoting the set of all

coefficients by {utot}, and the set of coefficients associated with Γ3 and Γ4 by {uR}, we obtain the
following matrix eigenproblem:

([K] − [NR] − [NR∗ ]){utot} = α([MR] + [MR∗ ]){uR} = α[M ]{uR}. (9)

The vector which represents the total number of nodal values in Ω∗
R can be divided into two vectors

such that one contains the coefficients {uR}, the other contains the remaining coefficients: {utot}T =
{ {uR}T , {uin}T }. Eliminating {uin} using static condensation we obtain a reduced eigenproblem:

[KS ]{uR} = α[M ]{uR}. (10)

Solution of the eigenproblem (10) yields excellent approximations for eigenpairs with high accuracy,
efficiency and robustness (see also [5]).
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2.2 Extraction of GSIFs by the Complementary Energy Method (CEM)

Once eigenpairs have been computed, they are used for extracting GSIFs from the finite element
solution (full details are provided in SzYo94b). The procedure is as follows: First one solves the elasto-
static problem over the entire domain Ω by means of finite element method thus obtaining u

F E
. Sec-

ond, a sub-domain around the singular point is considered. Define SR as the set of interior points of
a circle of radius R, centered on the point P. ΩR is defined by Ω ∩ SR and ΓR is the circular part
of its boundary, see Figure 2. The complementary variational principle over ΩR can be stated as:
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Figure 2: Typical singular point P .

Seek σ0∈ Ec(ΩR), such that

Bc (σ0,σ1) = Fc (σ1) ∀ σ1 ∈ Ec(ΩR), (11)

Ec(ΩR) being the statically admissible space (see detailed definition in [26]), and Bc and Fc are given by:

Bc(σ0,σ1) =
∫ ∫

ΩR
σ0

T [E]−1 σ1dΩ (12)

Fc (σ1) =
∫

∂Ω
(u)
R

ûT [A5]
T σ1 ds, (13)

where ∂Ω(u)
R is that part of the boundary where the displacement vector û is prescribed. For the com-

plementary weak form the trial and test spaces are chosen to be linear combinations of the eigenstresses,
which are computed from the eigenpairs, using the stress-strain relationship and Hooke’s law. The un-
knowns are the series coefficients.

The ij-th term of the compliance matrix which corresponds to the bilinear form in (12) is generated
using the i-th and j-th eigen-pairs.

The eigenstress tensor, being derived from the eigenpairs, automatically satisfies the boundary condi-
tions on all boundaries except ΓR, so that the linear form (13) degenerates to an integral over the circular
boundary ΓR alone.

The vector û in (13) is replaced by the approximated finite element solution on ΓR, u
F E

. Solving (11),
one obtains an approximation for the coefficients of the asymptotic expansion, the GSIFs. Numerical
examples provided in the following demonstrate that the rate of convergence of the GSIFs is as fast as
the convergence of the strain energy, therefore the method is “superconvergent”.

2.3 A Numerical Example

Consider the edge-cracked panel in an isotropic material under plane strain situation with Poisson’s
ratio of 0.3. In [7] the first and second GSIFs were computed by the contour integral method (CIM)
and the cutoff function method (CFM) and it was demonstrated that the rate of convergence using these
methods is as fast as the rate of convergence of the strain energy. It should be noted that the exact
eigenpairs were used in [7].

In our computations the approximated eigenpairs obtained by the modified Steklov method were
used. These approximated eigenpairs are computed using a 4-element mesh (not shown) at p=6. The
two eigenvalues obtained are α1 = 0.49999967, α2 = 0.50000051 (the exact values are 1/2).

The tractions that exactly correspond to the stresses of Mode 1 and Mode 2 stress fields are applied
on the sides of the solution domain, see Figure 3. We select the first two GSIFs to be A (A is arbitrary)
and defined the normalized stress intensity factors Ã1 and Ã2 as follows:

Ãi
def= (Ai)F E

/A. i = 1, 2. (14)
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a

a

a a

0.15a0.0225a

crack

Figure 3: Solution domain and mesh design for a crack in an isotropic material.

In this way both normalized GSIFs have to converge to 1 as the number of degrees of freedom is increased.
The first two normalized GSIFs are computed with R = 0.5a, where 2a is the length of the side of

the square. The number of degrees of freedom, the error in energy norm, and the computed values of the
normalized GSIFs are listed in Table 1. The relative error in energy norm, the relative error in strain

Table 1: First two GSIFs for a crack in an isotropic material computed by CEM.
p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8

DOF 53 155 273 439 653 915 1225 1583

‖e‖E(%) 29.92 11.07 5.52 3.15 2.24 1.78 1.48 1.26

Ã1 0.8144 0.9548 0.9912 0.99783 0.99795 0.99825 0.99862 0.99882

Ã2 0.8317 0.9641 0.9946 0.99942 0.99888 0.99898 0.99926 0.99943

energy, and the absolute value of the relative error in GSIFs, computed by the CEM and by the CIM,
are plotted against the number of degrees of freedom on a log-log scale in Figure 4.
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Figure 4: Convergence of ‖e‖E , the strain energy (‖e‖2
E), A1 (left) and A2 (right) for the crack in an

isotropic material.

It is seen that the rate of convergence of the GSIFs is faster than the rate of convergence in the
energy norm and both the CEM and CIM have similar convergence patterns. Note that as the error
in energy norm decreases the CIM (based on the exact eigenpairs) performs better as compared with
the CEM (based on the approximated eigenpairs). However, up to the relative error of approximately
0.1 percent the performance of both methods is virtually the same. Example problems for anisotropic
materials, multi-material interfaces, and nearly incompressible materials reported in [9–11] demonstrate
the efficiency of the proposed extraction method.
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3 Failure criterion at the micron scale in electronic devices

The eigen-pairs and GSIFs are being utilized for predicting, and eventually preventing mechanical
failures that may occur in the passivation layer of micro-electronic devices during the fabrication process.
These are in form of cracks which initiate at keyhole corners. A failure criterion is presented, based on
the strain energy density (SED), which is an average value of the elastic strain energy in the vicinity of a
reentrant corner of any angle. The failure criterion is validated by a test including 24 full size wafers which
have been fabricated with different parameters: the interconnects (metal lines) height, the passivation
thickness, and the passivating plasma power which was shown to correlate with the mechanical properties
of the passivation layer. For each wafer, a FE model has been constructed, and the SED computed. It
has been clearly shown, that above the critical value of SEDcr[R = 0.15µm] ≈ 1000 [J/m3], all wafers
manufactured were cracked. The SED criterion seems to correlate well with the empirical observations,
and may be used as a standard tool for the mechanical design of failure free micro-electronic devices.
Herein a short description is provided whereas the full details are given in [12].
Description of the problem:

The fabrication of micro-electronic devices (chips) is a multi-step process aimed at creating a lay-
ered structure made of semiconductors, metals and insulators. Thin aluminum interconnect lines are
fabricated by sputtering technology on top of which the passivation is deposited by PECVD (Plasma
Enhanced Chemical Vapor Deposition). At this last step of the fabrication process, the wafer is heated
to approximately 400oC, and the passivation Si3N4 layer is deposited to cover the metalic lines. Then,
the wafer is cooled to room temperature, at which stage mechanical failures in the form of cracks are
sometimes encountered. The cracks are often detected on ”test chips” placed on the silicon wafer (typ-
ically of diameter of 12 inches) among the many chips fabricated on same wafer. The ”test chips” are
manufactured so to represent the worst possible configurations which increase their affinity to failure.
I.e. if failure does not initiate in them (mechanical, functional, etc.), all other chips on the wafer are
fail safe (see Figure 5). Previous work indicated that these cracks, emanating in the passivation layer

Figure 5: The silicon wafer patterned with hundreds of square dies. The unpatterned areas are the
scribes. The 3 wide rectangles dies are the test chip arrays seen in the blowup.

at reentrant corners are due to the thermal loading caused when cooling the wafer in the last step of
fabrication. The cause for the cracks is identified as a mismatch of the elastic constants and thermal
expansion coefficients between the metal lines and the passivation layer. Typical cracks can be observed
by sectioning the wafer at the test chip followed by a scanning electron microscope (SEM) inspection,
as shown in Figure 6. Zoom-in figures of a typical top view and cross section of failed components show
that the failure initiates at the vertex of a reentrant V-notch (keyhole corner) - as shown in Figure 7, and
a plane-strain situation can be assumed. The typical feature dimension of the studied electronic devices
are 0.1 to 1 µm where the assumptions of linear elasticity still hold, see e.g. Brandt et al. [13]. It is
conceivable to assume that failure initiates when the average elastic strain energy contained in a sector of
radius R << 1 around the singular point, over the volume of this sector, SED, reaches a critical value.
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A A

Cross Section A-A

Figure 6: Cracks in the passivation layer: on the right a top view of the wafer, on the left a Scanning
Electron Microscope image of the cross-section.

Figure 7: Top view of a crack (right) and a zoom-in at a cross-section (left) of typical failure initiation
sites in the passivation layer (SEM image).

See also [14,15]. This SED is computed once GSIFs and eigenfunctions have been computed:

SED[R] ≈ A2
1

R2(1−α1)(π − ω
2 )

∫ θ1

θ0

[
σ

(1)
11 u

(1)
1 cos θ + σ

(1)
12

(
u

(1)
1 sin θ + u

(1)
2 cos θ

)
+ σ

(1)
22 u

(1)
2 sin θ

]
dθ (15)

The SED[R] depends of course on a characteristic length size R. It should be chosen small enough so that
ΩR is within the K-dominance region, ensuring that the singular terms do represent the exact solution.
Given the value of SED[R1], one can easily determine the value of SED for a domain having a different
radius R2 by the simple equation derived from (15):

SED[R2] = SED[R1] (R1/R2)
2−2α1 (16)

A characteristic material dependent R can be determined for macroscopic domains, which is a function
of the ultimate stress and the critical stress intensity factor, but for microscopic domains considered in
this paper, these parameters are unavailable. We chose R as a characteristic dimension of 0.15µm and
report all results for this value.

The electronic device in the neighborhood of the failures (Figure 8) is a layered structure made of
the passivation layer (Si3N4 green colour in the Figure), the metal lines under the passivation and in the
dielectric (made of aluminum, blue colour in the Figure) and the SiO2 dielectric shown in red. It has been
observed that failures if occur, initiate at one of the reentrant corners above the gap in the wide metal
lines. Simulating of a small portion as shown in the right part of Figure 8 does not mimic important
details and there is a need to simulate a larger portion as shown in the left part of Figure 8. There
are several parameters which may contribute to the failure initiation, however, the design rules allow to
change three during the fabrication process, namely: (a) the thickness of the passivation layer (denoted
by h), (b) the height of the metal lines (denoted by H), (c) plasma power (W in Watts) applied during
the chemical vapor deposition of the passivation layer, which indirectly influences the material properties
(Young modulus and thermal expansion coefficient) according to the equation:

E(W ) = 0.682 exp (0.0097W ) [GPa], α(W ) = 0.000122 exp (−0.0224W ) [1/Co] (17)

Passivation thickness has two effects. First, the deposition PECVD process has a relatively poor step
coverage, and therefore tends to form overhangs resulting in “keyholes” (e.g. [16][p. 95]) and singular
points. Second, the reentrant angle tends to zero as the passivation thickness increases until a given
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H
h

Figure 8: Finite element models superimposed in color on the SEM cross section of the test chip device.
Blue-Aluminum, Red-SiO2 dielectric and Green-Si3N4 passivation.
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Figure 9: Nonconformal step coverage of deposited passivation film

thickness, and the strength of the singularity is more severe (see Figure 9), then, beyond h ≈ 6500
◦
A, the

angle slightly increases again.
Experimental validation of the failure criterion:

Validation of the failure criterion requires the same critical value of the SED be obtained for different
configurations of the device. A set of experiments have been designed to test the hypothesis, and herby
to determine the failure envelope. Past experience showed that the failure envelope resides within the
following extreme limits:

1. Al lines of height 7000
◦
A ≤ H ≤ 11000

◦
A with the standard being H = 9000

◦
A.

2. Si3N4 thickness of 5000
◦
A ≤ h ≤ 8000

◦
A with the standard being h = 6500 ± 300

◦
A.

3. Plasma power of 305 Watts ≤ p ≤ 485 Watts with the standard being 395Watts (E and α for
Si3N4 computed by (17)).

Twenty four wafers were fabricated with different manufacturing parameters in a form of a “test-cube”
as shown in Figure 11, so that in some a crack was detected in the passivation layer after fabrication.

In order to correlate the experimental observations with the proposed failure criterion, we computed
the SED associated with each tested wafer by p-FEM. The precise dimensions and the geometry in the
neighborhood of the singular points has been measured for each of the tested wafers, and a p-version
parametric finite element model has been constructed. The p-FEM commercial code StressCheck1 has
been used in our computations. Figure 10 presents several of the finite element models. To visualize the
failure envelope, all wafers are shown on the test-cube together with the SED values in Figure 11. A
semi-cylindrical failure envelope is observed, assessing the proposed criterion. A single value of the SED
distinguishes between the cracked and intact wafers - under a threshold value of SEDcr[R = 0.15µm] ≈
1000 [J/m3], all wafers manufactured are intact.

1StressCheck is trademark of Engineering Software Research and Development, Inc, St. Louis, MO, USA
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 wafer #1 wafer #2 wafer #3 

wafer #4  wafer #5 wafer #6 

wafer #7  wafer #8  wafer #9 

Figure 10: Finite element models simulating phase 1 wafers.
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Figure 11: Mapping of SEDs on the “test-cube” (Units are J/m3). The variation of the SED appears to
reflect the mechanical status of the devices.
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4 Failure criterion for V-notched specimens

We have also validated the SED criterion by performing experiments on specimens at the macro
level as reported in [3, 4]. The validity of the SED criterion has been compared to several known
failure initiation criteria at reentrant corners in brittle elastic materials. Their predictions, under mode
I stress field, are compared to experimental observations carried out on PMMA (polymer) and Alumina-
7%Zirconia (ceramic) V-notched specimens of varying opening angle as shown in Figure 12. These
materials have been chosen due to their brittle elastic properties. Three different failure criteria, all

Figure 12: Alumina-7%Zirconia specimens with various radii and notch angles; (a) 0.06mm, 30◦ (b)
0.1mm, 60◦ (c) 0.1mm, 90◦ (d) 0.1mm, 120◦.

requiring the GSIFs and eigen-pairs, have been compared: the SED defined in (15), Leguillon’s criterion
and Novoshilov’s criterion defined below. Leguillon criterion [17], predicts failure if the first GSIF and
eigen-pair equal a critical material dependent parameter kc:

A1σ
(1)
11 (θ = 90o) = kc

def=
(

Gc

K(ω)

)1−α1

σ2α1−1
c (18)

where Gc is the fracture energy per a unit surface (also denoted by toughness) and σc is the 1-D stress
at brittle failure (strength ), both being material properties. The parameter K(ω) depends on the local
geometry and boundary conditions in the neighborhood of the V-notch tip, the eigen-value α and its
corresponding eigen-function, and the material properties (E and ν in isotropic materials).

Novozhilov [18] proposed the following failure criterion, investigated by Seweryn [19]:

A1σ
(1)
11 (θ = 90o) = α1σc

(
2√
2π

KIc

σc

)2−2α1

(19)

We performed experiments on over 70 V-notched specimens with four opening angles ω = 30o, 60o, 90o

and 120o, each having three different tip radii ρ = 0.03, 0.06 and 0.1 mm. The specimens were loaded so
to produce pure “symmetric mode” stress field in the vicinity of the V-notch tip. The experimental set-up
including the AE sensor is illustrated in Figure 13. We constructed finite element models of the various
specimens tested, and loaded these by the load that caused the fracture. The p-FEM commercial code
StressCheck has been used in our computations for the extraction of A1 × σ

(1)
11 (θ = 90o) at fracture. The

predicted values by the various failure criteria and the experimental observations are plotted in Figure 14.
Both the Novoshilov-Seweryn and Leguillon criteria seem to predict well the observed failures, however,
as the opening angle increases, their validity deteriorates. This may be attributed to the non-exact
measurement of σc, and the blunt tip radius. Leguillon criterion outperforms the Novoshilov-Seweryn
criterion, and it has been refined to include ρ dependency so to match better the experimental observations
- see [3].

Using the eigen-pairs, A1 and the integration radius Rmat = 0.062mm, we computed the SED at
the instance of failure (denoted by SEDcr[0.062mm]) for the Alumina-7%Zirconia specimens, whereas
or the PMMA, the integration radius used in our computations is Rmat = 0.0158mm (the determination
of Rmat is detailed in [4]). Because the SED is proportional to the square of A1, the sensitivity of the
results to changes in this parameter is more pronounced. We have seen that the predicted SEDcr is a
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Figure 13: Four-point-bending test fixture with acoustic emission transducer and crack opening displace-
ment gage (PMMA specimen).
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Figure 14: Predicted GSIFs (kc) at failure by using Novoshilov and Leguillon’s criteria, and GSIFs. Left
- Alumina-7%Zirconia, Right - PMMA.

lower estimate of the experimental observations, and the scattering in SEDcr is wide. These two effects
can be reduced by using the square root of the SED as the failure criterion, and taking into account the
V-notch radius tip ρ.

5 Some remarks on edge singularities in 3-D domains

Although most of the research work on singularities in the past concentrated on 2-D domains under
plane-stress/strain assumptions, in reality 3-D domains containing singular edges are of interest (we don’t
address herein vertex singularities). In this last section we show that the asymptotic expansion of the
elasticity system in the vicinity of an edge contains more than the 2-D eigenpairs, and therefore special
methods for the computation of the quantities of interest are formulated. Consider a 3-D domain Ω with
a solid angle ω, created by the intersection of two flat surfaces, as shown in Figure 16. We denote the
flat surfaces by Γ1 and Γ2. For simplicity of presentation assume that Ω contains only one straight edge
E , and is generated by the product Ω = G× I where I is an interval [−x3, x3], and G is a plane bounded
sector of opening ω. The coordinate system is chosen so that G coincides with the (x1, x2) plane and I
is along x3. The edge E of interest is the set {x ∈ R

3 | r = 0, x3 ∈ I}. The displacements vector in polar
coordinates is denoted by ũ = {ur, uθ, ux3}T . The Navier-Lamè (N-L) equations, in the neighborhood of
the edge E is obtained by splitting the operator into three parts (see [20]):

L = [M0(∂r, ∂θ)] + [M1(∂r, ∂θ)]∂3 + [M2]∂2
3 (20)
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SED of Al2O3 - 7%ZrO2 (R = 0.062 mm)
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Figure 15: SEDcr[0.062mm] in Alumina-7%Zirconia specimens and SEDcr[0.0158mm] in PMMA spec-
imens.
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Figure 16: (Left): Schematic 3-D domain, Ω. (Right): Edge and vertex singularities in 3-D domain.

where [Mi] are given for an isotropic elastic material by:

[M0] =

⎛
⎜⎜⎜⎝

(λ + 2µ)
(

∂2
r + 1

r ∂r − 1
r2

)
+ µ 1

r2 ∂2
θ −(λ + 3µ) 1

r2 ∂θ + (λ + µ) 1
r ∂r∂θ 0

(λ + µ) 1
r ∂r∂θ + (λ + 3µ) 1

r2 ∂θ (λ + 2µ) 1
r2 ∂2

θ + µ
(

∂2
r + 1

r ∂r − 1
r2

)
0

0 0 µ
(

∂2
r + 1

r ∂r + 1
r2 ∂2

θ

)
⎞
⎟⎟⎟⎠

(21)

[M1] =

⎛
⎝ 0 0 (λ + µ)∂r

0 0 (λ + µ) 1
r ∂θ

(λ + µ)
(
∂r + 1

r

)
(λ + µ) 1

r ∂θ 0

⎞
⎠ , [M2] =

⎛
⎝µ 0 0

0 µ 0
0 0 (λ + 2µ)

⎞
⎠ (22)

The splitting allows the consideration of a solution ũ of the form:

ũ =
∑
j≥0

∂j
3A(x3)Φj(r, θ) (23)

Substituting (23) into (20), and collecting terms of same order of r, the functions Φj must satisfy the
three equations below, each defined on a two-dimensional domain G:⎧⎪⎨

⎪⎩
[M0]Φ0 = 0
[M0]Φ1 + [M1]Φ0 = 0
[M0]Φj+2 + [M1]Φj+1 + [M2]Φj = 0, j ≥ 0

(r, θ) ∈ G (24)

accompanied by traction free boundary conditions on the two surfaces Γ1 and Γ2.
The first partial differential equation in (24) generates the solution Φ0, denoted primal singular

function, which is the well known two-dimensional eigen-function of the form:

Φ0 = rαϕ0(θ) (25)
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Φ0 is the eigen-function associated with the eigen-value α of the degenerate boundary value problem over
the 2-D domain G. The second PDE in (24) generates the function Φ1 which depends on Φ0 and is of
the form:

Φ1 = rα+1ϕ1(θ) (26)

The sequence Φj (where j ≥ 2) are the solutions of the third equation of (24). These are of the form:

Φj = rα+jϕj(θ) (27)

The Φj , where j > 1 are called shadow functions associated with the primal function Φ0. There are an
infinite number of shadow functions Φj associated with any positive eigen-value αi, and therefore:

Φ(αi)
j = rαi+jϕ

(αi)
j (θ) j = 0, 1, · · · (28)

Thus, for each eigen-value αi, the 3-D solution, in the vicinity of an edge is:

ũ(αi) =
∑
j≥0

∂j
3Ai(x3)rαi+jϕ

(αi)
j (θ) (29)

and the overall solution ũ is:
ũ =

∑
i≥1

∑
j≥0

∂j
3Ai(x3)rαi+jϕ

(αi)
j (θ) (30)

where Ai(x3) is the Edge Stress Intensity Function (ESIF) associated with the ith eigen-value. For each
positive eigen-value αi and its primal and shadow eigen-functions, there exist a negative eigen-value and
the associated dual and dual−shadow eigen-functions, denoted by Ψ(αi)

j . These, although not physically
plausible, are used for extraction of the ESIFs (see for details [21,22]).

5.1 The Quasidual Function Method for ESIFs extraction

The ESIF is a function along the edge, and therefore, it is our aim to compute its functional rep-
resentation, and not only its value at specific points. If one is interested in Ai(x3) for example, a
quasidual-singular functions is constructed:

K(αi)
m [B] def=

m∑
j=0

∂j
3B(x3)Ψ

(αi)
j . (31)

where m is a natural integer called the order of the quasidual function, and B(x3) is a constructed function
called extraction polynomial. Each K(αi)

m [B] is characterized by the number of dual singular functions m
chosen.

By using the quasidual functions, one can extract a scalar product of Ai(x3) with B(x3) on E . This is
accomplished with the help of the surface integral J [R], over the a cylindrical surface of radius R denoted
by ΓR. Define:

J [R](f ,v) def=
∫

ΓR

([T ]|ΓR
f · v − f · [T ]|ΓR

v) dS =
∫

I

∫ w

0

([T ]|ΓR
f · v − f · [T ]|ΓR

v)|r=R R dθ dx3 (32)

where I ≡ E (the edge) along x3 and [T ]|ΓR
is the radial Neumann trace operator:

[T ]|ΓR
ũ

def=

⎛
⎝σrr

σrθ

σr3

⎞
⎠ =

⎛
⎝(λ + 2µ)∂r + λ 1

r λ 1
r ∂θ λ∂3

µ 1
r ∂θ −µ 1

r + µ∂r 0
µ∂3 0 µ∂r

⎞
⎠
⎛
⎝ur

uθ

u3

⎞
⎠ (33)

With the above definitions we have the following theorem [21]:

Theorem 1 Take B(x3) such that

∂j
3B(x3) = 0 for j = 0, ....,m − 1 on ∂I (34)

then, if the ESIFs Ai in the expansion (30) are smooth enough:

J [R](ũ,K(αi)
m [B]) =

∫
I

Ai(x3)B(x3) dx3 + O(Rα1−αi+m+1), as R → 0. (35)

Here α1 is the smallest of the eigen-values αi, i ∈ N.
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Theorem 1 allows a precise determination of
∫

I
Ai(x3)B(x3) dx3 by computing (35) for two or three

R values and using Richardson’s extrapolation as R → 0.
Because Ai(x3)’s functional representation is unknown, we seek its polynomial approximation using

the orthonormal Jacobi-polynomials with a given weight w(x3) = (1−x2
3)

n, and similarly for constructing
Bn(x3). Thus, the N -th order polynomial approximation of Ai(x3) is:

Ai(x3) = ã0J
(0)
n + ã1J

(1)
n (x3) + · · · + ãNJ (N)

n (x3) (36)

where J
(k)
n is the Jacobi polynomial of degree k and order n, i.e. associated with the weight w(x3) =

(1 − x2
3)

n. Due to the orthogonality property:∫ 1

−1

(1 − x2
3)

nJ (p)
n (x3)J (k)

n (x3) dx3 = δpkhk (37)

with some real coefficients hk (depending on n), we choose the specific extraction polynomials denoted
in the sequel by JB as:

JB(k)
n (x3) = (1 − x2

3)
n J

(k)
n (x3)

hk
, (38)

so that, according to (37), we retrieve the coefficients ãk in (36) as a simple scalar product:∫ 1

−1

Ai(x3)JB(k)
n (x3) dx3 = ãk k = 0, 1, . . . , N. (39)

Thus, by virtue of Theorem 1, the J [R] integral evaluated for the quasi-dual functions K
(αi)
m [JB] with

the extraction polynomials B = JB
(k)
n , k = 0, 1, . . . , N provide approximations of the coefficients ãk.

5.2 Numerical Example - CTS

Consider the classical compact tension specimen (CTS) shown in Figure 17 under a bearing load of
100[N ] in the x2 direction and constant in x3 direction, as presented in Figure 18. The thickness of the
specimen is 2 ranging from −1 < x3 < 1. Although the loading is independent of x3, because of the
Poisson’s ratio effect and the vertex singularities at x3 = ±1, we anticipate to see a variation in A1 as
the vertices are approached. The domain is discretized by using a p-FEM coarse mesh, with geometrical
progression towards the singular edge with a factor of 0.15 (the smallest layer in the vicinity of the edge
is at r = 0.15). In x3 direction a geometrical progression of the mesh was adopted due to the vertex
singularity at x3 = ±1. Smallest layer in the vicinity of the vertex singular is −1 < x3 < −1 + 0.152,
1 < x3 < 1−0.152. We perform a p-FEM analysis using the trunk space up to p = 7 (125,442 DOF). We

x2
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0.4

0.4

2.5

2.5

1.7
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Figure 17: The CTS dimensions. The thickness of the specimen is 2 ranging from −1 < x3 < 1.

extract the ESIF A1, A2 and A3 as polynomials of degree 4 and 5. A2 and A3 are of order of 10−3 (the
exact value is zero except maybe at the vertices), which is negligible compared to A1, and therefore not
plotted herein. The difference between the approximation of 4th and 5th order polynomial is negligible,
demonstrating that a polynomial of order 5 approximates the ESIF well. The computed function A1

by the QFM and pointwise values of KI using the contour integral method (extracted at several points
along the edge) at R = 0.5, R = 0.3, R = 0.2, and the Richardson’s extrapolation for A1, are shown in

14



Z. Yosibash

Figure 18: The p-FEM model of the CTS with a constant loading in x3 direction.

Figure 19. One may notice the good convergence of the ESIF as R → 0, as well as the better accuracy
compared to the point-wise SIFs.

Although the loading is constant in x3, the vertex singularities influence the the ESIF, and as seen
usually in practice the crack propagation in the middle of the specimen is usually faster than at the
outer surfaces. One may also notice the faster convergence of the ESIF compared to KI values as R →
0. The results obtained using ESIF extraction method are generated faster than point-wise extraction
methods (KI extraction), produce more accurate results and do not require plane stress or plane strain
assumptions.

Moreover, we can see that by using Richardson extrapolation using R = 0.5, R = 0.3 and R = 0.2 we
obtain better results than the extracted KI at R = 0.05, thus we may use a much coarser mesh in the
vicinity of the singular edge.
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Figure 19: A1(x3) and KI extracted using different R’s for the compact test specimen using coarse grid
with 125442 DOF.
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Abstract. This presentation contains an introductory outline of the biography and major achievements of John 
H. Argyris in the area of computational mechanics, emphasizing their influences on the development of light-
weight structures. His contribution to the development of the Finite Element Analysis and his subsequent 
influential work at the University of Stuttgart are also addressed herein. The main areas of interest are the 
numerical methods of analysis initiated by John Argyris on the design of long-span net structures, since their 
origin, in the early 70ies. The design methodology applied for the first time at the University of Stuttgart at that 
time, based on computer applications of analysis is briefly documented. Most important, reference throughout 
the presentation is made to the cable-net structure for the roof of Munich 1972 Olympics-Arenas. The particular 
project, the first of its kind worldwide, represents historically the first architectural-engineering, holistic design 
approach of long-span cable-net structures, attaining the borders of structural engineering of its time. The 
structural requirements demanded equilibrium between the architectural form concept and the structural 
analysis; the latter is based on the concept of form finding as an interactive result of defined loading case, and 
led to the first large-scale computer applications. Further developments from John Argyris and his research 
team are highlighted herein in the respective interdisciplinary research, which followed at the University of 
Stuttgart in the time range of the subsequent 15 years, ever since being invaluable in structural engineering and 
the development of high-technology architecture. 
 
1 INTRODUCTION 

The 5th international congress on computational mechanics is dedicated to the memory of Professor John H. 
Argyris, the most outstanding pioneer in the area, been an exceptional specialist in the field of computers, 
aeronautics and fluid mechanics and one of the inventors and creators of the Finite Element method that 
revolutionised engineering sciences. The finite element method was expanded and applied for the first time 
internationally for the design, development and analysis of the long-span cable-net structure of the Olympic 
Stadium in Munich 1972, making the realisation of the original “architectural vision” feasible. 

The historical evolution of the project is representative in broader context of the fact, that light-weight 
structures revolutionised on their turn architectural technology and engineering in the early 70´s, while having 
established new frame conditions and methodologies regarding cooperation between architects and structural 
engineers in practise and research. Cable-nets as architectural and at the same time structural elements enable a 
wide variety of forms with no similarity, precisely because their form finding obeys strict physical laws as to the 
geometry of the structure and the prestress of the elements. On this line the directly derived architectural 
advantages of lightness, transparency, open and yet protected free spaces, as well as optimal integration in the 
urban context, are made possible due to the respective engineering advancements in structural analysis, initiated 
mainly by John Argyris. 
 
2 THE PERSON, JOHN H. ARGYRIS; HIS EARLY ACHIEVEMENTS 

John Argyris, Professor Emeritus of the University of Stuttgart and the University of London, died on the 2nd 
April 2004 in Stuttgart at the age of 91. Born on 19th August 1913 in Volos, Greece, he was educated in Civil 
Engineering at the Technical Universities of Athens and Munich, where he completed in 1936 his Diploma in 
Engineering with distinction. He was then employed by a private consulting organisation (J. Gollnow & Son, 
Stettin, Germany) working on the technical design of highly complex steel and light alloy structures, including 
the design of a 320 m high radio transmitter mast with a heavy mass concentrated at the top – at that time an 
irresolvable problem. Following post-graduate studies in Aeronautics and Mathematics at the Technical 
University of Berlin and at the Technical University of Zurich he became director of the research department of 
the Royal Aeronautical Society from 1943 to 1949, and joined the University of London, Imperial College of 
Science and Technology, as Senior Lecturer in 1949, Reader in the Theory of Aeronautical Structures from 1950 
to 1955 and Professor of Aeronautical Structures between 1955 and 1975. He was appointed Professor at the 
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University of Stuttgart in 1959, Director of the Institute of Statics and Dynamics of Aerospace Structures 
between 1959 and 1984, and subsequently Director of the Institute of Computer Applications from 1984 to 1994, 
which became one of the most renowned of its kind in the world. 

The comprehensive analytical research work performed by Argyris at the Royal Aeronautical Society on 
elements of the elastic aircraft was included as part of the Handbook of Aeronautics No. 1 in the early 50ies[1]. 
The work on energy theorems and structural analysis undertaken at Imperial College, originally published in a 
series of articles in Aircraft Engineering between October 1954 and May 1955, appeared as a book in 1960, been 
followed by four further editions until 1977[3]. As stated by Argyris himself, the purpose of the work achieved in 
this frame was two-folded: “Firstly, to generalise and extend but at the same time also to unify the fundamental 
energy principles of analysis of elastic structures. Secondly, to develop in considerable detail practical methods 
of analysis of complex structures, in particular for aeronautical engineering applications”. The most important 
contributions are the matrix methods of analysis, whereas Argyris believed that “the matrix formulation besides 
providing an elegant and concise expression of the theory of such structures, is ideally suited for modern 
automatic computation because of the systematic ordering of numerical operations which the matrix calculus 
affords”. As developed in this context, the matrix methods of analysis follow particular forms of the two 
fundamental energy principles applicable to structures made up as an assembly of discrete elements. The first 
principle leads to an analysis in terms of displacements as unknowns (displacement method), while the second 
leads to an analysis in terms of forces (force method). But in stressing the advantages of a unified approach to 
these diverse problems, Argyris pointed even at this time out, that “the ability to tackle successfully problems in 
which the numbers of unknowns is measured in hundreds carries with it the necessity of rethinking one’s 
practical approach, if maximum advantage is to be gained from modern computational techniques, (…) in order 
to reduce the manual preparation of data to a minimum, and reduce the probability of errors”. This respectable 
background, along with the appealing presentation in matrix notation of the dual force and displacement methods, 
raised indeed the active interest in the scientific circles and formed his major contribution in the creation of the 
revolutionary finite elements analysis method. 

Recognizing the significance from the very beginning of an effective utilization of the digital computer in 
structural analysis, Argyris with his Institute of Statics and Dynamics at the University of Stuttgart was mainly 
devoted to the research and development of computer methods for structural analysis. With the development of 
the regional Computing Centre at the University of Stuttgart, stress analysis and the restricted capacity of digital 
computer had favoured the elaboration of the force method first. However further developments as regards the 
computer capacity played an important role in advancing the displacement method, enabling this way the 
complete automation in the computer. The development of automatic system for kinematic analysis (ASKA) 
provided the unifying frame for diverse research activities in the areas of finite elements, solution techniques and 
software. At this time, in the second half of the 60´s intensive research on and with finite elements began, 
replacing by now the term matrix methods. Apart from linear elasticity, geometrical non-linearity and plasticity 
were touched upon at an early stage. 

 
3 LIGHT-WEIGHT STRUCTURES 

Long-span cable-net or membrane structures possess in architectural context several advantages: Column free 
roofing of large areas, the possibility of translucent covering, fast and easy erection, dismantlement, recycle 
ability and intensive space experience. These can be supplemented with the definition of “usage”, expanded on 
its term, a) through the recognition of persistent values´ assessments determining the contemporary beliefs of 
usage or usefulness, b) through the decision of planning and constructing buildings based on presently set usage 
necessities or on more conditional flexibility for further usages to plan with and c) through the construction of 
buildings allowing for future changes in their disposition. Light-weight structures in architecture should thus 
imply the development of an optimal structural form, having at the same time the identity of a “sculptural 
element”, whose image and effectiveness correspond to the task formulation of space delimitation, related to the 
usage and urban context. The analogies towards the forms of nature are easily perceived visually, although these 
buildings are in their construction and development of high technology. 

Light-weight structures stand in the process of design, or better of the form-finding, closer to the applied 
sciences than the design and arts, although they look like they were designed freely. Both, cable-net and 
membrane structures are stressed only in tension while flexible in bending, and stabilised through prestress. 
Cable-nets usually consist of two intercrossing cable meshes with opposite curvature to each other, leading to 
primarily anticlastic shapes. The cable meshes are prestressed against each other and connected to flexible edge 
cables in bending, in order to carry their loads to singular anchoring points (fig. 1). Due to manufacture reasons, 
in the regular inner areas almost equally meshed nets are selected. For the creation of the double curvature high 
and low points – masts and anchorage points on foundations – are developed, having a fixed spatial location in 
space. Support conditions, members stiffness and axial properties are main factors affecting the final form. For 
these structures, form, construction and stress distribution are conditioned reciprocally, i. e. the structural form 
cannot be geometrically determined and then analysed in its static behaviour, the way this is practised for 
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conventional buildings. Instead, the design geometry is revised in an iterative process of form finding, so long 
until the equilibrium form under the imposed requirements and edge conditions has been reached. Furthermore, 
alterations of the structural form have direct consequences in the construction and montage of all elements. Form 
finding means the search for a form, which initiating from the design idea, satisfies to the best the static forces 
and material specific conditions, in the sense of an optimization. In this context, the subjective selection of the 
architectural form is rather replaced by the objective determination of the structural form. 

 
3.1 The Olympic Stadium of Munich 

When the architectural competition on Friday 13.10.1967 for the sporting premises of the 20th Olympic 
Games in 1972 in Munich was won by the Stuttgart architects Behnisch & Partner with Juergen Joedicke, the 
advantages of the design were obvious, arising from the main architectural idea for a transparent, unusual and 
innovative tent roof (fig. 2). Nevertheless no one from the jury actually believed that the proposed design of the 
light-weight structure, covering an area of 75.000 m², could be realised. Frei Otto and Fritz Leonhardt, both 
Professors at the Faculty of Civil Engineering at the University of Stuttgart, while not having participated in the 
design, insisted on the contrary. The competition results were documented in the German architectural press as 
follows[7]: “The realisation and conviction are important, that not the tent roof structure à la Montréal was 
awarded, as a fashion of architecture, but it was the overall concept of the work of Behnisch that convinced the 
jury. (…) The built form is not the primary, but the aim conception for a task, which exactly is not derived from 
a formal aspect but from the nature of the problem. And for this the technological construction possibilities 
ought to be found”. 

On the 1.3.1968 Behnisch & Partner were commissioned with the construction of the sport premises on the 
southern area of the Olympic park. The prestressed cable-net roof was set to further planning. A timber and a 
perlite concrete covering of the net were abandoned, as well as a timber shell solution. All systems were too stiff 
for the selected roof form. The preliminary construction solution was then found by Frei Otto and his team 
through model studies. Owing to the lack of other possibilities, initially tulle models were measured 
photogrammetrically to ascertain the exact cutting pattern. At that time, only model techniques, geometrical 

 

Figure 2. Aerial view of the Olympic Stadium in Munich 1972 

 

Figure 1. Principle of force transition in two cable-net elements 
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expedients and idealised calculation methods, that were adequate for relatively simple forms, were used. To that, 
construction possibilities would compensate the insufficiencies of the design, the construction planning and the 
finishing on site. Nevertheless, such traditional methods of design, practiced already by Frei Otto with Rolf 
Gutbrod and Fritz Leonhardt for the preceded German pavilion of the Expo 67 in Montréal could not satisfy any 
more the requirements for precision, safety and calculability of the particular structure; in detail, the 
requirements with respect to the geometrical precision, as well as the cutting pattern, meaning the determination 
of the exact length of all cables under the planned prestress, material related issues, as for example cable 
anchorages and fittings and the prefabrication demanded totally new solutions. As a matter of fact the light-
weight structure of Munich showed that to that point there was no experience with the scale and measures of the 
particular project. With the task of its construction the breakthrough into a different, new quantitative dimension 
was needed, as this project went to the borders of structural engineering of its time in many fields: Structural 
design, computer application, material science and technology, structural detailing, prefabrication, welding 
technology, erection. 

The costs of the project increased from an originally estimated amount of 17 millions DM to 190 millions 
DM, not only due to the necessary high-technology construction but also due to lack of practical experience with 
this new technology from the planners. The words of the German politician Hans-Jochen Vogel are remarkable 
in this context[6]: “I have voted from the beginning for this project and I would have given an unconditional yes 
even today (1972), in knowledge of all facts. (…) A society should also once bring the strength and the courage 
to spend a large amount for an aim-free project, in narrow sense, for an architectural work of art. Without this a 
lot of buildings would not have originated, that we count today with pride to the unrenounceable components of 
human culture”. In this frame the planned expenditure should remain manageable; otherwise the reaction at a 
misfortunate effort would fall socially destructive. All decisions taken for the project complied with the aims set 
in correspondence to the state of technology and science to select progressive but sufficiently secure solutions. 

 
3.2 Analytical form finding 

Form finding implies a procedure for the investigation of the geometry of the structure. The principle of form 
finding relates to the fact that under given loads a favourable geometry of the structure is adjusted. Favourable 
flow of forces and form are interdependent. The form and the respective stress situation, that is also dependent 
on the material properties lead to the equilibrium state. Analytical form finding is, contrary to the experimental 
methods, based on physical models. In dependence to the position of the outer guyed points – fixed points –, the 
connection of the net in its knots and the size of the tension forces of the individual cables, an endless variety of 
equilibrium forms can be developed. The final solution is a compromise between function and aesthetics on one 
side, and allowable forces, uniformity in their distribution, material properties and deformations under the 
loading on the other side. 

In prestressed cable-nets the geometric form and the prestress, which develops through elastic alteration of 
the length of all individual elements, are unified with each other. Modification of the double curvature and the 
prestress are the most important ways for influencing and optimising the strains. But influencing the curvature 
relations in the net means always alteration of the fixed points, i. e. alteration of the height and location of the 
guyed points and with this, a sensible encroachment in the overall design concept. This particular property of 
prestressed cable-nets concentrates in influencing the stiffness and overall structural behaviour under different 
loadings only through global modifications of the curvature, through modification of the location of the fixed 
points and the prestress in the entire net. On this line, aim of the form finding is the calculation of the structure 
with defined geometric edge conditions in obtaining a concrete stress situation. 

Computer oriented calculation methods that were developed at the Institute of Statics and Dynamics for 
Aerospace Structures and were at that point for long time applied with success offered the decisive momentum. 
In correspondence to the requirements of computer applications in structural engineering there is the aim at 
foreground of investigating analytically each individual structure with a unified calculation process. The method 
of analysis through finite elements includes the following main steps: 
- Fictive division of the structure in small individual elements (finite elements) 
- Mathematical description of the behaviour manner of every fictive element according to a behaviour pattern 
- Join of individual elements to a discrete mathematical model for the entire structure 
- Numerical investigation of the displacements and stresses in the discretised structure according to a 

predefined loading. 
A direct application to the stated problem formulation for long-span net structures was nevertheless not 

possible. New developments regarding the theory and calculation programs with appropriate formulation and 
design of the second and fourth analysis step became necessary and had to be worked out in very limited time. 
Within six weeks a new safe calculation of the structure was to be set up at the Institute of Statics and Dynamics 
of Aerospace Structures. The Institute was once again required to perform pioneer work and succeeded to 
manage the given tasks, while achieving a breakthrough with the calculation of nonlinear problems with more 
than 11.000 unknowns (fig. 3). The success of the new computer designs was confirmed by the problem free 
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mounting and the stability of the structure. The affordance of the first large scale computers CD6600 in Germany 
showed repeatedly, what kind of revolution was initiated in the engineering sciences. 

In the applied method of finite elements, the static equilibrium of the prestressed net was investigated 
through a geometrical nonlinear elastostatic analysis. The investigated form of the structure was at first 
approximated and then numerically improved interactively, until equilibrium at the required prestress level was 
achieved (fig. 4). In general the origin can even be a flat net, which is prestressed between fixed points in plane. 
The fixed points are then shifted vertically for bringing the net in a spatial curved shape. The calculation is 
nonlinear due to significant modifications in the net geometry. The prescribed displacements destroy the 
equilibrium state of the cable forces. Therefore, for every displacement state of the supports the related 
equilibrium form of the prestressed net is investigated. The procedure can also be described as the numerical 
simulation for a stepwise hanging of the net from the origin plane. The method is not restricted only to cable-nets, 
but it can also be applied at equal level to membrane structures and structures with cable and membrane 
components. 

 
3.3 Construction 

The developed cable-net structure consisted of a number of almost regular saddle-shaped surfaces framed by 
edge cables (fig. 5). In the case of the stadium roof, a huge massive edge cable curving around the boundary of 
the playing field provides the tension for the roof to project over the stands. By contrast, for example the 
swimming hall was given a freeform geometry, point-suspended from an overhanging mast on the outside. 
Following the design phase, in the choice of cables and the construction design, a modular principle was adopted 
in order to achieve clarity in design and a sense of calmness and tranquillity through structural order, as well as 
for rationalisation by means of serial production. This ensured that the building would be completed on time. For 
this reason, the edge, ridge and valley cables in the nets consist all of an identical locked coil cable with diameter 
of 80 mm, meaning that according to requirements, one, two or more of these cables were linked one after the 
other. In this way all the clamps, devitative grooves in the cast saddles, and cable anchors could be standardised. 
The large edge cable for the stadium was treated in a similar manner, as were in principle, the bundles of 
prestressed strands for the stay cables. 

Designed as the first permanent cable net construction, minimum corroding tendencies, minimum sensitivity 
to transverse forces on the clamps and devitative points or to bends during erection, as well as controlled 
expansion were all deciding factors in the choice of cables made of 19 thick wire strands. In addition, rotating 
clamps with a single-screw pivot were used, resulting in double strands. In this way rotating nodes were realised, 

 

Figure 3. Analytical form finding of the east tribune with finite elements[5] 

Figure 4. Typical procedure for analytical form finding of light-weight structures 
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so that no deformation restrictions of the meshes would result in unacceptable falsification in cutting the nets to 
size. At the factory stage, aluminium clamps with a centered hole were pressed on for ensuring that no additional 
measurements would be needed at the site. 

The 75 x 75 cm mesh width of the double layer cable-net was meant to be as large as possible in order to 
minimise the number of clamps and nodes, but small enough for the net and its covering to be accessed directly, 
thus enabling it to be erected without scaffolding. Following long consultations with specialists it was decided, 
that the roof should be covered with translucent, quadratic brown toned acryl-glass plates with dimensions in 
plane of 3 m, connected to flexible rubber supports. 

 
4 COMPUTER APPLICATIONS 

In the short time available between the architectural competition and the construction of the project it was not 
possible to achieve an entirely harmonic composition between form, construction and function. Even so the 
result in Munich was a great success internationally. The phase of in-depth study for evaluation of the gained 
experience, integration and consolidation succeeded. The instrumentation was enlarged and at high level 
optimised. That was the time of initiation of the special interdisciplinary research area 64 on Long-Span Net 
Structures. The research was undertaken based on a multidisciplinary composition of 12 Institutes of the 
University of Stuttgart, covering the related areas of architectural analysis, historical development, structural 
analysis, construction and computational mechanics. 

The pioneer spirit of the first time phase continued in the following years. Fundamental considerations on the 
natural methodology conceived earlier by Argyris were consistently extended from structural mechanics to the 
mechanics of solid continua, heat flow and fluid dynamics up to the mid 80ies. With the form finding for the 
suspended cable roof of the Olympic Stadium in Munich, a period was initiated which was dedicated to an 
automatic form generation, including pronouncedly nonlinear problems in statics, dynamics, finite strains in 
elasticity and plasticity. In nonlinear elastic structures, progress was achieved regarding issues of static and 
dynamic stability under non-conservative loading. The conclusion of the research on the form finding, the statics 
and dynamics of long-span net structures formed the basis for the subsequent development of a modern program 
system for nonlinear analysis of such structures. The treatment of the tasks in the frame of the special research 
area demanded the development of a corresponding project group at the Institute, which was in its 
interdisciplinary composition unique. Involved herein were the disciplines of statics and dynamics, numerical 
analysis and programming, subsequently joined by the material mechanics. The developed calculation 
procedures could be expanded and applied for further studies, as for example for the stadium of Niedersachsen in 
Hanover and the Olympic Stadium of Montréal. 

Following emeritation from the Institute of Statics and Dynamics of Aerospace Structures at the University 
of Stuttgart, Argyris founded the Institute of Computer Applications, which soon became one of the most 
renowned of its kind in the world for research and development in engineering and science. At that time, from 
1986 until 1988, Argyris published the material on the finite element method in three volumes that had been the 
subject of work at the Institute in Stuttgart[4]. Interdisciplinary research on an international level was 
characteristic, the projects ranging from the micro-mechanics of materials to re-entry aerodynamics within the 
European Hermes Programme and the utilization of novel computer architectures such as multiprocessor ones. 
Further primary area of interest was on chaotic phenomena, which fascinated Argyris for years and concluded 
with the publication of a textbook in 1994[2]. But ever devoted to the academia, Professor Argyris stayed in close 
relation with his office even after the Institute of Computer Applications was restructured in 1994. 

 
5 CONCLUSIONS 

The continuous, creative work of John H. Argyris has left its mark on science, his personality influenced 
generations of engineers, scientists and researchers, who studied his thorough accomplishments in the fields of 

   

Figure 5. Detail views of the cable-nets 
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computational mechanics. More than 400 paper publications documenting his work, his founding in 1972 of the 
Journal “Computer Methods in Applied Mechanics and Engineering”, as well as his distinguished memberships, 
among others to the Royal Society (F.R.S.), 1986, and to the Royal Aeronautical Society (F.R.Ae.S.), from 1955 
onward, 18 honorary doctoral titles, Professorships and more than 25 awards, prizes and medals from 16 
industrialized nations of the world, among others the Einstein award, the von Kármán Medal in 1975, the 
Timoshenko Medal in 1981 and the Prince Philip Medal in 1997, are all indicative for his achievements in the 
engineering sciences. 

If one makes the question of the relation of aims and means, it seams that the answer is clear: Aims should 
not always be set according to means. The historical importance of the Olympic Stadium in Munich and since 
then, its every day usage is today subject to no disagreement. When presently it is realised with high certainty 
that the construction type of long-span structures is entirely commanded and a series of design and analysis 
methods is available, this is the outcome of the interdisciplinary work during and after the period of Munich 
1972 Olympics-Arenas. The subject area will still occupy for many years architects and engineers while bearing 
further on fruits. The first light-weight structures in Munich secured international influence and recognition, and 
light-weight structures are built according to these ideas and the method of analysis developed. Elsewhere 
independent further developments have arisen. New materials support these developments. What remains the 
same is the methodology of design and the tools of analysis that enabled the breakthrough for implementation at 
the first place. 
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Abstract. The limit load of a stone arch bridge can be identified by the lack of solvability of a finite element 
analysis including contact interfaces that simulate potential cracks. Opening or sliding at some of them 
indicates crack initiation. The ultimate load has been calculated by using a path - following (load 
incrementation) technique. The method is applied on the Strathmashie stone bridge and the results are 
comparable with the ultimate failure load prediction of the collapse mechanism method and with experimental 
data published in the literature. 
 
 
1 INTRODUCTION 

The limit load of a masonry arch is mainly attributed to the interaction of unilateral (no-tension) effects and 
the structural form. In the present work the limit load of such a bridge is calculated by exploiting the solvability 
of the arising unilateral structural analysis problem. The finite element of the bridge includes a number of 
interfaces obeying unilateral contact with friction. The loading conditions of the bridge include the self weight 
and a concentrated load at the middle of the span or at the quarter-span. A parametric investigation demonstrates 
the influence of the location of the concentrated load, of stick or stick-slip conditions and of the number of 
interfaces on the limit load. The results are compared with the ultimate failure load of the traditional collapse 
mechanism method[10] and with the results of the experimental work reported in[9]. 
 
2 UNILATERAL CONTACT FINITE ELEMENT ANALYSIS AND ESTIMATION OF THE LIMIT 
LOAD   

The structural analysis problem for an elastic structure with unilateral contact interfaces takes the form: 
 
                                                                                                 
                                                       (1) 
 
                                                       (2) 
                                                       (3) 
                                                        
                                                       (4) 
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In the above equations, K is the stiffness matrix, u is the displacement vector, r represents the Lagrange 
multipliers and is equal to the normal pressure –tn, PO is the self - weight and  P is the live (applied) load of the 
structure. The problem described by equations (1) - (4) is a linear complementarity problem (LCP) [5].  

For the theoretical study and the solution of the unilateral contact problem, the arising variational inequalities 
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and the available numerical techniques, the reader may consult [1], [2], [4], [5], [6], [8]. By considering a loading path 
with a scalar load parameter λ, the structural analysis problem is transformed to a parametric linear 
complementarity problem. The maximum value of λ for which problem (1)-(4) has a solution is related with the 
limit load.  

A path - following method is applied here, thus λ is a scalar loading factor which will be used in the sequel 
for the determination of the limit load; 0 failureλ λ≤ ≤  0, where failureλ  represents the value of the loading factor 
in which the unilateral contact problem does not have a solution. For more information on the solvability 
conditions for unilateral contact problems the reader is refered to[3]. 

The behavior in the tangential direction is defined by a static version of the Coulomb friction model which 
takes into account stick - slip effects and, in analogy to the deformation theory of plasticity, is suitable for 
holonomic loading. This means that two contacting surfaces start sliding when the shear stress in the interface 
reaches a maximum critical equal to: 

 
,n

cr tτ µ=                                                                            (5) 
 

where tn is the contact pressure and µ is the friction coefficient. 
The variational inequality problem is transformed into a system of nonlinear equations by means of a suitable 

Lagrangian method. Finally, a set of nonlinear equations is solved by the Newton-Raphson incremental iterative 
procedure[4], [5], [6], [7]. 

 
3 THE BRIDGE WITH FRICTIONAL CONTACT INTERFACES 
Quadrilateral, four - node, bilinear, plain strain elements are used for the finite element model of the bridge. The 
model has 3302 nodes and 3036 elements. Large displacement effects are neglected. 
 
 

 
Figure 1. Geometry of Strathmashie bridge 
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Figure 2. Mesh of the finite element model 

 
The load is applied in small steps. Termination of the analysis is caused from numerical singularity due to 

negative eigenvalues of the stiffness matrix at the onset of failure. In figure 3 the failure load is given for various 
number of unilateral contact interfaces equidistantly distributed along the bridge. The load is reduced for higher 
number of interfaces. If the force is applied in the middle span, the failure load is greater than if it is applied in 
the quarter span. In the model with 26 interfaces the failure load is approximately equal with that received from 
the experimental work[9], if a quarter span force is applied as it is shown in figure 4. If the friction coefficient is 
assumed to be equal to 0,4 instead of 0,3, the failure load is increased. 

 

 
Figure 3. Failure load - Number of interfaces 

 
 

 
Figure 4. Failure load 
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4    MECHANISM OF COLLAPSE 
A comparison between the results received from the collapse mechanism method[10] and the finite element 
method is presented. The program Archie-m has been used for the implementation of the collapse mechanism 
method. The failure load is found by solving the equilibrium equations of the arch; this is achieved by creating 
the thrust line of the arch[10]. When the thrust line in a cross section is adjacent to the ring of the arch, a hinge is 
opened in that point. According to the upper bound theorem from the theory of plasticity, the maximum load 
corresponding to some collapse mechanism is greater or equal to the maximum load corresponding to the real 
collapse mechanism. This theorem implies that when the thrust line is adjacent to the ring of the arch in four 
points then the arch is not safe. Friction is high enough between stones and sliding failure cannot occur. The 
masonry has an infinite compressive strength. 

A finite element model without sliding, equivalently with infinite friction coefficient is developed and used 
for the comparison. The failure load of this model with 26 interfaces and the quarter span load is four times 
greater than the experimental one. The deformation of the model at the onset of collapse is shown in figure 5. 
The load is applied at the quarter span of the bridge. Four hinges are opened. The comparison with the results of 
the collapse mechanism method given in figure 6, is satisfactory. 

 
Figure 5. Failure mode of the 26 interfaces contact model - Quarter span load 

 

 
Figure 6. Failure mode calculated by the collapse mechanism method - Quarter span load 
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5   CONCLUSIONS 
A model of unilateral contact with friction integrated into a finite element analysis can be used for the 
determination of the ultimate failure load of a masonry bridge. For a quite large number of potential interfaces, 
the computational ultimate load calculated by the model with friction with a quarter span load is equal with the 
experimental one. The model without frictional sliding, which is more compatible with the collapse mechanism 
method, led to higher values. The four hinge mechanism when failure occurs is confirmed both by the usage of 
the contact model and of the collapse mechanism method. 

One advantage of the proposed method is that it can be numerically implemented within every modern, 
general purpose, nonlinear finite element program (Abaqus has been used here), provided that no failure due to 
numerical instabilities arise before the activation of the failure mechanism. Otherwise a limit load problem must 
be formulated and solved, a task which would have required the use of specialized software. 
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Abstract. The objective of this work is to obtain the optimum design of 3D steel framed buildings with 
perforated I-sections beams. The optimization problem is considered as a combined sizing, shape and topology 
optimization problem. The size of the columns and the beams of the structure of each storey constitute the sizing 
design variables, while the number and the size of the web openings of the beams constitute the topology and 
shape design variables, respectively. Two distinctive formulations of the optimization problem are considered 
depending on the Finite Element (FE) simulation used, with beam and shell discretization. The two formulations 
are compared in terms of the optimum design achieved. The test examples studied, showed that a reduction in 
the structural weight of the building is achieved by incorporating web openings into the beams of the structure. 
A mixed-discrete Evolutionary Algorithm specially tailored, for this type of structural optimization problems is 
implemented in this work. Additionally a mesh generator has been developed, to be coupled with the 
optimization procedure, when the discretization with shell element is used. 
 

1 INTRODUCTION 

The Steel I-sections are nowadays widely used in the design of steel framed structures. There are three major 
reasons for considering web openings: (i) for incorporating services within the floor-ceiling zone of the 
building, (ii) for cost efficiency and (iii) in order to protect the beam column connections from high stresses. 
Moreover, the provision of multiple circular openings in the beams also became a popular architectural feature 
of these structures. For the above mentioned reasons a number of studies have been carried out in the past 
dealing with the behavior of I-section beams with web openings [1], while design codes have incorporated 
guidelines into the design rules [2]. In the authors’ knowledge, no studies have been reported on the optimum 
design of steel framed structures with I-sections having web openings. 

In most of sizing optimization problems of 3D steel frames the beam element simulation is adopted [3]. 
However many phenomena, like local buckling, non conventional geometries, like I-section beams with web 
openings, among other, that affect significantly the behavior of the structure, is not possible to be taken into 
account with the beam element simulation. Furthermore, in the framework of an optimization procedure, 
additional features like shape and topology optimization cannot be dealt adequately with conventional finite 
element simulation. For this reason a more detailed discretization, using triangular shell elements, is proposed in 
this work.  

During the last three decades many numerical methods have been developed to meet the demands of 
structural design optimization. The great improvements in the optimization methods and the advancements in 
computer technology have made optimization an important part in the design of structures. Optimization 
algorithmic methods can be classified in two categories, the deterministic and the probabilistic ones. 
Mathematical programming methods are the most popular methods of the first category, while evolutionary 
algorithms are the most widely used class of methods of the second category. In this work an evolution based 
algorithm is considered for the solution of the optimization problem at hand [4]. 

The design optimization of 3D steel framed structures is examined in this study using a triangular shell 
element discretization which is compared, in terms of the optimum design achieved, with the beam element 
discretization. In the formulation of the optimization problem with the beam element discretization only sizing 
design variables are used. In the formulation with the shell element discretization three types of design variables 
are considered: sizing, shape and topology. The sizing design variables are referred to the dimensions of the 
cross sections of the beams and the columns. The shape design variables are referred to the size of the openings 
at the webs of the beams, while the topology design variables are referred to the number of the web openings 
along the beam length. According to past studies on the subject of reduced webs, the openings may be 
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rectangular or circular and must be in the form of discrete openings or a series of identical openings along the 
beam. In this study circular openings are considered and the case of a series of identical openings is adopted. 

2. REDUCED WEB - DESIGN CRITERIA 
In order to understand the effects of both the shapes and the sizes of web openings to the structural performance 
of perforated sections, it is important to relate the global shear force and bending moment acting on the 
perforated sections to the local co-existing forces and moment, acting on the tee-sections above and below the 
web openings. It should be noted that any increase in the opening depth always reduces both the shear and the 
moment resistances of the perforated sections while it has no effect on the applied forces, i.e. the global shear 
force and bending moment at the perforated sections. Thus, both shear and flexural failures of the perforated 
sections are primarily controlled by the size of the opening. 

However, while the opening length has no effect on the local shear and moment resistances of the tee-
sections above and below the web openings, any increase in the opening length will increase the local 
Vierendeel moment acting at the tee-sections significantly. Thus, the Vierendeel mechanism of the perforated 
sections is essentially controlled by the opening length. In practice, both the opening depth and the opening 
length are geometrically related, and thus any increase in sizes in web openings of given shapes will reduce not 
only the global shear and the global moment resistances of the perforated sections, but also the local axial, shear 
and moment resistances of the tee-sections. Furthermore, the Vierendeel moment is also increased at the same 
time.  

 

Figure 1. I-section with web openings 
 
In the studies reported so far and in the design codes related to beams with circular openings the following 
restrictions in the design of steel beams with large openings should be followed [1]. 

• All web openings should be located along the centerline of the web. 
• The maximum diameter of a circular opening should be 0.75 times the total height of the beam H (D≤ 

0.75×H), see figure 1. 
• The distance between the edges of adjacent openings should not be less than the total height of the 

beam H (e≥ H), see figure 1. 
• The distance between the edge of a web opening and an adjacent point load should exceed D (b>D), 

see figure 1. 
• The distance between the edge of the web opening that is closer to the beam’s edge should exceed D 

(k>D), see figure 1. 
• The center of the web opening should be located away from restrains, point loads or supports by a 

distance of at least the overall section height of the steel beam H. 

3. THE OPTIMIZATION PROBLEM 

Structural optimization problems are characterized by various objective and constraint functions that are 
generally non-linear functions of the design variables. These functions are usually implicit, discontinuous and 
non-convex. The mathematical formulation of structural optimization problems with respect to the design 
variables, the objective and constraint functions depend on the type of the application. However, most 
optimization problems can be expressed in standard mathematical terms as a non-linear programming problem. 
A mixed-discrete structural optimization problem can be formulated in the following form: 
 



Lemonis D. Psarras,   Nikos D. Lagaros   and   Manolis Papadrakakis. 

d d c cd 1 n c 1 n

d c

( ) min
=[s ,...,s ] , =[s ,...,s ]

,
( ) 0,  j=1,2,...,m

→

∈ ∈

≤

s
s s

s s
s

d c

T T

n n

j

F

D C
g

     (1) 

Where s = (sd,sc), sd and sc are the vectors of discrete and continues design variables respectively, while D and C 
are the discrete and continuous design sets of size nd and nc, respectively.  

There are three main classes of structural optimization problems depending on the type of the design 
variables employed: sizing, shape and topology. In sizing optimization problems the aim is usually to minimize 
the weight of the structure under certain behavioral constraints on stresses and displacements. The design 
variables are most frequently chosen to be dimensions of the cross-sectional areas of the members of the 
structure. In structural shape optimization problems the aim is to improve the performance of the structure by 
modifying its shape. The design variables are either some of the coordinates of the key points in the boundary of 
the structure or some other parameters that influence the shape of the structure. Structural topology optimization 
assists the designer to define the type of structure, which is best suited to satisfy the operating conditions for the 
problem at hand. In the current study the task of topology optimization is to define the number of the web 
openings in each group of the beams. 

Two distinctive formulations of the optimization problem are employed in this study and assessed in terms of 
the optimum design achieved. The difference of the two formulations stems from the type of FE discretization 
used. In the fist one the conventional beam element discretization is used while in the second one a detailed shell 
element discretization is applied. For each formulation separate behavioral checks are considered. These 
behavioral checks are performed following a structural analysis where stresses and displacements are calculated. 

3.1 Beam element discretization 
The first formulation corresponds to a discrete optimization problem (nc = 0) with sizing design variables only, 
corresponding to the size of the groups of the beams and the columns of the structure. The constraint functions 
for beams subjected to biaxial bending under compression are given by the following formula of Eurocode 3 
(EC3) [5]: 

sd,y sd,zsd

y M1 pl,y y M1 pl,z y M1

M MN
1.0

Af / W f / W f /
+ + ≤

γ γ γ
    (2) 

where sd sd ,y sd ,zN , M , M  are the computed stress resultants, pl,y pl,zW , W are the plastic first moment of inertia, yf  
is the yield stress and M1γ  is a safety factor equal to 1.10. The interstorey drift constraint employed in a frame 
structure can be written as: 
 

rd
0.004 h≤ ×

ν
      (3) 

where ν is a reduction factor (taken equal to 2.0 for the test examples considered in this study) and dr is the 
relative drift between two consecutive stories. 

3.2 Shell element discretization 
In the second formulation the detailed FE discretization makes possible the consideration of web openings on 
the beams and for this reason additional shape and topology design variables are considered. The optimization 
problem is a mixed-discrete optimization problem where the sizing (referred to the dimensions of the beams and 
the columns) and topology (referred to the number of web openings) are discrete design variables while the 
shape design variables (referred to the size of the web openings) are continuous. The von Mises yield criterion is 
employed in order to assess the value of an equivalent stress that will be compared with the yield stress fy. 
Therefore the following expression has to be satisfied for each triangular shell element: 

2 2 2
1 2 1 2 y M0σ +σ -3σ σ +3τ f γ≤      (4) 

where 1 2σ ,σ ,τ  are the stresses in the middle surface x-y of the triangle and M0γ  is a safety factor equal to 1.10. 
The interstorey drift constraint is also employed expressed as in the case of beam element discretization. 
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4. MESH GENERATION 

In the second formulation of the optimization problem, where a shell element discretization of the FE model is 
used, a mesh generator for creating the FE mesh for every new candidate optimum design needs to be 
implemented. For this reason a mesh generator specially tailored for generating a shell element mesh in 3D 
framed buildings with I-sections having web openings has been developed. The mesh generator is fully 
parameterized regarding the geometric data with respect to the beam and column dimensions, the number and 
the dimensions of the circular web openings. 

The geometric data that is required by the mesh generator is the following: (i) the coordinates of the joints of 
the elements of the building (hypernodes which define the FE model for the case of the beam element 
discretization), (ii) the dimensions of the I-sections of the beams and columns and (iii) the number and the size 
of the circular web openings. Special care should be given in creating a good quality mesh around the openings 
and near the joints as shown in Figure 2. The mesh nodes of the beams should be compatible with either the 
mesh nodes of the web of the flanges of the columns that the beams meet to the joint in question. 

 

Figure 2. Detail of the generated mesh 

An attempt to derive an efficient and robust shell finite element led Argyris and co-workers to the 
formulation of the TRIC (TRIangular Composite) shell element [6]. The formulation is based on the natural 
mode method. TRIC is a shear-deformable facet shell element suitable for linear and nonlinear analysis of thin 
and moderately thick isotropic as well as of composite plate and shell structures, while due to its natural 
formulation it does not suffer from the various locking phenomena [7]. The TRIC element is considered reliable, 
accurate and cost-effective as has been shown in previously published work [8,9]. 

5. EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms (EA) were proposed for parameter optimization problems in the seventies with 
continuous variables. In engineering practice the design variables are not continuous because usually the 
structural parts are constructed with certain variation of their dimensions. Thus design variables can only take 
values from a predefined discrete set. In this work a new mixed-discrete EA optimizer is proposed. Each 
individual, in the proposed mixed discrete EA, is equipped with a set of parameters 
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where sd and sc are the vectors of discrete and continuous design variables, respectively. Vector γ corresponds to 
the variances of the Poisson distribution. Vector σ

+∈ nRσ  corresponds to the standard deviations (1 ≤ nσ ≤ nc) of 
the normal distribution while vector n[ π,π]∈ −α a corresponds to the inclination angles (nα = (nc-nσ/2)(nσ-1)), 
defining linearly correlated mutations of the continuous design variables sc. Vectors γ, σ and α are the 
distribution parameter vectors. 

Let P(t) = {a1,…,aµ} denotes a population of individuals at the t-th generation. The genetic operators used in 
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the EA method are denoted by the following mappings: 
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mut :  (Ι ,Ι ) (Ι ,Ι ) mutation
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→
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   (6) 

A single iteration of the EA, which is a step from the population P(t) to the next parent population P(t+1) is 
modeled by the mapping 

µ µ
EA d c d copt  :  (Ι ,Ι ) (Ι ,Ι )→      (7) 

Combining the recombination, mutation and selection operators the main loop for the case of (µ,λ)-EA is 
formulated as follows: 

( )(g) (g)
( , ) i 1opt (P ) sel {mut(rec(P ))}λ λ
µ λ −ΕΑ µ == ∪    (8) 

While for the case of the (µ+λ)-EA scheme the main loop is formulated as follows: 

 ( )(g) (g) (g)
( ) i 1opt (P ) sel {mut(rec(P ))} Pµ+λ λ
µ+λ −ΕΑ µ == ∪ ∪   (9) 

The optimization procedure terminates when the following termination criterion is satisfied: the ratio µb/µ has 
reached a given value εd (=0.8 in the current study) where µb is the number of the parent vectors in the current 
generation with the best objective function value. 

6. TEST EXAMPLE 

For the purposes of this study a two storey 3D frame, with fixed supports at its ground nodes has been 
considered for the evaluation of the proposed methodology. The following material properties have been 
considered: steel with modulus of elasticity Es=210GPa and yield stress fyk,s=350MPa. Three groups of columns 
and six groups of beams are considered as shown in Figure 3, in total 21 design variables, nd = 15 and nc = 6. In 
this work the (5+5)-EA scheme has been used for solving the optimization problem. 

 

Figure 3. The two storey space frame 

6.1 Efficiency of the shell element discretization 
In the first part of the numerical investigation, a parametric study is performed. In order to find the best 
combination between accuracy and computational efficiency, a parametric study has been carried out for the test 
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example considered before accomplishing the optimization procedure. The purpose of this parametric study was 
to define the most efficient shell discretization in terms of accuracy and computational efficiency in order to be 
used during the optimization procedure. In Table 1 the results of this parametric study are shown. The TRIC 
element proved to be very efficient since it can be seen that even a coarse mesh can predict with acceptable 
accuracy the response of the structure. For the optimization procedure the 3 and 4 aspect ratios have been 
selected for the columns and the beams respectively. (The aspect ratio of a shell element  is considered the 
length over width). 
 
 
 

Table 1. Parametric study 
 

Column 
aspect Ratio 

Beams 
aspect Ratio ux (cm) Nodes Elements 

5 5 9.5 2384 4096 
4 5 9.8 2552 4384 
4 4 9.9 2864 4920 
3 4 10.4 3132 5384 
3 3 10.7 3708 6392 
2 3 10.8 4196 7224 
2 2 10.9 5300 9152 
1 2 10.5 6812 11744 
1 1 10.7 10100 17472 

0.5 1 10.7 15068 26544 

6.2 Optimization results 
In the second part of this study the advantages of the design with web openings are demonstrated through a 
comparison with the formulation based on the beam element discretization. For this test example the optimum 
designs achieved by the two formulations are shown in Table 2. As it can be see in Table 2 the optimum design 
achieved with the beam element simulation corresponds to a weight 15% higher compared to the optimum 
weight achieved using the shell element simulation. The shell element simulation allows the consideration of 
openings on the webs of the beams, and this is the main reason for the reduction of the weight of the structure. 

 
 

Table 2. The optimum designs 
 

Design Variable Beam Shell (nopen,D) 
1c HEB500 HEB450 
1b IPE400 IPE400(10,D37.3)  
2b IPE200 IPE200(11,D15.9) 
3b IPE400 IPE300(12,D25.7) 
4b IPE200 IPE180(13,D14.6) 

   
Weight (kN) 69.7 59.9 
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Figure 4. Optimum design 

7. CONCLUSIONS  

In this study a mixed discrete Evolutionary Algorithm has been implemented for the optimization problems 
encountered. Two distinctive design formulations are examined depending on the type of the FE simulation, 
with beams and shell elements. The beneficial effect of the detailed FE simulation with the TRIC shell element 
combined with the consideration of web openings is demonstrated. An improvement of 15% on the optimum 
weight has been achieved compared to the optimum design achieved with the beam element simulation. 
Evolutionary Algorithms have proved to be a robust and efficient tool for economically design optimization of 
steel 3D framed buildings with web openings. 
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Abstract.  As the initial geometry and response of a suspension bridge under permanent load can be easily 
established in construction phase, the problem of finding the cable forces,  the deformed geometry and the 
resulting bending response of the stiffening girder for the prescribed live load has been treated under the 
necessary consideration of the second order theory effects. The problem is reduced to that one of a beam 
subjected to an accordingly determined transverse and axial tensile load and is solved in a way which is directly 
applicable for preliminary design purposes. A dimensionless formulation of the problem is included in the paper, 
which may lead through a parametric study to the  influence of the geometric data, the cable section and the 
girder inertia properties on the examined response. 
 
 
INTRODUCTION 
 
The suspension bridges is the structural system which is adequate for bridging very long spans and as such has 
been established over many years in the engineering history of mankind, achieving nowadays a high level of 
performance in all the technologically advanced countries. 
As can be seen in Fig.1 the basic structural components of a suspension bridge system consist of the stiffening 
girder or truss, the main cables, the main towers and the anchorages. 
 

 
 
                                                              Figure 1.   Suspension  bridge  layout 
 
The purpose of the present paper is to give a very simple tool to estimate the increase in structural response 
regarding the cable force and the bending of the girder, due to the action of the live load for which the suspended 
system has to be designed. Although there are also other design criteria regarding e.g. dynamic actions, the 
examined static response is of essential importance. The analysis handles essentially with a single simply 
supported beam suspended on a cable with fixed supports. In that way the influence of the side spans as well as 
the deformability of the main towers of the bridge are ignored. Although the approach is approximate and 
directed to preliminary design purposes, the influence of the deformed geometry is appropriately taken into 
account (second order theory)  
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ANALYSIS 
 
The cable tensile force Hg is appropriately calibrated with respect to the desired sag  f  so that for the existing 
dead load (cable self weight included) g, the deck takes an absolutely horizontal position or even exhibits some 
light concave upwards curvature. It will be :  

                                                                       Ηg =  g*L2/8*f                                                                                  (1) 

Funicular  shape 

f y

gH Hg

gM 0

gM

=       / f
0
gM

g

 
                                                   Figure  2.  Funicular form of the cable under dead load 
 
In this way the bending of the girder is kept to a negligible level, given the small distance of the hangers. 
Nevertheless the action of an additional live load p on the girder tends to deform the cable and this additional 
cable deflection η , due to the assumed relative inextensibility of the hangers, will be imposed exactly the same 
on the stiffening girder.   
The girder should be able on one side to restrict the cable deformation resulting from the live load and on the 
other to resist the bending imposed to it by this very same deflection as previously mentioned. 
However, as can be seen later, the influence of the girder stiffness on the cable deflection decreases for very long 
spans , because the increasing cable weight plays then an important role.     
 
In the present work, the additional cable force represented by its horizontal component  Hp will be dealt together 
with the determination of the additional deflection η, as well as of the implied bending of the girder. Though the 
approach will be approximate and appropriate rather for preliminiray design purposes, the consideration of the 
equilibrium of the system takes into account the deformed geometry  (second order theory).  
  

y(x)η(x)

η(x)

x

g
p

z(x) 

x

z(x) = y + η

qc

Increase  of  the  cable  force  due  to  live  load

Cable  force  due  to  dead  load  
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Curvature  due  to  dead  load

Forces  acting  on  the  cable

1/r :

H   :
H   :

g

p
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H = H  + H
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Vertical  equilibrium

g p

S

S

:  Horizontal  component  of  the  axial  force  S  
 
                                          Figure  3.   Cable deformation and acting forces 
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The girder is in equilibrium under the following loadings : 
1) Self weight g 
2) Live load p acting on a specified length 
3) The actions qc(x) of the hangers directed upwards which, due to the small distances of the hangers can be 
considered as continuously distributed. 

g

qc

Forces  acting  on  the  girder

p

 
                                                     Figure 4 . Acting forces on the girder 
The loadings g and p can be considered uniform but  the loading qc(x) changes along the girder length. As this 
loading is applied also to the cable the latter will assume correspondingly a new funicular shape different from 
the former parabolic one due to the uniform load g.     
If  z(x) represents the new cable geometry and H is the horizontal component of its axial force, from the 
equilibrium of an elementary cable segment and according to the well known “funicular” relation  q = H*(1/r)  it 
is obtained   

                                                                   H
dx

zdxqc 2

2
)( −=                                                                           (2) 

In this relation qc(x) represents a downward action, whereas the term  - dz2/dx2   stands for the cable curvature.  
 
According to Fig.3  : 
                                                                          z(x) = y(x) + η(x)                                                                           (3) 
and      

                                                                               H = Hg + Hp                                                                           (4) 

 
The girder is in equilibrium under a total load q(x), which, taken downwards as positive, is :   

                                                                            q(x) =  - qc(x) + g  + p                                                              (5) 

and is related to the bending response M of the girder, according the equilibrium relation   

                                                                              d2M/dx2 = - q(x)                                                                      (6) 

Then, according to the basic constitutive relation for the girder bending   

                                                                             2

2

dx
dIEM η

∗−=                                                                      (7) 

it is obtained  :      

                                                                             
4

4

dx
dEI η  =  q(x)                                                                       (8) 

Replacing in the above expression of q(x) and taking into account that  

                                                                          02

2
=+⋅ gH

dx
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g                                                                        (9) 

it is obtained : 
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As the term  d2y/dx2 equals the negative cable curvature under the load g  - i.e. ( - 8*f/L2 ) - ,  the above 
differential equation of the suspended beam takes the form : 
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r

H
pHH

dx
d

dx
dEI p

pg −=+− )(2

2

4

4 ηη                                                    (11) 

This result is recognized according to the second order theory, as the equation of a simple beam having a 
transverse load (p – Hp/r) and being subjected to an axial tensile load (Hg + Hp).  

p
H  / rp

H  + Hg p H  + Hg p

If the deflection curve  satisfies the basic  cable  equation
then  the deformation and the bending response can de directly  deduced

Fictitious  beam  :

 
                                                          Figure 5 .  Acting  forces on the fictitious beam 
 
According to a well known result of the second order theory of beams,  η(x) can be determined (of course as 
function of Hp) from the relation  

                                                                              
ξ

η
+

⋅=
1

1
1W                                                                         (12) 

where W1  represents the deflection line of the classical simply supported beam under the load (p – Hp/r) and  

                                                                           ξ = ( Hg + Hp)/Pcr                                                                       (13) 

with  Pcr  its buckling load, equal to ( π2 ΕΙ/L2 ).  
Now, the increase  Ηp of the cable force Hg is related to the additional deflection η through the established 
relation [1] :        

                                                  dx
dx
ddx

H
gL

EA
H LL

g
s

cc
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0

2

2

0
2
1                                                (14)   

where, for ratios f/L  between  1/10 and 1/12 ,  the length Ls is given with good approximation from the 
expression :   
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                                                   Figure  6.  Cable deformation under direct action of live load  
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It has been found that the omission of the second integral term in the right side of the above equation affects very 
little the overall accuracy, so it can be written more simply : 

                                                                  ∫=∗
L

g
s

cc

p dx
H
gL

EA
H

0

η                                                                 (16) 

 
According now to the usual design practice, two loading configurations for the live load p have to be taken into 
account, namely one acting on the left half of the girder length and the second one extending over the whole 
span. The first loading leads to the most unfavorable girder bending, whereas the second one leads to the 
maximum developed value of cable  force.  
   

p/2

H  / rp

H  + Hg p H  + Hg pFinal  loading  of  the  fictitious  beam

gH  + HpgH  + H

p

H  / rp
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H  + HgH  + Hg p

p

p

p

p/2

The  antisymmetric  loading  is  inactive

Fictitious  beam  

Partial  live  load  on  half  span

Live  load  over  the  whole  span

Fictitious  beam   
 
                                                          Figure 7.  Characteristic positions of live load on the fictitious beam 
 
In the first case the load p is equivalent to the action of a symmetrical load (p/2) over the whole span and an 
antisymmetric one (p/2), as shown in Fig.7.  The deflection line η(x) of the fictitious beam can be equally 
evaluated from the superposition of the deflection  ηsym due to symmetric loading (p/2 – Hp/r)  over the whole 
length and of the deflection ηant due to the antisymmetric loading  (p/2) according to Fig.7. It is noted that this 
superposition is possible, given the constant axial load of the beam. After these considerations the last equation 
is written :  
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As ηant represents an antisymmetric function, the second integral in the right hand side of this equation vanishes, 
so it is obtained finally  
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It is obvious that this relation is valid also for the second case where the fictitious beam is loaded with (p – Hp/r) 
over its whole length.   
 
As it has been previously noted, ηsym can be determined with satisfactory accuracy from the expression 

                                                                         
ξ

η
+

⋅=
1

1
1Wsym                                                                        (19) 

where W1 represents the deflection line of the simple beam with the transverse load  
(p* – Hp/r) and p* equals either p/2 for the partial loading of the left half of the span, or p for the loading of the 
whole span.  
 
The deflection line W1 of the beam results as the bending diagram of the simple beam under the load (Μ1

0/ΕΙ) , 
where Μ1

0 is the function of the bending moment of the beam due to the loading  (p* – Hp/r). 
It is obtained :  
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Replacing in the above expressions gives : 
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Replacement and rearrangement of the last equation leads to the following algebraic equation of second order for 
the unknown Hp : 
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which is written in the final dimensionless form : 
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where : 

                         
I

LA
E
E

k cc
2

2

2

8115
8 ∗

⋅⋅
⋅+

⋅=
λ

λ   ,    
EI

LLgG
⋅⋅

⋅
⋅

= 2

2

8 πλ
    and    

L
f

=λ                  (24) 

 
After the determination of Hp the bending response of the stiffening girder can be directly established. 
From the previous examination it can be concluded that the bending responses of the suspended and of the 
fictitious beam are identical. Partial loading with the live load results in maximum bending moment Mmax  about 
at the quarter of the span, whereas loading over the whole length results in maximum increase in cable force.  
 
For the case of partial loading  it is : 
 
                                                                       antsym MMM +=max                                                                    (25) 
where : 
                                                          sympgsymsym HHMM η∗+−= )(0                                                     (26) 

or  
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The term ξ/4  is due to the fact that in the middle of the fictitious beam the deflection curve exhibits an inflection 
point and as a result its buckling load is multiplied by four.  
The above quadratic equation could be studied parametrically to give the influence of the above introduced 
parameters to the final results  
 
 NUMERICAL  EXAMPLE 
 
For a numerical application the example of Bosporus bridge is taken with the following data according to [2] and 
following the introduced notations in this paper. 
 
L = 1074 m                      f = 91 m 
E = 2.1*108  kN/m2      Ec = 1.9*108 kN/m2 
I = 1.88  m4                   Ac = 0.40 m2 
 
The permanent weight g is 150 kN/m2 and the live load p is taken equal to 24 kN/m2 
 

The initial cable force Hg is determined according to Eq.1  as  
f
LgH g ∗

∗
=

8

2
 = 237700  kN 

For the determination of the additional cable force Hp the dimensionless parameters are established according to 
Eqs 24 : 
 λ = 0.08473           k = 804.016        G = 70.36  

The buckling load of the beam is :  9.33772

2
=

∗
=

L
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For the partial loading with the live load, according to Eq.23, the following quadratic equation has to be solved : 

0)2/()1(
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∗−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

g
pGk

P
H

Gk
P
H

cr

p

cr

p  

It is obtained :  Hp /Pcr = 5.14  so that  Hp = 5.14*3377.9 = 17362 kN 
 
This positioning of the live load gives rise to the maximum bending response of the girder. According to the 
above expressions it is : 
Msym = 4052 kNm           and         Mant = 10224 kNm   and consequently : 
Mmax = 4052 + 10224 = 14276 kNm 
 
Loading now the whole span with the live load results in the maximum cable force through the solution of the 
quadratic equation, according to Eq.23 : 
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It is obtained :   Hp /Pcr = 10.22  so that  Hp = 10.22*3377.9 = 34522 kN 
 
 
CONCLUSIONS 
 
A simple procedure for the estimation of the increase in cable force and of the bending moment in stiffening 
girder of a suspension bridge due to the imposed live load is proposed. The procedure is preferable a detailed 
finite element analysis especially for preliminary design purposes, including second order effects. It is presented 
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in a dimensionless form appropriate to assess the influence of the geometric data of the system on the overall 
response.   
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Abstract. Plane steel portal frames, with pitched roof, exposed to fire, are examined. Yield stress and Young 
modulus of steel are assumed constant up to 300°C and then linearly decreasing to zero for 900°C. First, a 
determinate frame, with a single vertical load at the apex, is analysed by hand. For flexible columns and shallow 
roof, snap-through occurs before plastic hinges mechanism is formed. Then, an indeterminate frame, with stiffer 
columns, taller roof and vertical loads at the middles of rafters, is examined. This frame is first analysed by hand 
for the static loads and a gradual temperature increase. Also, a limit plastic analysis of the frame is performed 
by hand. In order to take into account geometric non-linearities due to large displacements and material non-
linearities due to plastic yielding, the frame is simulated by a truss, which has a simple stiffness matrix, updated 
within each step of the temperature increase. The bars obey non-linear uniaxial stress-strain laws. The 
temperature increase rises the roof, which initially strengthens the frame, but a further increase of temperature, 
and subsequent reduction of Young modulus and yield stress of steel, leads finally to collapse of frame. 
 
 
1 INTRODUCTION 
 
 A fire, occurring in a multi-bay, multi-storey frame, is usually confined in one compartment only, thus a local 
collapse is possible. Whereas, in a portal frame exposed to fire, a global collapse may happen, as a portal frame 
consists of one compartment only. This is a reason that the fire analysis of portal frames have attracted a 
particular interest[3,8]. 
 In a portal frame with pitched roof, if the beams are flexible and the roof shallow, a snap-through of roof 
apex is possible. The circumstances, under which a snap-through occurs in such a frame, are investigated in the 
literature[6,7]. Recently, for the relevant problem of large deflections of plane frames, a simple formulation has 
been proposed based on position description[2]. This concept is used in the present work. 
 If an early snap-through does not occur in a portal frame with pitched roof, the frame may finally fail by the 
formation of a plastic collapse mechanism[3,8]. 
 Aim of present work is to investigate the behavior of plane steel portal frames with pitched roof, exposed to 
fire. Wherever this is possible, simple analyses, by a hand calculator, are performed. For a more accurate 
nonlinear analysis of a frame, the Finite Element Method can be used [1]. Here, a frame is alternatively simulated 
by a truss model[3-5], which has a simple stiffness matrix and can simply describe material non-linearities by the 
nonlinear uniaxial stress-strain laws of bars, as well as geometric non-linearities by writing the equilibrium 
conditions with respect to deformed structure, within each step of the gradual temperature increase. 
 
2 DETERMINATE FRAME ANALYSED BY HAND 
 
2.1 Given data 
 The plane determinate symmetric steel portal frame of fig. 1a, with a pitched roof and a vertical load at the 
apex, is considered. Fig. 1b shows the shape and dimensions of the beam cross-section, fig. 1c the primary 
elastoplastic stress-strain σ-ε curve of steel for 20°C. Fig. 1d presents the assumption that yield stress σy and 
Young modulus Eo of steel remain constant up to 300°C and then linearly decrease to zero for 900°C. And fig. 
1e the temperature-time T− t history of ISO fire, approximated by a trilinear curve. The coefficient of thermal 
expansion is αT = 10-5/°C. 
 Because of the fast heat conduction in steel, which is counteracted only by the external cold surrounding, it is 
assumed that the steel frame immediately attains the fire gases temperature, and the temperature distribution over 
beam cross-sections is uniform. 
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2.2 Snap-through analysis 
 The geometric non-linearity is taken into account by using the concept of position for the apex, no the 
concept of displacement[2]. The position of the apex is defined by its ordinate y above the head of column as 
shown in fig. 2a in the half of the symmetric frame. For a given value of y we can write the accurate nonlinear 
geometric equation, according to Pythagoras theorem: 

( )
( ) ,0.2650.30.16u0.16y

or,LuLy
2222

2
o

22

=+=++
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where u horizontal displacement of eave, and the reasonable assumption of constant length Lo of the rafter is 
adopted. From the above equation, we can easily, for a given y, find the corresponding u. The inertia moment of 
the beam cross-section is (fig. 1b): 

J = 2×1.6×20×24.22 +1.02×46.83/12 +2×20×1.63/12 = 46208cm4 

Thus, the lateral stiffness of the column is 
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The horizontal thrust of the column is Fx = Ku, the inclination of the rafter tga = y/(L+u) and the corresponding 
load at the apex P = 2Fx tga. 
 For values of y ranging from +6.0m up to −6.0m (with a step ∆y = 0.1m), by applying the above equations, 
the diagram of fig. 2b has been drawn which shows the variation of the load P at the apex with respect to the 
ordinate y of the apex, for room temperature 20°C. We observe in fig. 2b, that, for a vertical load P = 11.1kN, 
directing downwards, for a roof ordinate y = +1.70m, a snap-through of the apex occurs, which suddenly jumps 
to a new position y = −3.45m. 
 All the above happen for room temperature 20°C. For an increase of temperature to T = 300°C, the rafter 
expands to 1.003Lo, thus the unloaded roof height increases to y = 3.255m>3.0m. By following the previous 
procedure, we find that the critical snap-through load increases now to Ps = 13.9kN for a roof height y = 1.875m. 
That is, for T = 300°C, the frame is strengthened against snap-through. However, for further increase of 
temperature with values T > 300°C, the reduction of Young modulus E leads to a reduction of column lateral 
stiffness, thus of critical snap-through load Ps, too. 
 For values of temperature T ranging from 20°C up to 900°C, the critical snap-through loads Ps and the 
corresponding roof heights ys have been found and the diagrams of fig. 3 have been drawn showing the 
variations Ps – T and ys – T. 
 
2.3 Limit plastic analysis 
 In fig. 4a is calculated the ultimate plastic bending moment of the beam cross-section for T = 20°C which is 
Mp = 842.9kNm. As Mp depends on yield stress of steel σy, it remains constant up to 300°C and then linearly 
decreases to zero for 900°C. In fig. 4b, the plastic hinge collapse mechanism of the frame is presented, for which 
we write the virtual works principle and find the ultimate plastic load Pp: 
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Because of the significant variation of Mp with T and the slight variation of y, H with T, the Pp varies with T as 
shown in fig. 3. We observe that, in the specific frame under consideration, for every value of temperature T, the 
ultimate plastic load Pp is larger than the corresponding critical snap-through load Ps. That is, the snap-through 
always happens before the plastic hinge collapse mechanism is formed. Thus, the snap-through determines the 
load that the frame can receive, and we find in fig. 3 that, for the given external load P = 10kN, the snap-through 
happens for a temperature T = 530°C. 
 
3 INDETERMINATE FRAME 
 
3.1 Given data 
 The indeterminate portal frame of fig. 5 is examined. The columns are shorter, thus stiffer and the roof taller 
than in previous example. Two vertical loads P = 80kN are applied at the middles of the rafters. All the other 
given data are the same as in the first application. 
 Obviously, this second frame is stronger than the first one, that is, it can receive heavier loads. Also, it will be 
shown that this frame finally fails by formation of a plastic collapse mechanism, not by a snap-through effect. 
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3.2 Static loading and thermal expansion analysis by hand 
 For T = 20°C, the linear analysis of the frame is performed, for the static loading, by a hand calculator. The 
results are shown in fig. 6a. 
 As the Young modulus E varies with T, it can be shown that the stresses of the frame due to static loading 
remain constant, whereas the deformations due to static loading are constant up to 300°C and then they increase 
being multiplied by the ratio 600/(900 – T). 
 For T = 300°C, the linear analysis of the frame is performed, for thermal expansion only, without static 
loading. The results are shown in fig. 6b. 
 It can be shown that the thermal deformations are proportional to temperature T, whereas the thermal 
stresses, up to T = 300°C, are proportional to T and then they vary by the ratio (10-4/18)⋅T(900–T), having as 
reference state that for 300°C, and they present a maximum value for T = 450°C, for which this ratio becomes 
1.125. 
 For T ranging from 20°C to 900°C, we find the vertical apex displacement, due to static loads on one hand 
and to thermal expansion on the other, as well as the total displacement υ. The results are shown in fig. 7a. Also 
for T ranging from 20°C to 900°C, we find the bending moment at the base of column, due to static loads on one 
hand and to thermal expansion on the other, as well as the total moment Mc (fig. 7b), which is compared with the 
curve showing the variation of ultimate plastic bending moment Mu of beam cross-section with T. In the 
intersection of the two curves Mc – T and Mu – T, we find that the first plastic yield occurs at the base of column 
for T = 635°C and Mc = 375kNm. 
 
3.3 Limit plastic analysis by hand 
 We consider a collapse mechanism of the frame with three plastic hinges, at the sections where the bending 
moments with the maximum absolute values appear, as shown in fig. 8a. We write the virtual work principle for 
this collapse mechanism 
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As the Mu significantly varies with T, whereas y, H slightly varies, we determine the variation of the ultimate 
plastic load Pp with T, which is shown in fig. 8b. We observe that, for the external load P = 80kN, the plastic 
collapse mechanism is formed for T = 726.5°C. 
 
3.4 The proposed truss model 
 In order to perform a more accurate nonlinear analysis of the frame under consideration, by taking into 
account in detail the material non-linearities i.e. the gradual formation of plastic hinges, and the geometric non-
linearities i.e. the significant N – M (axial force-bending moment) interaction, due to large displacements, we 
can use the Finite Element Method[1]. However, the usual Finite Elements have complicated stiffness matrices 
and present difficulties particularly in handling nonlinear problems. A bar of a truss is the Finite Element with 
the simplest possible stiffness matrix. And a truss model can be used as an alternative of a usual finite element 
discretization. A truss model can simply take into account material non-linearities by the nonlinear uniaxial 
stress-strain laws of the bars and geometric non-linearities by writing the equilibrium conditions with respect to 
the deformed structure and updating the stiffness matrix within each step of an incremental loading procedure. 
 Numerical results by truss models have been compared with published experimental data[5] and Codes 
requirements[4] and a satisfactory agreement between them has been observed. 
 The local stiffness matrix of a bar, in 2D, is written: 
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where KE elastic stiffness, KG geometric stiffness, E Young (elasticity) modulus, A cross-section area, ℓo 
undeformed length of the bar, c ={cx   cy} direction cosines of bar axis, N axial force, ℓ present length of the bar. 
 The global stiffness matrix of the truss is written: 

Kg = B diag (KℓI) Bt   i = 1 … nb  ,          (3) 

where B = (Bik), i = 1 … nn, k = 1 … nb, the Boolean (linkage) matrix of the truss, nn number of nodes, nb 
number of bars, Bik =−1 if node i is left end of bar k, Bik =+1 if node i is right end of bar k and Bik =0 if there is 
no connection between node i  and bar k. 
 If we have to simulate a usual steel beam element with a double-tau cross-section, by a rectangular plane 
truss element, first the flanges are, in a simple and obvious way simulated by bars (fig. 9a). Then, by considering 
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the correspondence between the elasticity equations of a plate element, which is the web of the steel beam 
element: 
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 and the force-deformation equations of the rectangular plane truss element, we determine the sections of bars of 
the truss element (fig. 9b), where a Poisson ratio ν = 1/3 is assumed, by the following formulas: 
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If the angle of the web element in fig. 9b is a < 21°, the above formulae cannot be used because negative bar 
sections A1 result, which is inadmissible. In this case of a long web element with ℓ >> d and a < 21°, the 
following simplified formulae can be used for the determination of bar sections of the truss element simulating 
the web of the beam element (fig. 9b): 
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 A short, thus transparent, computer program, with less than 200 Fortran instructions, has been developed for 
the analysis of a plane truss model by an incremental loading (temperature increase) procedure, by taking into 
account material and geometric non-linearities. 
 
3.5 Discretization of the frame 
 The column of the frame under consideration is discretized to four truss elements (fig. 10). The rafter to eight 
elements. And there is one more element for the column-rafter joint. That is, there are totally, 8 + 4 + 1 = 13 
elements, thus 28 nodes, which means that an algebraic system 56×56 of equilibrium equations is solved within 
each step of the incremental loading algorithm. There are 13×5 = 65 bars. The two nodes at the base of column 
have both DOFs restricted. The two nodes of rafter, at symmetry axis, have the horizontal DOFs restricted. For 
the determination of bar sections, all the elements are approximately considered as rectangular. The column and 
rafter elements are long with ℓ ≈ 4d and a ≈ 14°< 21°, thus the simplified formulae (6) are used for the 
determination of bar sections. Only the rafter-column joint element is short with ℓ ≈ d, thus a ≈ 45°> 21°, so here 
the formulae (5) are used for the determination of bar sections. 
 
3.6 Results of truss model 
 The results of the analysis of the second application (indeterminate frame) by the truss model are presented in 
fig. 11, for the following characteristic temperatures: 1) T = 300°C, up to which yield stress σy and Young 
modulus Eo of steel are assumed constant, 2) T = 600°C, for which σy, Eo are reduced to half of their initial 
values, 3) T = 669°C, for which the first plastic yield appears at the base of column, and 4) T = 729°C, for which 
the final plastic collapse mechanism is formed. For every one of the above four characteristic temperatures, the 
deformed configuration of the frame has been drawn, with a large scale for displacements, along with the free 
body diagram of the frame. In each case, a satisfactory agreement of displacements and reactions is observed 
with those previously found by a hand calculator. The first yield appeared at the base of column, where predicted 
by hand, for T = 669°C slightly different from T = 635°C of hand prediction. The final plastic collapse 
mechanism is formed for T = 729°C, very close to hand prediction T = 725°C. However, a slightly different 
failure mode is revealed by the truss model: The yielding at column base is not rotational but translational. In 
other words, the diagonals of web yield, which is a shear yielding. 
 Also, in figs. 7a,b, the variations with T of total vertical apex displacement υ, and total bending moment Mc 
at base of column, respectively, obtained by the truss model, are compared with the corresponding ones, 
obtained previously by a hand calculator, and a satisfactory approximation between them is observed. 
 Up to the first plastic yield of a bar, as the above approximation holds, a linear analysis by the truss model, 
for comparison, seems not necessary. On the other hand, from the first plastic yield until the final collapse of the 
frame, the nonlinear analysis, by the truss model, is necessary. 
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4 CONCLUSIONS 
 
 
1. In a determinate portal frame with pitched roof, with a single vertical load at the apex, a simple analysis by 

hand can be performed, in order to investigate the snap-through effect. 
2. If the columns of the frame are flexible and the pitched roof shallow, snap-through may occur before the 

formation of a plastic collapse mechanism. 
3. For a temperature increase up to 300°C, for which yield stress and Young modulus of steel are assumed 

remaining constant, the roof rises, which implies a strengthening of the frame against snap-through. 
4. In an indeterminate frame analysed first for static loading only, it is observed that stresses remain constant 

for any temperature T, whereas the deformations are constant up to T = 300°C and then, as Young modulus 
decreases, they increase by the ratio 600/(900 – T). 

5. In an indeterminate frame analysed for thermal expansion only, it is observed that the deformations increase 
proportionally with the temperature T, whereas the stresses increase proportionally with T up to 300°C and 
then they vary by the ratio (10-4/18)⋅T(900–T), which takes a maximum value 1.125 for T = 450°C and then 
decreases to zero for 900°C. 

6. For a more accurate nonlinear analysis, a frame can be simulated by a truss model, which has a simple 
stiffness matrix and takes simply into account material non-linearities by the nonlinear uniaxial stress-strain 
laws of the bars and geometric non-linearities by writing the equilibrium conditions with respect to deformed 
structure and updating the stiffness matrix within each step of the gradual increase of temperature. 

7. Numerical results of a steel frame exposed to fire, obtained by a truss model, are found in a satisfactory 
agreement with corresponding results obtained by a hand calculator, as regards deformations and reactions 
for various values of temperature, as well as the temperature and position of first yield and the temperature of 
the final plastic collapse mechanism of the frame. 

8. A shear type of yield failure, at the base of column, has been revealed by the truss model. That is, a yield of 
both diagonal bars of web was observed. 
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Figure 1. Given data of the determinate portal frame 

        
Figure 2. a. Position description of half frame, b. Variation of load P with respect to apex ordinate y for T=20°C 

        
Figure 3. Variation with respect to temperature T of the snap-through critical load Ps, the corresponding apex 

ordinate ys and the ultimate plastic load Pp  

          
Figure 4. a. Ultimate plastic bending moment of beam cross-section for T = 20°C, b. Plastic hinge collapse 

mechanism of the frame 
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Figure 5. Given data of the undeterminate portal frame 

 
 

         
 
Figure 6. Linear analysis of the frame. a. Static loading for T = 20°C, b. Thermal expansion for T = 300°C 
 
 

 
 
Figure 7. Variation with respect to temperature T of: a. Vertical displacement υ of apex, b. Bending moment Mc 

at base of column. Both due first to static loading, then to thermal expansion and total values 
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Figure 8. a. Plastic collapse mechanism of the frame, b. Variation of ultimate plastic load Pp with temperature T 

          
Figure 9.  Simulation of a steel beam element by a truss element 

 
Figure 10. Discretization of the frame 

 

 
Figure 11. Results of truss model for characteristic temperatures 
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Abstract: In this paper a boundary element method is developed for the evaluation of the shear deformation coefficients in 
composite beams of arbitrary constant cross section subjected in transverse shear loading. The composite beam consists of 
materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and 
shear moduli with same Poisson’s ratio and are firmly bonded together. The analysis of the beam is accomplished with 
respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the 
principal ones. The transverse shear loading is applied at the shear centre of the cross section, avoiding in this way the 
induction of a twisting moment. Two boundary value problems that take into account the effect of Poisson's ratio are 
formulated with respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization 
is used. The shear deformation coefficients are obtained from these functions using only boundary integration. 
 
 
1    INTRODUCTION 

The problem of a homogeneous prismatic beam subjected in shear torsionless loading has been widely 
studied from both the analytical and numerical point of view. Both theoretical discussions and text books 
analyzing ways of estimation of shear deformation coefficients are mentioned among the extended analytical 
studies. Numerical methods have also been used for the analysis of the aforementioned problem. Among these 
methods the majority of researchers have employed the finite element method based on assumptions for the 
displacement field or introducing a stress function that fulfils the equilibrium equations. The boundary element 
method has also been employed for the solution of the aforementioned problem only in homogeneous cross 
sections, neglecting Poisson ratio ν or presenting an analysis with respect only to the principal bending axes of 
the cross section restricting in this way its generality. 

In this paper a boundary element method is developed for the evaluation of the shear deformation coefficients 
in composite beams of arbitrary constant cross section subjected in transverse shear loading. The essential 
features and novel aspects of the present formulation are summarized as follows. 

i. All basic equations are formulated with respect to an arbitrary coordinate system, which is not restricted 
to the principal axes. 

ii. The boundary conditions at the interfaces between different material regions have been considered. 
iii. There is no need of splitting the stress function into the sum of two alternate cross section functions 

leading to resolved shear stresses. A stress function is introduced, which fulfils the equilibrium and 
compatibility equations. 

iv. Finite element methods require the whole cross section to be discretized into area elements and are also 
limited with respect to the shape (distortion) of the elements. BEM solutions require only boundary 
discretization resulting in line or parabolic elements instead of area elements of the FEM solutions, 
while a small number of line elements are required to achieve high accuracy. 

v. The effect of the material’s Poisson ratio ν is taken into account. 
Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the 
range of applications of the developed method. The accuracy of the proposed shear deformation coefficients 
compared with those obtained from a 3-D FEM solution of the ‘exact’ elastic beam theory is remarkable. 

2   STATEMENT OF THE PROBLEM 

Consider a prismatic beam of length L with an arbitrarily shaped composite cross section consisting of 
materials in contact, each of which can surround a finite number of inclusions, with modulus of elasticity jE , 
shear modulus jG  and common Poisson’s ratio v , occupying the regions jΩ  (j=1,2,…,K) of the y,z  plane 
(Fig.1). The materials of these regions are firmly bonded together and are assumed homogeneous, isotropic and 
linearly elastic. Let also the boundaries of the nonintersecting regions jΩ  be denoted by jΓ  (j=1,2,…,K.). 

135



V.G. Mokos and E.J. Sapountzakis 

These boundary curves are piecewise smooth, i.e. they may have a finite number of corners. Without loss of 
generality, it may be assumed that the beam end with centroid at point C is fixed, while the x − axis of the 
coordinate system is the line joining the centroids of the cross sections. 
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Figure 1. Prismatic beam subjected to torsionless bending (a) and two dimensional region Ω   occupied by the 
composite cross−section (b) 

 
When the beam is subjected to torsionless bending arising from a concentrated load Q  applied at the shear 

center S of its free end composite cross section, at a distance x from the fixed end, the internal forces are the 
shear forces yQ , zQ  being the components of the concentrated load Q  along y and z  axes, respectively and the 
bending moments yM , zM  given as 
 

( )y zM Q L x= − −  ( )z yM Q L x= −  (1a,b) 
 

Following the procedure presented in[1] and assuming a stress function ( )( ) j
y,zΦ  having continuous partial 

derivatives up to the third order such that the compatibility conditions to be identically satisfied, the transverse 
shear stress components ( )xy j

τ , ( )xz jτ  and the resultant shear stress ( ) jΩτ  in the regions jΩ  (j=1,2,…,K) are 

expressed as 
 

( ) z
xy j yj

j

Q
E d

B y
Φτ

  ∂
= −  ∂   

 ( ) z
xz j zj

j

Q
E d

B z
Φτ

 ∂ = −  ∂   
 ( ) ( ) ( )

1 / 22 2
xy xzj jjΩτ τ τ = +  

 (2a,b,c) 

 
where y zd ,d  are the y,z  components of the vector d  defined by 
 

2 2 2 2

y z zz yz zz yz
y z y zd d I yz I I I yz

2 2
ν ν
      − −

= + = − + − +      
      

y z y zd i i i i  (3) 

 
in which ,y zi i  denote the unit vectors along the y  and z  axes and B  is defined as 
 

( )( )2
1 1 yy zz yzB E E 2 1 Ι Ι - I∆ ν= = +  (4) 

 
depending on the moduli of elasticity, the Poisson’s ratio and the cross section geometry. Substituting 
eqns.(2a,b) in the first equation of equilibrium of the three-dimensional elasticity, the partial Poisson type 
differential equation governing the stress function ( )( ) j

y,zΦ  is obtained as 
 

( ) ( )2
yz zzj

2 I y I zΦ∇ = −  in jΩ    (j=1,2,…,K) (5) 
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where ( ) ( ) ( )2 2 2 2 2

j j j
y z∇ ≡ ∂ ∂ + ∂ ∂  is the Laplace operator and K

j 1 jΩ Ω== ∪  denotes the whole region of the 

composite cross section. 
The boundary conditions of the aforementioned stress function will be derived from the following physical 

considerations: 
• The traction vector in the direction of the normal vector n  vanishes on the free surface of the beam, that is 
 

( ) ( ) ( )xn xy y xz zj jj
n n 0τ τ τ= + =  (6a) 

 
• The traction vectors in the direction of the normal vector n  on the interfaces separating the j and i  

different materials are equal in magnitude and opposite in direction, that is 
 

( ) ( )xn xnj iτ τ=      or       ( ) ( ) ( ) ( )xy y xz z xy y xz zj ij i
n n n nτ τ τ τ+ = +  (6b) 

 
• The displacement components remain continuous across the interfaces, since it is assumed that the materials 

are firmly bonded together 
where yn cos β= , zn sinβ=  are the direction cosines of the normal vector n  to the boundaries jΓ   

(j=1,2,…,K), with y,β = n  (see Fig.1). It is worth noting that on both sides of the equality of (6b) the normal 
vector n  points in one and the same direction, while the third physical consideration ensures the continuity of 
the stress function ( )( ) j

y,zΦ  inside the region jΩ  (j=1,2,…,K) as well as across the boundaries separating 

different materials ( ) ( )( )j iΦ Φ= .  

Substituting eqns.(2a,b) in eqns.(6a,b), the Neumann type boundary condition of the stress function can be 
written as 
 

( )j i j i
j i

E E E E
n n
Φ Φ∂ ∂   − = − ⋅   ∂ ∂   

n d  on jΓ  (j=1,2,…,K) (7) 

 
where iE  is the modulus of elasticity of the iΩ  region at the common part of the boundaries of jΩ  and iΩ  

regions, or iE 0=  at the free part of the boundary of jΩ  region, while ( ) ( ) ( )y zj j j/ n n y n z∂ ∂ ≡ ∂ ∂ + ∂ ∂  

denotes the directional derivative normal to the boundary jΓ . The vector n  normal to the boundary jΓ  is 
positive if it points to the exterior of the jΩ  region. It is worth here noting that the normal derivatives across the 
interior boundaries vary discontinuously. 

Similarly, considering the beam subjected only to yQ  shear force and assuming the stress function 

( )( ) j
y,zΘ  having continuous partial derivatives up to the third order such that all the compatibility conditions 

to be identically satisfied, the transverse shear stress components xyτ , xzτ  are expressed as 
 

( ) y
xy j yj

j

Q
E e

B y
Θτ

  ∂
= −  ∂   

 ( ) y
xz j zj

j

Q
E e

B z
Θτ

 ∂ = −  ∂   
 (8a,b) 

 
where y ze ,e  are the y,z  components of the vector e  defined by 
 

2 2 2 2

y z yy yz yy yz
y z y ze e I I yz I yz I

2 2
ν ν
      − −

= + = − + +      
      

y z y ze i i i i  (9) 

 
Substituting eqns.(8a,b) in the first equation of equilibrium of the three-dimensional elasticity and in the 
boundary condition (6a,b) the following Neumann problem for the stress function ( )( ) j

y,zΘ  is obtained as 
 

( ) ( )2
yz yyj

2 I z I yΘ∇ = −  in jΩ    (j=1,2,…,K) (10) 
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( )j i j i
j i

E E E E
n n
Θ Θ∂ ∂   − = − ⋅   ∂ ∂   

n e  on jΓ  (j=1,2,…,K) (11) 

 
Furthermore, the shear deformation coefficients ya , za  and yz zya a=  which are introduced from the 

approximate formula for the evaluation of the shear strain energy per unit length 
 

2 2
y y yz y zz z

appr .
1 1 1

a Q a Q Qa Q
U

2AG 2AG 2AG
= + +  (12) 

 
are evaluated equating this approximate energy with the exact one given from 
 

( ) ( )
j

22
K xz xyj j1

exact j
j 1 j 1

EU d
E 2GΩ

τ τ
Ω

=

+
= ∑ ∫  (13) 

 

and are obtained for the cases{ }y zQ 0, Q 0≠ = , { }y zQ 0, Q 0= ≠  and{ }y zQ 0, Q 0≠ ≠ , respectively, as  
 

( )( ) ( )( )
j

K

y j j2 j j
j 1y 1

1 Aa E d
E Ω

Θ Θ Ω
κ ∆ =

= = − ⋅ −∑∫ e e∇ ∇  (14a) 

( )( ) ( )( )
j

K

z j j2 j j
j 1z 1

1 Aa E d
E Ω

Φ Φ Ω
κ ∆ =

= = − ⋅ −∑∫ d d∇ ∇  (14b) 

( )( ) ( )( )
j

K

yz j j2 j j
j 1yz 1

1 Aa E d
E Ω

Φ Θ Ω
κ ∆ =

= = − ⋅ −∑∫ d e∇ ∇  (14c) 

 
where 
 

j

K
j

j
j 1 1

G
A d

G Ω
Ω

=

= ∑ ∫    (15) 

 
is the area of the composite cross−section, yκ , zκ  and yz zyκ κ=  are the shear correction factors, ∆ is defined 

from eqn.(4), while ( ) ( ) ( )j j jy z≡ ∂ ∂ + ∂ ∂y zi i∇  is a symbolic vector. Employing the shear deformation 

coefficients ya , za , yza  using eqns (14a,b,c) we can define the cross section shear rigidities of the Timoshenko’s 
beam theory as 
 

sy yGA GA a=  sz zGA GA a=  syz yzGA GA a=  (16a,b,c) 
 
In the case of an asymmetric cross section the principal shear axes, defined as 
 

yzS

yy zz

2a
tan 2

a a
ϕ =

−
   (17) 

 
do not coincide with the principal bending ones, defined by the engineering beam theory. Due to this difference, 
the deflection components in the y and z directions are in general coupled, even if the system of axes of the cross 
section coincides with the principal bending one. If the cross section is symmetric about an axis, the principal 
shear axes system coincides with the principal bending one. In this case, the deflection components with respect 
to the principal directions are not coupled any more ( yz zya a 0= = and yz zyI I 0= = ).  

3   INTEGRAL REPRESENTATIONS − NUMERICAL SOLUTION 

According to the precedent analysis, the evaluation of the shear deformation coefficients in a composite beam 
reduces in establishing the stress functions ( )( ) j

y,zΦ  and ( )( ) j
y,zΘ  having continuous partial derivatives up 

to the third order, satisfying the governing equations (5), (10) inside the regions jΩ  (j=1,2,…,K) of the y, z  
plane and the boundary conditions (7), (11) on the corresponding boundary jΓ , respectively. The numerical 
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evaluation of these functions is accomplished using the procedure presented in Mokos and Sapountzakis[1], while 
the shear deformation coefficients ya , za , yz zya a=  are obtained from the relations 
 

( )( ) ( )2 2 2
y yy y yz z yy yz ed e2

1

A 1a 4v 2 I I I I v I I I I
4E Θ Θ Θ∆

 = + − + + − 
 

 (18a) 

( )( ) ( )2 2 2
z zz z yz y zz yz ed d2

1

A 1a 4v 2 I I I I v I I I I
4E Φ Φ Φ∆

 = + − + + − 
 

 (18b) 

( )( ) ( ) ( )2
yz zz z yz y yy y yz z yy zz yz ed e2

1

A 1a 2v 2 I I I I 2v I I I I v I I I I I
4E Θ Θ Φ Φ Φ∆

 = + − + − − + − 
 

  (18c) 

 
where  
 

( )( ) ( )
j

K

e j i j
j 1

I E E dsΘ Γ
Θ

=

= − ⋅∑∫ n e  (19a) 

( )( ) ( )
j

K

e j i j
j 1

I E E dsΦ Γ
Φ

=

= − ⋅∑∫ n e  (19b) 

( )( ) ( )
j

K

d j i j
j 1

I E E dsΦ Γ
Φ

=

= − ⋅∑∫ n d  (19c) 

( )
j

K
4 4 2 3

ed j i
j 1

2I E E y z sin z yco s y z sin ds
3Γ

β β β
=

 = − + + 
 

∑∫  (19d) 

( ) ( ) ( ) ( )( )
j

K
3 2 4 2

y j i yz yy j
j 1

1I E E I y z 2I y z sin 3 co s y y ds
6Θ

Γ

β Θ β
=

 = − − + − ⋅ ∑ ∫ n e  (19e) 

( ) ( ) ( ) ( )( )
j

K
4 3 2 2

z j i yz yy j
j 1

1I E E 2I z y I z y co s 3 sin z z ds
6Θ

Γ

β Θ β
=

 = − − + − ⋅ ∑ ∫ n e  (19f) 

( ) ( ) ( ) ( )( )
j

K
4 3 2 2

y j i yz zz j
j 1

1I E E 2I y z I y z sin 3 co s y y ds
6Φ

Γ

β Φ β
=

 = − − + − ⋅ ∑ ∫ n d  (19g) 

( ) ( ) ( ) ( )( )
j

K
3 2 4 2

z j i yz zz j
j 1

1I E E I z y 2I z y co s 3 sin z z ds
6Φ

Γ

β Φ β
=

 = − − + − ⋅ ∑ ∫ n d  (19h) 

 

4   NUMERICAL EXAMPLES 
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Figure 2.Composite circular tube cross section of the cantilever beam of Example 1. 
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Example 1 

A cantilever beam of a composite circular tube cross section (Fig.2) has been studied. In Table 1 the shear 
correction factors yκ , zκ  (values in parentheses come from Cowper’s[2] definition) for various values of the 
Poisson’s ratio are presented.   
 

1 2E E  3 2E E  yκ  zκ  

                                                                               v 0=  

1 0.681859  (0.681818) [2] 0.681859   (0.681818) [2] 1 
2 0.640786 0.657460 
2 0.641179 0.641179 2 
3 0.619113 0.626847 
3 0.616298 0.616298 3 
4 0.602910 0.607428 
4 0.600434 0.600434 4 
5 0.591500 0.594473 
5 0.589558 0.589558 5 
6 0.583187 0.585294 

                                                                              v 0.3=  

1 0.679233   (0.714024) [2] 0.679233   (0.714024) [2] 1 
2 0.638623 0.655198 
2 0.639397 0.639397 2 
3 0.617548 0.625189 
3 0.614919 0.614919 3 
4 0.601652 0.606107 
4 0.599284 0.599284 4 
5 0.590427 0.593355 
5 0.588554 0.588554 5 
6 0.582234 0.584310 

Table 1 : Shear Correction Factors of the composite cross section of Example 1. 
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Figure 3. Composite cross section of the cantilever beam of Example 2. 



V.G. Mokos and E.J. Sapountzakis 

Example 2 

A cantilever beam having the cross section shown in Fig.3 has also been studied. In Table 2 the shear correction 
factors yκ , zκ  for the Poisson’s ratios v 0=  and v 0.33=  are presented, respectively, as compared  wherever  
possible with those obtained from a 3-D FEM solution[3] of the ‘exact’ elastic beam theory. The minor alteration 
of the shear correction factors with the Poisson’s ratio variation is verified. 
 

yκ  zκ  
1 2E E  

v 0=  v 0.33=  v 0=  v 0.33=  

1 0.833427 0.817572 0.833412 0.831403 
2 0.709248 0.701529 0.800961 0.799247 
3 0.615573 0.611080 0.776744 0.775299 
4 0.547215 0.544287 0.759048 0.757802 
5 0.495951 0.493891 0.745721 0.744624 

6.837 0.429505 0.428269 
(0.428) [3] 

0.728338 0.727431 
(0.727) [3] 

Table 2 : Shear correction factors of the composite cross section of Example 2. 
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Figure 4. L-shaped composite cross section of 

the cantilever beam of Example 3. 

Example 3 

A cantilever beam having the L-shaped 
composite cross section shown in Fig.4 has also 
been studied. In Table 3 the shear correction 
factors yκ , zκ  and yzκ  for various Poisson’s 
ratios of the composite cross section are 
presented. 

Example 4 

A cantilever beam of the composite cross section 
consisting of a HEB-300 totally encased in a 
circular matrix, as shown in Fig.5, has been 
studied. In Table 4 the shear correction factors 
are presented, for various 1 2E E  ratios. 

 
 

v 0=  v 0.3=  
1 2E E  

yκ  zκ  yzκ  yκ  zκ  yzκ  

1 6.94797 6.94797 -9.39352 6.89009 6.89008 -10.4203 
2 6.31971 7.48088 -9.96204 6.26030 7.43914 -10.8879 
3 5.88818 7.69788 -9.47095 5.82538 7.66498 -10.2073 
4 5.63135 7.81607 -9.13537 5.56410 7.78885 -9.75711 
5 5.47999 7.89124 -8.97955 5.40770 7.86797 -9.53309 
6 5.39318 7.94390 -8.95006 5.31554 7.92352 -9.46158 
7 5.34746 7.98327 -9.00643 5.26430 7.96509 -9.49145 
8 5.32882 8.01410 -9.12245 5.24006 7.99765 -9.59073 
9 5.32849 8.03910 -9.28115 5.23411 8.02402 -9.73916 

10 5.34079 8.05989 -9.47129 5.24081 8.04595 -9.92353 

Table 3 : Shear correction factors of the composite cross section of Example 3. 
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Figure 5. Composite cross section of the cantilever beam of Example 4. 
 
 

1 2E E  yκ  zκ  

5 0.838187 0.708029 
6 0.830843 0.677910 
7 0.823672 0.650976 
8 0.816794 0.626828 
9 0.810262 0.605101 

10 0.804093 0.585472 

Table 4 : Shear correction factors yκ , zκ  for v 0.3=  of the composite cross section of Example 4. 

5   CONCLUDING REMARKS 

a. The numerical technique presented in this investigation is well suited for computer aided analysis for beams 
of arbitrary composite cross section, while the analysis is performed with respect to an arbitrary system of 
axes and not necessarily the principal one. 

b. The convergence of the obtained results employing the proposed numerical procedure with those obtained 
from a 3-D FEM solution applied to the ‘exact’ elastic beam theory is easily verified. 

c. The alteration of the shear deformation coefficients with the Poisson’s ratio variation is not significant. 
d. The accuracy of the results is remarkable. 
e. The developed procedure retains the advantages of a BEM solution over a pure domain discretization method 

since it requires only boundary discretization. 
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Abstract. The simplified models used for the simulation of the mechanical behavior of the Lead-Rubber Bear-
ings (LRBs) are not always sufficiently accurate. The current paper attempts to certify the accuracy of the sim-
plified models by comparing their mechanical behavior with the behavior of proper finite-element micromodels.
The LRBs consist of two mounting steel plates located at the top and bottom of the bearing, several alternating
layers of elastomer and steel shims and a central lead core. In the paper, the geometric shape of these bearings
is modeled analytically with sufficient accuracy by taking into account detailed fabrication drawings of a stan-
dard LRB, while several thousands of solid finite elements are used for the modeling of the rubber layers, the
steel plates, the steel shims and also the lead core. Two alternative micro-models are formed and investigated, in
an attempt to define the bounds of the effects of the lead core's confinement to the behavior of the bearing. The
models are tested for vertical static loading followed by a horizontal cyclic loading and the distribution of
strains, stresses and plastic zones within the bearing is studied. Also the lateral force-displacement curves ob-
tained from the analytical study are compared to the respective simplified bilinear elastoplastic curve suggested
by the manufacturer of the LRB.

1 INTRODUCTION

The elastomeric Lead-Rubber Bearings (LRB), which are used for the base isolation of structures, generally
consist of two fixing steel plates located at the top and bottom of the bearing, several alternating layers of elas-
tomer and steel shims and a central lead core (Figure 1a). The elastomeric material provides the isolation com-
ponent with lateral flexibility, the lead core provides the energy dissipation or damping component, while the
internal steel shims provide the vertical load capacity of the bearing. The steel shims, together with the top and
bottom steel fixing plates, also confine the central lead core. During the seismic excitation of the structure, the
rubber layers deform laterally by shear deformation, allowing the structure to translate horizontally and absorb-
ing energy when the lead core yields [1].

For the deformation and strength capacity control of each bearing part (rubber layers, lead core and steel
shims) and for the different load conditions (vertical load, cyclic lateral loading, buckling control, etc.) that must
be taken into account according to the Code Provisions [2], simple analytical formulas are used. These formulas
are referred to a simplified model of the bearing, not necessarily the same for each design check.

Even for a more detailed description of the bearing’s response to lateral loading, simple analytical models
are also used, usually with one finite element and bilinear elastoplastic law with hardenind [3], or with two finite
elements (one perfectly plastic and one unlimited elastic) in parallel conection [4]. In these models, the bearing’s
parameters that describe the lateral force–displacement bilinear law are the initial elastic stiffness Ku, the yielded
stiffness Kd, the characteristic strength Qd and the lateral design displacement Dd. Values for these parameters
are acquired from the manufacturer of the bearing, so as to be in accordance with the elaborated results from a
series of experimental tests, where the basic matching criterion is the equivalence of the hysteresis loop area
between the experimental and the analytical model. They can also be predicted with remarkable accuracy by us-
ing simple analytical formulas, except from the initial elastic stiffness Ku value which is mainly a function of the
fabrication details of the bearing and especially of the confinement of the lead core. It should be noted that lim-
ited only attempts of using finite element micromodels for the analysis of the LRBs are known to date and they
mainly focus on determining the lateral force-displacement curves of the bearings [5].

143



In this paper, the geometric shape of these bearings is modeled analytically by taking into account detailed
fabrication drawings of a standard lead-rubber bearing, while several thousands of solid finite elements are used
for the modeling of the rubber layers, the steel plates and shims and also the lead core. Two alternative micro-
models are formed and investigated, in an attempt to define the bounds of the effects of the lead core's confine-
ment. The models are tested for vertical static loading together with horizontal cyclic loading and the distribution
of stresses and plastic strains within the bearing is studied. Also the lateral force-displacement curves obtained
from the analytical study are compared to the respective simplified bilinear elastoplastic curve suggested by the
manufacturer of the isolation bearing.

2 ANALYTICAL MODELING

The LRB under consideration is the Skellerup150 isolator, made by  the Skellerup Industries[1] and shown
in Figure 1a. The isolator consists of:
• 2 loading steel plates (top and bottom) with a 601 mm diameter and a 31,8 mm thickness,
• 2 fixing steel plates (top and bottom) with a 431 mm diameter and a 25,4 mm thickness,
• 11 rubber layers with a 431 mm diameter and a 9,5 mm thickness,
• 10 steel shims with a 431 mm diameter and a 3,0 mm thickness,
• a central lead core with a 116,8 mm diameter and a 185 mm height.

The basic technical specifications given by the manufacturer are as follows:
• design compressive load DCL=667 kN (150 kip),
• lateral design displacement Dd=0,1524  m,
• yielded stiffness Kd=858 kN/m,
• elastic stiffness Ku=11050 kN/m,
• lateral force (at Dd)= 251,3 kN.
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The proposed finite element model of the bearing (model-1) is shown in Figure 1b and includes 5632 solid
hexaedron 8-node elements for the rubber layers, 2560 elements for the steel shims and 1440 elements for the
lead core, to a total of 12448 elements and 14326 nodes. In model-1, full bond was assumed between the steel
and rubber material. Also the lead core was assumed to be tightly fitted in the bearing [6], thus considering fixed
boundary conditions to hold between the lead core and the steel shims and rubber layers. However, since the
confinement of the core depends on the manufacturing details, a second alternative model (model-2) was formed,
without any interaction between the lead core and the steel shims and rubber layers, in order to define the bounds
of the effects of the core’s confinement to the deformation and stress state of the bearing. In the later model the
lead core was firmly connected only with the top and bottom fixing plates of the bearing.

The steel material of the top and bottom plates and the shims was assumed to be a mild steel with a Young
modulus E=21×107 kN/m, Poisson’s ratio ν=0,30, bilinear elastoplastic constitutive law  (Figure 2a) with 5%
strain hardening ratio and a Von Mises yield criterion with σy=240×103 kN/m2 (uniaxial). The lead core was as-
sumed to have a Young modulus E=18×106 kN/m, Poisson’s ratio ν=0,43, bilinear elastoplastic constitutive law
(Figure 2b) and a Von Mises yield criterion with σy=19,5×103 kN/m2 (uniaxial). For the rubber layers an hyper-
elastic material law was considered (Figure 2c), according to the Arruda-Boyce constitutive model [7] which
was properly modified in order to take into consideration the finite compressibility of the rubber. This model re-
quires two material constants, the initial shear modulus Go and  the locking stretch λm. The material constants of
the rubber were estimated according to AASHTO 1999 Guide Specifications [2] for natural rubber with hardness
50, taking the values G=620 kN/m2 for the shear modulus and K=15×105 kN/m2 for the bulk modulus. In fact, an
attempt was made to fairly estimate all the material constants related to this bearing, since they could not been
found from the manufacturer of the bearing.

The examined models were subjected to 2 quasi-static loading sequences, corresponding to the design
compressive load and the design lateral displacement suggested by the manufacturer. That is, a vertical
compressive load with a maximum value of P=667 kN (150 kips) was applied in 10 steps, followed by a cycling
imposed horizontal displacement with an amplitude of 0,1524 m (6 inches) applied in 120 steps, which results in
a rubber’s maximum shear strain of about 145%. The quasi-static analysis was performed by the computer code
ADINA [8], taking into consideration the large strain and large displacement effects.

3 RESPONSE RESULTS TO QUASI-STATIC LOADING

In the following, some characteristic results of the system’s response are presented and evaluated, beginning
with the first stage of the loading process.

3.1 Vertical compressive loading
Figure 3 shows the distribution of the effective stresses within the lead core of the examined models, when

applying 100% of the total vertical load. The stress state in both models is quite similar, while in the most of the
core the effective stress has already reached the yielding stress of the lead, even before any additional lateral load
was applied to the bearing. It should be noted that the first yielding took place at about 60% of the total vertical
load, an event that is not yet sufficiently known, neither is taken into consideration by the simplified analytical
models which are used for the LRBs.

(a) model-1 (b) model-2

Figure 3.  Effective stress within lead core for the maximum value of the vertical load.
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(a) model-1 (b) model-2

Figure 4.  Horizontal shear stresses Sxy within the bottom rubber layer

(a) model-1 (b) model-2

Figure 5.  Hydrostatic pressure So within the bottom rubber layer

Figure 4 shows the distribution of horizontal shear stresses Sxy within the top face of the bottom rubber
layer, corresponding to the 100% application of the total vertical load. It is observed that in model-1 the extreme
shear stresses are about 4 times greater than in model-2, which means that the tight fitting of the lead core in
model-1 causes a high concentration of rubber shear stresses around the hole of the layer.

Figure 5 shows the distribution of hydrostatic pressure So within the top face of the bottom rubber layer, for
the 100% application of the total vertical load. The maximum positive pressure (compression) is quite similar in
both models and is located around the central hole at the bottom face of the layer. However, in model-1 the
minimum negative pressure (tension) is many times greater than in model-2 and is located at an area around the
central hole at the top face of the layer. This area is critical for the control of the bond strength between the rub-
ber layers and the steel shims. This stress concentration, shown in Figures 4a and 5a, cannot be predicted by the
simplified analytical models which are used for the LRBs.

3.2 Horizontal cycling loading
After the application of the vertical commpressive load, a cycling imposed horizontal displacement with an

amplitude of ±0,1524 m (6 inches) was applied into 120 steps. In Figure 6 the deformed shape of the compared
models is shown when the horizontal displacement takes its maximum value Uxmax=0,1524 m. The deformed
shape of the compared models is very similar, except from the left corner of the top rubber layer, where the
deformation of model-2 is considerably greater than that of model-1.  The largest deformation of the rubber
develops at the right corner of the bottom rubber layer.

(a) model-1 (b) model-2
Figure 6.  Deformed shapes of examined models for max imposed horizontal displacement
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Figure 7.  Force-displacement diagrams of the examined models

Figure 7 shows the horizontal force-displacement curves of the examined models during the entire loading
cycle. It is observed that the characteristic strength of model-1 (119,4 kN) is about equal to the strength of
model-2 (121,8 kN), which means that the confinement of the lead core very little affected the characteristic
strength of the compared models. It is also observed that the maximum horizontal force of model-2 is about 20%
less than the respective force of model-1 and the area of hysteresis loop of model-2 (indicating the energy loss
per cycle) is about 8,0% less than the area of model-1. These observations denote that the confinement of the
lead core affects significantly the size of the maximum horizontal force, but affects less the energy dissipation
properties of the bearing. In conclusion, the bilinear form of the force-displacement curve resulted from model-1
indicates the perfect confinement of the lead core.

In Figure 8 the deformed shape of the lead core, as well as the distribution of the effective stresses within
the core is shown, due to the maximum value of the imposed horizontal displacement. In both models a signifi-
cant stretching of the lead core is observed, not only in shear but in elongation too. It is noted that this elongation
cannot be accurately described without considering large displacement effects in the finite element analysis. It is
also noted that the deformed shape of the lead core of model-2 is highly incompatible to the deformed shape of
the rubber layers and steel shims, thus concluding that model-2 is suitable only for comparison purposes with the
more precise model-1. Regarding the distribution of the effective stresses, it is very similar in both models.
Namely, the effective stresses have reached the yielding stress over the whole height of the core, except from the
top and bottom ends which are firmly connected with the respective steel fixing plates.

(a) model-1 (b) model-2

Figure 8.  Deformed shape and effective stresses in lead core due to max imposed horizontal displacement
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(a) model-1 (b) model-2

Figure 9.  Maximum principal strains at the bottom rubber layer

Figures 9, 10 and 11 are related to the deformation and stress state in the bottom rubber layer, due to the
maximum value (+0,1524 m) of the imposed horizontal displacement. In particular, Figure 9 shows the distribu-
tion of the maximum principal strains at the bottom face of this layer. It can be seen that the largest values of the
strains are about 40% higher than the mean shear strains of the bearing’s rubber layers (which have been previ-
ously estimated to 145%) and are located around the central hole and near the right boundary of the layer.

Figure 10 shows the distribution of the horizontal shear stresses Sxz within the rubber layer. It is observed
that in model-2 the stress distribution is fairly smooth, while in model-1 the stress distribution contains  large
positive and negative peak values. The maximum values in model-1 are about 4 times greater than the maximum
values in model-2 and the minimum values in model-1 are more than 20 times greater than in model-2. This non-
smooth distribution of shear stresses Sxz within the rubber layer of model-1 is obviously due to the tight fitting of
the lead core in this model.

Figure 11 shows the distribution of hydrostatic pressure So within the rubber layer. It is observed that the
pressure distribution is significantly different within the compared models, as well as the location of the maxi-
mum (compressive) pressure values. In conclusion, the confinement of the lead core significantly affects the dis-
tribution and the size of the stresses within the rubber layers. Moreover, the non-smooth stress distribution in
model-1, as shown in Figures 10a and 11a, cannot be predicted by the simplified analytical models which are
used for the LRBs.

(a) model-1 (b) model-2

Figure 10.  Horizontal shear stresses Sxz within bottom rubber layer

(a) model-1 (b) model-2

Figure 11.  Hydrostatic pressure within bottom rubber layer



(a) (b)

Figure 12.  Total accumulated effective plastic strains within the middle steel shim

Figure 12 shows the distribution of the accumulated effective plastic strains within the middle steel shim of
the bearing, at the end of the cycling loading process. The plastic strains in model-1 take values more than twice
larger than those in model-2 and are strictly located around the central hole of the shim, while in model-2 they
are distributed in a strip along the x-x diameter of the shim. The development of plastic strains in model-2 is due
to the low yield strength of the mild steel. However, the development of plastic strains in model-1 is mainly due
to the lateral strong interaction between the steel shims and the lead core. This conclusion has been assured by
analyzing a model similar to model-1, but with a twice higher strength in the steel shims.

Figure 13 shows the vertical distribution of plastic zones within the steel shims, as well as the lateral inter-
action between the shims and the core of the model-1, due to the maximum value (+0,1524 m) of the imposed
horizontal displacement. When reversing the imposed horizontal displacement (−0,1524 m), the shape of the
core-shims’ interaction also changes and finally, at the end of the cyclic loading process, accumulative plastic
strains have developed in all the steel shims of the LRB.

The horizontal force-displacement curves of the examined models during the entire loading cycle, are com-
paratively shown in Figure 14a, together with the respective simplified bilinear elastoplastic curve suggested by
the manufacturer of the isolation bearing (model-3). It is evident that the characteristic strengths of the compared
three models, as well as the entire curves of model-1 and model-3, practically coincide, except from their un-
loading parts, where the unloading stiffness of model-3 is considerably less than the unloading stiffness of
model-1 and model-2. Consequently, the area of hysteresis loop of model-1 is about 7,0% more than the area of
model-3, while the area of hysteresis loop of model-2 is about 1,0% less than the area of model-3. It must be
noted that the unloading stiffness (which is equal to the initial elastic stiffness Ku) suggested by the manufac-
turer, has not been established directly by the experimental tests of this bearing (Figure 14b). The unloading
stiffness obtained by these tests is quite similar to the unloading stiffness obtained by the examined model-1 and
model-2.

Figure 13.  Distribution of plastic zones (red color) in a meridian x-x section.
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Figure 14.  Force-displacement curves’ comparison between analytical and experimental results

4 CONCLUSIONS

The finite element micromodels provide increased possibilities for a more detailed study of the stress, strain
and available strength of LRBs. In this way, a better understanding of their mechanical behavior is possible, by
detecting their critical areas and thus contributing to the improvement of their design.

Concerning the examined structural system, it must be noted that the existence of the lead core causes a sig-
nificant disturbance on the smooth distribution of the stresses and strains in the interior of the bearings, so the
use of micromodels in the study of LRBs would be advisable.

It must be noted also that for the validity of the quantitative conclusions obtained for the examined LRB, it
is necessary to verify the basic assumptions that have been made, which concern its material properties and fab-
rication details.
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Abstract. Recent laboratory and numerical experiments have been carried out to investigate the pull out 
phenomenon of a bolt from a steel plate. The experiments have shown two distinctly different failure modes and 
a transition failure mode; the failure modes mainly depend on the thickness of the steel plate. The obtained 
numerical results are compared with those obtained by the laboratory testing program. 

1 INTRODUCTION 

One of the most critical and in the mean time, dangerous damage mechanism in connections in structural 
steelwork is the one that corresponds to the pull-out of bolts from steel plates [1] . Due to the great significance of 
this problem laboratory test have been recently carried out to investigate this phenomenon. In addition, another 
important reason for this investigation is that very limited literature about this phenomenon has been found. 

2 EXPERIMENTS 

In this section the main experimental results are presented which are in a second step simulated by applying 
the finite element method. The major parts of the experiments have been carried out at the Thessaloniki 
University, while some further experiments have been performed at the Budapest University of Technology and 
Economics.  

2.1 Experimental setup 

The geometric arrangement of the experiment is shown in Figure 1a, while Figure 1b shows the geometry of 
the steel plate. All measurements in Figure 1b are expressed in millimeter. The experimental model has 
symmetry along the X and the Y axes. In different experiments the thickness of the plate is 1, 2, 3, 4 or 5 
millimeters. The plate is fixed to a rigid frame by M6 bolts. The diameter of the bolt hole at the center of the 
plate is one millimeter larger than the diameter of the shaft of the bolt, which is a requirement by the Eurocode 3 
standard for steel structures. Finally a bolt is placed in the center hole. When an M12 bolt is used in the 
experiments, the diameter of the hole is 13 mm and in the case of M14 bolt the diameter is 14 mm. No bolt nut 
or washer is used. Since the bolt is not hold in place by the nut, it was very important to ensure that the bolt is 
centered at the hole at the beginning of the experiment. 

The experiment force is applied increasingly to the M12 (or M14) bolt until the bolt is pulled-out of the 
plate. Pulling-out of the plate means, that the material of the plate will at the end fail and the bolt will become 
free. The duration of each experiment lasted approximately half an hour and therefore, it is assumed that the 
loading is static and not dynamic. Furthermore, it can be interesting that the machine is constructed in such a 
way that it was possible to follow the behaviour of the structure even after the failure of the plate, for example 
when only the friction between the bolt and the plate restricts the movement of the bolt. 
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(a) (b) 

 
Figure 1: (a) Experimental setup and (b) geometric arrangement of the plate 

2.2 Experimental results 

The results of the experimental testing suggests that there are two distinctive failure modes for bolt pull-out 
from a steel plate. When the steel plate is thin, for example 1 mm, then the corner of the bolt penetrates the plate 
through the thickness. Later the failure of the elements propagates towards the center, which means that the 
corner of the bolt basically cuts up the plate. This phenomenon can be seen in Figure 2a. The other failure mode 
occurs when the plate is thick, for example the thickness is 5mm. At the final failure stage, a ring separates from 
the plate as it is shown in Figure 2c. It is also important to note, that in this case at the corners of the bolt a pool 
of plastified material forms. On the other hand, along the sides of the bolt sudden fracture occurs. These two 
phenomena can be seen in Figure 3. Figure 2b shows the transition failure mode where there is plastification at 
the corner of the bolts and fracture along the side of the bolt occurs. However in this case no closed ring is 
formed. 
 

   
(a)                                                  (b)                                                  (c) 

 
Figure 2: Failure modes for different plate thicknesses; (a) 1 mm, (b) 3 mm and (c) 5mm 

 

 
 

Figure 3: Plastification at the corner of the bolt and sudden fracture along the side of the bolt 
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Apart from observing the failure modes, two other properties have been measured in the experiments, the 

applied force on the bolt and the displacement of the bolt. Figure 4 depicts the measured displacement-applied 
load curves for the 1 mm and 5 mm plate thicknesses. Figure 5 shows the relation between the thickness of the 
plate and the ultimate applied load. The ultimate load is calculated as an average of the maximum load of the 
same type of experiments. 
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Figure 4: Displacement-load curve for different plate thicknesses 
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Figure 5: Relation between the plate thickness and the ultimate applied load 

3 NUMERICAL ANALYSIS 

Although the problem may seem a very simple one, it is not a traditional engineering analysis problem. 
Usually the structures or the components of the structures are designed by elastic or elasto-plastic theory. 
However, even in the case of plastic theory only limited plastic capability is considered. In this paper a problem 
is discussed where the experiment or numerical simulation is carried out up to a “full” material failure. 
Considering the material and geometric non-linearities several difficulties had to be solved. For the numerical 
analysis the LS-DYNA[2] software was used because of its capabilities, for example handling of contact and 
material failure. 

3.1 Geometric model 

The geometry have two symmetry axes and therefore, it is sufficient to model only one quarter of the 
structure for the numerical simulation. Due to this modeling, a large number of finite elements can be used at 
important places. Figure 6 clearly indicates the part which is modeled for this paper. The figure also shows that 
another simplification has been introduced. It is assumed that the M6 bolts provide fixity not only at the bolt 
points but along the line of the bolts. This means that the middle points marked in Figure 6 are restricted, 
although in reality these points can move vertically. 
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Figure 6: Part of the modeled plate, 2D and 3D view 

3.2 Boundary conditions 

The boundary conditions are applied to all points of the surfaces across the thickness. The boundary 
condition along the line of the fixing bolts is that the displacements are restricted in all directions. The boundary 
condition along the symmetry axes is that no movement is allowed perpendicularly to the symmetry planes. 
These boundary conditions can also be seen in Figure 6. 

3.3 Material definition 

Two types of material are used in the analyses: a rigid and an elasto-plastic material. The rigid material is 
used for the bolt for two reasons: The first is that the material of the bolt has higher strength in comparison to 
the material of the plate. Moreover, the size effect can be considered, as the bolt head is much smaller compared 
to the plate and therefore, it will be more rigid than the plate. 

The material of the plate is an elasto-plastic material with failure strain. Unfortunately, at the time of writing 
this paper no material measurements are available; therefore, for the numerical analyses in this paper the 
following typical steel material properties have been assumed: the elastic modulus is 210000 N/mm2, the density 
is 0.786 kg/mm3, the Poisson’s ratio is 0.292, the yield stress is 210 N/mm2, the tangent modulus is 1010 N/mm2 
and the failure strain is set as 0.3 percent. It is important to note how the LS-DYNA software handles the 
material failure. When the strain in a finite element reaches the 0.3 percent then the element is deleted from the 
mesh. This behaviour will hopefully simulate the fracture in the plate. 

It may be noticed that the density is actually not correct. The valid value is 7860 kg/m3 which does not 
correspond to 0.786 kg/mm3. The reason for this discrepancy is that usually time-dependent problems are 
analyzed by LS-DYNA, but the problem at hand is a static one. To speed up the analysis, the problem is solved 
as a quasi-static problem with mass scaling which is applied by increasing the density. 

3.4  Load and contact definition 

The load is applied on the bolt and it is transmitted to the plate through contact. As it is mentioned in the 
previous section, the problem must be analyzed as a quasi-static problem and therefore, the load is applied in 
such a way that the maximum force and the maximum analysis time is defined, while all intermediate values are 
linearly interpolated. 

The contact between the bolt and the plate is defined as an eroding contact, since the surface is continuously 
changing as finite elements are removed from the mesh when material failure occurs. LS-DYNA is one of the 
programs that is capable to handle eroding contact. This was one of the main reasons to choose the LS-DYNA 
software for the analysis.  

3.5 Element type selection 

Since even 5 mm thick plate has been investigated in the experiments, solid and not shell elements have been 
used for meshing. For this reason SOLID164 hexahedron element is used from the element library of the LS-
DYNA[1] program. This element is generally used for the 3D modeling of solid structures. The hexahedron 
element is defined by eight nodes, where the degrees of freedom at each node are translations, velocities, and 
accelerations in the nodal x, y, and z directions. The element uses reduced, one point integration plus viscous, 
hourglass control. 
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3.6   Finite element meshing 

The finite element mesh is built up of hexahedron elements. To ensure good quality results and considering 
the eroding behaviour of the elements it was decided that a large number of elements are required in the plate 
around the edges and the corner of the bolt but in other parts of the plate coarser meshing is enough. For this 
reason, an area around the bolt points in the plate is defined where a large number of finite elements are 
generated as shown in Figure 7. This fine mesh area can also help to reduce hourglassing. Hourglassing occurs 
due to the one-point, reduced integration of the solid elements and it refers to the zero-energy mode of the 
elements. These zero energy modes are oscillatory and their period is so short that the elements form a zigzag 
shape. Hourglassing can invalidate the results and therefore, it must be avoided if possible. However in the 
current setup the point loads from the bolt cannot be avoided therefore it was chosen that as fine meshes must be 
defined as it is possible around the contact regions. Furthermore to help the initial contact analysis, the finite 
element meshes have matching nodes and elements at the contact surfaces. 
 

 
 

Figure 7: Finite element meshing of the plate and the bolt for 4 mm plate thickness 
 

4.  ANALYSIS RESULTS 

The main aim of this paper was to numerically simulate the bolt pull-out experiments and therefore, this 
section aims to present and compare the analysis results with the experimental ones.  

4.1   Failure mechanism 

Figure 8 shows the failure mechanism for 1 mm plate thickness. In this case the corner of the bolt first 
penetrates the plate (Figure 8a) and then this fracture spreads radially towards the centre of the plate (Figure 8b). 
Once the fracture reaches the edge of the plate, the plate opens up and let the bolt through (Figure 8c). Figure 8d 
shows the final stage of the pull-out of the bolt. These figures show that along the fracture line the plate of the 
material is plastified, since some of the elements are removed around that area. 

 

  
(a) (b) 
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(c)                                                                             (d) 

 
Figure 8: The failure mechanism for 1 mm plate thickness 

 
Figure 9 shows the failure mechanism for 4 mm plate thickness. The failure mechanism in Figure 9 is a kind 

of ring, which corresponds to the experiment results. However one of the major differences in the failure 
mechanism is that the ring is not continuous and there is no “drop” of plastified material in the ring above the 
corner of the bolt. Obviously the reason is that in the current analysis all finite elements with fully plastified, 
failed material are removed from the mesh. 

Figure 10, showing how many elements are removed at a given moment, supports the observation of the 
experiments that at the final moments of the analysis a large number of elements are removed and a sudden 
“fracture” occurs. However by comparing Figure 9 to Figure 3, another difference is apparent that in the analysis 
(in Figure 9) it is not possible to identify plastified regions and sudden fracture regions in the plate after the bolt 
is pulled out. 

 

  
(a)                                                                               (b) 

 

  
(c)                                                                                  (d) 

 
Figure 9: The failure mechanism for 4 mm plate thickness 
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Figure 10: Number of removed elements at a given time 

4.2   Load-displacement curves 

As in the experiments, beside observing the failure mechanism two main properties have been measured: the 
applied load on the bolt and the displacement of the bolt. Figure 11 shows one quarter of the ultimate load that is 
required to pull-out the bolt from the plate determined by the experiments and the analysis. It can be seen that 
the analysis results are relatively good for 1 and 2 mm plate thicknesses, but for larger plate thicknesses the 
ultimate forces determined by the analysis are much smaller compared to the experiment results. The 
explanation for this discrepancy is related to the material plastification and element failure mechanism. Although 
the element failure mechanism accurately simulates the radially developing fracture, the element failure does 
become a problem for large plate thicknesses, since in that case a large number of elements are removed from 
the mesh. 

 

 
Figure 11: Ultimate load for different plate thicknesses 

 
The load-displacement curve for the 1 mm plate thickness is shown in Figure 12a. The analysis results are 

adjusted by 0.6 mm which is accounted for the initial slack in the experimental setup. The analysis curve is very 
similar to the experimental curve except the ultimate value. Figure 12b displays the load-displacement curve for 
the 4 mm plate thickness. In this case it is obvious that the two curves do not match, although they show similar 
behaviour with two branches: a steeper, initial line and a second, less steep, non-linear line. 

It is also important to observe the energy of the whole system shown in Figure 13a. The figure shows the 
internal, the kinetic, the hourglass, the eroded internal and the kinetic energy, where the eroded internal and 
kinetic energies are related to the removed elements. During the analysis the internal energy increases 
continuously while there is a sudden jump in the kinetic energy when the bolt comes free of the plate. Another 
observation is that although the hourglass energy stays relatively low but it causes visible discrepancy in the 
analysis as it can be seen in Figure 9d at the bottom edge of the hole, where the contour of the elements forms a 
zigzag shape. Finally, the eroded internal energy should be examined considering Figure 13b shows the relation 
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between the eroded internal energy and the internal energy in percentage. The figure can be related to Figure 10 
where the number of removed elements is shown. It can be seen that the removal of elements disturbs the energy 
balance of the system quite substantially and probably this is one of the main reasons why the values measured 
in the experiment and in the analysis do not match. 

 

  
(a)                                                                                 (b) 

Figure 12: Load-displacement curve for (a) 1 mm and (b) 4 mm plate thickness 
 

  
(a)                                                                                 (b) 

Figure 13: Energy balance of the system and the ratio of the eroded internal energy to the internal energy for 
4mm plate thickness 

5.  CONCLUSIONS 

A finite element simulation of the pull-out experiment has been presented in this paper. Although some 
promising results have been achieved (cf. e.g. the failure mechanism is properly simulated), the load-
displacement values do not correspond to the values measured in the experiments. These results show that some 
further considerations are necessary to simulate this phenomenon properly. Probably the two of the most 
important features of any further analysis have to be a correct model for material and material plastification and 
a better method for fraction simulation. 
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Abstract. An innovative numerical approach is developed in the present paper for the analysis of the asymptotic 
shell behaviour based on the physical decomposition of the finite element rotational field, allowing for an 
insight to be gained into the mechanisms underlying the asymptotic behaviour of shell problems. The way a 
finite shell element model, and so a shell structure, activates the various load carrying mechanisms in 
membrane-dominated, bending-dominated and mixed mode shell problems may be investigated and understood 
in this way. The asymptotic behaviour of selected bending and membrane dominated classical benchmark shell 
problems is analysed by means of the rotational field decomposition approach. 

1 INTRODUCTION 

Research work on the asymptotic behaviour of shell elements has been rather limited and it is only very 
recently that research work has been directed and focused systematically on this question. D.Chapelle and 
K.J.Bathe [1,2] brought forward fundamental considerations regarding the finite element analysis of shell structures. 
A strict ‘dual set’ of two alternative analytically derived limiting cases describing the asymptotic behaviour of a 
typical shell problem with respect to its characterisation as been either a bending inhibited or a non-inhibited 
problem was derived [1]. A set of limit tests, considered to be ‘clean’ with respect to the identification of the 
asymptotic behaviour of shell elements as been either bending inhibited or non inhibited test problems, complying 
in that way with the dual asymptotic behaviour of shell elements presumption of [1], were proposed [1,3,4]. Following 
the fundamental considerations raised in the above-mentioned works, the asymptotic behaviour of several 
benchmark shell problems was investigated in [,5,6]. Analytical solutions based on Flugge’s theory [7] were 
derived [5,6] to investigate the asymptotic behaviour of selected classical benchmark shell problems and some of 
the new limit benchmark shell problems proposed in [4]. The so derived analytical solutions were confirmed with 
extensive finite element analyses and in the case of the new limit tests, with the corresponding theoretical 
solutions obtained symbolically earlier [8] using the Reissner-Mindlin shell model. The Reformulated Four-Node 
Shell element (acronym: RFNS element) [9] was employed in the corresponding numerical analyses. The work of 
[5] and [6] has shown that the shell problems do not exclusively fall in either one of the two distinct categories, 
that is of a bending inhibited or a bending non-inhibited category. The asymptotic behaviour of shell problems 
may very well span the whole range between the bending inhibited and the non-inhibited limit problems by 
developing the mixed-mode behaviour, in various forms.  

In a recent work [10], a simple analytical approach for defining the asymptotic behaviour of shell elements 
was proposed. The proposed approach was implemented in defining the asymptotic deformation modes of 
selected benchmark problems suitable for the evaluation of the asymptotic behaviour of shell elements. It was 
shown that the various modes encountered with the asymptotic analysis of these shell problems are clearly 
defined in a very simple way leading to explicit expressions for the corresponding characteristic asymptotes, 
which may be used as benchmark characteristic asymptotes of the corresponding benchmark shell problems. 

An innovative numerical approach is developed in the present paper for the analysis of the asymptotic behaviour 
of shells based on the physical decomposition of the finite element rotational field. 

2 THE RFNS ELEMENT 

The formulation of the reformulated Co shell element, presented in detail in ref [9], is briefly reviewed in this 
section. The performance of the RFNS element in linear elastic analysis of shell problems has been already 
examined in depth and its excellent behaviour has been verified against a wide range of the most well known severe 
benchmark tests for shell elements [9] as well as against several critical benchmark asymptotic problems [2,,5,10]. An 
analogous high performance-nonlinear formulation of the RFNS element was developed in [11]. 

The linear elastic formulation of [9] for the reformulated C° plate/shell element, built at the finite element 
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assembly level, is based on partitioning the finite element assembly equations of equilibrium as follows: 
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In this formulation, the deformations vector v=(u,a)T is expressed in terms of the transverse and membrane 
displacements u=(ui)T and the rotations a=(α,β)T. The load vector P=(f,m)T is expressed in terms of the 
transverse/in-plane load vector f and the moments vector m whereas the finite element assembly bending and 
shear/membrane stiffness matrices Kb and Ks are partitioned accordingly. The finite element assembly solution 
can be obtained by solving this system in two steps for the corresponding equilibrium equations: 
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or, rewriting the underlined terms of the second equation of the system of Eqs. (2) in a compact form: 

aaa+Kbs a=mmKb       (3) 

Where mm stands for an equivalent applied moment vector, in accordance with the static moment 
equilibrium requirements of the system. Of special importance in the course of the formulation of [9], but also of 
the present analysis, is the term Kbs a .  As it is apparent from Eq (3) this term stands for the potential 
contribution of shear-membrane strain to the total flexural strain energy of the system. As shown in detail in [9] 
any potential shear locking mechanism would come from the Kbs transverse shear/membrane stiffness matrices-
assemblage. However, for a locking-free shell or plate element the Kbs transverse shear/membrane stiffness 
matrices-assemblage offers essential non-spurious contribution to the bending mode of deformation. According 
to the analysis of ref. [12] the non-spurious contribution of the finite element assembly transverse 
shear/membrane stiffness Kbs to the flexural strain energy of the shell system is vital and includes, in general, 
the contribution of the tangential shear strain components γsk and the complementary participation of the 
membrane strain components  εij of Kbs to the activation of an internal moment redistribution mechanism.  

The translations-bending coupling effect, which is very important for warped element configurations, is 
taken care of in the formulation of [9], through appropriate augmentation of the Ks stiffness submatrices. Then, 
the RFNS formulation based on the special construction of the non-spurious Kbs stiffness matrix enables, as a first 
step, the calculation of a "spurious strain and kinematic mechanisms free" rotations field a for the finite element 
assembly solution by solving the second equation of the set of Eqs. (2) [9]. The bending (ub) and the 
shear/membrane (us) displacement vectors may be calculated subsequently through the first equation of the system 
Eqs. (2). Accordingly, the system equations (2) of the linear formulation of the RFNS element become: 
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Where all Kskl(eij

m,γs
k, ζ) submatrices of the finite element assembly shear/membrane stiffness matrix Ks are 

composed of a) the corresponding Kskl(eij
m,γs

k) submatrices (built with the participation of the membrane strain 
components exx, eyy and γxy calculated at the full integration points and the tangential edge shear strain 
components γs

k calculated at the element mid sides) and b) augmented with the corresponding thickness 
dependent membrane-bending coupling Kskl(ζ) stiffness submatrices (notation ζ in the parenthesis refers to the 
augmentation of the corresponding matrices with the thickness dependent membrane strain-deformation terms part 
of the membrane strain-deformation matrix [9]).The displacement vector us contributes to the shear/extensional 
deformation field vs=(us,0)T while the displacement vector ub and the rotations vector a constitute the bending 
deformation field vb=(ub,a)T. The remaining sub-matrix of the finite element assembly transverse 
shear/membrane stiffness matrix Ksuu participating in Eqs. (4), that is us=Ksuu

-1f is simply associated with the 
pure shear/extensional deformation field vs=(us,0)T. This particular Ksuu stiffness sub-matrix may be either 
composed of the conventional transverse shear strain components calculated at the full integration points or, in 
order to render the formulation simpler, the Ksuu(eij

m,γs
k, ζ) submatrix can be used. 

3 THE ROTATIONS COMPONENTS 

In the present work, it is proposed that the rotations field a=(α,β)T in Eq. (3) is decomposed into two 
physical components as follows: 

b sa=a + a       (5) 
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a) the component ab represents the pure bending behaviour of the shell, resulting from the activation of the 

bending stiffness term Kbaa of Eq (3) in directly carrying part of the equivalent applied static moment vector 
mm (a part that may be significant or not, depending on the problem);  

b) the rotations field component as representing the membrane-flexural behaviour of the shell, in-plate 
twist and beam-plate on elastic foundation actions, resulting from the activation of the Kbs transverse 
shear/membrane stiffness in directly carrying the remaining part of the equivalent applied moment vector mm.  

The proposed decomposition of the rotations field is based on two requirements: 
A. The two components of the rotations field should satisfy the external static equilibrium condition under 

the equivalent applied moment vector mm according to Eq (3) as follows: 

aa b sa +Kbs a =mmKb       (6) 

This relation represents an internal moment redistribution mechanism where the two stiffness components 
Kbaa and Kbs contributing to the bending equilibrium of the system take their own share in directly carrying the 
external equivalent moment vector mm, in a proportion that is defined internally through the principle of 
minimisation of the total energy of the system and depends on the shell problem under consideration. In a few 
cases (e.g. beam problems) characterised by an inactive internal moment redistribution mechanism, the load is 
assumed totally by the pure bending mechanism with the rotations field component, as, being zero. In cases 
characterised by the activation of the internal moment redistribution mechanism (typical shell problems), this 
internal moment redistribution mechanism is triggered mainly by the membrane flexural behaviour of the shell 
and/or other mechanisms like the beam-plate on elastic foundation action. In such cases, the rotations field 
component as is nonzero and its contribution to the moment equilibrium system is vital even if as is of a relative 
low magnitude compared to the magnitude of the rotations component ab. In a typical shell problem, the pure 
bending rotations component ab, when interacting with the Kbaa bending stiffness matrix, activates the pure 
bending load carrying mechanism to carry part of the applied load; likewise, the rotations field component as 
when interacting with the Kbs transverse shear/membrane stiffness matrix activates the membrane flexural 
and/or other membrane/transverse shear strain related mechanisms in carrying another part of the applied load. 

B. In satisfying Eq. (6), the two components of the rotational filed ab and as should also satisfy Eqs. (5) and (3). 
The simultaneous satisfaction of Eqs. (5) and (3) requires that the two components of the rotations field ab and as 
should also satisfy an internal moment coupling condition. The internal moment coupling mechanism is activated in 
specific problems where the cross-interaction of the two components of the rotational filed ab and as with the two 
stiffness components Kbs and Kbaa, respectively, is non-zero (e.g. development of boundary layer effects). The part 
of the moment load transferred under this coupling mechanism from one load carrying mechanism to the other one, 
through the interactions of the corresponding moment vectors of the internal moment redistribution mechanism Kbs 
ab and Kbaa as, should be balanced. This requirement is met by imposing the condition that the internal moment 
coupling mechanism yields always a zero moment vector: 

aab sKbs a + a =0Kb      (7) 

Thus, the pure bending rotations component ab when interacting with the Kbs transverse shear/membrane 
stiffness matrices-assemblage may produce either: a) a zero internal coupling moment vector or b) a non-zero 
coupling internal moment vector Kbs ab that is counter-balanced by an equal and opposite internal coupling 
moment vector developed by the rotations component as interacting respectively with the bending stiffness Kbaa 
(e.g. through the transfer-coupling of the so-generated moment vector from the membrane-flexural to the bending 
load carrying mechanism and vice-versa: Kbs ab=-Kbaa as). In that way, the static moment equilibrium system 
described by Eq. (6) is not affected, as the resulting external moment vector of Eq. (7) is zero. 

These two conditions can be combined in the following linear system that can be solved for the two 
components of the rotations field: 

aa b

aa s

⎡ ⎤ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦ ⎝ ⎠

Kb Kbs a mm
Kbs Kb a 0

        (8) 

The decomposition of the rotations field a into the two physically defined discrete rotational entities ab and 
as can be shown to be important for the analysis of the behaviour of finite element shell models in general, but it 
is especially important for the asymptotic analysis of a shell model in the limit of the shell thickness going to 
zero. The nature of the load carrying mechanisms, the way a bending or a membrane mode of deformation 
develops or a mixed deformation mode dominates in various shell problems can be identified and analysed by 
means of the rotational field decomposition of some typical benchmark shell problems. The characteristic 
categories of bending and membrane dominated shell problems are investigated in the following sections. 

161



D.Briassoulis 
3 ROTATIONAL DECOMPOSITION OF CLASSICAL BENCHMARK SHELL PROBLEMS 

3.1 Bending dominated problems 
Pure bending dominated problem with internal moment redistributions: The simplest case, a pure bending mode 
of deformation can be identified by the fact that the Euclidean vector norm of the component as is of a relatively 
insignificant magnitude, as compared to the magnitude of the Euclidean vector norm of the component ab, 
tending to zero in the limit of the thickness going to zero. This is also reflected in the limit of the Euclidean 
vector norms of the internal coupling moments Kbaa as and Kbs ab developed under the as and ab fields 
respectively, and tending to zero. The pure bending dominated problems may be described by the fact that the 
bending stiffness matrix Kbaa is responsible for carrying the applied equivalent moment mm: 
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= = =
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A typical example of pure bending dominated problems is the beam bending behaviour.  As an illustrative 
example, a cantilever beam under end load is analysed, with the beam being simulated by RFNS shell elements. 
The rotations components suggest that in this case 

2 20 0
lim lim
t t→ →

− ba a = 0 . The displacements and stress 

resultants subsequently develop under the rotational field a = ab following Eqs. (4). 

Bending dominated problems with internal moment redistribution due to in-plane twisting stiffness: In the vast 
majority of plate and shell problems, both rotational components contribute to the moment equilibrium of the 
system described by Eq. (8). However, the relative magnitude of the two rotations components may not reflect in 
an analogous way their corresponding contributions to the external moment equilibrium and the internal bending 
moments redistribution mechanisms. The contribution of the in-plane twisting stiffness of the plate/shell through 
the activation of the moment redistribution mechanism (triggered by the tangential edge shear strain components 
γs

k of the Kbs stiffness), results in the following moment equilibrium system: 
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Typical examples of bending dominated problems with internal moment redistribution due to the activation 
of the in-plane twisting stiffness are plate-bending problems. In the following illustrative example a fixed square 
plate under uniform load is analysed by an 8x8 RFNS shell elements model. The rotations components suggest 
that the dominant deformation mode is due to the rotational field component ab. In this case, despite the low 
magnitude of the rotational component as, the internal moment Kbs as is shown to remain thickness independent 
and be of the same order of magnitude as that of the equivalent applied moment vector mm. This behaviour may 
be explained by calculating the best-fit power functions of the curves of the Euclidean vector norms of as and ab. 
Then, the Euclidean vector norms of the rotational components as and ab are found to be power functions of 
(t/L)-1 and (t/L)-3 respectively: 

-1 -3
s b 2E-09(t/L) ,              2E-10(t/L)

2 2
a = a =     (11) 

As a result of this differentiation in the rate of the thickness dependence of the relative magnitudes of the 
rotational field components, and given that the stiffness sub-matrices Kbaa and Kbs are known to be functions of 
(t/L)3 and (t/L)1 respectively, the moment redistribution vector Kbs as remains constant as the plate thickness is 
reduced. The moment redistribution vector Kbs as assumes part of the equivalent moment load mm while it 
redistributes the equivalent applied moment to be assumed by the bending sub-stiffness Kbaa of the system from 
mm to mm- Kbs as. The Euclidean vector norms of the equal in magnitude and opposite (cancel each other) 
internal moment coupling vectors Kbaa as and Kbs ab, developed under the as and ab fields respectively, tend to 
zero as power functions of (t/L)2 in the limit of the thickness ratio going to zero. 

Bending dominated problems with internal moment redistribution due to the activation of the beam-on-
elastic foundation mechanism: In most cases of shell problems, both rotational components contribute to the 
moment equilibrium of the system described by Eq. (8) mainly as a result of the activation of the ‘membrane-
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flexural’ and the ‘beam on elastic foundation’ mechanisms [5,6,Error! Bookmark not defined.,9]. The cylindrical shell with 
free ends under various loading conditions represents a typical bending dominating shell problem. As shown 
analytically in [5,6], the equivalent ring bending behaviour dominates the cylindrical shell behaviour in the 
circumferential direction, while the beam on elastic foundation action simulates adequately the free boundary 
layer effects on the rotations field. The ring-bending load carrying mechanism is activated through the 
equivalent moment vector due to the bending stiffness sub-matrix Kbaa ab. On the other hand, the equivalent 
beam on elastic foundation mechanism (responsible for the boundary layer effects in these cases) is activated 
through a strong interaction between the Kbs as and the Kbaa ab equivalent moment vectors, along with the 
participation of the Kbaa as and Kbs ab internal coupling moment vectors within the boundary zone. In such 
cases, the strong boundary layer effects are associated with non-zero individual contributions of the internal 
coupling moment vectors Kbaa as and Kbs ab. These two vectors remain equal and opposite in sign, cancelling 
each other and not directly contributing to the load carrying mechanism, but rather to an internal coupling 
moment redistribution mechanism. As a result of the activation of the beam on elastic foundation mechanism 
(e.g. associated with strong boundary layer effects) and the active involvement of all equivalent moment vectors 
of Eq. (8), the thickness ratio dependence of the rotations components is not simple. Accordingly, the shell 
bending dominated problem may be described in terms of the rotational field as follows: 
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Three critical, in terms of boundary conditions, cases of a cylindrical shell were proposed [4] and analysed [4,6] 
as representing three distinct benchmark limit tests for shell elements, for bending dominated, membrane 
dominated and mixed mode problems. The cylindrical shell with a half-length L/2 equal to the radius r 
(measured to the middle surface) and a varying thickness ratio t/r, is loaded by a normal periodic pressure 
distribution that acts on the outer surface of the shell, and varies angularly as: 

 cos 2op p θ=  (13) 

The case of the cylindrical shell being free along its boundaries under the load of Eq. (13) represents a strong 
bending-dominated test problem. A 25x35 RFNS shell elements model was used to analyse a symmetric-
antisymmetric 1/16 part the cylinder. The rotations components in the circumferential direction, plotted in 
Figure 1, suggest a dominant bending effect described by the rotational field component ab. In the meridional 
direction, both components, being of a much lower magnitude, contribute to the free end effects Figure 2). The 
rotational components ab and as developing within the boundary zone are strongly dependent on the thickness 
ratio and they interact strongly with each other in composing the strong boundary layer effects for the rotational 
filed a Figure 2). Referring to the system of Eq. (12), the ring-type shell bending behaviour is reflected in the 
relative magnitude of the Kbaa ab Euclidean vector norm. However, the free boundary layer effects, represented 
by the rotational component as, also result in a rather significant internal moment redistribution vector Kbs as 
shown to be of the same order of magnitude as that of the equivalent applied moment vector mm.  
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Figure 1: Rotations components plotted in the circumferential direction along the middle line of the shell, 

directed normal to the corresponding line; normalised with respect to po/E(t/r)2 in the case of a cylindrical shell; 
free ends under the load of Eq. (13) (t/L= 0.0001) 

The best-fit power functions of the curves of the Euclidean vector norms of as and ab suggest that the 
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Euclidean vector norms of the rotational components as and ab are power functions of (t/L)-2.5 and (t/L)-3: 

-2.5 -3.0
s b 2E-06(t/L) ,            3E-05(t/L)

2 2
a = a =    (14) 

The behaviour of the as rotational component in this case (i.e. as is not a function of t/L-1) is explained by the 
boundary layer effects. The boundary layer effects develop in this case as a result of the imposition of the free 
boundary conditions, requiring that the stress resultants related to the Poison’s effect are cancelled out (e.g. 
imposition of a moment equal to –νMx to counterbalance the corresponding moment νMx; refer to the analysis 
of [6]). This activates the beam-on-elastic foundation dominant load carrying mechanism in the meridional 
direction within the free boundary zone (refer to Figure 3), responsible for the corresponding moment 
redistribution mechanism Kbs as. The beam-on-elastic foundation mechanism is also reflected in the variation of 
the bending moment acting perpendicular to the meridional direction. This mechanism triggers the hoop strain of 
the Kbs(eij

m,γs
k, ζ) stiffness sub-matrix contribution, acting as elastic foundation [Error! Bookmark not defined.,6]. 
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 Figure 2: Rotations components plotted along the crown line of the shell, directed normal to the 

corresponding line; normalised with respect to po/E(t/r)2 in the case of a cylindrical shell with free ends under 
the load of Eq. (13) (t/L= 0.0001) 

The Euclidean norm of the moment redistribution vector Kbs as remains practically constant as the shell 
thickness is reduced. In general terms, the Kbs as vector length over the model domain does not change 
significantly with the shell thickness, resulting in an analogous moment redistribution of the equivalent applied 
moment mm. In addition, the interaction of some of the higher order components of the rotational field as and of 
the lower order components of the rotational field ab with the stiffness sub-matrices Kbaa and Kbs, respectively, 
are responsible for retaining the Euclidean vector norms of Kbaa as and Kbs ab constant (slightly depending on 
the shell thickness, in a way analogous to that of the Kbs as vector, as shown in , as the two norms also depend 
on the boundary layer effects and the mesh refinement). The internal coupling moment vectors Kbaa as and Kbs 
ab are equal and opposite (they cancel each other) developing within the boundary layer zone were the boundary 
layers effects of the rotational fields as and ab develop Figure 2). 

Figure 3: Hoop stress resultants and bending moment perpendicular to the meridional direction developing along 
the crown line within the boundary zone of the cylindrical shell with free ends under the load of Eq. (13). 

3.2 Membrane dominated problems 
Membrane dominated problems with internal moment redistribution due to the activation of flexural membrane 
mechanism: The case of the cylindrical shell being fixed along its boundaries under the load of Eq. (13) 
represents a clear membrane-dominated test problem. An analytical solution of the asymptotic behaviour of this 
problem was derived in [6], confirmed with a detailed numerical analysis. A 25X35 RFNS shell elements model 
was used to simulate 1/16 part of the cylinder. In the case of membrane dominated shell problems the 
contribution of the rotational field as to the moment equilibrium of the system described by Eq. (8) is significant, 
as a result of the activation of the membrane flexural load carrying mechanism [5,6,Error! Bookmark not defined.,9,Error! 
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Bookmark not defined.]. In these cases the membrane flexural mechanism is activated through a constant equivalent 
moment vector Kbs as that counterbalances almost completely the equivalent applied moment vector mm while 
the Euclidean norms of the equivalent moment vectors Kbaa ab, Kbaa as and Kbs ab remain insignificant and tend 
to zero in the limit of the shell thickness going to zero. The presence of strong boundary layer effects implies 
that the rotational field components ab and as may be significant within the boundary zone and their thickness 
ratio dependence be rather complicated. The membrane dominated shell problem may be described as follows: 
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The rotations components plotted in  along the crown line of the shell suggest the development of strong 
interacting boundary layer effects between the two rotational field components ab and as. The algebraic sum of 
the two components, in turn, cancels out their oscillatory coupling interactions and leads to a lower in magnitude 
total rotational field a, the distribution of which clearly reveals the strong boundary layer effects within a narrow 
boundary zone [6]. The Euclidean vector norms of the rotational components as and ab are both found to be 
power functions of approximately (t/L-1.4), strongly affected by the boundary layer effects: 

-1.37 -1.44
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2 2
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However, the function of the rotational components described above mainly reflects the strong boundary 
layer effects that develop within a zone that becomes extremely narrow as the shell thickness is reduced. As a 
result, the relative significance of the two rotational components in terms of contributing to the load carrying 
mechanisms is not analogous to their magnitude (this is because the magnitude of a rotational component may 
reflect strong boundary layer effects rather than a prevailing load carrying mechanism). The dominance of the 
membrane flexural shell mechanism on the load carrying mechanism is reflected in the relative magnitude of the 
Kbs as Euclidean vector norm as compared to the norms of the other vectors. The Euclidean vector norm of the 
Kbs as membrane flexural equivalent moment vector remains rather thickness independent and it is equal to the 
applied moment vector mm. 

1.0
s aa b b aa s ,      6.18(t/L)

2 2 2 2
Kbs a = mm Kb  a = Kbs a = Kb  a =   (17) 

It is interesting to notice that even though the relative magnitude of the rotational field component ab is 
comparable to that of the as component, its contribution to the equivalent moment vectors Kbaa ab and Kbs ab is 
insignificant. The Euclidean vector norms of both vectors tend to zero as linear functions of the shell thickness 
in the limit of shell thickness going to zero (Eq. (17)). As the corresponding internal moment vectors Kbaa as and 
Kbs ab are equal and opposite in sign, the Euclidean vector norm of Kbaa as also tends to zero as the shell 
thickness decreases. This behaviour is related to the gradual ‘shrinkage’ of the corresponding boundary layer 
zone with the decrease of the shell thickness while the load carrying mechanism remains stable and dominant. 
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(a) (b) 

Figure 4. Rotations components as and ab (a) and total rotational field a (b) plotted along the crown line of the 
shell, directed normal to the corresponding lines, normalised with respect to po/E(t/r) in the case of a cylindrical 

shell with fixed ends under the load of Eq. (13) (t/L= 0.0001) 
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The membrane flexural mechanism triggers the meridional strain of the Kbs(eij
m,γs

k, ζ) stiffness sub-matrix, 
acting as beam fibre strain developing along the corresponding shell strip. The membrane flexural mechanism is 
depicted in the variation of the meridional stress resultants along the meridional direction of the shell and 
dominated by the stress components due to as (Figure 5). This variation follows the variation of the equivalent 
bending moment fibre stress developing along the shell strips. The shell strips simulate the beam fibres of the 
cylindrical shell-beam fixed at the two ends, under the corresponding uniform load (in the meridional direction). 
The hoop stress resultants due to the rotational field components as and ab developing within the narrow 
boundary zone are responsible for the strong boundary layer effects as shown in Figure 5. 

(a)     (b) 
Figure 5. Meridional and hoop stress resultants developing along the crown line (a) and within the boundary 

zone (b), respectively, of the cylindrical shell with fixed ends (t=0.0005) under the load of Eq. (13). 

4 CONCLUSIONS 

An innovative numerical approach is developed for the analysis of the asymptotic shell behaviour based on the 
physical decomposition of the finite element rotational field, allowing for an insight to be gained into the 
mechanisms underlying the asymptotic behaviour of shell problems. The way a finite shell element model, and so a 
shell structure, activates the various load carrying mechanisms in membrane-dominated, bending-dominated and 
mixed membrane-bending mode shell problems may be investigated and understood in this way.  

The asymptotic behaviour of selected classical benchmark shell problems analysed by means of the rotational 
field decomposition approach identifies clearly distinct load carrying mechanisms in each case. 
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Abstract. A finite element formulation for modelling the dynamic response of laminate composite beams with 
bonded viscoelastic and piezoelectric layers is presented. The formulation is based on the Euler-Bernoulli beam 
theory and Hamilton’s principle. The active control of the beam is designed using either the optimal linear quadratic 
regulator strategy or the robust H∞  control theory. The behavior of the smart structure in the presence of damage 
in the viscous layer is investigated. The implemented numerical simulation shows the dynamical response of the 
uncontrolled beam as well as the suppression of the vibrations of the controlled beam.  
 
 
1 INTRODUCTION 

Smart structures generally consist of a host structure or structural component with bonded or embedded sensors 
and actuators, which are used for the vibration control. Piezoelectric materials can be used as sensor or actuator 
elements in smart structures. A vast number of analytical and computational models for smar t piezoelectric structures 
using various mechanical theories have been reported, among others,  in the recent review by Sunar and Rao [1]. 

In this work, the active vibration control of a composite beam sandwiched between viscoelastic and piezoelectric 
layers is studied. The upper piezoelectric layer acts as an actuator, while the bottom one as a sensor. The purpose of 
the viscoelastic layers is to model the adhesive that possible exists between the piezoelectric layers and the host 
beam. A finite element formulation of the model is presented.  

The problem of active control is studied using classical optimal  linear quadratic regulator (LQR) to obtain the 
optimal control gains and to investigate the behavior of the beam in the presence of possible damages which are 
reflected in the properties of the viscous layer. In order to take into account our incomplete information about the 
damages and of the external disturbances the theory robust H∞  feedback controller is also used. The H∞  optimal 
control technique uses as performance measure the H∞  norm of the transfer matrix from external disturbances to 
regulated outputs defined in the frequency domain. In this way disturbances are rejected in an optimal way by the 
robust control. 

The proposed models are investigated numerically. Simulations show the effectiveness and the good quality of 
the proposed model and the control strategies. 
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2 THEORETICAL FORMULATION 

A composite beam made of laminate faces, with viscoelastic and piezoelectric sub-layers, and an elastic core is 
considered (see Fig 1). The whole beam is modelled using classical laminate theory. Euler-Bernoulli assumptions are 
considered for the beam. The piezoelectric layers are assumed to be transversely polarized and subjected to 
transverse electrical fields. Elastic and viscoelastic layers are assumed to be insulated. All layers are assumed to be 
perfectly bonded and in uniaxial stress state. The length, width and thickness of the beam are denoted by L, b and h, 
respectively. The mid-plane of the core is set to coincide with the origin of the z-axis. The superscripts p, v and b 
refer to the piezoelectric layer, the viscoelastic layer and the elastic core beam, respectively. 

2.1 Kinematics  

By using the kinematical assumptions of the Euler-Bernoulli theory, the axial displacement u and the transverse 
deflection w of every point cross-section x and every time instance t, can be written as 

( ) ( )

( ) ( )

,
, , ,

, , , ,

w x t
u x y z t z

x
w x y z t w x t

∂
= −

∂
=

     (1) 

 
Notice that the same displacement fields u and w are considered for all sub-layers. 
 
                                          z 
 
 
 
                                       h 

                                                                                                                                                      x 

 
 
                                                                                         L 

 
Figure 1. A laminate composite beam  

 
By using the usual strain-displacement relations, the axial strain can be written as 

 
2

2x
u w

z
x x

ε
∂ ∂

= = −
∂ ∂

      (2) 

 
A constant transverse electrical field is assumed for the piezoelectric layers and the remaining in-plane components 
are supposed to vanish. Consequently the electric field intensity zE can be expressed as  
 

z
p

VE
h

=        (3) 

 
where ph  is the thickness of the piezoelectric layer and V  is the applied voltage across the piezoelectric layer. 

 
2.2 Constitutive Equations  

Using the linear theory of elasticity the constitutive equation for the axial extensional strain b
xσ  is given by  

 
2

11 11 2
b b b
x x

w
Q zQ

x
σ ε

∂
= = −

∂
       (4) 

piezoelectric 

viscoelastic 
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where 11
bQ  is the Young modulus of the beam core material. 

The properties of the piezoelectric layer are considered to be orthotropic and homogeneous, and those of viscoelastic 
layer are considered to be of rate-type, isotropic and homogeneous. When only the independent variables xε  and 

zE are not equal to zero, the one-dimensional constitutive equations can be expressed as 
 

11 31 31 33, ,p p p pp
x x z z x zQ e E D e Eσ ε ε ξ= − = +      (5) 

11 11 ,v v v
x x xQ Fσ ε ε= + &         (6) 

 
where p

xσ , v
xσ  denote the axial stress of the piezoelectric and the viscoelastic layers, respectively. Furthermore, zD  

is the electric displacement in the z-direction, 11
pQ , 11

vQ  is the Young modulus of the  piezoelectric and the 

viscoelastic layers, respectively, 11
vF  is the coefficient of the shear viscosity of the viscoelastic layers, 31

pe is the 

piezoelectric constant and 33
pξ  is the dielectric constant. 

Notice that electromechanical coupling in the piezoelectric layers is between axial strain and transverse electrical 
field. This is the conventional piezoelectric extension actuation mechanism.  

2.3 Energy Expressions 

Based on the above constitutive equations, the contributions to the potential energy due to the elastic beam, the 
piezoelectric layers and the viscoelastic layers are given by 
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22

2

0

1 1
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L

bb b
x x
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U dV EI dx

x
σ ε

 ∂
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where  

( ) 2
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S

G F z dS= ∫ , 

and kS , , ,k b p v=  is the cross area of the k-th layer. 
 The kinetic energy of the the k-th layer, k=b, p, v, is represented as 
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2.4 Virtual Work 

The virtual work done by the electrical forces is given by 
 

( )
2

2
332

0 0

1 1 1
2 2 2

p

L L

p p b
z z z

V S

w
W D E dV M dx E dSdx

x
ξ

∂
= = +

∂∫ ∫ ∫ ∫ ,    (11) 

 
while the virtual work done by the mechanical forces is written as 
 

( ) ( )
0

1
, ,

2

L

extW f x t w x t dx= ∫ .     (12) 

2.5 Finite Element Formulation 

For the approximation of the transverse deflections w  Hermite interpolation functions are considered. Beam 
elements are constructed with a length equal to eL , and two nodes, each one with two degrees of freedom: the 

deflection w  and its slope w
x

∂
∂  . Using Hamilton’s principle, one can construct automatically the equilibrium 

equations  
 

( )
0

0

T

b v p b v p p extT T T U U U W W dtδ δ δ δ δ δ δ δ+ + − − − + + =∫    (13) 

 
By this approach, a finite element discretized model for the beam bonded with viscous layers and piezoelectric 
sensors and actuators is derived 
 

ext cMq Cq Kq F F+ + = +&& & ,      (14) 
 
where ,q q&  and q&&  are vectors of nodal displacement, velocity and acceleration. ,M C  and K  are the mass, 

damping and stiffness matrices. In addition, extF  is the external mechanical force and cF  is the control force coming 
from the actuator layer. In should be noted that the damping matrix C  in this paper corresponds to the behaviour of 
the viscous layer. Additional structural damping of the beam may be added, if necessary. 

Equation (14) represents a linear, time-invariant, finite dimensional dynamical system that can be placed in 
standard state space form  

 
x Ax Bu F= + +&  y Dx= ,    (15) 

 

where [ ],x q q= & is the state vector, 1 1

0 I
A

M K M C− −

 
=  − − 

is the system matrix, 1

0

c

B
M F−

 
=  

 
 is the control 

collocated matrix and 1

0

ext

F
M F−

 
=  

 
 is the state distribution of the external mechanical loads extF . The control 

input u  is a column vector formed by the voltages applied to the actuators. The output vector y  consists of 
measures formed from the state vector x  by the output matrix D . 

The model of the smart composite beam used by the authors in the Ref. [2] can be obtained by removing the 
viscoelastic layer from the model of this paper.  
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3 STATEMENT OF THE ROBUST CONTROL PROBLEM  
The optimal control problem is initially studied for the nominal system, i.e., the beam with known elastic, 

piezoelectric and viscous properties. A more realistic question concerning the robustness of the control in the 
presence of defects is also addressed. In particular, we are interested in damages at the interfaces between the host 
beam and the piezoelectric patches. The viscous layer models the glue between the host material and the sensors or  
actuators. The assumption that the piezoelectric patches are bonded perfectly corresponds to viscous glue with 
predetermined properties. The bonding layer may include manufacturing imperfections  or service-induced damage, 
like fatigue, debonding or delamination. Several of these defects can be modelled as changes of the parameters of the 
viscous layer. A first investigation of the influence of damage on the mechanical response of the smart composite 
beam is done with the help of the proposed model.  

Further, two control laws for the composite beam are designed in order to suppress the vibrations. Because of its 
linearity and easy implementation, the linear quadratic regulator (LQR) is presented first. The response of the 
controlled nominal and damaged beams is investigated. In order to take into account the incompleteness of the 
information about the eventual damages and external additional influences a robust H∞  controller is designed. For 
practical applications both algorithms need several trial-and-error design iterations  in order to provide appropriate 
control voltages, since the piezoelectric actuators can be depo led by high oscillating voltages. The effectiveness of 
the proposed control strategies is investigated with the help of numerical simulations. 
 

4 CONTROL DESIGN  
We solve a regulator problem for the smart beam with viscous layer. The objective in this section is to determine the 
optimal vector of active control forces ( )u t  subjected to performance criteria and satisfying the dynamical equations 
of the system, such that to reduce in an optimal way the external excitations. We consider the steady state (infinite 
time) case, i.e. the optimization horizon is allowed to extend to infinity. We seek a linear state feedback  
 

u Kx= − ,       (16) 
 
with constant gain K. 

 
4.1 LQR optimal control strategy 

Consider the first equation of the system (15) and the quadratic cost function  
 

0

1
( )

2
T TJ x Qx u Ru dt

∞

= +∫ .      (17) 

 
The problem consists of minimizing the functional J with respect of the control input u  subject to the linear system 
constraints (17). Here the matrix Q is positive semi-definite ( )0Q ≥  and the matrix R is strictly positive definite 
(R>0). The first requirement implies that some of the states may be irrelevant for the problem. The latter requirement 
emphasizes that the control energy must be finite. This is known as the linear quadratic regulator (LQR) problem [3]. 
It leads to the Algebraic Riccati Equation (ARE) 
 

1 0T TA P PA Q PBR B P−+ + − = .     (18) 
 
The equation (18) has a positive definite solution P  if and only if the pair ( ),A B  is stabilizable, 0R >  and Q can 

be expressed as T
q qQ C C= , such that the pair ( ),qC A is detectable. These are the necessary and sufficient conditions 

for existence and uniqueness of an optimal controller with constant gain K, which realizes an asymptotically stable 
closed loop system. The main design parameters for the controller are the weight  matrices Q and R. They are chosen 
iteratively in order to guarantee a stable optimal system with limited value of maximum control. 
The solution of the problem is the constant matrix K in the form 
 

1 TK R B P−= ,      (19) 
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where P is the symmetric positive definite solution of the ARE (18). LQR requires that the whole state of the 
dynamical system is available. 
 
4.2 Robust H∞  optimal control strategy 
Let the plant representation in state space form is the following  
 

1 2

1 12

2 21

x Ax B w B u

z C x D u
y C x D w

= + +

= +
= +

& %

%
,      (20) 

 
where w%  denotes the external forces and some unknown disturbances that the controller cannot manipulate. The 
output signals are divided by two groups: y are signals that are measured and fed back to the controller and z are 
regulated outputs. 

The following assumptions are made for the output feedback H∞  problem [4]: 

   (i)   ( )2,A B  is stabilizable and ( )2 ,C A  is detectable; 

  (ii)   *
12 12 0D D >  and *

21 21 0D D > ; 

 (iii)   2

1 12

A j I B
C D

ω− 
 
 

 has full column rank for all frequencies ω ; 

 (iv)   1

2 21

A j I B
C D

ω− 
 
 

 has full row rank for all frequencies ω . 

Let us denote by zwT  the transfer matrix from exogenous inputs w%  to controlled outputs z. The H∞  control problem 
is to find a proper, real rational controller K that stabilizes the system (20) and minimizes the H∞  norm of the 
transfer matrix zwT . The following is the objective function we wish to minimize 
 

2

( ) 0
2

( )
min min max

( )zw K w t

z t
T

w t∞ ≠

  =  
  %

, where ∫
∞

=
0

2

2
)()( dttztz i

.  (19) 

 
In the frequency domain the minimization of the H∞  norm minimizes the maximal value of the maximal singular 
value of zwT . In the time domain, minimizing this norm can be interpreted as a worst case minimization with respect 
to the induced 2-norm. 
 

5 NUMERICAL SIMULATIONS  

For the numerical simulations a cantilevered composite beam with viscous and piezoelectric layers bonded on its 
top and bottom and discretized with four finite elements is used. A finer finite element discretization, which certainly 
is required for the approximation of higher frequency behavior, does not change the trend of the results. The 
parameters of the beam are similar to that used in the Ref. [5]. Our aim is to study the response of the composite 
beam in the presence of defects and damages, which can be expressed as changes of the main parameters of the 
viscous layer.   

Let us first investigate the response of the free and LQR-controlled composite beam with piezoelectric and 
viscous layers for various parameters of the glue layer, namely, its density, its thickness and its viscous coefficient. A 
vertical impulsive load is applied at the free-end of the beam. 

Figure 2 shows the free displacement response at the tip of the excited beam for three different amounts of 
density 3250 /kg mρ = - dot line, 31250 /kg mρ =  - solid line, 36250 /kg mρ =  - dash line. Decreasing density of the 
viscous layer slightly changes the behavior of the composite beam. Increasing the density of the adhesive  
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Figure 2. Displacement of the free vibrating beam                   Figure 3. Displacements of the controlled by LQR 
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Figure 4. Displacements of the free vibrating                    Figure 5. Displacements of the controlled by LQR 
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Figure 6. Displacements of the free vibrating beam       Figure 7. Displacements of the free and controlled by H∞   

                for different viscous coefficients 11
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leads to some delay of the free vibration response and at the same time slightly improves the vibration suppression. 
In Figure 3 one can see the corresponding displacements of the controlled response of the beam-tip for the same 
three different amounts of density. The changes of the density lead to changes in the controlled beam behavior. 
However, practically, they neither improve nor deteriorate the vibration suppression of the controlled beam. 

The displacements at the tip of the uncontrolled beam for different thicknesses of the viscoelastic layer are shown 
in Figure 4. Three different thicknesses  are used: h=0.000125 m - dot line, h=0.00025 m - solid line, h=0.0005 m - 
dash line. It can be observed that for decreasing thicknesses of the viscous layer the amplitude of the free vibrating 
beam increases. The response of the controlled beam-tip for the same three different values of the thickness is 
exhibited in Figure 5. The simulations show that lower thicknesses of the adhesive layer give  worse suppressions of 
the first peak in the vibrations, while higher thicknesses lead to better suppression. However, the settling time for a 
sufficiently large range of different thicknesses is practically the same.   

Figure 6 displaces the free response of the exited beam tip for different viscous coefficients 5
11 0.105.10vF =  - dot 

line, 5
11 1.05.10vF =  - solid line, 5

11 10.5.10vF =  - dash line. The numerical investigation shows that the viscous 

coefficient 11
vF  slightly influences the response of the composite beam. Only very big amounts of this parameter lead 

to slight reduction in the peaks of vibrations of the uncontrolled beam that can be seen in the Figure 5. Practically 
this circumstance leads to stable behavior of the controlled beam. Hence, defects expressed by changes in the viscous 
coefficient 11

vF  do not influence the controlled response of the beam. 
Figure 7 shows the response of the uncontrolled and controlled beam using the H∞  control strategy for the 

nominal beam without defects. Numerical investigations show that the suppressions of vibrations of the exited smart 
beam in this case are weaker but the structure remains stable for larger changes in the viscous parameters.  

 

6 CONCLUSIONS 

A mathematical formulation and finite element model for the vibration suppression of a cantilever beam with 
piezoelectric laminated surface and viscous layers and elastic core is considered in this paper. The design of the 
piezoelectric active control using LQR strategy and H∞  control theory for the nominal and damaged sandwich beam 
has been studied. The numerical results show that the proposed model and method are effective and the control  
behavior of the beam achieves the predicted characteristics. 
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Abstract. Most finite-element models of reinforced-concrete structures attribute to concrete material 
characteristics which are in conflict with true behaviour established from valid experimental information. As a 
result the constitutive models adopted are case-study dependent. The present work summarizes already 
published work which shows that the use of realistic concrete properties coupled with well-tried numerical 
techniques can yield a finite-element model characterised by both generality and objectivity. 
 
1 INTRODUCTION 

Most finite-element (FE) models of structural concrete rely on constitutive relationships which place 
emphasis on the description of post-peak concrete characteristics such as, for example, strain softening, tension 
stiffening, shear-retention ability, etc, coupled with stress- and/or strain-rate sensitivity when blast or impulsive 
types of loading are considered. However, the application of these models in practical structural analysis has 
shown that such constitutive relationships are case-study dependent, since the solutions obtained are realistic 
only for particular problems; in order to extend, therefore, the applicability of the models to a different set of 
problems requires modifications, sometimes significant, of the constitutive relationships. 

The cause of the above apparent lack of generality is considered to relate on the one hand with the 
misinterpretation of the observed material behaviour and, on the other, with the use of experimental data of 
questionable validity for the calibration of the constitutive relationships. To this end, the work presented in the 
paper is intended to show that the use of valid experimental data can lead to the development of a model of 
concrete behaviour which enables FE analysis to yield realistic solutions for a wide range of practical problems 
covering both static and dynamic loading conditions. The fundamental material characteristics which underlie 
the development of such a model are first discussed and the FE results obtained from various already published 
case studies are presented as additional evidence of the validity of the material characteristics adopted. 
 
2 FUNDAMENTAL CONCRETE CHARACTERISTICS 

2.1 Brittle post-peak behaviour 
The experimental data on concrete behaviour used for the development of constitutive laws are obtained from 

tests on specimens such as, for example, cylinders, prisms, cubes, etc. Such specimens are subjected to various 
load combinations, usually applied (at least in one of the three principal directions) through rigid steel platens; 
the resulting data are expressed in the form of stress-strain curves comprising a strain hardening branch followed 
by a strain softening one, widely considered to be essential in ultimate limit-state analysis and design. 

And yet, it has been known since the early 80’s[11,21], and confirmed in the late 90’s[22], that only strain 
hardening may describe material behaviour under a definable state of stress; strain softening merely reflects the 
interaction between specimen and loading platens, which is effected through the development of indefinable 
frictional stresses at the end faces of the specimen. In fact, it has been shown that the rate of reduction of the 
residual concrete strength with increasing strain increases rapidly as the means to reduce the above frictional 
stresses becomes more effective (see Fig. 1)[11]. Such behaviour indicates that were the frictional stresses 
completely eliminated, concrete would be characterised by a complete and immediate loss of load-carrying 
capacity, as soon as the peak load level is attained. Therefore, attributing strain softening characteristics to the 
post-peak behaviour of concrete is in conflict with this material’s brittle nature. 
 
2.2 Stress path independency 

Decomposing the stress-strain behaviour of concrete under any state of stress into hydrostatic and deviatoric 
components yields stress-strain curves, which can be expressed in the form of normal and shear octahedral 
stresses (σο and το) and strains (γο and εο). Such curves show that, while σο yields only εο, το yields both γο and 
εο[12]. More importantly, however, it has been shown experimentally that the curves exhibit a statistically 
insignificant deviation from those obtained from tests on specimens subjected to either σο or το [12]. Such a small 
deviation indicates that concrete behaviour is essentially stress-path independent[15]. 
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A similar conclusion has also been drawn from experimental data on concrete strength. Such data form an 
open surface in stress space characterised by six-fold symmetry with respect to the space diagonal, with most of 
them having been obtained from tests on specimens under axisymmetric states of stress, and hence defining the 
meridians of the strength surface corresponding at σ1 = σ2 ≥ σ3 and σ1 ≥ σ2 = σ3. It is such experimental data that 
have also been found to be stress-path independent[7]. 

 
 
 
 
 
 
 
 

 
 

 
 

2.3 “Poisson’s ratio” effect 
The development of most constitutive relations of concrete behaviour published to date has been directly or 

indirectly based on the assumption of a constant value of the Poisson’s ratio (PR). However, such an assumption 
is in conflict with experimental data which show that the variation of PR with the applied load exhibits a trend 
similar to that indicated in Fig. 2.[16]  From the figure, it can be seen that PR is essentially constant up to a value 
of the applied load equal to between approximately 30% and 50% of the peak load level; beyond this load level, 
PR increases at an increasing rate and attains a value that becomes significantly larger than 0.5 when the peak 
load level is reached. Such behaviour clearly indicates that concrete ceases to be a continuum beyond a load 
level close to, but not beyond, the peak one, a fact consistent with the material’s brittle nature. 

 
 
 
 
 

 
 
 
 
 
. 

The above rapid increase of PR with increasing stress has a very significant, but rarely recognized effect on 
structural-concrete behaviour, since it has been shown to underlie the ultimate limit-state behaviour of structural 
members such as, for example, beams, columns, slabs, etc[16]. A typical such example is indicated in Fig. 3 
which shows the transverse (lateral and vertical) deformation profile of the upper face of a reinforced-concrete 
(RC) beam designed to fail in flexure under two-point loading (2P in Fig. 3)[10].  

From the figure, it is interesting to note the large transverse expansion which the beam (at its ultimate-limit 
state) undergoes within localised regions of its middle portion between the load points. This is because the above 
localised regions include primary flexural cracks which reduce the depth of the compressive zone and, hence, 
increase the intensity of the compressive stress field (developing due to the bending action) to a level 
significantly higher than that in adjacent regions where the depth of the compressive zone is larger. It is this 
difference in the intensity of the compressive stress field that causes the large variations in the transverse 
expansion profile of the upper face of the specimen (see Fig. 3), with the larger transverse expansion 
corresponding to the locations of peak stresses where, as indicated in Fig. 2, PR attains its largest value. 

However, the regions exhibiting different degrees of transverse expansion interact, with the regions with the 
small expansion imposing a restrain to the large expansion of the adjacent regions; on the other hand, the latter 
regions tend to impose their rate of expansion to the former. Such an interaction leads to the development of 
transverse compressive-stress resultants (F in Fig. 3) in the regions exhibiting large transverse expansion and 
transverse tensile-stress resultants (F and F/2 in Fig. 3) in the adjacent regions where the transverse expansion is 
small (see Fig. 3). In fact, flexural failure eventually occurs due to horizontal cracking of the compressive zone 
in the regions where longitudinal compression is combined with transverse tension, rather than due to “crushing” 
of concrete at its post-peak state in the compressive zone of cross sections including a deep flexural crack as 
widely believed[10]. 

 
 

 

Figure 2. Typical variation of Poisson’s 
ratio with increasing stress established from 
tests on cylinders in uniaxial compression. 

Figure 3. Transverse deformation profile 
of an RC beam under two-point loading. 

Figure 1. Load-displacement curves of concrete in
uniaxial compression tests on cylinders using 
various methods to reduce friction. 
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2.4 Cracking 

An element of concrete in an RC structure cracks in order to relieve tensile stresses when the material 
strength in tension is attained. The crack faces coincide with the plane of the maximum and intermediate 
principal stresses (assuming compression as positive) and opens in the orthogonal direction (i.e. in the direction 
of the minimum principal compressive stress or maximum principal tensile stress), whereas its extension occurs 
in the direction of the maximum principal compressive stress[8,13]. Such a cracking mechanism precludes any 
shearing movement of the crack faces and, therefore, contrasts widely adopted mechanisms of shear resistance 
such as, for example, aggregate interlock and dowel action, which can only be effected through the “shearing” 
movement of the crack faces. 

The cracking mechanism described above implies that an RC structural member suffers loss of load-carrying 
capacity before failure of concrete in compression anywhere within the member[15]. In fact, loss of load-carrying 
capacity is preceded by the initiation of cracking in regions where the state of stress is predominantly tensile 
with propagation into regions under a compressive state of stress occurring after one of the principal stress 
components of this state of stress becomes tensile. Eventually, failure occurs due to crack formation in regions 
where large transverse expansion causes transverse tension as described in the preceding section.  
 
2.5 Loading-rate independency 

The vast majority of existing constitutive models used for describing the behaviour of concrete under high 
rates of loading are based on the assumption that there is a link between the mechanical properties of concrete 
and the rate at which the loading is imposed. However, such a “loading-rate sensitivity” is based on an uncritical 
interpretation of the available experimental data, the validity of which has recently been questioned[3]. In the 
present work, the mechanical properties of concrete are considered to be independent of the loading rate, with 
the effect of the latter on the specimen behaviour being primarily attributed to the inertia effect of the specimen 
mass: this simple (and, arguably, obvious – though, at present, unorthodox) postulate was the subject of a 
numerical investigation which proved capable of reproducing the experimental data available from past tests[3]. 
Moreover, this numerical investigation confirmed the importance of the role that inertia plays in the specimen’s 
response when subjected to high rates of loading. 
 
3. USE IN FINITE-ELEMENT ANALYSIS 
 
3.1 Constitutive law of concrete behaviour 

An analytical description of concrete behaviour may be based on an analysis of experimental stress-strain 
data expressed in the form of octahedral stress-strain curves. The variations of the secant and tangent values of 
the bulk (KS ,KT)) and shear (GS,,GT) modulae may easily be expressed as functions of σο and το from the σο-εο 
and το-γο curves, respectively, as fully described elsewhere[14]. The values of KT and GT at the origin of the 
normal and shear octahedral stress-strain curves have been shown  to adequately describe material behaviour 
during unloading[12,15]. In order to allow for the coupling between the hydrostatic and deviatoric components of 
stress and strain expressed by the variation of εο with το for a given σο, the latter variation has been transformed 
into the variation of an internal hydrostatic stress σint with το for a given σο[12,14]. Having expressed KS (KT) and 
GS (GT) as functions of σο and το, respectively, and σint as a function of σο and το, the strains corresponding to a 
given state of stress is easily obtained from Hook’s law by adding σint to σο[15]. 
  As for the case of the deformational properties, the analytical description of the strength surface may also be 
based on an analysis of experimental data expressed in the form of σο, το and θ (defining the direction of το on the 
deviatoric plane (plane normal to the space diagonal)). Such data were used for the analytical description of the 
strength-surface meridians corresponding to θ=0o (σ1 = σ2 ≥ σ3 ) and θ=60o (σ1 ≥ σ2 = σ3.)[9]. For meridians 
corresponding to 0o  ≤ θ ≤ 60o an interpolation function derived elsewhere[23] is used.  
 
3.2 Constitutive law for steel bars 
The constitutive model used to describe the behaviour of steel reinforcement is essentially an analytical 
description of the stress-strain curve of steel in compression or tension describing material behaviour under both 
monotonic and cyclic loading. Full details are provided elsewhere[3]. 
 
3.3 Concrete-steel interaction 

It is considered that the concrete-steel interaction is adequately described by the assumption of perfect bond. 
Three arguments may be adduced for such an approach: First, the notion of perfect bond is compatible with the 
thinking behind the smeared-crack model – in the sense the detailed description of localised effects is avoided – 
which spreads the effect of cracking to such an extent that integration points in bar elements represent, generally, 
bar lengths usually exceeding the localised regions where bond slip occurs, thus precluding a minute account of 
the local concrete-steel interaction. Secondly, experiments attempting to determine bond-stress against slip-
displacement curves exhibit a large scatter of data, which precludes any refinement implicit in the departure from 
the perfect-bond condition. Thirdly, and most importantly, there are the actual values of the bond stress and  
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corresponding slip themselves. From the experimental data, an order of magnitude for the maximum bond stress 
and corresponding slip of around 5 MPa and 0.005 cm, respectively, appears to be relevant. These values are 
larger that the values of 1 MPa and 0.0006 of the tensile strength and corresponding displacement resulting from 
the failure criterion incorporated in the FE model, by an order of magnitude. It is evident therefore that concrete 
in the vicinity of concrete-steel interface will usually have cracked before the maximum bond stress could be 
developed. 
 
3.4 Finite-element solution technique 

The implementation in structural analysis of a constitutive law of concrete behaviour with the above 
characteristics was achieved through the development of a finite-element (FE) package that is fully described 
elsewhere[3,15,17,18] and therefore will only briefly presented in the following. 

The package is capable of performing not only static[15,17,18], but also dynamic[3] analysis, the latter being 
effected through the unconditionally stable average acceleration method of the implicit Newmark integration 
scheme[1,4,5]. Moreover, it uses three dimensional (3D) nonlinear (NL) analysis in order to allow for (a) the 
nonlinear behaviour of concrete under the triaxial stress conditions, which invariably develop prior to local 
failure (i.e. cracking), and (b) the introduction of non-homogeneity and stress redistribution after the occurrence 
of cracking. Concrete is modelled by using 27-node brick Lagrangian elements, whereas truss 3-node 
isoparametric elements are used to model the steel reinforcement. 

The nonlinear analysis is based on an iterative procedure, known as the modified Newton-Raphson[15] which 
is used to calculate stresses, strains and residual forces. Every Gauss point is checked, at first, in order to 
determine whether loading or unloading takes place, and then in order to establish whether any crack closes or 
forms. Depending on the results of the previous checks, changes are introduced to the stress-strain matrices of 
the individual FE’s and, consequently, to the stiffness matrix of the structure. Based on these modified matrices, 
deformation, strain and stress corrections are evaluated. Convergence is accomplished once the above 
corrections become very small. It should be pointed out that the formation and closure of cracking is checked 
separately during each load step.  
 
3.5 Crack formation and closure procedure 

During the crack-closure procedure only Gauss points with cracks formed in previous load steps are 
checked. For a crack to close, the criterion that must be satisfied is that the strains normal to the plane of the 
crack be compressive. In the course of each iteration, the program singles out the crack with the largest 
compressive strain and closes it, as it has been observed that, after the closure of one crack, there is usually a 
drastic drop in the number of cracks that need to close next. The crack-closing procedure is repeated until all 
cracks that fulfil the crack-closure criterion close.  

The crack-formation procedure commences after the completion of the crack-closure procedure. During each 
iteration of this procedure all Gauss points are checked in order to determine if any new cracks form. This is 
achieved by using the failure criterion since the opening of a crack corresponds to localized failure of the 
material. In order to avoid numerical instabilities during the solution of the problem, only a limited number of 
cracks (no more than three) are allowed to form per iteration. Should the number of cracks that need to open 
exceed this predefined number, then only the most critical cracks will be allowed to form. As for the case of 
crack closure, after the formation of the most critical cracks the number of cracks that need to form in the next 
iteration reduces rapidly due to the redistribution of stress achieved during this process. 

Crack formation is modelled by using the smeared-crack approach and may occur up to three times at any 
given point. Failure is followed by immediate loss of load-carrying capacity in the direction normal to the plane 
of the crack. Concurrently, the shear stiffness is also considered to reduce drastically to a small percentage of its 
previous value (during the uncracked state). However, it is not set to zero in order to minimize the risk of 
numerical instabilities during the execution of the solution procedure, as explained elsewhere[15].  
 
4. FINITE-ELEMENT PREDICTIONS OF STRUCTURAL-CONCRETE BEHAVIOUR 

The validity of the above NLFE package has been verified by comparing the numerical predictions with 
experimental data obtained from tests on a wide range of structural members subjected to various regimes of 
static and dynamic loading. Full details of these comparative studies are given elsewhere[3,6,15,17,18]. An indication 
of the predictive capabilities of the package is provided in the following in the form of load-displacement curves 
of typical RC structural members under loading regimes varying from static to dynamic and static to periodic. 
 
4.1 Simply-supported beam with overhang under sequential static loading 

The case discussed in the present section has been extracted from a research programme concerned with the 
study of the performance of RC beams exhibiting points of inflection[6]. All beams were simply supported with a 
span of 1600 mm and an overhang of 400 mm. Their total length was 2200 mm, with a rectangular cross-section 
of 230 mm (depth)x100 mm (width). The loading arrangement is shown in Fig. 4. The beams were under-
reinforced using two 16 mm diameter high-yield deformed bars as both top and bottom reinforcement. The  
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transverse reinforcement provided was in the form of 8 mm plain mild-steel bars. The average test values of 
yield and ultimate stresses were, respectively, 536 MPa and 626 MPa (16 mm bars) and 368 MPa and 480 MPa 
(8mm bars). The average concrete strength of all beams was around 30 MPa and the same mix was used 
throughout. Full details on the specimens and their production are reported in Ref. 6. Information on the test rig, 
instrumentation, loading and deflection measurement is also contained there.  

 
 
 
 
 
 
 
 
 

 
 
 

The analytical load-deflection characteristics for a typical beam designed to the “compressive-force path” 
method[16] and subjected to sequential loading are compared with the experimental behaviour in Fig. 5. In the 
figure, the total load is plotted against the deflections corresponding to the locations of the two concentrated 
loads, namely the middle of the main span (deflection D1) and the end of the overhang (deflection D2). It can be 
seen that the analytical prediction of the peak load agrees well with its experimental counterpart. Similarly, the 
maximum deflection at both the main span and the overhang is realistically estimated by the NLFE analysis. 
 
4.2 Structural-concrete wall under cyclic loading 

The structural wall investigated is one of the structural walls (specimen SW33), taken from the set of 
experiments conducted by Lefas[19]. The wall was 650mm wide, 1300mm high and 70mm thick. The uniaxial 
cylinder compressive strength (fc) of the concrete used was around 50 MPa, whereas the yield stress (fy) and 
ultimate strength (fu) of the reinforcement was 420 MPa and 480 MPa for the 4 mm bars, 520 MPa and 610 MPa 
for the 6.25 mm bars, and 470 MPa and 560 MPa for the 8 mm bars. The reinforcement arrangement is shown in 
Fig. 6. From the figure, it can be seen that the wall was monolithically connected to a rigid RC prism at both top 
and bottom. The bottom prism was firmly bolted to the laboratory strong floor in order to resemble a rigid type 
of foundation, while at the end faces of the top prism the external loading was imposed through two 50-ton 
jacks. The prisms were designed so as to remain undamaged throughout the course of the experiment. Each wall 
was subjected to different cyclic loading conditions. After a prescribed number of load cycles, the load increased 
monotonically up to the full loss of load-carrying capacity. 

Initially, the behaviour of the RC walls is investigated when subjected to monotonic loading conditions in 
order to determine numerically their load-carrying capacity, nonlinear behaviour and mode of failure. Typical 
results obtained in the form of external load-displacement curves representing the relation between external load 
and the horizontal displacement of the top prism of the wall are presented in Fig. 7. Following, the monotonic-
loading case studies, the specimens were analysed under cyclic loadings equivalent to those imposed in the 
experimental investigation. The results obtained are also presented in Fig. 7 in the form of external load-
displacement curves. 
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A comparison between the numerical predictions (cyclic and monotonic case studies) and experimental data 
is presented also in Fig. 7. From the figure, it can be seen that the value of the predicted load deviated from its 
experimental counterpart by around 20%. Such a deviation is comparable with the variability of the experimental 
data used for the derivation of the constitutive law of concrete and, hence, it is considered acceptable. On the 
other hand, the predicted deflections were similar to their experimental counterparts up to maximum load of the 
last load cycle (load cycle 5) when the specimen failed.   

 
4.3 Three-storey structural wall under seismic excitation 

Full details of the specimen and the test arrangement are provided elsewhere[20]. The RC wall had a cross-
section of 900mm x 100mm and a height of 3 m. The wall corresponds to a three-story building and along its 
height three 12 ton masses were attached to it at approximately 1 m intervals as schematically shown in Fig. 8. 
Each mass (corresponding to the mass of a floor in the equivalent three-story building) was supported by a 
separate rigid steel three-story frame and was able to move only in the horizontal direction (so that the inertia of 
the masses affects only the horizontal motion of the structure). The wall was also subjected to uniaxial 
compressive loading, at approximately 30% of the axial compressive strength. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Full details of the FE modelling and numerical predictions are given elsewhere[3]. Only the main results are 
presented herewith in a graphical form. The dynamic load was applied in the form of an acceleration record, 
which is presented in Fig. 9. The full response of the specimen during the experimental investigation is presented 
in Figs 10 and 11 in the form of displacement-time, shear-time and base moment-time curves, respectively. It 
can be seen from the figures that the correlation between numerical predictions and measured values is very 
close in all cases. 
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Figure 9.    Acceleration record used for the analysis 
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4.4 Concrete behaviour under high rates of compressive loading 

The structural form which provides the basis of this investigation is a concrete prism, similar to the concrete 
specimens used in various experimental investigations carried out to date on this subject[2]. The prism is assumed 
to be fixed at its bottom face, and to be subjected to an axial load applied at its upper face through a rigid plate 
element with the same cross-section (see Fig. 12) imposing a uniform displacement on the upper face of the 
concrete prism. It is assumed that concrete and the rigid plate on the top are fully bonded at their interface. The 
prism height is 253mm and its cross-section forms a square with a side of 100mm, whereas the rigid plate has a 
height of 200mm. The uniaxial compressive strength of concrete fc is assumed to be 30 MPa a fairly typical 
value in practice.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Both the concrete prism and the rigid plate are modelled by using the 27-node Lagrangian brick element. 

Meshes consisting of 3 (vertically)x1x1 (horizontally) and a 1x1x1 elements are adopted in order to model the 
concrete prism and the rigid plate, respectively. The mass of the specimen is modelled as concentrated masses 
either located on the FE nodes situated along the longitudinal axis of symmetry of the specimen (model A) or 
distributed to all FE nodes (model B). In the case of model A, only mass displacement in the direction of the 
applied load (i.e. along the axis of symmetry) is allowed, whereas in the case of model B, the mass is allowed all 
three degrees-of-freedom of the nodes. The external load is imposed as a force incrementally at the beginning of 
each time step. In order to vary the rate of loading, the load increments are kept constant and the time step is 
varied. The numerical investigation consists of two case studies. Case study 1 adopts model A whereas case 
study 2 relies on model B.  

 
 
 
 
 
 
 

. 
 

 
 
 

 
The results obtained from case studies 1 and 2 show that the behaviour of the concrete specimen under high rates 
of uniaxial compressive loading differs considerably compared to that exhibited under static loading. A typical 
indication of such difference in behaviour is shown in Fig. R13, in which it can be seen that the specimen load-
carrying capacity increases as the rate of loading becomes higher. What is important to note is that he above 
increase in load-carrying capacity is die to the development of inertia forces the magnitude of which increases 
with the rate of loading and not, as widely assumed, due to the loading-rate dependence of the properties of 
concrete.  
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Figure 11.    Numerical (for C = 5 kN·m/sec) and experimental (a) base shear and (b) base moment of the RC 
wall under seismic excitation.

Figure 12. The specimen used for 
the investigation. 
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5. CONCLUSIONS 
 It appears from the above that NLFEA incorporating a brittle, triaxial model of concrete behaviour, load-path 
and loading rate independent is capable of yielding realistic predictions for a wide range of structural-concrete 
configurations subjected to any type of static and dynamic loading.  
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Abstract. In this paper, the bending behavior of ultra-high strength fiber reinforced concrete is studied within a 
nonsmooth mechanics framework. The material, which has properties that classify it in the range of ultra-high 
strength concretes, is a composite one, consisting of a cementitious matrix reinforced by steel fibers. The scope 
of the paper is to model the nonlinear bending response of the composite material by means of a nonconvex 
energy mininization approach. For this reason, the response of each one of the constituent materials is modeled 
by means of monotone or nonmonotone, possibly multivalued constitutive laws. The numerical investigations 
presented in the paper, shed light into the complex behavior of the composite structural elements. 
 
 
1 INTRODUCTION 

The ability to design structural elements with greater strength and ductility to resist seismic loads is an 
increasingly important civil engineering need. For this reason, several approaches have been followed during the 
past decades leading to materials with exceptional properties, as e.g. high strength steels and ultra high strength 
concretes. In Greece, it is of major interest the application of materials with exceptional properties for seismic 
applications, particularly for retrofitting of existing structures. Using for example ultra high strength concrete 
(compressive strength greater than 100 Mpa) for the construction of additional elements (walls, frames etc.) that 
undertake the seismic forces in rather weak existing buildings, the design engineer can avoid the massive 
structural elements that reduce the floor space and cause, in some cases, excessive increase of the total mass of 
the building.  

Recognizing the above need, the Greek cement company ΑΓΕΤ, decided to fund the development of a new 
material with exceptional properties that will be used primarily for retrofitting of existing structures. The project 
is co-funded by the General Secretariat of Research and Technology within the ΕΠΑΝ framework and is 
supervised by the first author. 

Till now, the result of the project is a fiber reinforced composite material, which has a cementitious base. 
Specimens of the new material have been tested experimentally with very promising results. The compressive 
strength is of the order of 110 Mpa, while the bending strength is more than 6 Mpa. This bending strength has its 
nature to the tensile strength of the cementitious matrix, however, the fracture of the matrix is brittle, giving rise 
to a stress-strain law of the type shown in Figure 1. On the other hand, the ductility that was observed even from 
the first tests has its nature to the presence of the steel fibers which either break or pull-off from the matrix. Both 
mechanisms are ductile. 

The type of laws appearing in the composite material developed for the needs of the project are a special case 
of a more general family of mechanical laws, called nonmonotone, multivalued laws. In [1], [2], [3], [4], [5], it is 
shown that this type of laws gives rise to a new type of variational forms expressed by inequalities, called 
hemivariational inequalities. Hemivariational inequalities express the ``principle'' of virtual or complementary 
virtual work in inequality form. The theory of hemivariational inequalities leads to the conclusion that local 
minima of the potential or the complementary energy functional represent equilibrium positions of the structure. 
However, it is possible, that certain solutions of the problem may not be local minima but another more general 
type of points which make the potential or the complementary energy ``substationary'' [4], [6]. 

Although the formulation of a nonmonotone problem as a hemivariational inequality has many advantages 
concerning its mathematical study that makes possible significant progress in this area [4], [7], [8] this progress 
has not yet been matched by similar developments of the numerical approximation methods. Indeed, the 
numerical determination of all local minima of a nonconvex function is still an open problem in numerical 
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optimization [9].  
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Figure 1. Stress-strain laws for a) the cementitious matrix and b) the steel fibers 

 
The objective of the paper is to model the nonlinear bending response of the composite material by means of 

a nonconvex energy mininization approach. For this reason, the response of each one of the constituent materials 
is modeled by means of monotone or nonmonotone, possibly multivalued constitutive laws. The properties of 
each one of the constituent materials are determined by means of experimental testing. Then, a non-
differentiable and  nonconvex (due to degradation effects) potential energy is formulated for the whole 
mechanical system. For the structural analysis problem the potential energy minimization problem is considered. 
The arising variational or hemivariational (in the case of nonmonotone laws) inequality problems are solved by 
appropriate nonconvex-nonsmooth computational mechanics techniques developed by the first author [6].  

The results obtained by the above numerical model are compared against those obtained by bending tests of 
specimens of the composite material. The numerical investigations presented in the paper, shed light into the 
complex behavior of the composite structural elements.  

 
2 THEORETICAL FORMULATION 
      An elastic structure with both classical, linearly elastic and degrading elements is considered. The static 
analysis problem is described by the following relations:  

• Stress equilibrium equations:  
 

  n
n
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⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
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 (1) 

 
where G  is the equilibrium matrix of the discretized structure which takes into account the stress contribution 
of the linear  and nonlinear  elements and  is the loading vector.  s ns p

• Strain–displacements compatibility equations:  
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where e, u are the deformation and displacement vectors respectively.  
• Linear material constitutive law for the structure :  
 

  0 0(= −s K e e  (3) 
 
where  is the natural and stiffness flexibility matrix and  is the initial deformation vector.  0K 0e

• Monotone and nonmonotone, superpotential constitutive laws for the nonlinear elements:  
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  ( ).n n nφ∈∂s e  (4) 
 
Here (.)nφ is a general nonconvex and nondifferentiable potential which produces the law (4) by means of an 
appropriate generalized differential, set–valued operator ∂  (see, e.g., [1]). Summation over all nonlinear 
elements gives the total strain energy contribution of them as:  
 

  ( )

1

( ) ( )
q

i
n n n n

i

φ
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* *
n

 (5) 

 
• Classical support boundary conditions (b.c’s.).  

For the variational formulations of the problem the virtual work equation is first formulated in a discretized 
form:  
 
    s.t. (2) b.c’s. (6) * * * *( ) ( ) ( ), , ,T T

T n n n− + − = − ∀s e e s e e p u u e u e
 
Entering the elasticity law (3) into the virtual work equation (6), and using (2) we get:  
 
  T T T * T * T * * n

0 0 0 n n n ad- - + - - = 0,  V = {  (2) b.c's. hold},∀ ∈ ∈u GK G (u u) (p GK e ) (u u) + s (e e ) u v  (7) 
 
Where  denotes the stiffness matrix of the structure and T T

0K = G K G 0 0= +p p GK e  denotes the nodal 
equivalent loading vector.  
At this point we use the weak form of the nonlinear law (4), i.e.  
 
  ( ) ( )T o

n n n n n n n
∗ ∗ ∗− ≤ Φ − ,∀s e e e e e  (8) 

 
where  is the directional derivative of the potential (o

n n n
∗Φ −e e ) nΦ  or, in terms of mechanics the virtual work of 

the nonlinear structural elements for a small deformation equal to n
∗

n−e e . Thus the following hemivariational 
inequality is obtained:  
Find kinematically admissible displacements u  ∈   such that  adV
 
  ( ) ( ) ( ) 0TT o

n n n adV∗ ∗ ∗ ∗− − − +Φ − ≥ ,∀ ∈ .u K u u u u u u up  (9) 
 
Equivalently the potential energy should be stationary at equilibrium, i.e. the structural analysis problem reads:  
Find  such that:  adV∈u

  1( ) stat ( ) ( )
2

TT
n

adV

⎧ ⎫Π = Π = − +Φ .⎨ ⎬
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u v v Kv vp
v
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3 ALGORITHMIC APPROXIMATION OF THE NONCONVEX- NONSMOOTH OPTIMIZATION 
PROBLEM 
      The aim of this section is to bypass the nonconvex substationarity problem (10) by minimizing a sequence of 
appropriately defined convex functions in which the nonconvex potential ( )nΦ v  has been substituted with the 
convex potential . We consider first the following minimization problems  ( )p v
 

  ( )1min{ ( )}
2

TT p− +v Kv v vp i  (11) 

 
where in each step the convex potential  is selected such as the following relation is fulfilled:  ( ) ( )ip v
 
  ( ) ( 1) ( 1)( ) (i i i

np − )−∂ = ∂Φ .v v  (12) 
 
If the nonconvex minimization problem is written in the form  
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  1min{ ( )} min ( ) [ ( ) ( )]
2

TT
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then we can write the following minimization problems  
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If we suppose that in the last case we have the convergence of the iterative scheme then we have that 

( ) ( 1)n n ε−| − |≤v v . Due to (12) the variation of the last term of (14) with respect to  becomes very small and 
finally we can write  

v

 

  { } ( )1argmin ( ) argmin ( )
2

TT np⎧ ⎫Π = − +⎨ ⎬
⎩ ⎭

v v Kv vp v  (15) 

 
where in the left hand side we mean the local minimum sought. By means of the previous relations it is easily 
verified that a solution of the initial minimization problem of ( )Π v  is obtained using the proposed iterative 
scheme but the full proof of convergence remains still an open problem. However, in the various numerical 
experiments we have performed, convergence was always achieved. Therefore, the following heuristic algorithm 
is formulated:  

1. Select a starting point  and initialize i  to 1.  (0)v
2. For the point  select a convex superpotential  such that relation (12) is fulfilled.  ( )iv ( )ip
3. Find the minimum  of the convex superpotential  ( )iv

 ( )1 ( )
2

TT ip− +v Kv v vp  

 
4. If ( ) ( 1)i i ε−| − |≤v v  where ε  is an appropriate small number then a substationarity point of (10) has 

been determined and terminate the algorithm, else set 1i i= +  and repeat Step 2.  
In an engineering problem where a one-dimensional nonmonotone stress-strain law  is involved, the 
process in Step 2 of the above algorithm is an easy task since one has to select a monotone law  such that 

. In general, the convex superpotentials that approximate the nonconvex superpotentials are 
selected in such a way that the computational effort is minimum. This task depends on the particular 
nonmonotone potentials to be approximated. Notice also that different starting points for the above algorithm 
may lead to different substationarity points of the nonconvex superpotential.  

( )h v
( )g v

( ) ( 1)( ) (i ig h −=v v )

More general types of algorithms and the relation with other nonsmooth computational mechanics methods are 
discussed in [6].  
 
4      EXPERIMENTAL TESTING 

  The main objective of the experimental tests performed until now is to determine the load-deflection 
behaviour of specimens with dimensions 10x10x50cm. The specimens are submitted in the so-called four-point 
bending test. The distance between the supports is 30cm. The specimen is loaded in two points dividing the 
length between the supports in three equal parts, as shown in Figure 2. 
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Figure 2. The setup of the four-point bending tests 
 
The applied load and the maximum displacement in the middle of the specimen are recorded electronically. 

All the experimentally obtained load-deflection curves have a similar shape as the one shown in Figure 3. It is 
interesting to notice in this figure the vertical branches that have their nature in the sudden loss of the tensile 
strength of the cementitious matrix and the transfer of the corresponding load to the steel fibers.  

 
 It is also interesting to notice the great deformation capacity of the specimen which is the result of the 

use of the steel fibers. Similar tests in specimens made from the cementitious matrix alone (without steel fibers) 
show a brittle behavior just after the tensile strength of the concrete is exhausted (see Figure 4). 
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Figure 3. Load-deflection curve obtained experimentally in fiber-reinforced specimens 
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Figure 4. Load-deflection curve obtained experimentally in specimens without fibres 

5 NUMERICAL SIMULATION USING NONCONVEX OPTIMIZATION 

  In order to simulate the four-point bending tests, the model of Figure 5 was used. In this model, only half of 
the real specimen is modeled, by realizing appropriate symmetry conditions at the right edge. The model is 
simulated by truss elements (parallel to the x-axis) which actually consist of two coupled elements, one 
representing the cementitious matrix and one representing the steel fibers. Ten (10) parallel layers are used for 
the modeling, which provide sufficient accuracy for the simulation of the bending behavior. The parallel truss 
elements are connected regularly with rigid bars which enforce the Bernoulli beam conditions (deformed cross 
section remains plane). Moreover, diagonal elements are used in order to take into account the shear mechanism.   

1 "matrix element" + 1 "steel fibers" element

rigid elements

symmetry boundary
conditions

roll support

Applied load

 
Figure 5. The model used for the simulation of the experiments 
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The elements representing the cementitious matrix have a constant rectangular cross-sectional area equal to 
0.1x0.01m. The compressive strength of the matrix is equal to 110Mpa, while the tensile strength of the matrix 
was calculated from the bending strength of the unreinforced specimens and was equal to 6.2 Mpa. Therefore, 
the elements representing the cementitious matrix are assumed to obey to the simplified law of Figure 1a. The 
elasticity modulus was calculated experimentally and set to . 7 23.35 10 /cE kN= × m

m

The cross sectional area of elements representing the steel fibers is calculated from the fiber content of the 
composite material which is 63.1g/l. This leads to a geometrical percentage of 0.8%. Moreover, due to the fact 
that the fibers are randomly oriented in three directions, an efficiency factor of 0.5 is used according to [10]. 
Therefore, the elements representing the steel fibres that exist in the 0.1x0.01m cross section of the cementitious 
matrix, have a cross-sectional area of 0.1x0.01x0.008x0.5=4x10-6 m2. The yield strength of the steel fibers is 
1400 Mpa, however, it is assumed that the fibers cannot attained their ultimate stress due to the onset of slippage 
between the steel fiber and the matrix. An efficiency factor equal to 0.83 is used giving rise to the simplified 
material law shown in Figure 1b. The elasticity modulus was taken equal to . 8 22.1 10 /sE kN= ×
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Figure 6. Load-deflection curve obtained numerically 

 
The above model was analyzed using the algorithm outlined in the previous Section. Due to the particular 

characteristics of the problem (multiple minima for the same load level), different starting points had to be 
defined in order to obtain the points beyond the breaking of the cementitious matrix. The obtained load-
deflection curve is depicted in Figure 6 and resembles closely the load-deflection curve obtained experimentally 
(Figure 3). The basic difference between the two curves is that the curve obtained numerically can capture 
accurately only the position of the first crack, as the numerical model used here cannot take into account 
multiple crack openings. However, the predicted first crack load and the predicted ultimate load match closely 
the experimentally obtained values.  

Concerning the efficiency of the proposed numerical schemes, the algorithm converged quickly to the 
solution of the problem. All the load cases were solved within 2-3 steps of the iterative algorithms presented in 
the previous section with a relative accuracy of 10-4 with respect to a second order norm of the displacements, 

i.e. the algorithms are assumed to converge when 
( ) ( 1)

4
( ) 10

i i

i

−
−−

<
v v

v
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Abstract. Solution of the wave equation over unbounded domains is of interest in various fields of both science 

and engineering. In particular, solution of the elastodynamic wave equation on an unbounded domain finds 

applications in soil-structure interaction analysis and in the simulation of earthquake ground motion, 

considering the ground as an unbounded elastic domain. In complex configurations usually a Finite Element 

solution of the problem requires the use of a bounded domain, along with an absorbing boundary that imposes 

the radiation condition i.e. no incoming waves at infinity. Among the various methods of imposing the Absorbing 

Boundary Condition (ABC) the simplest one is the use of dashpots in both directions according to the suggestion 

of Lysmer & Kuhlemeyer. A more efficient approach is to employ the notion of Perfect Matched Layer (PML) 

consisting of the same material, but having attenuation characteristics that damp the outgoing and reflected 

wave within the layer thickness. Thus, wave propagation in an unbounded domain can be modeled through a 

bounded domain surrounded by a suitably defined PML capable to absorb the incoming waves. A comparative 

study of both methods is performed on a number of simple problems to reveal their special features and 

characteristics. 

 

 

1 INTRODUCTION 

Solution of a wave equation in an unbounded domain requires the enforcement of a radiation condition in any 

unbounded direction. Irregularities in the geometry of the domain, or in the material, often compel a numerical 

solution of the problem using FEM, thus requiring the use of a bounded domain, along with an artificial 

boundary, that absorbs outgoing waves. 

A perfectly matched layer (PML) is an absorbing boundary layer for linear wave equations that absorbs, 

almost perfectly, propagating waves of all non-tangential angles of incidence and of all non-zero frequencies. The 

concept of a PML was introduced in the context of electromagnetic waves by Berenger [1]. Since its 

introduction, extensive research has been done on various aspects of PMLs for electromagnetic waves. 

The simple problem of propagation of longitudinal waves in a restrained elastic rod, is first introduced to 

demonstrate all relevant concepts and features of both the ABC and PML methods. Then, the concept of a PML 

is developed in the field of time-harmonic elastodynamics in Cartesian coordinates [2-4], and the effect of 

various parameters on the accuracy of dynamic stiffness is examined. Finally, the response of the PML at 

complex conditions is verified through a FEM implementation, using Abaqus code. The PML concept is 

illustrated through the one-dimensional example of a rod on elastic foundation, which studied through analytical 

results for the dynamic stiffness. The PML for plane-strain is also demonstrated. Numerical results are presented 

for the soil-structure interaction problems in the plane of a rigid strip-footing on a half-plane. 

2 ABSORBING BOUNDARY CONDITIONS 

2.1 Longitudinal waves in an elastically restrained rod 

For the rod as shown in Fig. 1, it is assumed that the longitudinal displacement of each section is given by 

u(x,t). Moreover, the rod is subjected to a dynamically varying stress field σ(x,t). The rod is restrained by linear 

springs and visco-elastic dampers characterized by the material constants ke and e, respectively [5]. The equation 

of motion is the following: 

 
2

2
( ) 0e

u u
A dx A k udx e dx A dx

x t t

σ
σ σ ρ

∂ ∂ ∂
− + + − − − =

∂ ∂ ∂
   (1) 
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Figure 1. Model of an elastically restrained rod 

 

For a linear elastic material Hooke’s law is given by the equation 
,xuσ = Ε , and the equation of motion 

becomes: 

2 2 2 2
2

2 2 2 2 2

1
2e

u u u u u u
AE A k u e or u

t c tx t x c t

ε
ρ κ

∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂ ∂∂ ∂ ∂ ∂
   (2) 

 

where the parameters c, κ and ε are defined as c E ρ= , ek EAκ =  and 2ec EAε = , respectively. For the 

outgoing waves the solution is of the following form: 

 

( , )
ikx i t

ou x t u e
ω− +=      (3) 

 

where ω is the circular frequency and k is the wave number. Substitution of relation (3) in relation (2) gives 

which the dispersion relation which associates the wave number with circular frequency ω. 

 

2 2 21
2k c i c

c
ω κ εω= ± − −      (4) 

 

The dispersion relation expresses the equation of motion in the frequency domain and can be used to analyze 

the propagation of wavetrains within the medium. The wave number is a complex number and is given by k = kR 

+ ikI , where kR represents the real part and kI  the imaginary part. 

 

2 2 2 4 4 2 2 2 4 2 2 2

2 2 2 4 4 2 2 2 4 2 2 2

1
2 4

2

2

2 4

I

R

k c c c c
c

k

c c c c

κ ω κ κ ω ω ε ω

εω

κ ω κ κ ω ω ε ω

= − − + − + +

=
− + − + +

   (5) 

 

The general solution of the wave equation (2) consists of two parts, a wavetrain traveling in the positive and 

another traveling in the negative direction. These are associated with the two roots of the dispersion relation (4). 

The graphs of kR(ω) and kI (ω) are shown in Figure 2 as function of ω. For ω →∞  the imaginary part converges 

to kI (ω) =-ε. At ωc=κc the wave number k (ω) changes from a purely imaginary to a purely real function. In the 

frequency domain for ω>κc, kI=0 the harmonic wave is propagating. In the frequency domain where ω<κc, kR=0 

and there is no wave propagation or evanescent mode, because the amplitude of the oscillation decays with 

increasing x. 

 

2.2 Reflection of Waves at the Boundary and Exact Absorbing Boundary Conditions 

For a finite rod of length L, there exists a solution in the form: 

 

1 2( , ) i t ikx i t ikx
u x t A e A e

ω ω− += +      (6) 

 

The coefficients A1 and A2 are determined from the boundary conditions which are: 

x 

 

   

L 

u(x,t) BR(u (L,t))=0  BL(u (0,t))=0  
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Figure 2. Real and imaginary part of the positive root of the dispersion relation (c=500 and κ=0.006) 

 

(0) ou u=       (7) 

,

( )
( , ) ( , ) ( )x

F t
L t Eu L t f t

A
σ = = =      (8) 

 

where equation (8) expresses the Neumann boundary condition at x=L. Considering the function f(t) as 

,

( )
( ) ( ) ( , ) ( , )

t

x

F t
f t G t u L t dt u L t

AE
τ

−∞

= − − = =∫ , the boundary condition (8) becomes: 

 

( ) ( ) 0
x L

u
g u L

x
ω

=

∂  + = ∂ 
     (9) 

 

where the function g(ω) is the Fourier-transform of G(t). Combining relations (6) with (7) and (9) the following 

expressions are obtained: 
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As a result the negative traveling wave is multiplied by the factor q(ω), which is the reflection coefficient 

given by: 

 

( ) 2( )
( )

( )

ikL
ik g e

q
ik g

ω
ω

ω

−−
=

+
      (11) 

 

The exponent 2ikL
e
−

 in (11) does nοt depend on g(ω) and expresses the decay of the amplitude of the non-

propagating mode and the dissipation of energy in the rod. The graphs in Fig. 3 show the solution of the equation 

of motion of a rod of length L. The function g(ω), which gives no reflection at the right boundary, is g(ω)=ik(ω) 

and is unique. All other values stimulate a reflection at the boundary. In Fig. 4 the complex function u(x,t) in 2d 

and 3d graphs are presented. 

 

3 PERFECT MATCHED LAYER (PML) 

3.1 One dimensional systems 

A semi-infinite rod on elastic foundation, Figure 5, subjected to an imposed displacement exp( )ou i tω  at the left 

end (x = 0), and a radiation condition for x →∞ , with ω the frequency of excitation, in the absence of any body 

  K  

KI 

ω (Hz) 

ω (Hz)  

KR 
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forces. The above excitation causes time-harmonic displacements ( ) exp( )u x i tω , which are governed by the 

following equation is considered: 
 

  

Figure 3. The complex solution u(x,t) = uR(x,t) +i uI(x,t) for x=0 and x=2000 

  
Figure 4. The complex value of u(x,t) with absorbing boundary condition at the right edge in 2d and 3d plot. 

 

2gkd
u pu

dx A

σ
ω− = −      (12) 

 
where σ is the axial stress of the rod, A its cross-sectional area, ρ the mass density, and kg the static stiffness per 

unit length of the foundation. 

 

 

Figure 5. Homogeneous elastic semi-infinite rod on elastic foundation and the PML model 

 

To express the frequency-response of this system in terms of non-dimensionalized parameters the following 

expressions are introduced, 1/o oa r cω= , where o gr EA k=  is a characteristic length and 1c E p=  is the 

wave velocity in the rod.  

For the wave propagation within the PML the same equation holds [Eq. (12)] with x replaced by a stretched 

coordinate X. The solution of that equation for 1oa ≥ , with ao =1 being the cut-off frequency of the system, is 

given by the positive and negative propagating waves, and has the following form : 

 

2 21 1
( , ) sin cos

kg
ia tog o g o Ap

k a k a
u x t A X B X e

EA EA

    − −    = +            

   (13) 

 

The stretched coordinate X, is defined as 

0

( )

x

X s dsλ= ∫ , where λ is a nowhere zero, continuous, complex-

valued coordinate stretching function [6-7]. A special property of PMLs is that if λ matches at the interface of the 

two layers, then a wave-type motion will pass through the interface without generating any reflected wave (this is 

x EA 

∞  X 

PML 

kg 
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the perfect matching property of the PML). Another special property of the PMLs is that for suitable choices of λ, 

the solutions within the PML take the form of the corresponding elastic-medium solution, but with an imposed 

spatial attenuation. For ao>1, X is given as: 

 

2
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( / ) ( , ]
1

o
o p

o

x if x L

X

r
x i F x r if x L L L
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∈ 
 

=  
 
 − ∈ +
 − 

    (14) 

 

The solution of the same equation for ao<1, that contains the positive and negative evanescent wave motion, 

is defined as: 
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1 1
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    (15) 

In that case, X is defined as: 
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where the attenuation function f(x) can be of the form ( )

m

o
p

x
f x f

L

 
=   

 
 and 

0

( ) ( )

x

F x f q dq= ∫ .  

Table1 indicates the steps of evaluating an accurate depth of PML. In according to these steps, an example for 

ao=2 is presented for which Lp must be selected equal to 17m (Fig. 6). 

 

Given E, A, kg, p and ω: 

 

(1) Calculate the dimensionless parameters ao, ro and c1. 

(2) Select fo and m to establish the function f(x) and evaluate the stretching coordinate 

X, using either Eq. (14) for 1oa ≥ , or Eq. (16) for ao<1, respectively. 

(3) Calculate the displacement using the Eq.(13) or (15) for 1oa ≥  and 1oa < , 

respectively. 

(4) For a specific dimension L, plot the amplitude of the wave with the Lp. 

(5) Find a suitable value of Lp for which the displacement is approximately zero at the 

interface of two layers. 

 

Table 1. Computing the min depth of PML. 

The effect of PML can be studied thoroughly by calculating the amplitude of waves that are reflected from the 

fixed boundary and examining the influence of L, Lp, f and ao on the dynamic stiffness S(ao). The dynamic 

stiffness is computed as: 

22 1

2
2 1

1
( ) ( )

1

L Lp
ao
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o o L Lp
ao

ro

R e
S a S a

R e

+
− −
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+

− −

+
=

−

    (17) 

where 2( ) 1o oS a a∞ = −  and 
2

Lp
F

roR e

 
−   

 = . To facilitate the study of the influence of the parameters Lp, L  
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Figure 6 Displacement u at the interface (blue) and at x=3m (green) for different values of Lp, for ao=2. 

 

and f on the dynamic stiffness, it is preferable to split Eq. (17) into the real and imaginary part, as: 

( ) ( ) ( )o o o oS a K a ia C a= + , where K(ao) and C(ao) are the stiffness and damping coefficients, respectively. Using 

the attenuation function f(x), the reflection coefficient R is given by the following relation: 

 
1

1
2

1

mm Lp
fo

Lp ro

mR e

+
  
       −
+=      (18) 

 

Thus, the reflection coefficient depends on the maximum value of the attenuation function, fo, the depth of the 

PML, the ratio Lp/ro, and the degree of the polynomial attenuation function m. The reflection coefficient indicates 

that the accuracy is proportional to fo and to Lp/ro, but inversely proportional to m. In Fig. 7 the variation of 

dynamic stiffness is presented with Lp. It is evident that for small values of Lp/ro the depth of the PML and/or the 

static stiffness of foundation are both small, while if in addition L/ro, is large, the results become inaccurate. 

Moreover, for large values Lp/ro the dimensions of the bounded domain do not affect the accuracy of the results 

as compared to the exact solution. 

 

        

Figure 7. The real part of dynamic stiffness for different L in case of (1) ao=0.5, and (b) ao=3. 

 

3.2 Plane-strain soil-structure interaction problem 

A PML for plane-strain motion is a layer in which body-wave solutions are admitted in the form of P waves: 

 

( ) exp[ ]pu x q ik x p= − ⋅      (19) 
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where p pk cω= , with ( )4 3pc pκ µ= +  the P-wave speed, p is a unit vector denoting the propagation 

direction, and q p= ±  the direction of particle motion, and in the form of S waves: 

 

( ) exp[ ]su x q ik x p= − ⋅      (20) 

 

where s sk cω= , with sc pµ=  the S-wave speed, and 0q p⋅ = . Furthermore, it can be argued that for 

appropriately defined λ and appropriate boundary conditions, Rayleigh waves are propagated along a free surface 

with exponentially-decreasing amplitude in the direction normal to and away from the surface. The absorptive 

capability of such a layer can be analyzed by studying the reflection of plane waves from the fixed boundary. The 

incident wave will be reflected from the boundary as a P-type wave and a S-type wave, with the total wave 

motion represented as [6-7]: 

 

( )
I R Rik X p ik X p ik X pI R Rp p p p s s

p pp p sp su x q e R q e R q e
− ⋅ − ⋅ − ⋅= + +    (21) 

 

where the s and p subscripts refer to S-type and P-type waves, respectively, and superscripts I and R refer to 

incident and reflected waves, respectively. Imposing u(x)=0 for x1=Lp, and expressing the directions of 

propagation and of particle motion in terms of θ, gives: 

 

( )

sin
cos arcsin

exp 2 cos
sin

cos arcsin

s

p s
pp p

ps

p

c

c c
R F L

cc

c

θ
θ

θ
θ

θ

  
 +        = − 
      − +      

   (22) 

( )
2 2

2

cos sinsin(2 )
exp 1

sin
cos arcsin

s s
sp p

p ps

p

c c
R F L

c cc

c

θ θθ

θ
θ

  
  = − + −

        − +      

  (23) 

 

Numerical results are presented for the plane-strain soil-structure interaction problem of a rigid strip-footing 

on a half plane. For comparison, the half-space is also modeled using a viscous dashpot boundary model [8], 

wherein the entire domain is considered (visco) elastic and viscous dashpot elements are placed at the fixed outer 

boundary. The mesh used for both models is the same and the results were obtained using Abaqus code. 

 

 

Figure 8. Cross-section of a rigid strip of half-width b on a half-plane (a) the dashpot and (b) the PML model. 

 

Studying the results of the soil-structure interaction for the case of half-plane it is notable that using a small 

domain, the results obtained from the PML model are quite accurate, while the dashpot model is not reliable for 

the selected small dimensions of the layer. The computational cost of the PML model is similar to that of the 

dashpot model. Numerical investigations of the effect of mesh density on the accuracy of results suggest that the 

mesh density in the PML should be chosen to be similar to that in the bounded domain [6-7].  

4 CONCLUSIONS 

A PML model that absorbs the incoming waves reflected at its boundary is investigated for 1D and 2D simple 

problems. Solutions admitted by the PML are of the same form as that admitted by the elastic medium, but with 

b 

h 

Lp 

L Lp 
b 

(a) (b) 

b 
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the stretched coordinates replacing the real coordinates. Termination of the layer by a fixed boundary causes 

reflection of the waves back towards the bounded domain, with the amplitude of reflected waves being 

independent of the size of the bounded domain and controllable by the depth of the layer and the attenuation 

profile. Thus, wave propagation in an unbounded domain can be modeled through a bounded domain that is 

restricted to the region of interest for the analysis, and a suitably-defined PML. 

 

  

Figure 9. (a) Displacements at the interface, (b) displacements in the PML 

  

Figure 10. (a) U1(m) at ABC (dashpots) and the PML model, (b) U2(m) at ABC (dashpots) and the PML model. 
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Abstract: 
The use of sacrificial armor against blast loading has become an important issue in the design of protective 
structures. A small amount of work has been published in what concerns sacrificial armor clads and all mainly 
concerns metals as clad materials. 
This paper addresses the problem of the non-linear transient behaviour of sacrificial cladding protection 
structures under time-dependent blast loads. The expendable armors analyzed are made of aluminum, while the 
main structure is made of aluminium too.  
The main structure and the sacrificial cladding are considered fixed together and special care is taken in order 
to correctly model the interface between them via contact elements.  
The sacrificial cladding is comprised of webs of ellipsoidal cross-sections, fixed to a plate. The case which is 
studied in the present work is consisted by aluminum webs with an aluminum sacrificial plate. The system 
protects an aluminium panel.  
In what concerns material modeling, special care is given, in order to accurately simulate the inelastic behavior 
of aluminum due to high strain rate loading.  
A unit cell of the armor is analyzed in order to allow for the extrapolation of the results to any size of armor. 
Comparisons are made in terms of displacement, force and deformation energy observed on the main structure. 
The analysis has been conducted with the hydrodynamic code LS-DYNA 3D. 
 
INTRODUCTION 
 
Structures undergoing impact by a solid body or by loading them by a blast wave absorb energy through plastic 
deformations. During the deformation process the elastic response of the system has to be taken into 
consideration, as well as the strain hardening of the material and strain rate effects.  
The design of a structure tolerant to blast loading is a difficult task and it requires systematic test validation for 
an acceptable design to be achieved.  
A structure undergoing blast loading absorbs energy through plastic deformation processes, however since in the 
most of the cases the structure  is required to operate after its blast loading,  then armoring of the structure must 
be applied on by the use of a sacrificial cladding [1, 2]. Armor will deform plastically and in that way will 
transfer the minimum energy of the blast load to the main structure.  
The sacrificial cladding must operate in a predictable way for all the spectrum of loads that is being designed for. 
The important characteristics of such armor are: the deformation pattern, the transferred Impulse, the energy 
absorption during its plastic deformations and the collapse space efficiency. 
 
The deformation pattern is very important since many of the above parameters depend on it. For many structural 
configurations the deformation pattern changes as a function of the pressure and the velocity profile of the blast 
loading. Thus, for given blast loading ranges it is necessary to choose carefully geometrical configurations for 
the armoring that deform in a consistent manner with the structure they have been designed to protect. 
Furthermore, since plastic deformation is introduced as design criterion, the ability of the plastically deformed 
armor to absorb energy and the collapse space efficiency, depend on the distribution of plastic hinges and plastic 
zones. 
In the literature of shock loaded structures most theoretical and experimental studies are carried out on simple 
structures as plates, beams and shells. There isn’t great discrepancy in the results among researchers, but most of 
the theoretical studies barely agree with the experiments. Both metallic and composite materials are considered. 
In [3, 4] an excellent review work that covers the theoretical investigation of the blast loading of metallic 
structures is presented. It stresses the fact that accurate modelling of the blast load is necessary and also that the 
non – linearity of the material response and the effect of boundary conditions must be modelled accurately. In 
addition, in [3] the results concluded by the analysis are in excellent agreement with the experimental data 
presented.  
Galiev in [4] mentions a phenomenon known as counterintuitive behaviour. This phenomenon is the final 
deflection of plates or shallow shells in direction contrary to the direction of loading by the blast wave. It has 
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been observed both in air and underwater explosions experimentally and it has a great significance for explosive 
forming applications. 
Studies concerning the prediction of the behaviour and the failure of composite and metallic structures under 
blast loading can be found in the literature. Nurick in [5] and [6] has conducted a series of experiments on 
metallic plates and the results are in good agreement with the theoretical results for the onset of tearing and the 
effect of boundary conditions. Turkmen in [7] and [8] conducted experiments were the load was modelled with 
the Friedlander equation and showed that although the modelling of the loading was accurate, the finite element 
models were not so elaborated to provide good agreement with the experimental results. 
 
GENERIC STRUCTURAL CONFIGURATIONS FOR ABSORBING ENERGY 
 
Two general types of response under shock loading are shown in Figure 1, [1, 2]. 
 

F
or

ce

 
 

Figure 1: Two general types of response under shock loading 
 

The deformation of structures that belong in type 1 is more sensitive in the velocity of loading than that of type 
2. Moreover, for the structures belonging in type 1 response configuration, inertia is the critical parameter that 
controls the response of the system and also elastic behavior and strain rate effects play also an important role. It 
has been proved that the combined effect of inertia and strain rate produce much higher peak forces and less 
permanent deformations. This means that the elastic perfectly plastic material model is insufficient for this type 
of structures, because elasticity and strain rate are closely connected. Thus, more sophisticate material models 
are required for the material response in cases of shock loading. 

Collapse space efficiency [1, 2], in case of impact of a solid body, is defined by the equation: 
 

dm
U

n e

⋅
=                        (1) 

 
where eU  is the absorbed energy, m  is the mass of the impactor and d  the collapse distance. 
In the present analysis a modified version of equation (1) is proposed by the authors for blast loading, where 
instead of the mass of a solid body, the ratio of impulse of the blast wave to the initial velocity is used. So, 
equation (1) becomes: 
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where the impulse of the blast wave is given by: 
 

∫∫=

2

1

t

t tA

tw dtpdAI  

 
In the equation above,  p  is the pressure profile of the wave, tA  the area of the surface where pressure p  is 
acting upon. 
For achieving an optimum value for n , the stiffness and the shape of the armor must be chosen on the basis of 
the protecting structure. The plastic deformations must be under control from the very beginning of the process 
and in such a pattern that does not affect and interact with the main structure much. This requires the prediction 
in advance of the spread of plastic zones and the formation of plastic hinges. One way this can be done is by 
predetermining the position they appear by curving specific elements of the armor. It is also important for the 
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protection of the main structure that the plastic deformations must distributed in time and occur during the whole 
deformation process or to cover as much as possible so that the transfer of impulsive loading to be minimal. 
During blast loading, the imparted kinetic energy must be absorbed by the plastic deformations within the armor. 
In the case where not enough energy is absorbed, then the remaining part of the kinetic energy will lead to a 
large transfer of impulse through the armor to the main structure. In the case of stiff main structure, it will not 
absorb energy during the transfer phase of impulse and high accelerations will be developed. In the case where 
the stiffness of the main structure is not high enough, it will absorb part of the remaining energy and significant 
deformations will appear exposing to great risk the whole system. 
A well designed sacrificial cladding armor must minimize as much as possible the peak force and increase the 
deformation time as much as possible, so that energy absorption and low impulse transfer to be achived. 
 
MODELLING ASPECTS 
 
Numerical simulations of the inelastic response of structures under blast loading are carried out usually with 
many simplifications in their response. The theories applied ranges from the elementary linear bending theory 
and extend to methods where the membrane forces are taken into consideration. This is carried out by shell 
theory which includes levels of geometrical non linearity.  
However, shell theory is used when deformations are large, so that membrane forces have a significant effect on 
the response of the structure. The current research in the field of blast loading of metallic structures agrees [3] 
that the following phenomena must be considered:  

1. The continuous change of curvature of the structure during deformation. 
2. The coupled action of membrane forces and bending moments. 

 
According to Shmidt [3], the elastic perfectly plastic material model gives acceptable result only when the plastic 
work or the plastic deformation is quite large. Also the same researcher mentions that when the ratio of the 
kinetic energy that is given to the system to the elastic energy that can be stored in the system is grater that 2 – 3 
for beams and 4 for plates made of steel or aluminum, then the elastic perfectly plastic model will provide good 
results. However, this rule of thump becomes truth only because beams and plates are simple geometrical 
structures that do not belong to type 1 response profile. 
Another very important issue in the modeling of blast loaded structures is the description of the transient loads. 
This is very difficult to be done analytically, because the complexity of the interaction of the fluid with the 
structure does not give paths to analytically find solutions for practical applications. On the other hand for plane 
blast waves in air the equation of Friedlander can be used to give the overpressure profile on the structure. 
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In equation (3) sP  is the intense of the blast wave, t  is time, dt  is the time interval for which the overpressure 

is positive and a is a dimensionless constant for calibration of the pressure profile. This equation can model 
accurately the overpressure when a wave impinges on a solid plate. The most general case needs the solution of 
the dynamic aeroelastic problem. 
 
OPTIMAL PERFORMANCE OF A SACRIFICIAL CLADDING 
 
A sacrificial cladding is defined as the mechanical structure which through its deformation or even failure has to 
protect another structure. It has to be replaceable and easy to transfer so the need for light materials is obvious. 
Also, the materials of this armor have to be very ductile in order to yield quickly and sustain large plastic 
deformations.  

The optimum performance of a sacrificial cladding is achieved when the force between the main 
structure and the armor is close to zero, which means that the collapse space efficiency should satisfy the 
following relation: 
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w

wc n
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n ⋅

⋅
≈            (4) 

 
where cn  is the mean acceleration developed inside the armor and cm  is the armor mass. n  is the deceleration 
that the sacrificial cladding gives to the load by the blast wave. 
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GEOMETRY OF A SECTION 
 
The proposed geometry for the section of a sacrificial cladding is given in Figure 2. 
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Figure 2: The proposed geometry for the section of a sacrificial cladding  
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This specific geometry provides the same deformation pattern for every type of loading. It forms a plastic hinge 
at the center of the section. R2 and R3 contribute to the resistance of the section in transverse deformation. The 
plates above and below the curved web are bonded to it and the whole system is also bonded to the main 
structure. 
 
ANALYSIS 

 
For the purposed of the present analysis a section the following dimensions have been used: 
 

L = 50 mm,  R1 =5 mm,   R2 =15 mm  and  R3 = 50 mm 
The thickness of the plates and of the web is equal to 1.5 mm and the length of the structure is equal to 1 m. 
Damping forces are not included.  
The finite element model is presented in Figure 3, and shows a plate of 1x1 m and 1.5 mm thick which is 
protected by a sacrificial cladding of this type: 

 
 

Fig. 3: Geometrical configuration of the section of a sacrificial cladding 
Model Description 
The structure simulated was a 1m x 1m x 0.0015m aluminum plate, clamped on its edges and  protected by a 
sacrificial cladding armor comprised of a aluminum webs and plates made from aluminum sheets of the same 
thickness (0.0015 m).  
The analysed model is comprised of 4 main parts: The main plate, which is the structure intended to be protected 
against blast-loading, the upper plate, the webs and the lower plate, which comprise the sacrificial cladding 
structure. After consecutive runs of an increasingly larger number of elements, in order to verify convergence, 
the following number for each part has been used, leading to a total of 68400 elements.  

Part Number of Elements 
Upper Plate 10000 

Webs 38400 
Lower Plate 10000 

Main Structure 10000 
Table 1: Components of the model and number of elements 
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 The element formulation used was that proposed by Belytcsko-Leviathan [5]. Five integrations points through 
the thickness were used because the problem is bending dominated and also because plastic deformations 
commence due to shear stress. 
 
Material Model 
The implementation of strain-rate dependent plastic behaviour on the plastic-kinematic hardening material model 
used in this analysis is implemented by the use of the Cowper-Symonds yield stress scaling factor which scales 
yield stress in the following way: 
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where C and p are the Cowper-Symonds material dependent parameters, ε  is the strain rate of the loading, Ep is 

the plastic hardening modulus, 
p

effε  is the effective plastic strain and β is a parameter that determines the 

plasticity behavior between isotropic and kinematic hardening [5] . Element failure is implemented by a failure 
strain criterion. The materials used in the simulation were AL-1015-0 for the cladding and AL-1015-H18 for the 
non-sacrificial structure. The constants used are shown in Table 1. 
 

 AL 1050-O AL 1050-H18 
T
xE  [GPa] 69 69 
C
xE  [GPa] 70.4 70.4 

G  [GPa] 26 26 

xyv  0.33 0.33 

yσ  [MPa] 28 145 

fσ  [MPa] 76 160 

fτ  [MPa] 51 83 
T
fε  39 % 7 % 

ρ  [Kg/m3] 2705 2705 
Table 2:  Engineering constants of the materials used 

 
AL 1050-0 was used for the sacrificial cladding webs, because it allows for the quick development of plastic 
deformations due low yield stress and moreover it is characterised by high failure strain, while AL 1050-H18 
was used for every other part of thestructure. 
 
Contact Interfaces 
In order to accurately predict the deformation behaviour of the cladding, special care has been applied on 
ensuring proper contact conditions between the parts of the simulated structure.  
At first, tie-break contact has been considered between the sacrificial cladding plates and webs. Tie-break contact 
has also been used between the lower sacrificial plate and the main structure, so as to simulate the attachment of 
parts between them. The failure stresses for the tie-break interfaces that were assumed are: 100 MPa and 50 MPa 
for normal and shear failure respectively. The failure stresses came from the failure stresses of a moderate 
strength aerospace glue, since the different parts of the cladding are considered glued together. 
Additionally, surface-to surface contact interfaces have been introduced between each part of the cladding so as 
to simulate the interaction of those parts during the plastic deformation and subsequent wrapping of the free sides 
of the upper and  lower plates along the web structures. 
  
Loading & Boundary Conditions 
 The model was loaded by a time varying pressure profile representing the pressure pulse that would occur in the 
case of a Mach 1.0 blast wave impacting the structure. The wave was considered as plane, simulating the blast 
loading of an explosion far from the target. Figure 4 presents the pressure against time profile applied on the 
structure. 
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Figure 4: Pressure profile against time for a blast wave of Mach =1.0 
 
  Only ¼ of the structure was analysed since appropriate symmetry conditions have been applied, in order to 
reduce computational costs. Additionally, the pressure applied was on the model for a time of 0.8 msec. The 
simulation time is such since this was the time for complete crushing of a unit cell of the cladding as outlined in 
[10]. The Mach number for the plane wave was chosen as such since it was the lowest Mach number blast wave 
that under preliminary analysis has proven to rupture the unprotected main structure. 
 
RESULTS& DISCUSSION 
 
Even at half the simulation time, deformation of both the webs and the upper plate has occurred, and the upper 
plate has approached the main structure. Additionally, wrapping of the upper structure along the webs in 
conjunction with web buckling can be observed at figure 5c.. When the run time has reached 0.8 msec , one can 
notice the total crushing of the sacrificial cladding and also some deformations of the main structure.   
Plastic Hinges on the webs have already begun to format t=7.76x10-6 sec, as shown in figure 6, proving that the 
design of the proposed cladding is successful in terms of fast plastic deformation. At the end of the simulated the 
cladding has totally collapsed. 

 

t=0  

 

t=8x10-4sec 

 

t=4x10-4sec   

 
Figures 5a, 5b, 5c: Displacement Contours of the sacrificial cladding at different times points 
 
Correlating the center node displacement against time profile in Figure 6, and Figure 4, one can draw the 
conclusion that during the time the blast pulse has commenced to act on the sacrificial cladding, the main 
structure remains intact and not obvious center of mass displacement occurs. Only after half the simulation time 
does the mass center of the main structure center begin to move, demonstrating the effectiveness of the sacrificial 
cladding. 
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Figure 6: Plastic strains at time t=7.67x10-6 sec 
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Figure 7: Time Profile of the displacement of the center node of the upper clad plate, the lower clad plate and 
the main (un-sacrificial) structure 

 
The energy time-history plots in Figure 8 present the total energy (sum of kinetic and deformation) absorbed by 
each part of the structure. The blast energy pulse is mainly absorbed by the sacrificial cladding and not the main 
structure. The displacement profile is further collaborated by Figure 8 since only after t=0.004sec does the main 
structure begin to have an increase in total energy. At that time, the upper plate total energy reaches a maximum 
in terms of energy, while the webs continue to demonstrate an energy increase.  
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Figure 8: Total Energy Plots (Sum of kinetic and deformation) of the four components of the model 
 
 
As a proof of the effectiveness of the sacrificial cladding armor, time-history plots of the deformation energy for 
each different component of the simulated model (Figure 9a) and the percentage of the deformation energy at the 
t=0.8 msec of the points of the simulation (Figure 9b) are shown. Throughout the simulated time, the webs seem 
to absorb more energy than the plates and main structure. This fact is apparent in Figure 8b where the cladding 
seems to have taken up to the 87.34% of the deformation energy of the system.  
 
Additionally, the webs seem to be able to resist the threat excessively well, even if they are surrounded by more 
brittle materials, providing an insight on their importance in the design of collapsible claddings. Should there 
have been chosen more ductile armor plates, the energy dissipated would have been more, through the increased 
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plastic deformation of the lower and upper cladding plates. The fact that brittle materials with higher yield 
stresses are used on the upper and lower plates ensures the protection of the main structure from direct force 
transmission by the contact of the upper plate with it, since only small deformations can be undertaken by it and 
additionally makes the simulation more demanding for the webs. 
 
CONCLUSIONS 
 
A sacrificial cladding against pressure threats taking into advantage the ductility of certain aluminum material 
types and careful design of plastic hinges that will commence to deform immediately, has been designed. Its 
behavior has been simulated using the hydrocode DYNA 3D and the most important conclusion would be that 
even if the upper and lower plates are not ductile enough to absorb high amounts of blast energy, the careful and 
efficient design of the webs can provide protection for the main structure. 
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Figures 9a, 9b: Deformation Energy time history for the different components of the model (a) and percentages 

of deformation energy at t=0.8 msec (b) 
 
While ballistic impact requires high stiffness in order to “beat” the projectile, blast protection requires 
compliance and high energy dissipation via material failure modes (like plasticity) in order to reduce the amount 
of forces and energies acting on the structure to be protected.  
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Abstract. Masonry infilled timber truss-works is a kind of wall that has been used for the load bearing system of
many residential buildings all over the world during the last centuries. In this structural system the walls are
composed by a wooden skeleton, with vertical, diagonal and horizontal beam-like elements, that is filled with
brick-masonry or stone-masonry with (or without) mortar, or just mortar alone. The static behavior of the
wooden skeleton is characterized by the development of axial forces and bending moments, while the contribu-
tion of the infilling material in the system’s stiffness, strength, and stress distribution is remarkable.
In the present paper a detailed analytical finite-element model of this structural system is formed and studied.
The wooden elements are modeled with beam-column elements, the infilling material with plane-stress elements,
while the boundary conditions between the infilling material and the wooden elements are modeled with proper
contact bonds. Elastic or inelastic constitutive laws can be used for the materials and the joint connections of the
wooden elements. Numerical applications of the proposed model, with comparisons to other models, are pre-
sented for several cases of simple walls without openings, as well as for the case of a complex wall with open-
ings, representing the entire face of a building storey.

1 INTRODUCTION

Masonry infilled timber truss-works is a kind of wall that has been used for the load bearing (structural)
system of many residential buildings all over the world during the last centuries. It has been used in Portugal and
Italy as an earthquake-resistant structural system. It has also been used with the name "tsatmades", in several old
traditional and preservable buildings that are yet met in many regions of Greece, Turkey and other Balkan coun-
tries (Figure 1).

In this structural system the walls are composed by a wooden skeleton in the form of a usual braced-frame
or truss structure, with vertical, diagonal and horizontal beam-like elements, that is filled with brick-masonry or
stone-masonry with (or without) mortar, or just mortar alone. The joint connections of the wooden elements are
rarely implemented with steel plates and mortises, and more often with solitary nails or rows of nails. A detailed
description of this structural system is done in [1], but there isn’t any other analysis suggested that could be help-
ful for the calculation of their stress state and bearing capacity. It is evident that static behavior of the truss-work
is characterized by the development of axial forces (mainly), as well as bending moments, while the contribution
of the infilling material in the system’s stiffness, strength, and stress distribution is remarkable in general.

The static activation of the infilled truss-works is not always completely straightforward and a priori obvi-
ous. The tensile bond strength of the mortar at the interface between infill and truss-work is low and unreliable in
general, thus allowing only compressive (normal) and limited frictional contact stresses to develop, while pene-
tration is prohibited and separation or slipping along any parts of this interface may occur. The actual contact
area varies during the seismic loading of the structure, thus resulting in a nonlinear response, even in the case of
linearly elastic material laws. Furthermore, additional non-linearities may be presented due to inelastic material
behavior. Due to the complexity of this structural system, some researchers [2] have fully ignored the presence
of the infilling material in the structural analysis of the system, while some others [3] have considered the contri-
bution of the infilling material by assuming a full bond at the interface between infill and truss-work. So, al-
though there are plenty of studies concerning the static behavior of infilled frames ([4], [5], etc.), we have no
knowledge of research works or codes that refer to a more precise structural analysis of the masonry infilled tim-
ber truss-works.
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Figure 1.  Old traditional buildings with load bearing walls made by "tsatmades"

 In the present paper a proper detailed analytical finite element model (micromodel) for this structural sys-
tem is formed and studied, which can describe with sufficient accuracy the static and dynamic (seismic) behavior
of these walls, taking into account the aforementioned contact interface conditions. Numerical applications of the
proposed model with comparisons to other suggested and often-used models are presented too.

2 ANALYTICAL MODELING

2.1 Description of the proposed  model
A fine discretization mesh of finite elements is applied to the structural system under consideration, and a

typical mesh of such a kind is shown in Figure 2 [6], which concerns the face wall of an existing old building.
In particular, the wooden elements of the truss-work are modeled with frame (beam-column) elements, the

infilling masonry is modeled with plane-stress or shell elements, while for the joint connections of the frame
elements, rigid or flexible link elements (springs) with finite size can be used.

The discontinuities along the length of the wooden parts and within their joint connections are modeled by
using proper release-end conditions in the respective frame elements. For the proper consideration of the finite
size of the frame elements’ sections, rigid offsets between the neutral axis of the frame elements and the contact
interface must be introduced.

The boundary conditions between the infilling masonry and the wooden elements are modeled with proper
contact-friction bonds with Coulomb's law of dry friction [4]. Furthermore, elastic or inelastic constitutive laws
can be used for the respective materials ([5]), as well as for the joint connections of the frame elements [2]. At
this point, the significant role of the flexural stiffness of the frame elements must be emphasized; this means that
the flexural stiffness must not be neglected, so that the contact interaction between the infilling masonry and the
timber truss-work can be activated with certainty.

 (a)  (b)

Figure 2.  (a) Face wall of an old building,  (b) Respective analytical micromodel with finite elements



2.2 Contac interface conditions and solution procedure
If  SN  and  ST  are the normal and tangential (shear) force of the contact bond (tension positive), UN  and  UT

are the corresponding relative end displacements (extension positive), δSN, δST, δUN, δUT  are their incremental
values and µ  is the friction coefficient, these incremental values are subjected to the following constraints (2-D
formulation [3]):
a. For initial conditions of separation (UN > 0), the incremental contact state is also separation, that is:

δSN = 0,     δST = 0,     δUN+UN > 0 (1)

b. For initial conditions of sticking contact (UN > 0,   µ⋅SN+ST< 0), the incremental contact state is also stick-
ing contact:

δUN = 0,     δUT = 0,     µ(SN+δSN)+ST+δST< 0 (2)

c. For initial conditions of slipping contact (UN > 0,    µ⋅SN+ST= 0):
If   SN < 0, the incremental contact state may be either sticking contact (3a), or slipping contact (3b):

δUN = 0,     δUT = 0,        µ(SN+δSN)+ST+δST< 0    (3a)
δUN = 0,     δUT⋅ST ≤ 0,   µ(SN+δSN)+ST+δST= 0       (3b)

If  SN = 0, the incremental contact state may be either sticking or slipping contact (relations 3a, 3b), or sepa-
ration, that is:

δSN = 0,     δST = 0,     δUN ≥ 0         (3c)

It is noted that the tangential relative displacements  UT  are reversible for the separation state and irreversi-
ble for the slipping contact state. In certain existing computer programs for non-linear structural analysis, the
above mentioned contact incremental constraints can be modeled approximately by using proper gap elements.

For the solution of the resulting mathematical problem with all the aforementioned non-linearities, standard
nonlinear time-history methods of static or dynamic analysis can be applied (combination of the step-by-step and
iterative methods). Within the framework of the present study, the analysis and solution capabilities of the com-
puter programs SAP2000 [8] and ADINA [9] have been used.

3 APPLICATIONS TO SIMPLE WALLS WITHOUT OPENINGS

In the applications that follow, a proportionally increasing  quasi-static horizontal load with a maximum
amplitude of  P=100 kN is applied at the top corners of the examined walls and the response values of the system
are calculated. For each application the following 3 alternative models are formed and compared:
• model1: the proposed micromodel with contact interface conditions between truss-work and infilling
• model2: the respective bare truss-work model (without infilling)
• model3: a micromodel similar to model1, but with full bond at the interface of truss-work and infilling.

Wood: E=12×106 kN/m2

G=5×106 kN/m2

Column sections: 10×10 cm
Beam sections: 10×10 cm
Diagonal section: 10×10 cm

Infilling: Isotropic
E=3×106 kN/m2

G=1,2×106 kN/m2

Thickness: t=10 cm

Interface: Friction coefficient µ=0,50

Figure 3.  Micromodel of a rectangular (1×1)−span infilled truss-work with single diagonal bracing
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(a) model2 (b) model1 (c) model3

Figure 4.  Deformed shape of the wall shown in Figure 3 and distribution of shear forces within infilling.

3.1 Rectangular 1×1−span truss-work with single diagonal bracing
The examined wall [7] and the respective discretized model are shown in Figure 3, together with the mate-

rial and section properties of the structural members. For a more consistent comparison with the results of
model2 (bare truss-work) the assumption of linear elastic behavior of all the materials is made, although this as-
sumption is realistic only for small values of the applied horizontal load. Zero-size joints (without link elements
or springs) are considered at the nodal connections of the frame elements, with release-end conditions (for zero
bending moments) at the ends of these elements. The proposed model1 includes 72 frame elements, 156 shell
elements and 78 gap elements.

Figure 3 shows the deformed shape of the wall and the distribution of shear forces within the infilling ma-
sonry. In the proposed model1 the separation areas between the infilling and the truss-work are clearly shown.
The horizontal displacement at the top-right corner of the simplified model2 is 90% larger than in model1, while
in the simplified model3 is 56% smaller than in model1. Regarding the distribution of shear forces, in model1
there is a high concentration at the compressive top-left and bottom-right corners of the infilling, and a formation
of a respective diagonal zone with high shear forces which can be related to the well-known compressive diago-
nal strut of the infilled frames. In model2 the shear forces are substantially smaller and the formation of a diago-
nal zone with high shear forces is not so distinct.

Figure 4 shows the axial force diagrams of the truss-works of the examined models. The divergence of the
extreme axial forces, with respect to model1, range from 86% to 100% in the case of model2 and from -46% to
50% in the case of model3. It is obvious that all the results of both simplified models are very different than
those of the proposed model1.

(a) model2 (b) model1 (c) model3

Figure 5.  Axial force diagram in the truss-work of the wall shown in Figure 3.



3.2 Rectangular 1×2−span truss-work with double diagonal X-bracing

Wood: E=12×106 kN/m2

G=4,61×106 kN/m2

Column sections: 12×12 cm
Beam sections:    12×12 cm (top-bottom)
Beam sections:    12×6 cm (middle)
Diagonal sections: 12×6 cm

Infilling: Isotropic
E=6×106 kN/m2

G=2,4×106 kN/m2

Thickness: t=12 cm

Interface: Friction coefficient µ=0,50

Figure 6.  Micromodel of a rectangular (1×2)−span truss-work with double diagonal bracing

The proposed micromodel of the examined wall [6] is shown in Figure 6, together with the material and
section properties of the structural members. In this model the diagonals have half the section height (12×6) than
the other elements (12×12), while the values of the Young modulus E and the shear modulus G of the infilling
masonry are twice larger than those in the previous application. As before, the assumption of linear elastic be-
havior of all the materials is made, and zero-size joints (without link elements) are considered at the nodal con-
nections of the frame elements. Release-end conditions (for zero bending moments) are considered at the ends of
the beams and diagonals, while the continuity of the columns in the middle of their height is retained. The pro-
posed model1 includes 178 frame elements, 336 shell elements and 216 gap elements.

Figure 7 shows the deformed shape of the wall and the distribution of shear forces within the infilling ma-
sonry. With respect to the proposed model1, the horizontal displacement at the top-right corner of the simplified
model2 is 25% larger, while in the simplified model3 is 60% smaller. In Figure 7b  a concentration zone of the
shear forces is observed along the two shortened diagonals (from up-left to down-right) of model1, which take
their maximum values near the ends of these diagonals. Also the separation areas between the infilling and the
truss-work are clearly shown. In Figure 7c the shear forces of model3 have a smoother distribution than in
model1, while any diagonal zone with shear concentration cannot be observed.

 Figure 8 shows the axial force diagrams of the truss-works of the examined models. The divergence of the
axial forces of model2, with respect to model1, ranges from –3% to 26% for the columns, is about 15% for the
tensile diagonals and about 44% for the compressive diagonals. The respective divergence of model3 ranges
from –16% to 9% for the columns, is up to –84% for the tensile diagonals and up to 80% for the compressive di-
agonals. In conclusion, the simplified model2 provides a better estimation of axial forces than model3.

(a) model2 (b) model1 (c) model3

Figure 7.  Deformed shape of the wall shown in Figure 6 and distribution of shear forces within infilling.
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(a) model2 (b) model1 (c) model3

Figure 8.  Axial force diagram in the truss-work of the wall shown in Figure 6.

4 APPLICATION TO Α COMPLEX WALL WITH OPENINGS

The examined wall [7] in this application represents the entire face of a small building’s storey. The pro-
posed model1 is shown in Figure 9a, and the material and section properties of the structural members are shown
in Table1. As previously, two additional simplified models (model2 and model3) are formed and compared.

(a) (c) model2

  
 ×103

(b) model1 (d) model3

Figure 9  (a): Discretization of the examided wall, (b) (c) (d): Deformed shape and distribution of shear streses
within infilling of the wall shown in (a).



Wood Infilling masonry Interface
E = 12×106 kN/m2

G = 5×106 kN/m2

Column sections:   10×10 cm
Beam sections:   10×10 cm
Diagonal sections: 10×10 cm

Isotropic
E = 3×106 kN/m2

G = 1,2×106 kN/m2

Thickness: t=10 cm

Friction coefficient: µ=0,50

Table 1.  Material and section properties of the examined wall with openings.

The assumption of linear elastic behavior is made for all the materials, and zero-size joints are considered at
the nodal connections of the frame elements. All the columns have a 3,0 m continuous length, the top and bottom
beams have a 4,0 m continuous length, while release-end conditions (for zero bending moments) are considered
at the ends of the 6 diagonals and the 5 beams in the middle of the storey’s height. The proposed model1 in-
cludes 234 frame elements, 294 shell elements and 266 gap elements.

Figures 9b, 9c and 9d show the deformed shape of the examined models and the distribution of shear
stresses within the infilling masonry. In the proposed model1 the separation areas between infilling and truss-
work are clearly shown. With respect to the proposed model1, the horizontal displacement at the top-right corner
of the simplified model2 is 34% larger, while in the simplified model3 it is 54% smaller.

In Figure 9c diagonal zones with shear concentration can be observed in all the 3 shortened diagonals of
model1, where truss elements do no exist. In Figure 9d the shear forces of model3 have a smoother distribution
than in model1, while less distinct diagonal zones with shear concentration can be observed at the upper level of
the wall along the shortened diagonal (on the left), as well as along the lengthened diagonal (on the right).

Figures 10b, 10c and 10d show the axial force diagrams of the truss-works of the examined models. The di-
vergence of the axial forces of model2, with respect to model1, is up to 26% for the most tensile elements and up
to 49% for the most compressive elements. The respective divergence of model3 is up to -51% for the most ten-
sile elements and up to -64% for the most compressive elements. In conclusion, the simplified model2 provides a
better estimation for the axial forces than model3, especially for the most tensile elements.

(a) (b) model1

(c) model2 (d) model3

Figure 10  (a): Discretization of the examided wall,  (b) (c) (d): Axial force diagram
in the truss-work of the wall shown in (a).
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5 CONLUSIONS

The methodology of the micromodels with contact interface conditions provides increased analysis capa-
bilies for a more detailed and accurate study of the stress, strain and available strength of the masonry-infilled
timber truss-works. In the writers opinion, the uncertainties of the material laws, the joint connections and the
construction details of these walls in general, affect much more the results of the system’s response than the in-
evidable imperfections of the proposed micromodels. However it is not yet efficiently applicable in large struc-
tural systems like an entire building.

Regarding the examined simplified models, it must be noted that, depending on the form of the diagonal
bracing, these models may give very inaccurate results. It must be noted also that the simplified model of the
bare truss-work without infilling provided better results than the simplified model with full-bond interface con-
ditions.
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Abstract: 
This work addresses the structural analysis of the ejection system of Young Engineers Satellite 2 (YES2). The 
YES2 ejection system is a redesigned system based on the low mass separation system for micro satellites in 
order to meet the requirements of the YES2 mission. The goal of the structural analysis was to give confidence to 
the resized mechanical design.  
The YES2 satellite consists of 2 parts, connected by a tether: the FLOYD module (Foton Located YES2 
Deployer), and the capsule, build up from FOTINO module (A low mass Re-entry capsule) and MASS module 
(Mechanical and data Acquisition Support System). The YES2 Ejection System is a spring based mechanical 
subsystem that connects mechanically the FLOYD and MASS & FOTINO modules, which sustains the loads 
during launch phase and gives to MASS & FOTINO the desired relative velocity (2 m/sec) with the expansion of 
3 constrained linear springs after the explosive cut of a steel wire that holds 3 freely rotating hooks that anchor 
the MASS & FOTINO in its initial position. 
The structural analysis procedure followed can be divided in two steps. Firstly the forces acting on the ejection 
mechanism due to the random vibration and transient loads during the launch phase were derived from a modal 
analysis of FE model of MASS & FOTINO satellite part. The second step covers the FE modeling of the complex 
ejection mechanism and then the calculation of the developing stresses on the each components of the 
mechanism under the action of those forces that were calculated during the first step. Finally the safety margins 
were calculated.  
In addition special attention has been given in the modeling of the sliding contact interface of the rotating hooks. 

INTRODUCTION 

In May 2002 the European Space Agency kicked off a hands-on educational project called Young Engineers 
Satellite 2, managed by Delta-Utec in Leiden, Holland. The YES2 is building on the experience and success of 
YES & TEAMSAT, launched on Ariane 502 in 1997.  The objective of the project further from the educational 
perspective of giving the European students a motivating technological experience is to demonstrate the 
“SpaceMail” application of returning a low mass Re-entry capsule (FOTINO) from space to Earth, using a 30 
km 5 kg wire (tether) rather than a rocket engine. The YES2 mission is planned to be launched late 2006 on the 
Russian spacecraft Foton M3 mission. 
The first phase of YES2 (2002-2003) focused on the conceptual design of the Re-entry vehicle and the building 
and testing of a tether deployment mechanism. Phase I ended with the Preliminary Design Review (PDR) taking 
place at ESA/ESTEC on December 2003. After PDR, the YES2 project entered phase II which focused on a 
detailed design of the different subsystems, leading up to the building and testing of the actual space hardware. 
The second phase of YES2 project is being developed at Delta-Utec (NL) and at 4 Centres of YES2 Expertise 
(CoE) located at 4 different universities in Europe and Russia. CoE Patras (Applied Mechanics 
Laboratory/University of Patras, Greece), CoE Krefeld (Fachhochschule RheinAhrCampus Remagen/Krefeld, 
Germany), CoE Reggio (University of Modena & Reggio Emilia, Italy) and CoE Samara (Samara State 
Aerospace University, Russia).   
The YES2 satellite consists of 2 parts, connected by a tether: the FLOYD module (Foton Located YES2 
Deployer), and the capsule, build up from FOTINO module (A low mass Re-entry capsule) and MASS module 
(Mechanical and data Acquisition Support System). The YES2 Ejection System is a spring based mechanical 
subsystem that connects mechanically the FLOYD and the capsule, which sustains the loads during launch phase 
and gives to MASS & FOTINO the desired relative velocity (2 m/sec) with the expansion of 3 constrained linear 
springs after the explosive cut of a steel wire that holds together 3 freely rotating hooks that anchor the MASS & 
FOTINO in its initial position. 
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PROBLEM DEFINITION 

The YES2 Ejection System is a subsystem of the FLOYD module of the YES2 satellite. It is the subsystem that 
makes the mechanical interface between FLOYD and MASS module and gives the desired initial velocity to 
MASS and FOTINO assembly during the first stage of the tether deployment. The desired initial velocity is 
defined to be 2.1 m/sec normal to the ejection system and the current mass estimation of the ejected assembly is 
20 kilograms.  

 
Figure 1: The YES2 Ejection System 

The separation system consists of: 
1. Base plate 
2. Three ejection assemblies 
3. A pretension steel wire 
4. Pretension spring 
5. Wire cutter 
6. Two micro switches for status of ejection monitoring. 
Function 
When the wire cutter cuts the steel cable the three hooks in the ejection assemblies are released. The ejection 
springs then pushes the MASS assembly and forces the hooks to rotate. After a rotation of the three hooks of 
about 60 degrees the MASS assembly is completely free and the separation is completed. The energy stored in 
the ejection springs is transformed into kinetic energy in the MASS elements. The separation velocity between 
Foton and the MASS and FOTINO assembly will be 2.1 m/s. The pretension cable is attached to the pretension 
spring, which is kept in place on the base plate by a bracket. The ejection springs are kept in place inside the 
canisters all the time. No other parts than the MASS elements will separate. The energy stored in the pretension 
cable is low enough for not causing any damage to the surrounding systems when cut. 
Objectives 
The YES2 Ejection System mechanical design is based on a low mass separation system for micro satellites that 
had been designed by the Swedish Space Corporation and successfully tested in different configurations on 
MASER-5(1992), Astrid-1 (1992), Astrid-2 (1998) and DLR-TUBSAT (1999). The SSC has licensed the use of 
the design within the frame the YES2 project. The adaptation from the SSC initial system involves scaling of the 
ejection system to be used on the YES2 platform and some design modifications in order to meet the new 
requirements. The needed energy output from the ejection system is approx 2-5 times higher for the YES2 
project compared to the previous systems depending on configuration. This work addresses the structural 
analysis of the redesigned ejection system of Young Engineers Satellite 2. The goal of the structural analysis is 
to give confidence to the resized mechanical design before the manufacturing of the functional prototype. 
This work introduces an innovative F.E analysis procedure of the structural validation of this kind of mechanical 
systems since until now the preferred procedure covered mainly structural validation by testing. After a 
extensive bibliography research no relative work has been fund.   

PROCEDURE  

The objective of the YES2 Ejection System structural analysis is to extract the safety margins of the developing 
stresses on each part during the mission and to conclude for the acceptance of those margins. The critical parts of 
the sub-system from structural point of view are those of the Ejection Assemblies. In order to perform the stress 
analysis of them the applied forces acting on the ejection assemblies are calculated first.  These forces are 
created by the stored spring and by the reaction of the interface between MASS and Ejection System on the 
mechanical loading during each stage of the mission. Those reaction forces are calculated with a series of static 
analyses under loading conditions indicated from a combination of the mechanical behavior of the assembly 
during the random vibrating loads and the linear acceleration loads [1]. Having calculated the acting forces the 
procedure continues with the detailed FE modeling of the Ejection Assembly giving special attention in the 
modeling of the sliding contact interface of the rotating hooks. Finally the static forces are applied together with 
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the appropriate boundary constraints on the FE model and the Von Misses stresses for each part were calculated. 
Having those results the safety margins and the appropriate safety factors can be provided and the integrity of the 
parts can be evaluated completely.  

CALCULATION OF THE REACTION FORCES 

Model description 
For the computation of the Random Vibration Load Factor (RVLF) as it is described in Design Load 
Requirements[1] for the YES2 Ejection System it is needed to be studied the dynamic behavior of the YES2 
Ejection System together with the structure that is mounted on top. The mounting structure includes the MASS 
and FOTINO modules. Approximately the mass of this structure is 20 kilograms. Because the mass of the 
Ejection System is considerable small, less than 1 kilogram compared to the mass of the MASS and FOTINO 
modules it can be assumed that the dynamic characteristics of the MASS and FOTINO modules control the 
RVLF and omit the modeling of the Ejection System at this stage. This step can be done only if the appropriate 
constraints will be applied in order to model the interaction of the two parts.  
The CAD model that will be used as the reference for the building up of the FE model is a simplified version of 
the full model. Thus a simplified model that will correctly provide the system behavior was conducted. In that 
sense only the primary structure was modeled. The secondary parts like electronics and FOTINO module that is 
mounted on top of the MASS module will be introduced as lumped masses. Also as it was noted earlier ejection 
system was omitted and its interface with the MASS module was modeled by constraining all Degrees of 
Freedom (D.O.F) in the nodes where the Ejection System connects with MASS. In order to connect the lumped 
masses with the primary structure RBE3 elements were used. The RBE3 element distributes the force/moment 
applied at the master node to a set of slave nodes, taking into account the geometry of the slave nodes as well as 
weighting factors. 
The primary structure of YES2 MASS module consists of four parts: the Base plate (1), the Inner Cylinder (2), 
the Cone (3) and the Outer Cylinder (4). 

 
Figure 2: The assembly of Ejection System with MASS module and FOTINO module on top and the detailed view of the internal structure of 

the MASS module where the secondary structures are shown (electronics, and support structures for electronics) 

 
Figure 3: View of the simplified CAD model that shows the parts of the primary structure 

 
Figure 4: The FE model of the primary structures of YES2 MASS module. On the left the outer cylinder is shown which is modeled with 

shell elements. Also the lumped mass element is shown that models the YES2 FOTINO capsule. On the right the base plate, the inner 
cylinder and the cone are presented where 8 node brick solid elements were used 
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Figure 5: View of the RBE3 elements used for the modeling of the connection of the lumped mass elements. 

For the electronics mounted symmetrically around the inner cylinder of MASS, a lumped mass element in the 
center of the inner cylinder is used. RBE3 elements connect this element with the internal nodes of the 
cylindrical structure. Since we are not interested for stress calculation and the main focus is in the approximate 
modeling of the mass distribution of the structure no further modeling consideration is taken for the electronics. 
All the structure is made of Aluminium 7075 T651. The material characteristics used in this analysis is presented 
below: 

Material Type Density [kg.m-3] Young’s Modulus [GPa] Poisson’s Ratio 
Aluminum 7075 T7351 2810 72 0.33 

In order to check the integrity of the model an unconstrained (free-free) modal analysis is conducted. The first 
six eigen-frequencies must be near zero. The check was passed. 

 
Figure 6 The DOF constraints in the nodes of bottom side of the base plate where the ejection system is connected. 

The modal analysis 
An eigen-frequency analysis (modal analysis) is performed including a calculation of effective modal masses to 
identify the importance of each mode. The quantity of eigen-frequencies to be calculated has to be large enough 
in order the sum of modal masses for each direction is greater than 80% of the equipment mass. In this analysis 
36 mode shapes were calculated in the frequency range of 0 to 2000 Hz. The first eigen-frequency is 322.507 Hz 
and the last one is 1922.62 Hz.  
Approximation of random vibration response load factors (RVLF) 
The results of the modal analysis will be used in order to evaluate the overall random vibration response for each 
axis by using the following formula:  
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××××=
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2

2
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Were: 
Mi: the mass fraction that takes part in the specified resonant frequency 
Q:  amplification factors assumed 10 for those applications 
Fi: the resonant frequency  
Wi: the Power Spectral Density value for fi that is given by the chapter 2 named “Operational 
Requirements” of the “Scientific Hardware Design Specifications for PHOTON Spacecraft” [2] 
For this evaluation only modes with an effective mass contribution >0.01% were considered. 

Frequency Sub-range, Hz
20 50 100 200 500 1000 2000 
Power Spectral Density (g2/Hz) 
0.02 0.02 0.02 0.05 0.05 0.02 0.02 

Table 1: Power Spectral Density values for launch phase  
From this procedure one value (Ri) is calculated for each axis. 

Random Vibration Load Factor Axis Value Unit 
R1 X 14.143016 [g] 
R2 Y 7.3815847 [g] 
R3 Z 7.3815847 [g] 
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Combination of RVLF with Low Frequency Transient Load Factors (linear accelerations), extraction of 
load sets 
The RVLF [R1, R2, R3] will be combined with Low Frequency TLF (linear accelerations) [T1, T2, T3] using a 
NASA procedure (chapter 1,page 4)[1] 
Load Set X-axis [g] Y-axis [g] Z-axis [g] 
1.1-1.8 +/- (T12+R12)0.5 +/- T2 +/- T3 
2.1-2.8 +/- T1 +/- (T22+R22)0.5 +/- T3 
3.1-3.8 +/- T1 +/- T2 +/- (T32+R32)0.5 
The Low Frequency Transient Load Factors are given by the chapter 2 named “Operational Requirements” of 
the “Scientific Hardware Design Specifications for PHOTON Spacecraft” and they can be summarized  

Transient Load Factor Axis Value Unit 
T1 X 10 [g] 
T2 Y 10 [g] 
T3 Z 10 [g] 

The result of the combination is the production of 24 load sets presented in the following table: 
Load Sets X AXIS Y AXIS Z AXIS Unit 
Lift off 1 ±17.321 ±10.000 ±10.000 [g] 
Lift off 2 ±10.000 ±12.429 ±10.000 [g] 
Lift off 3 ±10.000 ±10.000 ±12.429 [g] 
The static analysis 
Static Analysis for each load set is performed applying to the MASS module FE model (with the constraints for 
the ejection system) inertial gravitational acceleration loads. The Reaction Forces at the nodes that are 
constrained in order to model the ejection system were extracted and summarized for each mechanism. The 
maximum force was identified for each axis that is applying on to the Ejection Mechanism. This maximum force 
is the load case scenario that is requested for the second part of the structural analysis. 

Axis Reaction Force Calculated (N) Ejection Spring Force (N) Total forces acting (N) Final Value (N) 
X 2759.8 667 3427 4000 
Y 920.42 0 920 1074 
Z 925.81 0 926 1081 

STRESS ANALYSIS OF THE EJECTION ASSEMBLY 

Model Description 
As it is presented in the following figure each Ejection Assembly consists of the following parts: 
The vertical plate (1), the horizontal plate (2), the shaft brackets (3), the shaft (4), the hook (5), the interface (6), 
the steel cable (7), the spring tube (8), the spring cup (9), the base plate (10) 

 
Figure 7: The Ejection Mechanism (the second shaft bracket is not shown) 

In order to conduct the detail stress analysis a precise FE model was built including only the key structural 
components. The final FE model involves: The horizontal plate that the main ejection mechanism is mounted 
(1), the shaft brackets mounted on the horizontal plate (2), the shaft (3), the hook (4), the satellite interface (5), 
the steel cable (6) . 
The reason of the decision of those parts as critical is that these parts constitute the main load paths. In addition, 
the satellite interface part will be modeled in a second step since a detailed contact interface must be introduced 
between the hook and the satellite interface part. This hierarchical approach is conservative since concerning the 
loading conditions of the hook it is assumed that the satellite interface part is un-deformed and the force acting 
on the top surface of the satellite interface part is directly transferred to the hook.  
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All components which are involved into the FE model are meshed with a full Mapped Mesh, and 8noded brick 
elements was used for the meshing of the solids and 2noded link elements was used for the modeling of the wire. 

 
Figure 8: View of the FE modeling with 8-node brick solid elements of the hook, the horizontal plate, the brackets and the satellite interface 

 
Figure 9: View of the link element used for the modeling of the steel cable. Also the RBE3 elements used to model the attachment of the 

cable on the hook are shown. 
Since the modeling of the vertical plate and the spring tube is omitted, corresponding boundary conditions was 
applied in the form of nodal constraints of all degrees of freedom on certain nodes of the horizontal plate, as it is 
shown in the next Figure. In the same Figure, the modeling of the tight fit between the hook and the shaft with 
merging the coincident nodes is also presented.  
For the separate model of the satellite interface part also corresponding boundary conditions were introduced in 
the form of nodal constraints of all degrees of freedom on certain nodes. In this FE model the loading 
environment is reversed and the force is applied in the contact surface with the hook and the top surface is fully 
constrained. 

 
Figure 10: An overall view of the DOF constraints used 

For the Shaft-Bracket contact, Contact Elements was used and a Friction Coefficient of 0.2 was assumed.  
 

 
Figure 11: View of the contact elements used for the Shaft-bracket mechanical interface 

In the Table 2 the material used for each part of the structure is presented and afterward the material properties 
are given in Table 3.  
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Part Name Material 
Horizontal Plate  Al7075 T7351 
Shaft brackets Al7075 T7351 
Shaft Steel A286 
Hook Al7075 T7351 
Satellite Interface Al7075 T7351 
Cable Steel AISI 316 

Table 2 

Material  Density  
[kg.m3] 

Young’s Modulus  
[Pa] 

Yield Strength 
[MPa]  

Ultimate strength  
[MPa] Poisson Ratio 

Aluminum 7075 T7351 2810 72 x109  435 505 0.33 
Steel AISI 316 7872 200 x109     
Steel A286 7872 200 x109  827 1100 0.29 

Table 3 
In order to check the integrity of the model a free-free modal analysis is conducted. The check was passed 
successfully. 
 
The Stress analysis and calculation of Safety Margins 
The analysis performed is a static analysis of the Hook-Shaft-Brackets-Horizontal Plate assembly, and a static 
analysis of the MASS Hook. The load applied in both cases was a 4000N force in the X axis (the ejection axis), 
in a pressure form on the contact surface between Hook and satellite interface parts.  
In the case of the satellite interface part the load was applied as distributed force on the nodes (24 nodes x 166.6 
Nt). In the model of the rest ejection assembly the loading is applied in a pressure form  (76.95 106 Pa) at the 
area (4 x 13 mm2) of the hook where the connection with the satellite interface part locates. 

 
Figure 12 

For calculation of safety margins the following safety factors will be applied: 
For the yield stresses safety Factor = 1.0, for the ultimate stresses safety factor= 1.4. These values are considered 
for metallic structures (tested Shuttle, analysis and test) from TABLE 5.1.2–1 MINIMUM SAFETY FACTORS 
FOR PAYLOAD FLIGHT STRUCTURES MOUNTED TO PRIMARY AND SECONDARY STRUCTURE of 
[1].  
The Safety Margins (MoS) are calculated by:  
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RESULTS AND DISCUSSION 

The required Safety Margins are: (a) MoSy > 0.0 and (b) MoSu > 0.0 
The calculated Von Misses stresses are summarized in the following table 4 where the Safety Margins are also 
given. 
 

Part SFy SFu Von-Misses [MPa] MoSy  MoSu 
Hook 1 1.4 272 0.60 0.33 
Shaft 1 1.4 769 0.08 0.02 
Brackets (max) 1 1.4 400 0.09 -0.10 
Brackets (real) 1 1.4 311 0.40 0.16 
Horizontal Plate 1 1.4 246 0.77 0.47 
MASS Hook 1 1.4 324 0.34 0.11 

Table 4 
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It is observed (Figure 13) that for the Brackets, the maximum Von-Misses stress value is associated with only 
one node hence this value does not correspond to reality since singularity effects were arisen by the contact 
modeling. In order to have a more realistic value the Von Misses stress on the neighboring nodes are taken into 
account.  
In the following Figure the Von-Misses contours are presented: 

 

 
Figure 13 

The deformed model is shown in Figure 14 together with the tensioning of the steel cable. 

 
Figure 14 

From the reaction solution of the link element constraints the reaction force is calculated to be of 837.5 N. This 
value is crosschecked with the result of an analytical static analysis of the hook. 
The analytic static solution gives a value of 890 N. The results of the FE analysis have a difference of 5.80 %. 
This small deviation serves as a verification index of the FE model. 

CONCLUSIONS 

With this work the resized Ejection System of YES2 system gained the required confidence before the prototype 
manufacturing. Further work includes the comparison of the results of this FE analysis with the experimental 
ones during the mechanical testing campaign of the YES2 system.   
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Abstract. In real world engineering applications, the uncertainties are inherent and the scatter of structural 
parameters from their nominal ideal values is unavoidable. In deterministic based structural sizing optimization 
problems the aim is to minimize the weight or the cost of the structure, taking into account certain behavioral 
constraints on stresses and displacements, as imposed in a deterministic manner by the design codes. On the 
other hand, stochastic performance measures that involve various reliability requirements are being taken into 
consideration in many contemporary engineering applications. Reliability is defined as the probability of the 
system to meet the design demands during its life time. In structural optimization, stochastic performance 
measures can be taken into account using two distinguished formulations, Robust Design Optimization (RDO) 
and Reliability-Based Design Optimization (RBDO). 

In the case of a RDO problem, the uncertainties play a dominant role. Compared to the basic Deterministic 
Based Optimization (DBO) formulation, a RDO formulation yields a design with a state of robustness, so that its 
performance is the least sensitive to the variability of the uncertain parameters. In this work, the optimum 
design achieved based on a deterministic formulation is compared with the ones obtained employing a robust 
design formulation, with reference to the structural weight, the variance of the response and the probability of 
violation of the constraints. 

1 INTRODUCTION 

Although a great deal of studies has been proposed during the last three decades for structural optimization, 
those devoted to RDO are rather limited. In the present work, the non-dominant Cascade Evolutionary 
Algorithm (CEA)-based multi-objective optimization scheme is proposed for the solution of structural RDO 
problems, together with an improved handling of the multi-objective optimization problem, and is compared to 
the Linear Weighting Sum (LWS) method. The stochastic finite element problem is solved using the Monte 
Carlo simulation method combined with the Latin Hypercube Sampling (LHS) technique in order to reduce the 
number of simulations needed for the calculation of the required statistical quantities. Up to one hundred LHS 
simulations proved to be sufficient, for the test cases considered for calculating the statistical quantities. 
Furthermore, the advantages of the proposed cascade multi-objective optimization methodology over the 
classical LWS method and the importance of considering the variance of the structural response as a criterion 
are demonstrated. A real-scale truss structure has been examined subject to constraints imposed by the Eurocode 
3 [7]. 

2 STOCHASTIC FINITE ELEMENT ANALYSIS 

During the last two decades much progress has been achieved on stochastic finite element methods [18, 19]. 
However, comparatively few studies have been performed in structural optimization taking into account 
uncertain parameters. For the solution of stochastic finite element analysis problems, a number of methods have 
been proposed that can be classified into statistical and non-statistical ones. In this work, a statistical method and 
in particular Monte Carlo Simulation combined with the Latin Hypercube Sampling is employed. 

 
2.1 Monte Carlo Simulation (MCS) Method 

The MCS method is particularly applicable for the stochastic analysis of structures when an analytical 
solution is not attainable. This is mainly the case in problems of complex nature with a large number of 
uncertain variables, where all other stochastic analysis methods are inapplicable. Despite the fact that the 
mathematical formulation of the MCS is simple, the method has the capability of handling practically every 
possible case regardless of its complexity and the variation of the uncertain variables. The MCS method has 
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proven to be efficient [16] for the calculation of the statistical quantities in the framework of a RBDO problem. 
For the structural stochastic analysis problems examined in this study, the probability of violation of the 

behavioral constraints and the probability of failure are calculated along with the mean value and the variance of 
a characteristic nodal displacement that represents the response of the structure. 

 
2.2 Latin Hypercube Sampling 

The Latin Hypercube Sampling (LHS) method was introduced by MacKay et al. [13] in an effort to reduce 
the required computational cost of purely random sampling methodologies. Latin hypercube sampling is a 
strategy for generating random sample points ensuring that all portions of the random space in question are 
properly represented. LHS is generally recognized as one of the most efficient size reduction techniques. The 
basis of  LHS is a full stratification of the sampled distribution with a random selection inside each stratum. In 
consequence, sample values are randomly shuffled among different variables. A Latin hypercube sample is 
constructed by dividing the range of each of the nr uncertain variables into N non-overlapping segments of equal 
marginal probability. Thus, the whole parameter space, consisting of N parameters, is partitioned into rnN cells. 
A single value is selected randomly from each interval, producing N sample values for each input variable. The 
values are randomly matched to create N sets from the rnN  space with respect to the density of each interval for 
the N simulation runs. The advantage of the LHS approach is that the random samples are generated from all the 
ranges of possible values. 

3. MULTI-OBJECTIVE OPTIMIZATION 

In many practical applications a single criterion rarely gives a representative measure of the actual structural 
performance, as several conflicting and usually incommensurable criteria have to be taken into account 
simultaneously. The optimization problem with more than one objective is called as multi-criteria, multi-
objective or vector optimization problem [4]. 

 
3.1 Formulation of the multi-objective optimization problem 

In general, the mathematical formulation of a multi-objective problem that includes a set of n design 
variables, a set of m objective functions and a set of k constraint functions can be defined as follows 
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where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible region, a subspace of 
the design space Rn for which the constraint functions g(s) are satisfied 

 
3.2 Domination and non-domination 

In single objective optimization problems the feasible set F can be ordered univocally according to the value 
of the objective function. For example, in the case of the minimization problem of f(s), two solutions sa and sb ∈ 
F can be classified using the condition f(sa) < f(sb). In a multi-objective optimization problem two solutions sa 
and sb ∈ F cannot be classified in a univocal manner. The concept of the Pareto dominance is used for assessing 
the two solutions, which for a minimization problem can be defined as follows 
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Using the definition of Eq. (2), the Pareto optimality can be stated as follows: A solution s* ∈ F is Pareto 

optimal if it is not dominated by any other feasible design. 
 
3.3 Solving the multi-objective optimization problem 

Several methods have been proposed for treating structural multi-objective optimization problems [3, 9, 11]. 
According to Marler and Arora [12] these methods can be divided into: (i) methods with a priori articulation of 
preferences, (ii) methods with a posteriori articulation of preferences and (iii) methods with no articulation of 
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preferences. The proposed Cascade Evolutionary Algorithm-based (CEA) multi-objective optimization scheme 
belongs to the first category. This algorithm is compared to the Linear Weighting Sum method (LWS), also 
belonging to the a priori articulation of preferences. The LWS method, due to its simplicity, is the most widely 
implemented method for solving such problems. In both methods employed, the problem in finding the Pareto 
front curve is reduced into a sequence of parameterized single-objective optimization subproblems, using 
scalarizing functions. 

In general, by using scalarizing functions, locally Pareto optimal solutions are obtained. Global Pareto 
optimality can be guaranteed only when the objective functions and the feasible region are both convex or quasi-
convex and convex, respectively. For non-convex cases, such as the majority of structural multi-objective 
optimization problems, a global single objective optimizer must be implemented. Evolutionary Algorithms (EA) 
are considered as global optimizers since they are not prone to being trapped in local optima and therefore can 
be considered as the most reliable methods in approaching the global optimum for non-convex constrained 
optimization problems. For this reason an evolutionary algorithm has been considered in this study for the 
solution of the sequence of the parameterized single objective optimization problems. 

3.4 Non-dominant multi-objective search using the Tchebycheff metric 
The proposed Cascade Evolutionary Algorithm (CEA)-based optimization scheme combines the CEA 

methodology with a non-dominance search and the Tchebycheff metric. 

3.4.1 Augmented weighted Tchebycheff problem 
The augmented weighted Tchebycheff method belongs to the methods with a priori articulation of the 

preferences for treating the multi-objective optimization problem and unlike the LWS method, can be applied 
effectively to convex as well as non-convex problems [15]. The weighted Tchebycheff metric can generate any 
optimal solution, to any type of optimization problem [20]. In order to overcome weakly Pareto optimal 
solutions, the Tchebycheff method formulates the distance minimization problem as a weighted Tchebycheff 
problem 

* *
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where ρ is a sufficiently small positive scalar (in this work ρ = 0.1). The weight parameters wi are random 
numbers, uniformly distributed between 0 and 1. The weight parameters have to make a sum of 1, if not, they 
are updated according to the following expression: 
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3.4.2 CEA-based multi-objective optimization scheme 
It is generally accepted that there is still no unique optimization algorithm capable of handling all 

optimization problems efficiently. Cascade optimization attempts to alleviate this deficiency by applying a multi-
stage procedure in which various optimizers are implemented successively. In the present work the idea of 
cascading is implemented in the EA-context (CEA) for solving multi-objective structural optimization problems. 
In particular, the CEA method is employed for the solution of the sequence of parameterized single objective 
optimization problems. The resulting cascade evolutionary procedure consists of a number of optimization 
stages (csteps), each of which employs the same EA optimizer. In order to diversify the search paths followed by 
the same optimization algorithm during the cascade stages, the initial conditions of the individual optimization 
runs are suitably controlled by using a different initial design at each stage (each stage initiates from the end 
point of the previous stage) and a different seed for the random number generator of the EA procedure [1]. 

A non-dominant search is performed in the context of the CEA and the Tchebycheff metric in the sense that 
all non-dominated solutions attained so far are kept in a set called temporary Pareto set. The multi-objective 
optimization problems are decomposed into subproblems which are solved with independent runs (nruns in 
total) of the CEA methodology. Each subproblem is independent from the others and therefore all subproblems 
can be dealt with simultaneously. Furthermore, in every global generation a non-dominant search is applied for 
updating the temporary Pareto set. The global generation is achieved when all local generations of the 
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independent CEA runs are completed. According to this procedure in every global generation a local Pareto 
front is produced which approaches the global one. 

The optimization algorithm proposed in this study is denoted as: Non-dominant CEATm(µ+λ)nruns,csteps where 
µ, λ are the number of the parent and offspring vectors used in the ES optimization strategy, nruns is the number 
of independent CEA runs and csteps is the number of cascade stages employed. The proposed optimization 
scheme can be easily applied in two parallel computing levels, an external and an internal one. The multi-
objective optimization problem is converted into a series of single objective optimization problems. The solution 
of each subproblem can be performed concurrently constituting the external parallel computing level. On the 
other hand, the utilization of the natural parallelization capabilities of the CEA methodology within each 
independent run defines the internal parallel computing level. 

4. ROBUST DESIGN OPTIMIZATION 

In the present study the robust design versus the deterministic-based design optimization of large-scale 3D 
truss structures is investigated. The random variables chosen are the cross-sectional dimensions of structural 
members, the modulus of elasticity E, the yield stress σy, as well as the applied loading. 
 
4.1 Deterministic-based optimization 

In a Deterministic-Based Optimization (DBO) problem the aim is to minimize the weight of the structure 
under certain deterministic behavioral constraints. In this study three types of constraints are imposed to the 
sizing optimization problem considered: (i) Stress, (ii) Compression force (for buckling) and (iii) Displacement 
constraints. The stress constraint can be written as follows 

y
max a a

σ
σ σ , σ =

1.10
≤       (5) 

where σy is the yield stress, σmax is the maximum axial stress in each element group for all loading cases and σa is 
the allowable axial stress, all taken according to the Eurocode 3 [7] for design of steel structures. For members 
under compression an additional constraint is used 

2
e
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≤      (6) 

where Pc,max is the maximum axial compression force for all loading cases, Pe is the critical Euler buckling force 
in compression, taken as the first buckling mode of a pin-connected member, and Leff  is the effective length. The 
effective length is taken equal to the actual length. Similarly, the displacement constraints can be written as 
 

ad d≤
      (7) 

where da is the limit value of the displacement at a certain node or at the maximum nodal displacement. 
 
4.2 Formulation of the robust design optimization problem 

In a robust design sizing optimization problem an additional objective function is considered which is related 
to the influence of the random nature of some structural parameters on the response of the structure. In the 
present study the aim is to minimize both the weight and the variance of the response of the structure due to the 
uncertainty of the random parameters. This problem is treated as a two-objective optimization problem using the 
weighted Tchebycheff metric. The mathematical formulation of the RDO problem implemented in this study is 
as follows 
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where Φ(s) is the multi-objective function, which is expressed as 
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where f(s) is the weight of the structure and σ ( )s
iu  is the standard deviation of the response of the structure. 
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5. NUMERICAL TESTS 

The numerical tests examined are performed in three stages. In the first stage the statistical methods used for 
the stochastic analysis are verified. The number of LHS simulations required for the calculation of the mean 
value and the standard deviation of the characteristic displacement that represents the structural response is 
compared with the corresponding number required by the basic MCS. In the second stage the advantages of the 
proposed non-dominant CEATm method over the LWS method are demonstrated through the comparison of the 
Pareto front curves obtained. In the third stage, the differences between DBO and RDO optimum designs, in 
terms of the final structural weight, the variance of response, the probability of violation of the constraints and 
the probability of failure, are illustrated. 

The test example considered is a transmission tower, depicted in Figure 1. The design variables are the 
dimensions of the structural members, divided into seven groups, taken from the Equal Angle Section (EAS) 
table of the Eurocode. For each design variable, two stochastic variables are assigned: The length L and the 
width t of the legs of the section. The following loading vectors [Fx, Fy, Fz] in kN are applied to the structure: 
node A [-8.51, 0.00, -4.82], node B [-9.77, 0.00, -5.36], node C [-9.77, 0.00, -5.36], node D [-10.70, 0.00, -5.36] 
and node E [-10.70, 0.00, -5.36], while the type of probability density function, the mean value, and the variance 
of the random parameters are given in Table 1. A constraint maximum deflection of 200 mm is imposed. 

 

  
(a) (b) (c) 

Figure 1. Transmission tower: (a) 3D view, (b) Side view, (c) Top view 
 

 
  PDF Mean µ St. Dev. σ σ/µ 95% of values within 

E (kN/m2) Young's Modulus Normal 2.10E+08 1.50E+07 7.14% (1.81E+08, 2.39E+08) 
σy (kN/m2) Allowable stress Normal 355000 35500 10.00% (2.85E+05, 4.25E+05) 

F (kN) Nodal loading Normal µF 0.05 µF 5% (0.902 µF, 1.098 µF) 
L Legs length Normal Li * 0.02 Li 2% (0.961 Li, 1.039 Li) 
t Legs width Normal ti * 0.02 ti 2% (0.961 ti, 1.039 ti) 

* Taken from the Equal Angle Section (EAS) table of the Eurocode for every design 

Table 1. Characteristics of the random variables 

5.1 Efficiency of the stochastic analysis method 
In the first stage of the numerical study, the performance of the LHS procedure in calculating the statistical 

parameters required during the RDO procedure compared to the basic MCS is examined, by measuring the 
influence of the number of simulations on the computed value of the variance of the characteristic displacement. 
The results, for randomly selected designs, shown in Figure 2 demonstrate the efficiency of the implemented 
LHS procedure. It can be observed from Figure 2 that 100 LHS compared to 500 MCS simulations are required 
in order to calculate the standard deviation of the structural response. It has to be stated that the number of 
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simulations required may vary depending on the type of the structure, the loading conditions and the statistical 
characteristics of the structural parameters. 
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Figure 2. Efficiency of the LHS compared to the MCS in calculating the st. deviation of the structural response 

 
5.2 Comparison between LWS and CEATm 

In the second stage of this study the advantages of the cascade evolutionary multi-objective optimization 
scheme using the Tchebycheff metric are demonstrated over the linear weighing sum method. The quality of the 
Pareto front curve can be assessed by the number of Pareto optimum solutions obtained and their distribution 
along the front curve. Well distributed solutions along the curve provide an indication of the efficiency of the 
multi-objective optimization method employed. The main drawback of the multi-objective optimization methods 
using scalarizing functions, such as the LWS, is the difficulty to fulfil these two requirements. 

For the comparative study performed in this study the robust design optimization problem considered has 
been solved with the LWS method and the proposed non-dominant CEATm multi-objective optimization 
scheme. The LWS method has been implemented through two different runs with 10 and 30 points using the 
ES(µ+λ) optimization algorithm where µ = λ = 5 are the number of parents and offsprings, respectively. For the 
non-dominant CEATm(µ+λ)nrun,csteps optimization scheme the corresponding parameters are µ = λ = 5, nrun = 10 
and csteps = 3. The resultant Pareto front curves are depicted in Figure 3 (a) and (b) for the LWS and the 
CEATm, respectively. The horizontal axis corresponds to the structural weight while the vertical axis 
corresponds to the standard deviation of the characteristic node displacement. 
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Figure 3. The Pareto front curve obtained with (a) LWS - 30 points, (b) the non-dominant CEATm 

 
The RDO multi-objective optimization problem is non-convex and the weakness of the LWS is obvious from 

the front curves of figure 3(a). Well distributed pairs of weighting coefficients do not correspond to equally well 
distributed Pareto optimum solutions along the front curve. On the other hand, the proposed CEATm 
optimization scheme manages to generate the Pareto front curve having a good distribution of the Pareto 
solutions along the front curve, seen in Figure 3(b). 
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5.3 Comparison between DBO and RDO solutions 

In the third stage of this study the difference between DBO and RDO optimum designs is demonstrated in 
terms of the structural weight, the variance of the response and the probability of violation of the constraints. 
The resultant Pareto front curve, when the proposed optimization scheme is used, is shown in Figure 3(b). The 
two ends of the Pareto front curve represent two extreme designs. Point A corresponds to the deterministic-
based optimum where the weight of the structure is the dominant criterion. Point C is the optimum when the 
standard deviation of the response is considered as the dominant criterion. The intermediate Pareto optimal 
solutions are compromise solutions between these two extreme optimum designs under conflicting criteria. 

In Table 2 comparisons are performed for the three optimum designs A, B and C of Figure 3(b). The 
RDO(B) optimum design is achieved considering a compromise between the weight and the standard deviation. 
An important outcome of this investigation is that the DBO optimum design violates the constraints with 
probability equal to 1.1% and probability of failure equal to 0.6%. On the other hand, the probability of violation 
and the probability of failure, in the case of the compromise optimum design B, are computed one to two orders 
of magnitude lower compared to those corresponding to DBO designs. As a consequence of this reduced 
probability of violation and failure, an increase of 70% and 30% on the optimum weights achieved is observed 
in the case of RDO compared to the DBO. The value of the probability of violation is significantly lower in the 
case of optimum design C where the corresponding probability is 0.002%. However, the optimum weights 
achieved are 4 and 2 times more than the one obtained with the DBO formulations. 

 
 DBO (A) RDO (B) RDO (C) 

Weight (kN) 21.1 35.5 85.7 
Standard Deviation (m) 1.32 10-02 4.17 10-03 2.28 10-03 

Pviol (%) 1.1 100 7.0 10-2 2.0 10-3 
Pf (%) 0.6 100 1.0 10-2 0.8 10-3 

Table 2. Characteristic optimal solutions 

The hardware platform that was used in this work for the parallel computing implementation consists of a PC 
cluster with 25 nodes Pentium III in 500 MHz interconnected through Fast Ethernet, with every node in a 
separate 100Mbit/sec switch port. Message passing is performed with the programming platforms PVM working 
over FastEthernet. Two parallel processing schemes have been considered: Parallel 1 corresponding to the 
exploitation of the parallel implementation of the optimization scheme and Parallel 2 corresponding to the 
parallel implementation of the stochastic analysis involved in the optimization procedure. The computational 
performance for obtaining the multi-objective RDO Pareto front curve is compared in Table 3. The solution of 
the single-objective DBO(A) and RDO(C) problems, in sequential and parallel computing environments is 
examined. It can be seen that the computational time required for obtaining the RDO(C) optimum solutions is 
two orders of magnitude more than the corresponding time required to obtain the DBO(A) optimum solutions in 
sequential computing environment. This difference is reduced to one order of magnitude in parallel computing 
environment. 
 

Time (s) Formulation Optim. Scheme Generations FE analyses Sequential Parallel 1* Parallel 2* 
DBO (A) CEA(5+5) 103 627 63 19 - 
DBO (C) CEATm(5+5)1,3 109 576 5214 349 229 

RDO Par. F. C. CEATm(5+5)10,3 947 5528 51092 3127 2259 
* In 25 processors 

Table 3. Computational perfrormance 

6. CONCLUSIONS 

With the proposed multi-objective optimization scheme a uniform distribution of the Pareto optimum 
solutions along the front curve is achieved that is an indication of the efficiency of the optimization procedure. 
For the robust design optimization problem considered the proposed non-dominant CEATm multi-objective 
optimization methodology manages to generate the Pareto front curve with a good distribution of the Pareto 
solutions along the front curve. 

The results obtained with the deterministic and the robust design optimization formulation underline the 
importance of minimizing the variance of the structural response when uncertain parameters are taken into 
account. For the test examples considered in this study, the probability of constraint violation of the DBO 
designs is computed two orders of magnitude greater than the corresponding probabilities for the RDO designs 
when the standard deviation of the response is considered as the dominant criterion to be minimized. On the 
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other hand, the computational cost required for obtaining the DBO designs is two orders of magnitude in 
sequential and one order of magnitude in parallel computing environment less than the corresponding computing 
cost required for obtaining the RDO optimum solutions. 

In the computational framework of robust design optimization of real-scale structures, the efficiency of the 
Latin hypercube sampling is also shown, requiring about a hundred of samples, in calculating the necessary 
statistical parameters. This part of the optimization procedure is very crucial since the computational cost of the 
RDO procedure is dependent directly on the number of simulations, while the reliability of the results obtained 
from the RDO procedure is influenced by the accuracy on the calculation of the statistical parameters. 
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Abstract. The efficiency of different formulations for the inelastic analysis with beam-column elements using the 
fiber approach is investigated in this study. Two versions of the fiber approach are examined based in, the 
stiffness and the flexibility method. Both methods are implemented on a natural mode type beam-column element. 
The first method is the commonly used formulation, while the flexibility-based formulation, also known as force-
based formulation, relies on iterations in the element level in order to improve the nodal forces and thus lead to 
increased accuracy and convergence rate. Three methods for the integration of the stiffness matrix are examined 
for both formulations and the performance of each method in terms of the FE mesh required is investigated. 

1 INTRODUCTION 

 Inelastic analysis of frames has many practical applications in the simulation of structures. In order to 
perform the nonlinear static or dynamic analysis of frame structures, the use of a model that combines accuracy 
and simplicity is necessary. The models used for the inelastic analysis of frames can be classified into two 
categories: lumped and distributed plasticity models. When a lumped plasticity model is adopted, the inelastic 
behavior is concentrated at the ends of otherwise linear-elastic beam elements. This approach is also known as 
the plastic hinge approach. On the other hand in the distributed plasticity models the plasticity is evaluated in a 
number of sections along the element which in turn are divided to a number of monitoring points which 
correspond to the fibers of the section. The distributed plasticity model is also known as the fiber-approach. The 
use of fibers allows the accurate representation of the stress level across the sections, while using a number of 
sections along the element allows nonlinearities to develop along the element. The yield criteria adopted for the 
plastic hinge approach are expressed in moment-rotation terms for each plastic hinge, while in the fiber approach 
uniaxial stress-strain laws for each fiber are adopted. Fiber-based elements offer increased accuracy compared to 
plastic hinge models at the expense of increased computational cost. This paper presents two alternative 
formulations of the fiber approach. 

The two versions of the fiber approach implemented are based on the stiffness and the flexibility method. The 
former is the common method used, where the strain field is obtained by means of appropriate interpolation 
techniques from the nodal displacements. Displacement-based elements ensure that the compatibility between 
deformations will be satisfied. However, the equilibrium of forces along the member is satisfied only when an 
efficient number of elements per member is used. In order to circumvent this problem a denser mesh of beam 
elements is required at the locations where inelastic deformations are expected to be high. On the other hand, in 
the flexibility formulation, interpolation is performed in order to reach equilibrium, the forces at each section are 
calculated with respect to the nodal forces[1]. Force interpolation functions are adopted where the bending 
moments are distributed linearly and the axial force remains constant along the element. As a result of this 
handling element equilibrium is always satisfied, while compatibility of deformations is satisfied by integrating 
the section deformations to obtain the element deformations and the nodal displacements. 
 Both formulations are implemented on a beam-column element based on the natural approach[2]. According 
to the natural mode method the displacement field is decomposed to twelve natural modes, six rigid body modes, 
that leave the element unstrained, and six natural straining modes. Based on this concept we can compute the 
natural stiffness matrix, using only the natural modes that produce strain. The adoption of the natural mode 
method leads to a reduction of the computational cost. 
 In order to compute the natural stiffness matrix three integration methods were examined. In the simplest 
version of the displacement-based natural element, the integrals that form the natural stiffness matrix are 
computed analytically[3]. Analytical integration requires the stress-strain relationship to be evaluated at a single 
section of the element. In this study the middle section of the element is used. Numerical integration schemes, 
such as Gauss quadrature or Gauss-Lobatto quadrature, allow a more detailed description of the inelastic 
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behavior of the element, since the strain field is monitored on several sections along the element. Theoretically, 
both quadrature schemes can be combined with either displacement or force based elements. 

2 DISPLACEMENT-BASED FORMULATION 

 Βoth versions of the fiber approach are implemented on the natural mode beam-column[3]. According to the 
natural mode method, the displacement field is decomposed to six rigid body modes 0ρ and six straining 
modes Nρ , grouped in the vector: 
 

0
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In particular the vector of the natural staining modes Nρ  consists of the following entries 
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where 1Nρ  is a unit extension, while 2Nρ  and 4Nρ  are symmetric unit rotations along the principal and the 
secondary axis, respectively. The third mode 3Nρ  is the sum of a unit antisymmetrical bending rotation and a 
couple of shear forces employed in order to satisfy equilibrium. In a similar fashion 5Nρ  represents a unit 
antisymmetrical bending rotation along the secondary axis and finally, 6Nρ  is the torsional mode. The correlation 
between the natural straining modes and the displacements in the element local system is achieved with simple 
algebraic expressions: 
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The relationship between the vector of strains and the natural displacement is N NBγ ρ= , or analytically  
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where ζ is the non-dimensional natural coordinate along the element ( [ 1,1]∈ −ζ ) and Ψ(y, z) is the warping 
function that describes the behavior under torsion. If κ is the constitutive matrix, the natural stiffness matrix is 
obtained as: 
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or equivalently 
 

2 2

2 2 2

2 22

2 2

2 2
, ,

3 3 .
. 3 3 .
. . 9 3 9 .1
. . 3 .
. . . . 9 .
. . . . . ( ) ( )

e

N e
V

y z

E yE y E zE z E
y E y E zyE zy E

y E zy E zy E
K dV

symmetrical z E z EL
z E

G z G y

ξ ξ
ξ ξ
ξ ξ ξ

ξ
ξ

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥

Ψ − − Ψ −⎢ ⎥⎣ ⎦

∫  (7) 

 
The integral of equation (7) can be calculated analytically or numerically. Depending on the integration scheme 
adopted different FE meshes are required. Among the three integration schemes adopted, the Gauss-Lobatto 
scheme has been proved to behave unreliably when implemented for the displacement element. 

3 FORCE-BASED FORMULATION 

 The vector of internal forces, which are the forces at the sections along the element (Figure 1), are obtained 
by interpolating the natural nodal forces. Therefore the forces of section i, [ ]i

y zD N M M= , are obtained as 
 

( )i i i
ND b P= ⋅ζ  (8) 

 
where i

NP  is the vector of the natural forces of section i that correspond to the natural straining modes of 
equation (2) and ( )ib ζ  is a interpolation function matrix, expressed in the natural coordinate system as: 
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 The adopted section force-deformation relationship that always satisfies element equilibrium is obtained 
using the section flexibility matrix: 
 

( )i i id f D= ⋅ζ  (10) 
 
where id  is the section deformation vector that consists of the axial strain and the curvatures about the two 

orthogonal axis, and ( ) 1
( ) ( )i if k

−
=ζ ζ  is the section flexibility matrix. 
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Figure 1. Section generalized forces and deformations 

Following the hypothesis that plane sections remain plane and normal to the longitudinal axis, the section 
stiffness matrix is computed by integrating the area of the cross section and thus taking into consideration the 
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influence of the stiffness of each fiber. In addition, the deformation compatibility condition is satisfied as 
follows: 
 

0

( ) ( )
L

i T i
N b d dx= ∫ρ ζ ζ  (11) 

 
  In the flexibility-based formulation the natural stiffness matrix is derived from the inversion of the element 
natural flexibility matrix, which is constructed as follows: 
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The integrals of equations (11) and (12) have to be computed numerically. It is apparent, according the case 
studies examined, that the Gauss quadrature scheme is not as effective as the Gauss-Lobatto scheme, since more 
integration points are required in order to produce accurate results. 
 In a flexibility-based element the determination of the natural element forces is performed iteratively for each 
element. The first step of the iterative procedure is to determine the vector of natural forces. Then using force 
interpolation functions the section forces are obtained, and subsequently the section forces are corrected 
according to the constitutive law. From the corrected forces the section deformations are obtained (eq. (10)) 
which are then integrated according to eq. (11) to obtain the residual natural straining modes. The iterative 
process is terminated when an energy convergence criterion that combines element residual natural modes and 
natural forces is satisfied[4]. 

4 FINITE ELEMENT MESH 

 In order to compute the stiffness matrix, three integration methods were examined. In the original 
formulation of the displacement-based natural element, the integrals that form the natural stiffness matrix can be 
computed analytically. When this is the case the inelastic behavior of the element is derived directly from the 
behavior of the middle section. For this reason, a fine mesh must be used in order to capture accurately the 
inelastic behavior. This approach offers a significant reduction of computations required per element compared 
to numerical integration methods, where the required computation cost and memory storage per element is 
increased since more integration points are necessary.  
 Numerical integration schemes, such as Gauss or Gauss-Lobatto quadrature, allow a more detailed 
description of the inelastic behavior of the element, since the element state is derived from the weighted 
summation of the state of several integration sections along the element. The main difference between the two 
numerical procedures is that the Gauss-Lobatto scheme uses as integration points the end sections of the beam. 
This is important since these sections are the locations of possible plastic hinges. Both integration schemes are 
based on the expression: 
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where i denotes the monitored section and iw  is the corresponding weight factor. The weight factors for different 
number of integration points are shown in Figure 2, for both schemes. It can be seen that smaller weights are 
assigned at the sections near the ends of the beam compared to the middle sections. The distribution of weights is 
responsible for the majority of numerical problems that may arise during analysis. 

The number of integration points used affects the assumed length of plastic hinge[5]. When the plastic 
moment is reached at the first integration point (element end), the displacement continues to increase. As the 
bending moment cannot increase furthermore, the adjacent integration points remain elastic and the inelastic 
curvature localizes at the integration point at the beam end. If an inefficient number of integration points is used, 
the length of the plastic hinge and thus the curvature that corresponds to the yield strength, are not evaluated 
correctly. These effects are known in the literature as localization effects. This localization effect is alleviated 
when hardening is present. However, for softening structures or elastic-perfectly plastic cases, the localization 
effects may cause numerical problems and require special attention. Furthermore, these effects are more 
pronounced when the Gauss-Lobatto flexibility-based element is used. Strain localizations also affect stiffness-
based frame elements with analytical integration, but in that case the localization effects are related to the length 
of the element. In displacement-based elements with numerical integration the localization effects depend on 
both the element length, which is usually small, and also on the number of integration points, which usually is 
less than those used for force-based elements.  
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Figure 2. Distribution of weight factors for the (a) Gauss and (b) Gauss-Lobatto quadrature 

5 CASE STUDIES 

5.1 Simple I-beam with fixed ends 
 The purpose of the first example is to investigate the efficiency of both fiber formulations for the analysis of 
the I-beam of Figure 3 when subjected to a concentrated load in its middle. The section behavior is assumed 
elastic-perfectly plastic. Three meshes, shown in Figure 4 were considered. 
 

P

IPB 300
6 m  

σ (MPa)

ε
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240

 

Figure 3. Simple I-beam under concentrated load  

(a)

(b)

(c)
 

Figure 4. Discretization of I-beam. Three alternative finite element 

 In Figure 5 it is shown that only the denser mesh (a) is capable to provide an accurate estimation of the 
collapse load (Pc = 598kN) when the flexibility element with analytical integration is used. Figure 6 proves the 
efficiency of the two Gauss point integration scheme against the Gauss schemes with more integration points. It 
is also shown that when the Gauss-Lobatto scheme is used the collapse load is overestimated regardless of the 
number of integration points. Furthermore, it can be seen that the solution provided by the force-based element, 
when mesh (c) was used, is the best among all solutions provided by the displacement based elements. 
 Figure 7 shows the response of the I-beam obtained when the flexibility-based element and Gauss-Lobatto 
quadrature is used. The prediction of the element inelastic response is accurate, although the localization effects 
affect the smoothness of the response. Furthermore, it is shown that Gauss quadrature failed to produce accurate 
results when implemented in a force-base element. Finally, the displacement based element failed to determine 
the collapse load when mesh (c) is used for both integration schemes. 
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Figure 5. Inelastic response of I-beam using the displacement-based (DB) element  

with analytical integration (AI) 
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Figure 6. Inelastic response of I-beam using the displacement-based (DB) element  

with a different number of Gauss (GIP) or Gauss-Lobatto (GLIP) integration points  
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Figure 7. Inelastic response of I-beam using the force-based (FB) element with a different number of Gauss 

(GIP) or Gauss-Lobatto (GLIP) integration points  
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5.2 Reinforced concrete column 
 The second example is the reinforced concrete column[6], shown in Figure 8.  At the top of the column a 
constant axial load is applied while the horizontal tip displacement is increased incrementally. The constitutive 
model used to describe the nonlinear behavior of the concrete fibers is the modified Kent-Park model[7], shown 
also in Figure 8, while a bilinear model with a Young’s modulus of E=29000ksi, a yield stress of fy=64.9ksi and  
a kinematic strain hardening ratio of 0.67% are used for the reinforcing steel bars. A single force-based element 
is used for the entire member, and the numerical integration is performed with the Gauss-Lobatto scheme. The 
purpose of this example is to demonstrate the ability of the flexibility-based element to capture the inelastic 
response of a reinforced concrete member and, at the same time, to illustrate the localization effects developed. 
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Figure 8. RC cantilever beam-column with strain-softening section response and material properties 

 
 Figure 9 shows the tip displacement response of the cantilever beam, when the axial load is not present. It can 
be seen that the influence of the number of integration points is small since mild strain hardening is present. 
Figure 10 shows the effect of the strong axial compression at the inelastic response of the member. Softening 
takes place as soon as the ultimate capacity of the column is reached. The column softening is described well 
with at least four integration points, although considerable differences are observed when a different number of 
integration points is used due to localization effects[5]. 
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Figure 9. Inelastic response of RC beam-column without the axial dead load 

6 CONCLUSIONS 

 It would seem fair to say that both nonlinear elements examined have the ability to capture the inelastic 
behavior of framed structures, although they conceal important numerical problems that must be thoroughly 
considered in order obtain accurate results. Most importantly, the appropriate finite element mesh for the 
displacement-based element, or the necessary number of integration points for the force-based element requires 
the knowledge of the plastic hinge length prior to the analysis in order to obtain accurate results. The conclusions 
of the study, with respect to the first case study examined, can be summarized as follows: 
 When the displacement-based natural element is used, adopting analytical integration, for the stiffness matrix 

is proved to be more efficient than implementing a numerical integration scheme. The mesh required in that 
case is three elements per member, where the length of the two end elements coincides with the plastic hinge 
length. 
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 When the Gauss scheme is combined with the displacement-based element the required mesh is similar to 

that of the analytical integration, although the length of the end elements should coincide be increased 
slightly. However, as the increase of the CPU time and memory storage required is disproportionate to the 
gain in terms of FE mesh, this approach is considered ineffective. 

 When Gauss-Lobatto quadrature is used to implement the force-based natural element, the results obtained 
seem to be accurate with a FE mesh of a single element per member and four integration points. 
Nevertheless, if section softening is expected in order to ensure the smoothness of the response, the number 
of integration points must be adjusted, so that the length that corresponds to the first point is close to the 
length of the plastic hinge. 
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Figure 10. Inelastic response of softening RC beam-column 
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Abstract. The paper examines sloshing in partially-filled containers of horizontal-cylindrical shape. A semi-
analytical variational formulation is adopted, and the unknown sloshing potential is expressed through a series 
of harmonic spatial functions. Thus, the boundary-value problem reduces to a system of ODEs with explicit 
expressions for the elements of the coefficient matrices, and solutions of high accuracy for the sloshing 
frequencies are obtained. Finally, sloshing forces can be calculated through either a direct integration of the 
equations of motion or a modal analysis.  
 
 
1 INTRODUCTION 

The oscillations of the liquid surface in a partially-filled container, referred to as “liquid sloshing”, are 
generally caused by external excitation, and may have a significant influence on the dynamic response of the 
container. The linearized sloshing problem can be treated as an eigenvalue problem, representing free fluid 
vibrations inside a stationary container (sloshing frequencies and modes), whereas under a specific external 
excitation, the problem becomes transient, representing fluid motion within the moving container.  

The sloshing solution depends strongly on the container shape. For non-deformable rectangular and vertical-
cylindrical containers the sloshing problem for ideal fluids can be solved analytically, using separation of 
variables , resulting in a set of uncoupled equations, one for each sloshing mode. The case of vertical 
cylindrical vessels has been extensively investigated since the late 50’s, mainly motivated by space vehicle 
applications , and the seismic design of liquid storage tanks . The recent publication of Ibrahim et al.  
offers a broad overview of sloshing dynamics with emphasis on vertical cylinders and rectangles. 

[1]

[2] [3,4,5] [6]

Containers in other geometries, such as horizontal cylinders or spheres have received much less attention. In 
these configurations exact analytical solutions may not exist, and the use of numerical methods becomes 
necessary. Most of the work in horizontal cylinders and spheres has focused on the calculation of sloshing 
frequencies (eigenvalue problem). The have been computed through semi-analytical approaches or on numerical 
methods . The corresponding transient problem of externally-induced sloshing has been studied numerically 
in an early work by Budiansky , using space transformations to map the initial circular or spherical region to a 
more convenient plane region. The flow field was described by a set of integral equations, which was solved 
using a Galerkin-type solution. Budiansky’s method was further refined by Chu  to compute more accurately 
sloshing frequencies and forces in spherical containers.  

[7-11]

[12]

[13]

For the particular case of half-full horizontal cylinders, Evans & Linton  presented a elegant semi-
analytical solution for the sloshing frequencies, expanding the velocity potential in terms of non-orthogonal 
bounded spatial functions. This solution was extended in the recent work of Papaspyrou et al. , for externally-
induced sloshing in half-full containers, with particular emphasis on seismic response. 

[14]

[15]

The present work is aimed at calculating the dynamic response in half-full horizontal-cylindrical containers 
under external excitation in the transverse horizontal direction, using a variational formulation. In particular, the 
paper examines externally-induced liquid sloshing in those vessels under any form of excitation. A semi-
analytical variational formulation is developed, where the velocity potential is expressed through series of non-
orthogonal spatial functions. The boundary-value problem reduces to a system of ordinary linear differential 
equations, with explicit expressions of the coefficient matrices, which allow for semi-analytical solutions of 
benchmark quality. Under zero external excitation and assuming harmonic solution, sloshing frequencies and 
modes are computed. In addition, hydrodynamic forces are computed using either a direct integration of the 
equations of motion, or a modal analysis. The semi-numerical results are characterized by the rapid convergence 
of the sloshing frequencies, masses and forces.  
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2 VARIATIONAL FORMULATION 

Assuming ideal fluid conditions, the liquid motion in a undeformed (rigid) two-dimensional container under 
horizontal excitation X(t) in the x direction (Figure 1) is described by the flow potential ( , , )x y tΦ , so that the 
liquid velocity is the gradient of Φ ( ), which satisfies the Laplace equation, = ∇Φu

 
2 2 2

2
2 2 2 0 

x y z
∂ Φ ∂ Φ ∂ Φ

∇ Φ = + + =
∂ ∂ ∂

 in the fluid domain Ω          (1) 

 
subjected to the following boundary conditions   
 

( )xX
n

∂Φ
= ⋅

∂
e n   at the “wet” surface of the vessel wall 1Β       (2)                             

 
2

2 0g
yt

∂ Φ ∂Φ
+ =

∂∂
  at the free surface 2Β                                    (3)                                 

 
where xe is the unit vector in the x direction and n is the outward normal vector at 1Β . The unknown potential 
can be decomposed in two parts, the “sloshing” potential SΦ , and the “uniform motion” potential , where UΦ
 

( )U X t xΦ =          (4) 
 
Therefore, the sloshing potential should satisfy the Laplace equation  
 

2 0 S∇ Φ =    in Ω       (5) 
 
and the following boundary conditions 
 

0S

n
∂Φ

=
∂

   at 1Β          (6)                             

 
2 2

2 2
S S Ug

yt t
∂ Φ ∂Φ ∂ Φ

+ = −
∂∂ ∂ 2 onΒ                                    (7)       

 
Herein, solution of the above problem is conducted using the weak statement of problem (5) - (7) considering an 
admissible function * ( , )x yϕ : 
 

( )2 * 0S dϕ
Ω

∇ Φ Ω =∫                                    (8)                                 

R
θ r x

y

L

X(t)

z

R
θ r x

y

L

X(t)

z

 
Figure 1: Configuration of a half-full horizontal cylinder under external excitation in the transverse direction. 
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Using Green’s theorem and boundary conditions (6) and (7), the above expression is written as follows: 
 

( )( )
2 2

2 2
* *

22 2

1 1 S U
S

B B

d dB
g gt t

ϕ ϕ
Ω

∂ Φ ∂ Φ
∇Φ ∇ Ω+ = −

∂ ∂∫ ∫ ∫ *
2dBϕ

*

                 (9)                      

 
where B  is the “free-surface” line of the fluid domain depicted in Figure 1. Subsequently, Galerkin’s 
discretization is considered: 

2

 

[ ]
1

( ) ( , )
N

S n n
n

q t N x y
=

Φ = =∑ Ν q        (10)                         

[ ]* *

1

 ( , )
N

n n
n

q N x yϕ
=

= =∑ Ν q                                                                 (11)                           

where  are known spatial functions, [N] is a row-matrix containing functions ,  is a column 

vector with the unknown functions  to be determined, the dot denotes time derivative, is an arbitrary 

vector and  is the truncation size. Differentiation of the above equations gives 

( , )nN x y ( , )nN x y q

( )nq t *q

N
 

[ ]∇Φ = Β q          (12)  

[ ]*ϕ∇ = Β q*          (13)    
   

Substituting Equations (10) - (13) into Equation (9), and considering arbitrary , one results in the following 
system of second-order linear ordinary differential equations: 

*q

 
[ ] [ ] X+ = −M q K q γ         (14)               

where  

2

2
1[ ] [ ] [ ] T dB
g

Β

= ∫M N N         (15) 

[ ] [ ] [ ]T d
Ω

= ∫K Β Β Ω         (16)       

2

T
2

B

1 [ ] dBx
g

= ∫γ N         (17) 

 
The system of Equations (14) can be integrated directly to provide the unknown functions  and their 
derivatives, so that the sloshing potential is determined. 

( )nq t

SΦ
The sloshing frequencies and the corresponding eigen-vectors are computed from the solution of the 

corresponding free-vibration eigenvalue problem  
 

( )2[ ] [ ]  0k kω−K M Ψ = N       (18) 1,2,3,...k =

 
where ω  is the sloshing frequency of the k  mode . k

th
kΨ

Hydrodynamic pressures  associated with liquid motion are calculated directly from  through 
the Bernoulli equation (

( , , , )p x y z t Φ

p ρ= − Φ ) and the total hydrodynamic force at the container wall is obtained through an 
appropriate integration of those pressures on the “wet” surface of the container in the direction of the earthquake 
excitation.  

 

( )
1

1  U S
x

B

F dB
t t

ρ
∂Φ ∂Φ⎛ ⎞= − + ⋅⎜ ⎟∂ ∂⎝ ⎠∫ e n       (19) 

 
Equation (19) indicates that the force can be expressed as a summation of the “uniform motion” force  
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( )
1

1  U
U x

B
LF dB X

t
ρ

∂Φ
= − ⋅ =

∂
−∫ e n M       (20) 

 
where LΜ  is the total liquid mass, and the force associated with sloshing:  
 

( )
1

1  TS
S x

B

F dB
t

ρ ρ∂Φ
= − ⋅

∂
= −∫ e n qβ       (21) 

where  
[ ]

1

1 T
x

B

n dB= ∫β N         (22) 

and  are calculated from the direct integration of Equations (14).  q
If modal analysis is used instead of a direct integration of Equations (14), the equations of motion are 

transformed in the following set of uncoupled ordinary differential equations 
 

2
k k k k k kM Y M Y Xω γ+ = −     1,2,3,...k NM=     (23) 

 
where  is the number of modes considered (NM NM N≤ ), 
 

1

NM

k k
k

Y
=

= ∑q Ψ                                          (24)                                

[ ]T
k kM = Ψ Μ Ψk M    1,2,3,...k N=     (25) 

T
k kγ = Ψ P     1, 2,3,...k NM=     (26)

       
Therefore, the sloshing force can be also written as follows: 
 

( )
1

1
1

  
NM

S
S x

kB
k kF dB Y

t
ρ

=

∂Φ
= − ⋅

∂
= −∑∫ e n L       (27) 

where  
k kρ Τ= Ψ βL                                 1,2,3,...k NM=     (28)     

 
Thus, the total hydrodymanic force on the container’s wall is  
 

1

NM

k k L
k

F Y
=

= − −∑ ΜL X         (29) 

 
Using the following change of variables 
 

k
k k

k

M
a Y

γ
=   and k ku a X= +  1,2,3,...k NM=     (30)  

 
the liquid motion equations (including damping) become 
 

22k k k k k ka a aξ ω ω+ + = − X NM  1,2,3,...k =     (31) 
or equivalently, 

( ) ( )22 0k k k k k ku u X u Xξ ω ω+ − + − = 1,2,3,...k NM =     (32) 
 
Equations (31) express the liquid motion with respect to the container, and Equation (32), express the total liquid 
motion (including the motion of the container). Furthermore, the hydrodynamic force in Equation (29) becomes 
 

1
 

NM

kC k L
k

F a
=

= − −∑Μ Μ X         (33) 
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or equivalently, 

1

 
NM

kC k I
k

F u
=

= − −∑Μ Μ X         (34) 

where  
k k

kC
kM

γ
=Μ L

    1,2,3,...k NM=     (35) 

 
are the so-called “sloshing” or “convective” masses. The above equation shows that the total hydrodynamic 
force F consists of two components, an “impulsive” force F   and a “convective” force F ,  Ι C
 

I IF = −Μ X

ku

         (36) 

1
 

NM

C kC
k

F
=

= − ∑Μ         (37) 

where  

1

NM

I L
k=

= −∑Μ Μ ΜkC ,         (38) 

 
In addition, the total liquid mass LΜ is the sum of  
• the “sloshing” or “convective” masses  (k=1,2,3,…), which correspond to the sloshing modes, and 

refer to the liquid motion due to free-surface elevation (convective motion). 
kCΜ

• the “impulsive” mass  IΜ , which refers to the mass that “follows” the container motion X(t). 
In rectangular and vertical-cylindrical liquid storage tanks, the sloshing potential can be written in terms of 

orthogonal shape functions , analytically calculated. In such a case, the formulation results in a set of 
uncoupled equations of motion (i.e. matrices [  and [  are diagonal), and the functions  are the 
eigenmodes or sloshing modes (e.g. Abramson ). On the other hand, in horizontal-cylindrical and spherical 
vessels, analytical expressions for orthogonal functions do not exist, and the use of numerical methods becomes 
necessary. In the present work, the sloshing problem in half-full horizontal cylinders is formulated in a semi-
analytical manner, expressing the sloshing potential in equation (10) in terms of non-orthogonal harmonic 
functions. All calculations in the present paper are performed in a Matlab programming environment 

nN
]M ]K nN

[2]

3   SOLUTION FOR HALF-FULL HORIZONTAL CYLINDER 

Using the formulation described in the previous cross-section, the case of cylindrical container of semi-
circular cross-section is examined, in terms of its sloshing frequencies and its dynamic behaviour under 
horizontal external excitation (Figure 1) in the transverse direction. The results are compared with numerical and 
semi-analytical results from previous publications. Finally, assuming only the first two terms of the series, an 
elegant analytical solution of fairly-good accuracy is obtained. 

The fluid with density ρ is inside a non-deformable horizontal cylindrical half-full container of internal 
radius and length equal to R and L respectively. The origin of the Cartesian axes x, y, z is the centroid of the 
circular cross-section, axis y is downward, and the geometry of the cylinder is described by the cylindrical 
(polar) coordinates , ,r zθ ( sinx r θ= , cosy r θ= ). The vessel is subjected to arbitrary external excitation in the 
direction of the x  axis, with displacement ( )X t . Due to the vessel geometry and the direction of the external 
excitation, the problem is two-dimensional in terms of ,r θ , and the following harmonic functions are used to 
describe the sloshing potential: 
 

( , ) sinn
nN r r nθ θ=        (39) 1, 2,3,n = …N

 
and the elements of the  matrix [  are: 2 N× ]B
 

( )n 1n
1n

N
B n r sin

r
nθ−∂

= =
∂

      (40) 1, 2,3,n = …N

( )n 1n
2n

N1B n r cos
r

nθ
θ

−∂
= =

∂
      (41) 1, 2,3,n = …N
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Substituting (39), (40), (41) into Equations (15), (16) and (17), and conducting the appropriate integrations, the 
elements of symmetric matrices [M], [K], and vector γ are obtained: 
 

( )
12 sin sin
1 2 2

m n

mn
L R m nM

g m n
π π+ + ⎛ ⎞ ⎛= ⋅ ⋅⎜ ⎟ ⎜+ + ⎝ ⎠ ⎝

⎞
⎟
⎠

    (42) , 1,2,3,m n N= …

( )

( ) ( )
2

2 sin
2

          , 

                                     , 
2

n m

mn

m

m n
nm L R

m nK m n m n
m L R m n

π

π

+

⋅

⎧ −⎡ ⎤
⎪ ⎢ ⎥

⎣ ⎦⎪⎪ ≠= ⎨ − ⋅ +
⎪
⎪ =⎪⎩

   (43) , 1, 2,3,m n N= …

( )
m 2

m
2L R msin
g m 2 2

πγ
+ ⎛= ⋅ ⎜+ ⎝ ⎠

⎞
⎟ N      (44) 1,2,3,m = …

 
In Table 1, the sloshing frequencies of the half-full horizontal cylinder are shown in terms of the truncation size. 
The convergence is monotonic and rather fast, taking into account that a truncation size equal to 20 is necessary 
to achieve convergence up to 5 significant digits for the first four sloshing frequencies. This table shows that 
sloshing frequencies are in very good agreement with the corresponding values reported in previous 
publications . Also note the good comparison between the present results and those reported in the early 
work of Budiansky . 

[10],[15]

[12]

 
N 1n = 2n = 3n = 4n =

2 1.5074    
4 1.3569 10.592   
6 1.3558 4.9917 67.632  
8 1.3557 4.6660 11.451 558.89

10 1.3557 4.6514 8.2250 31.564
12 1.3557 4.6511 7.8578 13.550
14 1.3557 4.6511 7.8221 11.431
16 1.3557 4.6511 7.8199 11.035
18 1.3557 4.6511 7.8199 10.977
20 1.3557 4.6511 7.8199 10.972
30 1.3557 4.6511 7.8199 10.972

McIver[10] 1.3557 4.6511 7.8199 10.972
Evans &Linton[15] 1.3557 4.6511 7.8199 10.972

Budiansky[12] 1.36 4.70 7.96 *
Table 1: Normalized values of sloshing frequencies 2

n n R gλ ω= for hemi-circular two-dimensional container. 
 

1C LM M 2C LM M 3C LM M 4C LM M ( )nC L∑M M I LM M
0.5692 0.0178 0.0041 0.0015 0.5956 0.4054

Table 2: Converged values of mass ratios for convective and impulsive forces for hemi-circular two-dimensional 
container. 

 
An important observation regarding matrix [M], and vector γ is that  
 

0mnM =  if 2, or 4,6,...m = 2, 4,6,...n =      (45) 
0mγ =   if        (46) 2,4,6,...m =

 
Therefore, separating odd and even equations, the ODE system of the equations of motion (14) can be written as 
follows, 
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[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

a aaa aa ab a

ba bbb b

X
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪ ⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

q qM 0 K K γ
0 0 K Kq q 0

−

aq

    (47) 

where 
   [ ]1 3 5 ... T

a q q q=q

[ ]2 4 6 ... T
b q q q=q    

 
and using typical static condensation, Equations (47) can be written equivalently as follows: 
 

[ ] [ ]1
b bb ba

−= −q K K         (48) 
 
[ ] [ ]aa a a a X+ = −M q K q γ'        (49) 

 
where [ ]aaM  and [ ]K'  are square symmetric matrices with dimension , and / 2N
 

[ ] [ ] [ ][ ] [ ]1
aa ab bb ba

−= −K K K K K'        (50) 
 
Equations (49) can be directly integrated in a straightforward manner, to compute the generalized 

coordinates  for an arbitrary excitation ( )nq t ( )X t . Upon direct integration, the sloshing force SF  is calculated 
from Equation (21), where sinxn θ= , and the elements of vector  are  β

 

( )

( )

( )

( )

1

1

2                                               , 1

1 1
sin sin

2 2      , 3,5,7,....
1 1

0 , 2,4,6,....

m

m
m

L R m

m m

L R m
m m

m

π

π π

β

+

+

⎧ =
⎪

− +⎡ ⎤⎪
⎢ ⎥⎪

= −⎢ ⎥⎨ − +⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦

⎪ =⎩

=    (51) 

Note that only odd-number coefficients  contribute to the sloshing force. The time history of  ( )nq t SF  with for 

different values of truncation size , for a horizontal vessel with radius R equal to 1 meter and length L equal 
to 6 meters, and for the earthquake motion shown in Figure 2, is plotted in Figures 3a, 3b. The results show that 
convergence of the results is obtained for relatively few terms on the truncation size ( ). Furthermore, the 
sloshing force is in very good agreement with the results reported by Papaspyrou et al. . 

N

10N
[16]

Using a modal analysis approach, coefficients  are obtained by Equation (28), where the elements of 
vector  are defined in Equation (51). The sloshing mass ratios over the entire liquid mass 

nL
β LM  are tabulated in 

Table 2. 
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Figure 2: Ground acceleration (El Centro, 1940), source  www.vibrationdata.com/elcentro.htm. 
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Figure 3: Sloshing force with respect to the truncation size . N
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     Equivalent flexural-shear beam. 
 
Abstract. Approximate formulae for determining by hand with a high enough accuracy the first three natural 
periods of vibration of plane steel unbraced and braced frames are provided. These formulae are based on the 
modeling of a steel plane frame as an equivalent cantilever beam for which analytical expressions for the 
natural periods are available. Extensive parametric studies involving the finite element computation of the first 
three natural periods of 110 plane steel unbraced and braced frames are employed to establish correction 
factors for the equivalent beam modeling formulae which are functions of the number of stories and bays of the 
frame. The resulting corrected formulae permit a highly accurate determination of the first three natural periods 
of plane steel frames. 
 
 
1  INTRODUCTION 

Seismic building codes, such as UBC [1] or EC8 [2], provide analytical expressions for the computation of the 
design seismic acceleration in terms of the natural period of vibration of the structure for the first mode or the 
first few modes. These codes [1, 2] require the participation in the response of so many modes as to have at least a 
participation of the 90% of the total structural mass and provide very simple but crude empirical formulae for the 
fundamental period of structures in terms of their material, structural type and height.  

In this work approximate formulae for determining by hand the first three natural periods of vibration of plane 
steel frames are presented. These high enough accuracy formulae for both unbraced and braced frames are based 
on their modeling as equivalent cantilever beams in accordance with the approach of Stafford Smith and Crowe 

[4] for which analytic expressions for natural periods are available. These formulae are modified by some 
correction factors, functions of the number of frame stories and bays, which are constructed with the aid of 
extensive parametric studies involving finite element computation of the first three natural periods of 110 plane 
steel unbraced and braced frames. In this work frames of up to 15 stories are considered and thus the first three 
modes are enough to satisfy the 90% vibrating mass criterion of seismic codes [1, 2].  
 
2  FREE VIBRATIONS OF A FLEXURAL-SHEAR BEAM 

The free vibrations of a flexural-shear prismatic beam of length H are governed by the equation [4] 
 

( ) 0
2

2

2

2
2

4

4
=

∂

∂
+

∂

∂
−

∂

∂

t
vm

x
vkIE

x
vIE α     (1) 

 
where EI and m are the flexural rigidity and mass per unit length, respectively, of the beam, v = v (x, t) is the 
lateral deflection of the beam, x and t denote axial coordinate and time, respectively and kα  expresses a shear 
rigidity to be defined explicitly later on.  

According to Rutenberg [3] one can finally obtain the natural periods T of free vibrations governed by Eq. (1) 
in the form  

 

     ( ) IEmT //2 2λπ=         (2) 
 
where  
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In the above λf and λsf  can be computed from the following relations [4] 
 

    
( ) ( )
( ) ( ) ...4,3,5.0

694.4,875.1
21

=−≅

==

nnH

HH

nf

ff

πλ

λλ
       (4) 

    ( ) ( ) ( )HknHsf απλ +−≅ 15.02        (5) 
 
 
3  PLANE FRAME STRUCTURES AS EQUIVALENT BEAMS 

Plane orthogonal, braced or unbraced frames, shear walls or coupled frame-wall systems fixed on the ground 
can be modeled as equivalent flexural-shear cantilever beams. This equivalence can be established by expressing 
EI and kα  of Eq. (1) in terms of the geometrical and material parameters of the frame or the frame-wall system. 
Following [4] one has that for  
 

    [ ] ( )[ ] 2/122/1 /1,/ cAEIEkIEAG +==α       (6) 
 
the equivalent flexural-shear beam can be established provided the three parameters EI, EAc2 and GA can be 
expressed in terms of the properties of the frame or the frame-wall system.  

Thus, for an unbraced bay of a frame, EI and EAc2 of the equivalent beam can be expressed as [4]  

    ( ) ( ) j

n

j
j

n

j

cAEcAEIEIE 2

1

2

1

, ∑∑
==

==       (7) 

where (EI)j is the flexural rigidity of the jth vertical member (column or wall) of the system, (EA)j the axial 
rigidity of the jth vertical member, (c)j the distance of the jth column to the center of the area of the vertical 
members of the lateral load resisting frame and n is the total number of vertical members of the frame. On the 
other hand, GA of the equivalent beam can be computed from [4]  
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where H is the floor height, L the bay length, Ib and Ic are beam and column moments of inertia, respectively and 
n and m denote the total number of columns and beams, respectively. 
 For a braced bay of a frame, EAc2 is given again by (7)2, while EI by [5] 
 

     2/2hAEIE f=         (9) 
 
where Af is the cross-sectional area of the column and h the distance between the centroids of the two columns. 
On the other hand, GA receives different expressions for different types of bracing. Thus, e.g., for x or double-
diagonal (n=2) and single-diagonal (n=1) bracing one has that 
 

               32 / dhsAEnAG d=       (10) 
 
Expressions for K and knee types of bracing can be found elsewhere [9]. 
In the above expressions, s and h are the dimensions of the composite brace elements and Ad the sectional area of 
the bracing element.  

For a framed structure consisting of b braced and u unbraced bays, the parameters EI, EAc2 and GA of the 
equivalent flexural-shear beam are obtained by  
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4  PARAMETRIC STUDIES AND COMPARISONS 

In order to check the validity of the simple approximate formulae for natural period determination of steel 
frames presented in the previous section, the natural periods of a large number of steel plane frames were 
computed by these formulae and compared against those obtained by a finite element analysis considered to be 
the “exact” values. In addition, the same periods were also compared against those obtained by the crude 
approximate formulae of codes.  
 
4.1  Frame properties and methods of analysis 

The analyzed plane steel frames are divided in two major categories. Those that retain their member properties 
constant along the height of the building and those that do not. Furthermore, there are five subcategories 
depending on the type of brace that each frame incorporates. As a result there are unbraced frames and frames 
with single, double, K or knee bracing. In each subcategory, there are frames composed of 1 to 3 bays and 4 to 
15 stories. The total number of steel plane frames analyzed is one hundred and ten (110).  

The length of one bay is 4m and the story height is 3m, while the diagonal brace in every case is of the tubular 
cross section D127x4. 

Young modulus of Elasticity E is 200GPa, Poisson ratio v equals 0,3 and mass per unit volume is 795 Kg/m3. 
The mass of each frame comes from the G+0.3Q combination, where the dead load G=36KN/m and the live load 
Q=10KN/m.  
Geometric configurations and members properties of these frames can be found in Chrysanthakopoulos et al [9]. 

All the plane steel frames are analyzed by the finite element method. Once the finite element model of every 
frame is created, a modal analysis is performed using SAP2000 [6] and the first three natural periods are 
calculated. The calculated natural periods are considered to be the exact and correct values, so they serve as 
control variables to check the periods obtained from the equivalent cantilever formulae, as well as the formulae 
of the various codes.  

The equivalent cantilever modeling considers the entire structure as a single cantilever (Fig. 1). The properties 
EI, EAc2 and GA of the equivalent cantilever are derived from the equations of section 3. For the calculation 
of sfλ , Eq. (5) is used because preliminary results showed that it is more accurate compared to Eq. (13) in 
predicting the first periods.  

For reasons of completeness, the first natural periods of vibration of the considered plane steel frames are 
compared against those obtained by the very simple but crude formulae of some codes. Thus, according to UBC 

[1],  EC8 [2] and E.A.K. [7] codes. 
 
4.2  Comparison of results and error study 

The values of the first three natural periods of the 110 plane steel frames considered here as obtained by the 
equivalent cantilever formulae and the finite element method together with the values of the fundamental periods 
as obtained by the seismic codes formulae were tabulated and compared. The relative % errors were computed 
on the basis of the relation 

 
    ( ) ( ) FEMFEM TTT /100% −=ε       (13) 
 
where TFEM is the “exact” value of the period as computed by the finite element code of SAP 2000 [6] and T is the 
corresponding value as obtained by any other method.  

Tables 3 and 4 present results for unbraced and x-braced frames, respectively with constant cross-sections 
along the height, while Tables 5 and 6 corresponding results for the case of cross-sections varying with height. 
Additional results for other three types of bracing for both constant and variable cross-sections with height can 
be found in Chrysanthakopoulos [8]. 

It is observed that for unbraced frames the error is quite low. The prediction of the first period is very good 
and its error ranges between 10 and 20%. Similar are the results for the second and third natural periods.  

On the contrary, for braced frames the relative error for the first period increases drastically up to 50% (double 
diagonal and K bracing) and 60% (single diagonal and knee bracing). Minimum errors stay above 20% in all 
cases. The estimation of the second and third periods is even worse, with deviations reaching 90%.  

Generally speaking, the relative error increases as frame height decreases for the same type of diagonal 
bracing. An increase in the number of bays slightly improves the estimated periods for a given plane frame.  
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5  CORRECTION FACTORS  
From the error analysis of the previous section, becomes necessary to improve the prediction of natural 

periods by the equivalent cantilever method with the appropriate introduction of correction factors in order to 
bring the error down to acceptable levels. The fact that for the braced frames the error increases significantly in 
comparison with the unbraced frames, leads to the conclusion that the flexural-shear component of the 
equivalent cantilever response requires adjustment. The correction in the form of a correction factor is applied to 
the obtained eigenvalues λ  or sfλ  of the equivalent cantilever.  

The correction factor must be applicable to all frames. Thus, it must depend on some characteristic parameters 
of the frame. Parameters like these are the number of floors, bays, section properties and even α  and k of the 
equivalent cantilever. The following general linear form for the correction factor (C) is adopted  
 
    ( ) 321 1 cmcncC ⋅−+⋅+=        (14) 
 
where c1, c2, c3 are constants, n is the number of floors and m is the number of bays. The determination of the 
constants c1, c2, c3 has been made so that  

i) Correction factor C depends only on the number of natural period and not on the type of the brace 
ii) Constants c2, c3 are independent of the bracing and of the number of bays 
iii) Equation (14) can be used in every case of frame, brace type and natural period 

Thus, Eq. (14) for braced frames becomes  
 
    ( ) max1 103.002.0 CmncCBR ≤−⋅+⋅+=      (15) 
 
with  
 

( ) 0,1121max ≤−⋅+= mC αα       (16) 
 
while for unbraced frames reduces to a single constant  
 
     1cCUBR =        (17) 
 
The corrected eigenvalue, is given by  
 
     ic C⋅= λλ        (18) 
 
or  
 

isfcsf C⋅= λλ ,        (19) 
 
where Ci is the appropriate correction factor.  

The coefficients 21 , αα  and c1 of the above equations are given for various frame cases in Table 5. 
After applying the correction factors, a recalculation of the deviations between the exact periods (SAP2000) 

and the predicted ones (equivalent cantilever with corrections) was performed. Equation (13) was used in this 
occasion as well.  

In general, great improvement is achieved in all periods and in all frames when correction factors are applied. 
The first natural period is best estimated in every case (error below 15%). The second natural period displays 
deviations ranging from –5% to 15% while for the third natural period the deviation remains under 20%. Only 
for braced frames with 1 bay and 4 stories the error ranges between 30 and 40%.  
 
 
6  EXAMPLES OF USING CORRECTED FORMULAE 

Consider the steel plane frame of Fig. 1 with and without the x-bracing system and with constant and variable 
sections along its height. Story heights and bay lengths are 3,0 m and 4,0 m, respectively. Columns are HEB 
280, beams IPE 360 and braces TUBO D 127x4. The following three cases are presented to illustrate the method 
in a detailed manner for the convenience of the reader or the user. 
 
6.1  Frame without bracing 

Due to the symmetry of the frame the center of the area of the vertical members is easily found to be at the 
center of the frame, that is at x=6m. The terms EAc2 and EI are computed with the aid of Eqs (7) and the term 
GA is calculated through Eq. (8) and yields  
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EEAc 0480,12 = , 2154160 KNmEI =  and KNGA 3,66186=     (20) 
 
Parameters α  and k can be calculated with the aid of Eq. (6). Thus λα oHk  equals to 7,8655. 
The total mass of the frame per meter of height is m = 1686 kg/m. Equation (4) provides directly the values of 

Hfλ  for the first three modes. Equation (5) is then used to calculate sfλ . Having determined sfλ  and fλ  for 
the first three natural periods, Eq. (3) is finally used to obtain the eigenvalues λ  as  
 
    6955,0,5385,0,3101,0 321 === λλλ      (21) 
 
Thus, the initial natural periods according to Eq. (2) are  
 
    1346,0,2245,0,6765,0 321 === TTsT      (22) 
 
The above values of periods should be corrected through appropriate correction factors. Using Table 5 for the 
case of a frame without bracing and constant sections, one can obtain the coefficient c1. Then Eq. (17) yields  
 

                       94,01, =UBRC            94,02, =UBRC            99,03, =UBRC       (23) 
 
Use of Eq. (18) enables one to compute the corrected eigenvalues λ  of the shear-flexure cantilever, which read  
 
    6885,0,5062,0,2902,0 321 === λλλ      (24) 
 
Thus, the corrected natural periods on account of Eq. (2) are  
 
    sTsTsT 1373,0,2540,0,7728,0 321 ===     (25) 
 
For comparison purposes the “exact” values of these periods as obtained by finite elements read 
 
    1465,0,2621,0,8325,0 321 === TTsT      (26) 
 
and the values of the first period as determined by the codes read  
 
   sTEAKsTECsTUBC 3118,0:,5481,0:8,5501,0: 111 ===  
 
6.2  Frame with bracing 

Following similar procedures as in the previous example, the initial natural periods according to Eq. (2) can be 
computed as 
 
    sec0398.0,sec0669.0,sec2106.0 321 === TTT     (27) 
 
The above values of periods should be corrected through appropriate correction factors. Using Table 5 for the 
case of a frame with more than one bay and double diagonal bracing, one can obtain the coefficients 21 , αα  and 
c1. Then, Eqs (15), (16), (18) and (2) yield the corrected natural periods  
 
    sec0764.0,sec1350.0,sec4216.0 321 === TTT     (28) 
 
For comparison purposes the “exact” values of these periods as obtained by finite elements read 
 
    sTsTsT 0855,0,1441,0,4397,0 321 ===  
 
and the values of the first period as determined by the codes read  
 
   sTEAKsTECsTUBC 2357,0:,4836,0:8,5501,0: 111 ===  
 
6.3  Frame with bracing and variable sections 

Following similar procedures, as in example 6.2, one can compute the initial natural periods according to Eq. 
(2) as 
 

   sTsTsT 0404,0,0679,0,2139,0 321 ===     (29) 

253



Costas Chrysanthakopoulos, Nikitas Bazeos and Dimitri E. Beskos 

The above values of periods should be corrected through appropriate correction factors. Using Table 5 for the 
case of a frame with more than one bay and double diagonal bracing the coefficients 21 , αα  and c1 are obtained. 
Then, Eqs (15), (16), (18) and (2) yield  
 
    sTsTsT 0775,0,1370,0,4279,0 321 ===     (30) 
 
For comparison purposes the “exact” values of the periods as obtained by finite elements are 
 
    sTsTsT 08723,0,1475,0,4442,0 321 ===     (31) 
 
and the values of the first period as determined by the codes are 
 
   sTEAKsTECsTUBC 2357,0:,4836,0:8,5501,0: 111 ===    (32) 
 
 
7  CONCLUSIONS  

On the basis of the preceding discussion, one can draw the following conclusions: 
1) The proposed method of modeling a plane steel frame (braced or unbraced) as an equivalent cantilever 

in conjunction with the use of certain correction factors constitutes a simple, conservative enough and 
accurate enough way of predicting by hand calculations the first three natural periods of that frame.  

2) First and second periods are determined with a relative error below 15%, while the third period is 
determined with a relative error below 20%. 

3) The method is limited to braced frames with only one braced bay. Further studies and some 
modifications on the correction factors should be made if a frame consists of more than one braced bay. 

4) The height of the story and the span of the bay play a little role on the accuracy of the prediction 
provided one is kept away from extreme cases.  
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Equivalent cantilever Relative error (%) UNBRACED 
FRAMES T1 T2 T3 Equivalent cantilever EAK UBC EC8 
1 4 storey  0,6405 0,2099 0,1255 16,19 9,78 -0,76 29,34 28,02 28,29 
2 7 storey 1,0286 0,3255 0,1933 12,82 11,71 2,79 19,91 29,06 29,33 

1 
B

A
Y

 
3 10 storey 1,4054 0,4169 0,2437 11,36 15,77 8,58 14,85 31,02 31,28 
4 4 storey 0,6647 0,2199 0,1317 18,78 13,30 5,98 53,34 32,78 33,03 
5 7 storey  0,8717 0,2816 0,1679 15,87 14,85 8,70 35,51 19,23 19,53 
6 10 storey  1,2664 0,3982 0,2360 13,22 14,54 8,44 34,59 25,05 25,34 2 

 B
A

Y
 

7 15 storey  2,0114 0,5990 0,3506 10,54 15,53 9,20 36,32 34,07 34,32 
8 4 storey  0,6765 0,2245 0,1346 18,74 14,21 8,13 62,55 33,93 34,18 
9 7 storey  0,8735 0,2858 0,1709 16,54 15,06 9,82 47,87 20,03 20,33 

10 10 storey  1,2468 0,4012 0,2390 14,13 14,31 9,22 46,32 24,67 24,95 3 
 B

A
Y

 

11 15 storey  1,9215 0,5967 0,3527 11,84 14,82 9,67 46,36 31,98 32,24 
 

Table 1: Comparison of the first three natural periods of unbraced frames with constant sections per height 

 
 

Equivalent cantilever Relative error (%) BRACED FRAMES 
T1 T2 T3 Equivalent cantilever EAK UBC EC8 

12 4 storey 0,1333 0,0213 0,0076 54,58 77,47 86,16 -84,05 -87,49 -64,81 
13 7 storey 0,3701 0,0591 0,0211 35,90 64,83 76,06 -63,66 -44,96 -27,42 

1 
B

A
Y

 

14 10 storey 0,7348 0,1173 0,0419 24,24 53,77 66,76 -39,18 -12,75 0,89 
15 4 storey 0,1729 0,0527 0,031 54,94 58,03 58,56 0,49 -43,37 -26,02 
16 7 storey 0,3684 0,1063 0,0617 43,13 47,24 44,01 -3,14 -29,18 -13,56 
17 10 storey 0,6233 0,1694 0,0966 37,05 42,70 37,94 3,60 -10,45 2,91 2 

B
A

Y
 

18 15 storey 1,1618 0,2883 0,1591 30,85 39,06 33,60 14,77 11,77 22,44 
19 4 storey 0,2106 0,0669 0,0398 52,11 53,56 53,49 29,10 -25,11 -9,97 
20 7 storey 0,4263 0,1308 0,0771 38,66 41,11 38,07 21,50 -20,43 -5,86 
21 10 storey 0,6951 0,2047 0,1194 31,78 35,94 31,55 23,50 -7,34 5,64 3 

B
A

Y
 

22 15 storey 1,2328 0,3383 0,1935 24,52 32,01 26,78 28,42 9,24 20,22 
 

Table 2: Comparison of the first three natural periods of braced frames with constant sections per height 
 
 

Equivalent cantilever Relative error (%) UNBRACED 
FRAMES T1 T2 T3 Equivalent cantilever EAK UBC EC8 
1 4 storey  0,6856 0,2251 0,1346 13,17 10,66 -1,30 31,60 30,32 30,59 
2 7 storey  1,1574 0,3687 0,2192 7,60 13,44 6,66 24,56 33,18 33,43 

1 
B

A
Y

 

3 10 storey  1,6380 0,4976 0,2927 4,69 14,86 10,36 21,45 36,36 36,60 
4 4 storey  0,7118 0,2356 0,1412 15,33 14,32 5,57 54,58 34,57 34,81 
5 7 storey  0,9788 0,3180 0,1898 9,90 14,69 8,13 38,49 22,96 23,25 
6 10 storey  1,3953 0,4417 0,2622 7,85 15,20 10,20 36,96 27,77 28,04 2 

B
A

Y
 

7 15 storey  2,1452 0,6418 0,3760 6,82 16,44 13,41 37,81 35,61 35,85 
8 4 storey  0,7246 0,2406 0,1442 15,75 15,27 7,73 63,75 36,04 36,28 
9 7 storey  0,9824 0,3225 0,1929 10,48 15,08 9,38 50,28 23,72 24,01 

10 10 storey  1,3796 0,4458 0,2659 8,68 15,24 11,03 48,41 27,61 27,88 3 
B

A
Y

 

11 15 storey  2,0582 0,6413 0,3794 8,14 16,15 13,97 47,82 33,84 34,09 
 

Table 3: Comparison of the first three natural periods of unbraced frames with variable sections per height 
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Equivalent cantilever Relative error (%) BRACED 
FRAMES T1 T2 T3 Equivalent cantilever EAK UBC EC8 
12 4 storey  0,1365 0,0218 0,0078 53,50 77,09 85,96 -83,92 -87,36 -64,70 
13 7 storey  0,3952 0,0631 0,0225 31,78 63,25 75,03 -63,13 -44,48 -27,01 

1 
B

A
Y

 

14 10 storey  0,7826 0,1249 0,0446 19,56 51,80 65,77 -38,76 -12,42 1,18 
15 4 storey  0,1742 0,0529 0,0311 54,90 58,56 59,14 1,13 -42,44 -25,21 
16 7 storey  0,3700 0,1061 0,0615 44,18 49,20 46,01 -0,82 -26,28 -11,01 
17 10 storey  0,6339 0,1699 0,0964 37,57 44,94 40,44 5,98 -7,72 5,31 2 

B
A

Y
 

18 15 storey  1,1953 0,2895 0,1581 30,18 41,30 36,93 16,36 13,41 23,88 
19 4 storey  0,2121 0,0673 0,0400 52,26 54,39 54,17 29,81 -23,84 -8,86 
20 7 storey  0,4295 0,1314 0,0774 40,03 43,86 40,45 23,82 -16,86 -2,73 
21 10 storey  0,7065 0,2063 0,1201 32,66 39,04 34,61 25,71 -4,25 8,36 3 

B
A

Y
 

22 15 storey  1,2622 0,3403 0,1936 24,30 35,00 30,77 29,88 11,10 21,85 
 

Table 4: Comparison of the first three natural periods of braced frames with variable sections per height 
 
 

  T1 T2 T3 
  

 
BRACING c1  a1  a2  c1  a1  a2  c1  a1  a2  

Apply
to 

CONSTANT 
SECTIONS  NO 0.94 - - 0.94 - - 0.99 - - λsf 

VARIABLE 
SECTIONS NO 0.98 - - 0.95 - - 1.00 - - λsf 

DOUBLE 0.67 1.00 - 0.48 0.90 - 0.39 0.85 - Λ 
SINGLE 0.62 1.00 - 0.43 0.85 - 0.34 0.80 - Λ 

Κ 0.67 1.00 - 0.44 0.65 - 0.35 0.55 - Λ 

C
O

N
ST

A
N

T 
SE

C
TI

O
N

S 

KNEE 0.62 0.85 - 0.40 0.60 - 0.30 0.50 - Λ 
DOUBLE 0.71 1.00 - 0.51 0.90 - 0.39 0.85 - Λ 
SINGLE 0.65 1.00 - 0.43 0.85 - 0.39 0.80 - Λ 

Κ 0.70 1.00 - 0.46 0.65 - 0.35 0.55 - Λ 

1 
B

A
Y

 

V
A

R
IA

B
LE

 
SE

C
TI

O
N

S 

KNEE 0.66 0.90 - 0.41 0.65 - 0.30 0.50 - Λ 

DOUBLE 0.75 0.10 0.75 0.05 0.80 0.05 λsf 

SINGLE 0.75 0.10 0.75 0.05 0.80 0.05 λsf 

Κ 0.80 0.05 0.75 0.10 0.80 0.05 λsf 

M
O

R
E 

TH
A

N
 1

 
B

A
Y

 

KNEE 

0.55 

0.80 0.05

0.56 

0.75 0.05

0.58

0.80 0.05 λsf 
 

Table 5: Parameters a1, a2 and c1 for correction factor equations 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
      Figure 1. Modeling of a frame structure as an equivalent cantilever 

    EI, EAc2     EI, EAc2 ,GA 



5th GRACM International Congress on Computational Mechanics 
Limassol, 29 June – 1 July, 2005 

 

 

ROOFTOP TUNED MASS DAMPER FRAME 
 

Jerod G. Johnson, Lawrence D. Reaveley, and Chris P. Pantelides 

Department of Civil & Environmental Engineering 
University of Utah 

122 South Central Campus Drive, Salt Lake City, Utah 84112, USA 
e-mail: chris@civil.utah.edu 

 
Keywords: Dampers, Nonlinear, Reduction, Response, Rooftop, Seismic, Tuning. 

Abstract. A feasibility study is presented for placing a tuned mass damper in the form of a steel moment resisting 
frame on the roof of relatively stiff structures to reduce seismic acceleration response.  Six existing structures 
ranging from three to nine stories, originally designed to meet UBC Seismic Zone 3 lateral force requirements, 
were studied using various earthquake records.  The analyses indicate that adding mass in conjunction with a 
steel moment resisting frame on the roof results in the elongation of the fundamental period of the structures.  For 
most cases seismic acceleration response reduction was achieved, although the response could increase if the 
rooftop frame was not tuned to accommodate the structure’s behavior, specific earthquake characteristics, and 
local soil conditions.  Non-linear analysis methods were used to evaluate the stability of the rooftop tuned mass 
damper frame.   Appropriate design of the rooftop tuned mass damper frame could result in reduction of the 
seismic acceleration response, which translates to safer structures when used as a retrofit measure, or a more 
economical design if used in new construction. 
 
 
1 INTRODUCTION 

Engineers have long understood that flexible structures with relatively long fundamental periods respond with 
a lower level of internal forces due to seismic activity than stiff structures with short fundamental periods.  To 
reduce the seismic acceleration response in stiff structures, innovations such as base isolation have been 
developed which make stiff structures behave as flexible structures while maintaining the inherent advantages of a 
rigid system[1, 2].  The effectiveness of base isolation stems from its ability to lengthen the fundamental period of a 
structure so that it responds less dramatically to lateral seismic acceleration.  If the fundamental period of a 
structure could be lengthened in another way, the effect would be similar to that provided by seismic base 
isolation. 

For the Single Degree of Freedom (SDOF) system shown in Figure 1(a), which represents the structural 
system of Figure 1(b), the fundamental period is obtained from the characteristic equation as: 

 

                                                                  
k
mT π21 =                                                                                        (1) 

 
where k is the stiffness of the system, and m is its mass.  Equation (1) demonstrates that the factors that establish 
the period of the structure are stiffness and mass.  Although altering the stiffness and/or mass of a structure may 
be beyond practical or economical feasibility in many cases, the fundamental period of a structure could be 
increased by adding a flexible frame coupled with a specific mass at the roof level.  Since many structures use the 
roof to house mechanical equipment, the Rooftop Tuned Mass Damper Frame (RTMDF) could be altered, tuned 
and used as a passive tuned mass damper.   
     Figure 1(c) represents the modification to the SDOF system model shown in Figure 1(a).  Figure 1(d) 
represents the modification of the structural system of Figure 1(b).  These figures represent the alteration of the 
original primary structure by adding a flexible frame coupled with a specific mass at the roof level.  Addition of 
the RTMDF at the roof level modifies the structure’s dynamic properties and its response.  For example, if the 
added mass is represented by a fraction of the total mass of the structure (m/20) and if the stiffness of the RTMDF 
is represented by a fraction of the total stiffness (k/20), the mass and stiffness matrices become: 
     
                                               m = 

⎥
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Figure 1.  Idealized lumped mass systems: (a) SDOF system, (b) structure, (c) SDOF system with RTMDF, (d) 
structure with RTMDF. 

  
Solving the characteristic equation yields the modal periods as: 
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The fundamental period of the idealized structural system is increased by a factor of 1/0.894 or 12% thus 
demonstrating that lengthening of the fundamental period, and therefore a decrease in seismic response, can be 
achieved by adding a RTMDF on the roof of the primary structure. 

To analyze the effectiveness of a rooftop frame as a passive tuned mass damper six existing structures were 
analytically modeled using SAP2000 Nonlinear[3].  The structures were evaluated for the as-is (undamped) 
condition and the modified (damped) condition using a suite of ground motions.  Time history and response 
spectra analyses were performed using historical earthquakes.  In addition, the structures were evaluated using a 
design response spectrum from the 1997 Uniform Building Code[4] for Zone 4, soil type SD.  To scale the analysis 
of each structure to an appropriate value, the FEMA 356 Guidelines for the Seismic Rehabilitation of Buildings[5] 

were employed.   
Past research has yielded mixed results with respect to the effectiveness of passive tuned mass dampers (TMD) 

for controlling seismic response.  Kaynia, Veneziano, and Biggs investigated the effectiveness of passive TMD 
for seismic applications in a study conducted in 1981[6]; based on the statistical results of their model, they 
concluded that tuned mass dampers might not be as effective as once thought for reducing seismic response of 
structures.  In 1983 Sladek and Klingner studied the effect of a TMD addressing both linear and nonlinear 
behavior of a prototype structure subjected to the N-S component of the El Centro 1940 ground motion[7]; their 
results suggest that tuned mass dampers do not appear to be an effective method of reducing seismic response.  
These results appear contrary to other studies that indicate tuned mass dampers are an effective passive control 
device to suppress steady state structural vibrations[8].  Villaverde studied the possibility and effectiveness of 
using a rooftop structure as mass for a passive TMD[9].  The analytical model consisted of an isolated rooftop 
structure that rests upon laminated rubber bearings; viscous dampers were also used in addition to the laminated 
rubber bearings to create a highly damped vibration absorbing mechanism at the roof level.  Reductions in peak 
seismic response parameters as high as 84 percent for the damped structure were reported; this result suggests that 
a significant reduction in seismic response is possible using a tuned mass damper at the roof level of a structure.  
The difference between the proposed system and the TMD systems studied in the past is that the proposed 
RTMDF system yields and participates in the response in the nonlinear range. 

 



Jerod G. Johnson, Lawrence D. Reaveley, and Chris P. Pantrelides. 
2 DESCRIPTION OF STRUCTURES AND SEISMIC EXCITATIONS 

The structures used in this research are actual buildings, originally designed to meet UBC Seismic Zone 3 
lateral force requirements.  Table 1 lists the characteristics of each structure used in the study; each has a relatively 
short fundamental period thus requiring design lateral forces corresponding to the peak of the typical design 
spectrum.  The earthquake records used for the study were selected to encompass a broad range of seismic 
response and are summarized in Table 1.  For each of the accelerograms listed in Table 1 the acceleration 
response spectra are given in Figure 2.  For certain earthquakes, the acceleration response spectra are significantly 
higher than the UBC Seismic Zone 4 spectrum within specific period ranges.  In general, the peak acceleration 
response occurs for structures with periods between 0.2 s and 0.5 s; the Kobe record is the exception with the peak 
response occurring at 0.75 s and is attributable to a combination of near field effects and unusually soft soils.  

 
3 RTMDF DESIGN PROCEDURE 
 Preliminary analyses per AISC guidelines[10, 11] indicated that allowable stresses in the steel members of the 
RTMDFs were exceeded; for the RTMDF to be effective its members must yield and respond in the nonlinear 
range.  To evaluate the overall stability of the RTMDFs as moment resisting steel frames, the procedures for 
Nonlinear Static Pushover Analysis set forth in FEMA 356[5] were implemented; a structure is analyzed by 
determining the maximum nonlinear target displacement and comparing it to the allowable nonlinear displacement 
as calculated through analysis.  The target displacement is a function of the fundamental period and the design 
spectral acceleration of the stand-alone RTMDF.  The spectral acceleration used in calculating the target 
displacement was derived from the rooftop acceleration time-history for each structure and seismic record.  The 
spectral acceleration was determined using the rooftop acceleration time-history results in combination with linear 
interpolation methods.  The maximum allowable nonlinear target displacement for the RTMDFs was based on the 
nonlinear static pushover curves that were developed for each RTMDF per FEMA 356 guidelines. 
  

Designation No. Stories Lateral System Use Period (s) 
BF-1 3 Braced Frame Office Building 0.47 
BF-2 4 Braced Frame Office Building 0.70 
BF-3 9 Braced Frame Office Building 1.06 

EBF-1 4 Ecc. Braced Frame Computation Facility 0.75 
SW-1 6 Concrete Shear Wall Office Building 0.35 
SW-2 6 Concrete Shear Wall Research Facility 0.53 

Record (station/year) Earthq. Magnitude Distance to Epicenter (km) Duration (s) PGA (g) 
Imperial Valley (El Centro 1940) 6.9 10 31.14 0.32 
Loma Prieta (Gilroy 1989) 7.0 12 39.98 0.54 
Kobe (1995) 6.9 3.4 59.98 0.84 
Northridge (Rinaldi 1994) 6.7 7.5 14.95 0.68 
San Fernando (Pacoima 1971) 6.4 7.2 41.82 1.17 

 
Table 1:  Summary of structures and time history records 

 

 
Figure 2.  Acceleration response spectra 

3.1 Refining the Analyses 
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The stability analyses of the RTMDFs in conjunction with the analyses of the damped structures to which they 

were added required an iterative design approach.  Upon designing a RTMDF for each structure that appeared to 
perform at a Collapse Prevention level or better, according to the nonlinear static pushover curve, the damper was 
added to the original undamped structure, thus making it the damped structure, and the analyses were re-run.  The 
results of the analyses indicated whether the addition of the RTMDF had increased or decreased the overall 
seismic response for the structure.  In addition, the resulting rooftop acceleration histories were used to create 
rooftop response spectra to determine spectral accelerations and other parameters needed to assess the overall 
stability of the RTMDF.  In some cases, the addition of the RTMDF resulted in an increase in the seismic 
acceleration response; in other cases, the resulting accelerations at the rooftop level caused the RTMDF to 
displace to a point of instability.  In each case, the frame and/or mass of the RTMDF was revised and the analyses 
were repeated until an acceptable or final design was reached.  For some structures and earthquakes, particularly 
the Kobe record, the RTMDF often resulted in an increase in the seismic acceleration response or instability of the 
RTMDF frame or both.  For most structures and seismic records, a reduction in seismic response was achieved 
with a stable RTMDF. 
 
3.2 RTMDF Design Considerations 

In the development of the design process for the RTMDFs, it was found that using at least three columns on 
each side of the RTMDF frame for each direction resulted in a frame that could withstand much greater nonlinear 
displacements than a frame with just two columns on each side; this reinforces the design concept of redundancy, 
which is a consideration for design in building codes.  The use of heavier columns and lighter beams appeared to 
increase the maximum allowable displacement in the nonlinear static pushover; this relates to the strong column- 
weak beam requirement of current building codes in the design of special moment frames.  Overall safety is 
enhanced by having beams rather than columns yield and form plastic hinges at the beam ends.  The amount of 
allowable displacement typically increased for steel with higher yield strengths; however, higher yield strengths 
sometimes led to strength degradation over the nonlinear range of the pushover curve.  For the RTMDF frames 
studied for the present set of buildings, it appeared that a stand-alone target period for design of at least 0.6 
seconds, for the RTMDF resulted most often in a stable design coupled with an overall reduction in seismic 
acceleration response.  For a RTMDF with stand-alone period greater than 1.2 seconds, the damper appeared to be 
too flexible to effectively alter the dynamics of the structure.  For the RTMDF to be effective, the cladding or skin 
system cannot increase its stiffness or significantly alter its mass.  To accomplish this, alternative skin systems 
such as those used for base isolation must be employed for enclosing the RTMDF.  

The steps for designing an effective RTMDF are: (1) Determine the primary modes of vibration and structural 
response of the structure; (2) Perform a geotechnical investigation and develop site-specific accelerograms or 
scale previously recorded accelerograms.  Develop a site-specific response spectrum to determine the magnitude 
of fundamental period shift required for effective seismic response reduction.  Verify that a longer fundamental 
period does not place the structure at a region of higher response on the site-specific spectrum.  Perform time-
history and response spectrum analyses of the as-is structure; (3) Develop the model for a stand-alone rooftop 
frame that will eventually become the RTMDF; (4) Apply gravity loads to the RTMDF and perform modal 
dynamic and nonlinear static pushover analyses of the RTMDF; (5) Depending on the shape of the nonlinear static 
pushover curve and the maximum displacement indicated for Collapse Prevention (CP), redesign the RTMDF 
until an acceptable nonlinear static pushover curve is achieved; (6) Add the RTMDF frame at the roof level of the 
undamped structure, making it the damped structure, and re-run the time-history and response spectrum analyses.  
If the RTMDF does not reduce the response, return to step 3 and alter the mass or framing of the RTMDF to 
change the fundamental period and overall dynamic properties of the stand alone RTMDF; (7) Repeat steps 3 and 
4 until a final RTMDF design with seismic acceleration response reduction is achieved; (8) Record the rooftop 
acceleration time histories for each seismic record used; (9) Develop rooftop response spectra for the acceleration 
time-histories; (10) Use the rooftop response spectra and the effective period of the stand-alone RTMDF to 
determine the coefficients used for calculation of target displacements per FEMA 356; (11) Verify that calculated 
target displacements are less than those corresponding to the Collapse Prevention (CP) level on the nonlinear 
static pushover curve developed in steps 2 and 3.  The RTMDF design procedure may begin with step 6 provided 
that the stability of the frame of the RTMDF is verified by subsequently completing steps 3, 4, and 5. 

 
3.3 Analysis and Design of RTMDF for BF-2 

Braced Frame 2 (BF-2) is a 4-story braced frame office building as shown in Figure 3.  Based on modal 
analysis, the fundamental period of the as-is structure is approximately 0.70 s.  For this example the RTMDF mass 
is considered as approximately 11.6% of the mass of the original building.  Increasing the mass could yield an 
increased response reduction, but must be carefully weighed against the system’s ability to support the added 
gravity load.  Elastic analysis of the as-is structure yields peak base shears and rooftop displacements as shown in 
Table 2 for both response spectra and time-history analyses. 



Jerod G. Johnson, Lawrence D. Reaveley, and Chris P. Pantrelides. 
Figure 4 shows the configuration, dimensions, member sizes, and nonlinear deformation of the RTMDF for 

BF-2, whereas Figure 5 shows the mass of the RTMDF and the deformation of the combination of the RTMDF 
frame with the original structure.  Pushover analysis of the RTMDF, shown in Figure 6, indicates that the frame 
has the capacity to be laterally displaced approximately 335 mm before passing a Collapse Prevention level of 
performance as defined by FEMA 356.  In addition, modal analysis indicates that the fundamental mode of 
vibration for the stand-alone frame of the RTMDF is approximately 1.05 s. 

 

 
 

Figure 3.  Mode shape of undamped structure BF-2 corresponding to a fundamental period of 0.70 s 
 
 

                           Response Spectrum Analyses                          Time-History Analyses 
Record Roof Displ. (mm) Base Shear (kN)  Roof Displ. (mm) Base Shear (kN) 

El Centro 90 4212  94 4261 
Loma Prieta 84 4897  84 4924 
Kobe 248 11302  246 12099 
Northridge 105 4831  106 4878 
San Fernando 47 2553  50 2967 

 
Table 2.  Peak roof displacements and peak base shears for undamped building BF-2 

 

                
Figure 4.  RTMDF during application of load at a period of 1.05 s 

Note: Plastic hinges are 
numbered in the order in  
which they yield 
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Figure 5.  Mode shape of damped structure BF-2 corresponding to a fundamental period of 1.24 s 
 

  
Figure 6.  Nonlinear static pushover curve for RTMDF 

 
Placing the RTMDF frame on the roof of the building of Figure 5 provides the results needed to perform the 

stability analysis of the RTMDF; thus, the response spectra at the rooftop level of the structure are obtained.  
Analysis of the damped structure produced the spectral acceleration response spectra shown in Figure 7.  Using 
the spectral accelerations in conjunction with the effective period of the RTMDF of 1.05 s enables calculation of 
the target displacement (δt) for the RTMDF based on the following equation (Eq. 3-15 from FEMA 356): 

 
δt =C0C1C2C3SaTe

2g/(4π2)                                    (4) 
 

where Te = effective fundamental period based on the initial elastic period multiplied by the square root of the 
ratio of initial slope of the nonlinear static pushover curve over the secant stiffness; Sa = spectral acceleration at 
effective fundamental period; C0 = modification factor to relate spectral displacement of an equivalent SDOF 
system to the roof displacement of the building; C1 = modification factor to relate expected maximum inelastic 
displacements to displacements calculated for linear elastic response; C2 = modification factor to represent the 
effect of stiffness degradation and strength deterioration on maximum displacement response; C3 = modification 
factor to represent increased displacements due to dynamic P-delta effects. 
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Figure 7. Rooftop acceleration response spectra compared to ground level spectra for building BF-2 
 
Table 3 summarizes the results of the nonlinear static pushover stability analysis of the RTMDF frame for 

building BF-2.  The target displacements of the RTMDF corresponding to each seismic record indicate that the 
configuration has the capacity to perform to at least a Collapse Prevention level of performance (maximum 
allowable target displacement of 335 mm) and is therefore deemed adequate.  The resulting damped configuration 
for BF-2 has a fundamental period of 1.24 s, which is considerably longer than the 0.70 s period of the original 
undamped structure.  As a result, the response of the structure to seismic excitation is altered.  Table 4 provides a 
summary of the analysis for building BF-2 and compares the undamped and damped structures.  The results show 
that a reduction in seismic response can be achieved with a stable RTMDF, with the exception of the peak rooftop 
displacement for the San Fernando earthquake.  The same RTMDF was used in all of the seismic records and this 
is the cause of the amplification observed in Table 4; therefore a single RTMDF cannot reduce the seismic 
response of a specific building for all possible ground accelerations.  Similar results were obtained for the other 
five buildings described in Table 1.  Ground accelerations are highly dependent on soil type; this narrows the 
range of likely ground motions and enables the design of a RTMDF that would correspond to a specific site.  To 
design a stable RTMDF that can effectively reduce overall seismic response, the engineer must be familiar with 
the characteristics of lateral ground accelerations that are likely to occur.          

 
4 CONCLUSIONS 

The results of the analyses performed in this study indicate that utilizing and modifying the structure and mass 
of a building’s rooftop enclosure as a passive Rooftop Tuned Mass Damper Frame (RTMDF) can be an effective 
method for reducing the overall seismic response of the primary structure.  The period shift produced by the 
RTMDF results in decreased acceleration and displacement response of the primary structure for most of the 
buildings and earthquakes studied.  It should be noted that the RTMDF is allowed to yield and behave nonlinearly 
as opposed to the traditional tuned mass damper (TMD).  Although the results show that a reduction in seismic 
response can be achieved for most buildings, there are certain soil conditions, building types, and ground motions 
for which the use of the RTMDF results in amplification of the seismic response.  For this study, amplification 
typically resulted for structures with low fundamental periods of less than 0.5 s that are supported on soft soils.   
The cause of this amplification is that one RTMDF was designed for each structure with the intent of reducing the 
seismic response for all five earthquakes, even though they occurred at various sites.  The results indicate that one 
RTMDF design for a structure may not reduce the structural response for all possible unrelated ground motions.  
However, the results show that one RTMDF design can effectively reduce the structural response corresponding 
to a group of similar, specific ground motions.  RTMDF frames proposed in this study are therefore deemed an 
effective prospect for reducing structural response due to a site specific seismic ground motion.   

Benefits of using RTMDFs for reducing structural response include; (a) cost of the system is less than other 
methods; (b) the proposed system does not require use of specialized materials or methods of construction; (c) for 
rehabilitation, installation of the proposed system would cause minimal impact on the occupants or contents of a 
structure; (d) the proposed system is passive and does not require a power source; (e) the system does not require 
additional space within the structure; (f) the system could significantly improve the expected performance of a 
structure during seismic activity; (g) for new construction, the proposed system would reduce seismic response by 
inducing lower stresses resulting in reduced structural costs.   

The limitations of the proposed RTMDFs include: (a) the RTMDF may not be effective for all structures and 
soil types; (b) the system can cause amplification of seismic response if not designed correctly or if earthquakes 
occur unlike those anticipated; (c) for rehabilitation, reinforcement of existing structural members at the roof level 
would be required; (d) the system may not be self restoring, depending on the severity of ground motion; (e) the 
RTMDF frame requires a rooftop enclosure cladding system that does not increase the stiffness of the rooftop 
enclosure, that is capable of significant displacement, and does not alter the mass of the RTMDF. 
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Record C0 C1 C2 δi 
(mm) 

C3 Spectral 
Acceleration (g) 

Target Displacement, δt 
(mm) 

El Centro 1.00 1.00 1.20 192 1.00 0.50 166 
Loma Prieta 1.00 1.00 1.20 157 1.00 0.41 137 
Kobe 1.00 1.00 1.20 323 1.00 0.85 280 
Northridge 1.00 1.00 1.20 220 1.00 0.58 192 
San Fernando 1.00 1.00 1.20 170 1.00 0.45 148 

 
Table 3.  Summary of target displacement calculations for RTMDF for building BF-2 

 

Response Spectrum Analyses 

 Peak Rooftop Displacement (mm) Peak Base Shear (kN) 

Record Undamped Damped 
w/RTMDF 

 % Change Undamped Damped 
w/RTMDF 

% Change 

El Centro 90 80 -11% 4212 4266 1% 
Loma Prieta 84 67 -19% 4897 4684 -4% 
Kobe 248 140 -44% 11302 6961 -38% 
Northridge 105 80 -24% 4831 3825 -21% 
San Fernando 47 56 19% 2553 2442 -4% 

Time History Analyses 

 Peak Rooftop Displacement (mm) Peak Base Shear (kN) 

Record Undamped Damped 
w/RTMDF 

 % Change Undamped Damped 
w/RTMDF 

% Change 

El Centro 94 71 -25% 4261 4026 -6% 
Loma Prieta 84 68 -20% 4924 4132 -16% 
Kobe 246 132 -46% 12099 6334 -48% 
Northridge 106 80 -24% 4878 4533 -7% 
San Fernando 50 58 16% 2967 2576 -13% 

 
Table 4.  Peak displacements and base shears for undamped and damped building BF-2 
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Abstract. An alternative direction of designing a new structure is to design a light economical structure capable 
of resisting the permanent loads and small earthquakes, and install a control system which will provide the 
reservoir of strength, stiffness or damping, necessary for resisting potential severe earthquakes that will occur 
only a few times during the structure’s life. The main challenge of structural control is to determine a control 
strategy that uses the measured structural response and the excitation signal to calculate appropriate control 
forces, which will be applied indirectly to the structure through specific devices, and will enhance the structural 
safety and serviceability against extreme dynamic excitation. In this paper a procedure for the design of new 
structures equipped with control systems is proposed. The main idea is to achieve a cost effective design, based 
on a reduced response spectrum, as one portion of the earthquake energy will be taken by the control system. 
The savings from the design of the conventional structural system will be utilized to install the control system. 
To do that, a scale factor α that reduces the design response spectrum is calculated. Then, a dynamic control 
analysis with acceleration feedback and with or without saturation control is performed. If the response satisfies 
the design criteria, then the scale factor a is accepted, otherwise it is increased and the procedure is repeated. 
The simulation results indicate that an adequate reduction of the design response spectrum can be achieved by 
means of the proposed approach.  
 
1 INTRODUCTION 
Over the past few decades various control algorithms and control devices have been developed, modified and 
investigated by various groups of researchers. The work of Yao, Housner et al., Kobori et al., Spenser et al., 
Yang, Caughey, Masri, Renzi, Skelton and Soong is representative[1-10]. While many of these structural control 
strategies have been successfully applied, challenges pertaining to cost, reliance on external power and 
mechanical intricacy during the life of the structure have delayed their widespread use. In the work of Kurata et 
al. [11] the reliability from the point of view of health monitoring and fail safe function is discussed. There have 
been some attempts to connect the control forces with the design codes. Yang et al. [12] suggest the maximum 
control force to be a percentage of the building weight, while Cai et al. [13] give this force as a portion of the 
seismic force. Lee et al. [14] determine the upper limit of control force based on the response spectrum of the 
external earthquake. 

As far as cost is concerned, it is possible to achieve substantial savings by designing a new structure based 
on a reduced response spectrum and utilize these savings to install a control system. A systematic procedure to 
achieve the above objective is proposed in this paper. 

  
2 DESIGN PROCEDURE FOR STRUCTURES EQUIPPED WITH A CONTROL SYSTEM 

Initially the structure is designed based on a response spectrum provided by the pertinent code. From the 
seismic forces and the maximum capacity of the control device a scale factor α is obtained and applied on the 
response spectrum. The structure is redesigned based on this reduced spectrum. Then, dynamic control analysis 
is performed for a range of high and low frequency earthquakes, with acceleration feedback, with or without 
saturation of control forces. If the response satisfies the design criteria, then the value of α is accepted, otherwise 
it is slightly increased and the above procedure is repeated. The flow chart of this procedure is shown in figure1. 

Knowing the mass and initial stiffness of the structure the eigenmodes Φi, eigenperiods Ti or 
eigenfrequencies fi and the corresponding damping ratios ξi of the uncontrolled system are obtained from the 
solution of the following eigenvalue problem (Chopra [15]): 
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Figure 1. The flow chart of the proposed design procedure 
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where E is the direction matrix for the earthquake and Φd,i(Ti, ξi) is the spectral acceleration. The maximum 
seismic forces Fq for each degree of freedom are obtained combining the seismic forces from each eigenmode 
with the corresponding participation factor, thus:  

n
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= ψ∑F F  (5) 

If Fd,max is the maximum control device capacity (maximum possible control force), then the maximum 
control force that can be applied on the system is:  

d,max f d,maxF=F E  (6) 

where Ef is the location matrix for the control devices on the structure. The remaining maximum seismic forces 
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which are applied to the structure equipped by control devices are: 
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These forces correspond to a reduced spectral acceleration. From equation (4) this new spectral acceleration 
Φd,i,new(Ti, ξi), corresponding to new seismic forces, can be obtained: 

( )-1
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The reduction factor α can be obtained by dividing the new spectral acceleration Φd,i,new(Ti, ξi) by the 
corresponding initial one:  
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i
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Φ

=
Φ

 (9) 

and using the maximum αi value to scale the response spectrum: 

iα max(α )=  (10) 

Based on the reduced response spectrum the conventional structure is redesigned and time history analysis of 
the controlled system for a representative range of earthquake accelerograms is performed. The equation of 
motion of a controlled structural system with n degrees of freedom subjected to an earthquake excitation ag is: 

g fnew a= − ++ +MU CU K U ME E F  (11) 

where M, C denote the mass and damping matrices of the structure, respectively , Knew is the new stiffness 
matrix of the redesigned structure, and F is the control force matrix. In the state space approach the above 
equation (11) can be written as follows: 

g g fa= + +X AX B B F  (12) 

The matrixes X, A, Bg, Bf are given by 
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The control forces F are determined by saturated acceleration feedback. This is so because at the beginning 
of the procedure, calculation of the reduction factor α was based on the assumption that the control forces resist 
seismic forces, which are proportional to the mass and acceleration of the corresponding degree of freedom. 
However, other control algorithms such as linear quadratic regulator, pole assignment or sliding mode control 
can be used. 
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If the response obtained for the controlled system satisfies the design criteria, then the scale factor α is 
accepted. In this work a representative design criterion was used, that the story drift does not exceed h/300 
(where h is the story height). In a similar way, additional design criteria concerning the strength of structural 
members can be used. This can also be implemented by limiting story drift below values that cause member 
yielding. The above procedure was tested for a number of numerical simulations, and some representative 
examples are presented next. 

3 EXAMPLES AND NUMERICAL EXPERIMENTS 

The proposed approach is demonstrated by means of numerical examples where an eight-story building, 
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shown in figure 2a and described in  [16], is analyzed. Initially the design spectrum is calculated based on the 
Greek seismic code [17], with parameters shown in figure 3. Based on that spectrum and on the dynamic 
characteristics of the building the seismic forces Fq,i for each eigenmode and their combination are calculated 
and are shown in figure 4. Assuming that the control devices are installed at each floor as shown in figure 2b 
(cs1) and the maximum capacity is 300kN the scale factor α is calculated to be equal to 0.85. The reduced 
seismic forces due to control devices and the reduced spectrum by 15% for which the structure will be 
redesigned are illustrated in figure 5a and 5b, respectively. The structure is redesigned by reducing the stiffness 
by a factor equal to or lower than the reduction factor of the spectrum. In the example the stiffness matrix was 
reduced by 15% with respect to the initial stiffness. After redesigning the structure, dynamic time history control 
analyses for a wide range of earthquakes were performed with acceleration feedback. The earthquakes were 
scaled so that their spectrum is an envelop of the initial design spectrum. The numerical simulations were 
performed in Simulink toolbox of Matlab software [18].  

The numerical simulation of the control scheme is described in figure 6. The maximum and the root mean 
square (rms) values from the response of the system subjected to El Centro 1940 are shown in table 1. The rms 
values were calculated in order to see to what extent the system performs near the maximum values. The 
earthquake was scaled at 0.23g, in order to have a response spectrum comparable to the design spectrum. From 
table 1 it is seen that for unsaturated control full compensation of the displacements was achieved. This is due to 
the fact that for each degree of freedom there exists one control force with unlimited capacity. The acceleration 
is equal to the external signal and the building is like executing a rigid body motion. The control forces are all 
the same, with maximum value at 817 kN and rms value at 104 kN, because the mass of each story is the same. 
For saturated control at 300 kN, the limit value h/300=10 mm was exceeded at the 8th floor, and reduction in 
acceleration up to three times compared to the uncontrolled one was also observed. The rms values of the 
control forces range from 113 kN to 180 kN. For saturation at 600 kN the limit value was not exceeded at any 
floor and further reduction in acceleration could also be observed. The rms control forces of the devices range 
from 103 kN to 112kN.  

In table 2 the results are from the system subjected to the Athens 1999 earthquake signal scaled at 0.35g. For 
unsaturated control full compensation of the displacements was achieved again. The acceleration is equal to the 
external signal. The control forces are all the same, with maximum value at 1224 kN and rms value at 107 kN. 
For saturated control at 300 kN, the limit value h/300=10 mm was exceeded at the 5th, 6th, 7th and 8th floor, but 
reduction in acceleration could be observed. The rms values of the control forces range from 113 to 180 kN. For 
saturation at 800 kN the limit value was not exceeded at any floor and further reduction in acceleration could 
also be observed. The rms control forces of the devices range from 111 kN to 118kN.  

 The results for the control with five control devices, placed at the locations shown in figure 2c (cs2) 
subjected to the Athens 1999 earthquake signal scaled at 0.35g, are shown in table 3. In this case from the 
beginning (unsaturated control) the displacements at the 4th, 5th, 6th,7th and 8th floor exceed the limit value. Thus, 
it has no meaning to continue with saturation control since the response will be worse. This control scheme (five 
control devices) is not capable to keep the displacements of the structure under the design limit. 

 
 

         (a) uncontrolled  (b) controlled with cs.1 (c) controlled with cs.2 
 

Figure 2. The dynamic characteristic and the control scheme of building 
 

 

  mi=345.6 t, ki=9.8 105 kN/m 
Eigenperiods: 
{ 0. 63, 0.21, 0.13, 0.09 0.07, 
 0.069, 0.063, 0.06 } sec 
Eigenfrequencies fi: 
{1.56, 4.63, 7.55, 10.21, 12.52,  
14.41, 15.80, 16.66 }sec-1 
 
 
Fd,max=300kN 
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Figure 3. Code parameters and the design spectrum 
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Figure 4. Seismic forces for each eigenmode (a), and their combinations (b) 
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Figure 5. Seismic forces with (dashed line) and without control devices (continuous line) (a) and the design 

spectrum with and without control devises (b) 
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Spectrum amplification factor βo=2.5 
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Foundation coefficient  Θ=1 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Period   (sec)

A
cc

el
ar

at
io

n 
 (m

/s
ec

2 )

269



Nikos G. Pnevmatikos, Charis J. Gantes 

 
Figure 6. Model and control scheme in Simuling toolbox 

 

Table 1: Response and control forces of the system subjected to El Centro 1940 earthquake  

4. SUMMARY AND CONCLUSIONS 

A procedure to design a new structure equipped with control devices is proposed. The cost of installation of 
the control system can be counterbalanced by designing a more economical structure based on a reduced design 
spectrum. A scale factor α which reduces the design response spectrum is obtained. The numerical results 
indicate that reduction of the spectrum can be achieved using control devices. The cost of repairing the post 
earthquake damages of an uncontrolled structure can be considered as a motivation to install a control system 
which will keep the structure under its yield limit. 

 

 

u1 u8 1u  8u  F1 F2 F3   F4 F5    F6 F7    F8 
 

(mm)  (m/sec2) (kN) 

max 0.00 0.00 2.36 2.36 817 817 817 817 817 817 817 817 

Unsaturated 
rms 0.00 0.00 0.30 0.30 104 104 104 104 104 104 104 104 

max 9.00 46.4 3.57 4.77 300 300 300 300 300 300 300 300 
 

Saturated  
(300kN) 

 
 

rms 2.09 15.60 0.39 0.95 113 132 145 156 167 174 179 181 

max 1.10 6.90 2.49 2.99 600 600 600 600 600 600 600 600 

Controlled 

Saturated  
(600kN) 

 rms 0.52 2.8 0.30 0.33 103 105 107 108 110 111 111 112 

max 29.50 162.70 3.89 14.73         
Uncontrolled 

  
rms 12.60 69.90 1.20 6.05         
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Table 2: Response and control forces of the system controlled with control devices at every degree of freedom 
subjected to Athens 1999 earthquake 

 

Table 3: Response and control forces of the system controlled with five control devices subjected to Athens 
1999 earthquake  

If control devices with unlimited capacity are installed at every degree of freedom, then full complete 
compensation of the displacements can be achieved. But the market devices have a maximum capacity and 
therefore, saturation control should be considered. The control system is accepted if for the unsaturated control 
the resulting control forces are lower than the capacity of the control devices. Also, the control system is 
accepted if the saturated control keeps the structure under the limit values of the design criteria. Such design 
criteria could be the interstory drift which shouldn’t exceed a specific value that causes yielding of the structural 
member or moments or shears forces higher than the moment and shear capacity of the member. Another design 
criterion could be that the relative displacements of each story do not exceed a value which would cause 
serviceability problems. 

The control system helps the structure not only to reduce the maximum response (displacements and 
accelerations), but also to perform at much lower level than the maximum response values. This is proved by 
comparison of the root mean square (rms) values to the maximum response and control force values.  
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Abstract. This paper presents a simple finite element formulation for the dynamic analysis of tapered composite 
poles with hollow circular cross-section and flexible connections, which are designed for use in power 
transmission lines. These poles, made from Vinylester reinforced with E-glass fibers, are produced using the 
filament winding technique. Transmission poles are mainly subjected to cantilever bending, since loading due to 
the wires and wind gusts is applied laterally. In the present analysis, the poles are modelled with tapered beam 
elements. It is assumed that the behavior is linearly elastic and the material is orthotropic. Shear effects are 
accounted for in the analysis because of their significant role. A simple model for flexible connections is 
established and incorporated into the tapered finite element presented herein. Modal analysis is performed to 
obtain the natural frequency and period of poles with various geometrical characteristics and material lay-up, 
as well as the effect of connection flexibility. The analytical results presented in this work are based on typical 
composite poles produced by filament winding, and are compared to commercially available finite element 
codes. 
 
 
1 INTRODUCTION 

Many studies have been conducted on the dynamic behavior of thin-walled sections made from steel as well 
as composite materials, but only a few on tapered sections [1]. In fact, the vast majority of relative studies are 
concerned with the static and dynamic behavior of steel members where the material is homogeneous and 
isotropic. Composite cross-sections are usually thin-walled and the wall is treated in this study as a laminated 
plate that can be specially orthotropic or generally orthotropic. 

Various manufacturers produce on an industrial basis composite structural members with a variety of cross-
sectional shapes and dimensions (e.g. I-beams, wide flange I-beams, box-beams, angle-beams, tubes, etc.). These 
products are made from polymer matrix with fiber reinforcement. Polyester, vinylester or epoxy, are mainly used 
as a matrix to hold together E-glass, S-glass, aramid or carbon fibers used as reinforcement. Fibers and polymer 
are joined through a suitable process such as filament winding to form the desired cross section [2]. 

A scientific project involving construction and testing of FRP poles is under way at the University of 
Manitoba in Canada. The main goal of this program is to produce FRP poles for power transmission lines as a 
replacement of poles made of conventional materials. These poles are made of vinylester reinforced with E-glass 
fibers and are produced by the filament winding technique. The cross-sections of composite poles have hollow 
circular shape and are thin-walled; thus, the final product is considerably lighter compared to current poles, 
while requirements regarding stiffness and strength are being preserved. Transmission poles are mainly 
subjected to cantilever bending since lateral loads due to the wires and wind are applied. Their dynamic 
behavior, though, is significantly different from that of poles made from conventional materials. The relatively 
low elasticity modulus of the E-glass-vinylester material results in lower natural frequencies. On the other hand, 
the pole itself consists from two parts (tapered cylindrical shells) jointed together with resin applied on a 
reasonable joint length, thus, forming a semi-rigid connection. The presence of such an elastic connection may 
affect the dynamic behavior of the pole. 

In this work, the dynamic characteristics of tapered composite poles with one semi-rigid joint are investi-
gated. A simple finite element formulation for the dynamic analysis of tapered poles with semi-rigid joints is 
presented. Shear effects are accounted for in the analysis because of their significant role. A modal analysis is 
carried out for various cases of material properties, cross-sectional dimensions and joint characteristics. The 
results obtained in this study are compared to numerical results obtained from commercially available finite 
element codes and correspond to actually produced composite poles via filament winding. 
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2 MATERIAL PROPERTIES 
Composite cross-sections are usually thin-walled and are produced with various cross-sectional dimensions. 

In the present case, the filament winding technique is employed to produce a tapered pole with circular hollow 
cross-section. A typical geometry of such a pole is shown in Fig. l. The wall consists of an even number of layers 
with ±β orientation angle with respect to the longitudinal direction forming an antisymmetric angle-ply laminate. 
Each layer has a thickness 0.22 mm while a constant volume fraction vf = 65% applies. The stacking sequence of 
a 6-layered laminate is also shown in Fig. 1. The properties of the material under study, as computed from 
information provided by the material suppliers, are E1 = 48 GPa, E2 = 13.30 GPa, v12 = 0.235 and G12 = 5.17 
GPa, where 1 denotes the fiber direction and 2 the transverse direction. Using the classical lamination theory [3], 
the stiffness components of a generally orthotropic plate can be determined. The constitutive equation for the 
laminate is 
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where {N} are the membrane forces (also called stress resultants) and { ε } are the corresponding strains. The 
membrane stiffness coefficients Aij can be determined from the following relation 
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−
     (2) 

where t is the laminate thickness and ijQ  are the transformed layer stiffness components. The terms ijQ  for 

various values of lamination angle β are listed in Table 1. Inverting eqn (1) we obtain 
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Figure 1. Geometry and lay-up of a tapered composite pole 

 
Notice that although the shear-extension coupling terms A16 and A26 in eqn (1) vanish in antisymmetric 

laminates, the term a11 in eqn (3) includes the shear effect due to layer stiffness transformation. The terms a16 and 
a26 are also zero in this case. The effective longitudinal modulus Ex can be calculated from eqn (3) as 

ta
1E
11

x =       (4) 

It must be noted at this point that the values of Ex obtained from eqn (4) are approximate since bending-
extensional coupling exists in antisymmetric laminates. This effect though becomes negligible as the number of 
layers increases [3] and for 10 or more layered laminates eqn (4) provides accurate values for the effective 
longitudinal modulus Ex. Since the cross-section is thin-walled, the effective longitudinal modulus Ex can be 
used for the flexural problem without loss of material characteristics that affect the structural behavior of the 
member. The values of the effective longitudinal modulus Ex are also listed in Table 1 for various cases of 
lamination angle ±β. 
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±β 11Q  22Q  12Q  66Q  16Q  26Q  Ex 

0° 48.746 13.507 3.174 5.170 0.000 0.000 48.000 
5° 48.213 13.509 3.440 5.436 ±3.036 ±0.024 47.337 

10° 46.653 13.539 4.204 6.200 ±5.843 ±0.183 45.348 
20° 40.985 13.990 6.813 8.808 ±9.999 ±1.327 37.668 
30° 33.332 15.712 9.779 11.775 ±11.443 ±3.816 27.246 
45° 22.320 22.320 11.980 13.976 ±8.810 ±8.810 15.890 

 
Table 1 : Stiffness components ijQ  and effective modulus Ex (in GPa) for various lamination angles ±β 

 
3 FINITE ELEMENT FORMULATION 

In order to accurately approximate the static and dynamic behavior of the tapered column, a beam finite 
element is developed for the analysis of tapered members. Consider the tapered element with length L, circular 
hollow cross-section and uniform thickness t shown in Fig. 2. The radii at the small and the large end are R1 and 
R2, respectively. Since the cross-section is thin-walled, the moment of inertia I can be directly computed as 
I= πR3t, where the radius R varies linearly over the length L. This implies a cubic variation of the moment of 
inertia I(x) with respect to the length L. Thus, it is convenient to adopt a coordinate system x-y, see Fig. 2, in 
which the moment of inertia is expressed as follows: 

3
0 xI)x(I =       (5) 

The shift a of the coordinate system origin is defined geometrically since R2/R1 = (L+a)/a by: 
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where, I0 is a coefficient defined as follows: 
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Figure 2. Coordinate system and degrees of freedom of the tapered element 

 
For the bending problem, we will use the shape functions resulting from solution of the static equilibrium 

equation for bending, which is 
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The general solution of eqn (8) is 
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where subscript f stands for flexure. The corresponding Vandermode matrix relating coefficients {cf} with the 
nodal displacements vi and iθ  (i=1,2) is 
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Thus, eqn (9) can be written as 
{ } { } { } { }v]B[gv]N[g)x(v f
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from which, by differentiating twice, we directly obtain 
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The strain energy Uf of the element due to bending is 
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Substituting eqn (12) into eqn (13) we obtain the element stiffness matrix for bending [4], that is 
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The kinetic energy Tf of the element [5] is 
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and thus, the mass matrix [4] is 
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where the terms of matrix [mf] are explicitly given as follows 
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Finally, the equilibrium equation for the tapered element in matrix form can be written as follows 
}F{}{]K[}{]M[ ff =δ+δ      (19) 

where {F} is the nodal force vector and }{δ  is the nodal displacement vector, that is 

{ }2211
T vv}{ θθ=δ      (20) 

 
4 JOINT FLEXIBILITY MODEL 

The transmission pole is constructed by connecting two tapered cylindrical parts using a joint technique that 
has been developed at the University of Manitoba. The joint is formulated by utilizing an overlapping part of the 
jointed elements with length . A thin film with thickness tj of West System® Epoxy 105 resin with hardener 
206 is applied to the interface which, after curing, acts as a glue holding the two parts together. All member 
forces are transferred through the joint in the form of shear stresses τ  acting on the connection surfaces. 

In order to model the bending stiffness of the joint, a basic kinematic relation between shear strains γ  of the 
interface resin and joint rotation θ  is 

 
θ=γ=δ jj Rt        (21) 
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where jR  is the radius of the interface at the joint position. The infinitesimal force dF due to shear stresses from 
bending that acts on the joint circumference is given by 

ϕϕτ= dcosRdF j       (22) 

and since the moment arm is ϕcosR j , the corresponding moment dM is 

ϕϕτ=ϕ= dcosRdFcosRdM 22
jj     (23) 

 

 
Figure 3. Structural detail at the joint 

 

 
Figure 4. Joint kinematics and shear stress distribution for bending 

 
Introducing eqn (22) as well as the well-known stress-strain relation γ=τ G  (with G being the shear modulus of 
the applied resin) into eqn (23) and integrating over the circumference, we obtain 
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where the term in the parenthesis is the rotational spring constant Cf corresponding to the bending stiffness of the 
joint, that is 
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In order to classify the rotational spring constant Cf we introduce the non-dimensional spring stiffness fC  as 
following 
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where the denominator in eqn (26) corresponds to the mean bending stiffness of the half-length member. 
 
5 NUMERICAL RESULTS 

The tapered beam element developed herein is employed to perform modal analysis of poles with various 
geometric characteristics. For the cases considered in the analysis, we use material density ρ=1.94 gr/cm3 and 
n=50 layers. The total thickness of the column laminate is t=11 mm. The numerical results are first validated 
through a convergence study. A pole with lamination angle β=±10°, length L=18.0m and taper ratio R1/R2 =0.5 
is modeled with the tapered element developed herein as well as the classic prismatic beam elements. Moreover, 
a detailed model of the column is analyzed with 3-D oriented plate elements using the ALGOR finite element 
program [6]. A rapid convergence is observed for the model with tapered elements, where the fundamental 
frequency ω=12.064 rad/s is obtained using only three elements with an error of 0.03%, while the convergence is 
much slower when prismatic elements are employed. The convergence speed is not affected by the ratio R1/R2 
when the pole is modeled with tapered elements and this is a significant advantage for using the proposed 
element. The fundamental frequency of the pole modeled with 2400 plate elements is next obtained using 
ALGOR code and it was found to be ω=12.157 rad/s. The 0.77% difference of ω  between the beam and shell 
models is due to the bending-extension coupling of the antisymmetric laminate that have been ignored in the 
tapered element formulation. Their effect is proven to be negligible [7]. 

 

277



_                                                                        Ioannis G. Raftoyiannis, and Dimos J. Polyzois.                                                                         _ 

The natural frequency of the fundamental model is then computed for various cases of the lamination angle β 
and the taper ratio R1/R2 and the results are shown in Fig. 5. The pole under study has total length L=18.0m 
while the laminate has n=50 layers and total thickness t=11 mm. It is observed that as the taper ratio R1/R2 
decreases, the fundamental frequency ω increases by almost 9% (see Fig. 5). In addition, the fundamental 
frequency is directly proportional to the effective modulus Ex and hence, there is a significant drop of the natural 
frequency for lamination angles greater than 10°. This drop is almost 42% in the case of β=±45°. Given that 
most of the currently produced poles are constructed with a lamination angle β=±10°, the fundamental period T 
is expected to be in the range of 0.5-0.6 s. The fundamental frequency is not affected by the thickness t for thin 
walled sections because the moment of inertia varies linearly with respect to it [see eqn (7)]. 
 
 

 
Figure 5. Natural frequency ω for various values of taper ratio R1/R2 and lamination angle ±β 

 
Next, the effect of joint flexibility on the dynamic behavior of the pole is studied. A flexible joint is introduced at 
half-length of the pole and a parametric study is performed for various values of the joint stiffness fC . From 
Fig. 6 one can see the natural frequency of a jointed tapered pole (with R1/R2=0.5) for various values of the 
lamination angle β and the non-dimensional joint stiffness fC . It can be easily concluded that for low values of 
the joint stiffness ( fC ≤ 2.0 that correspond to relatively weak connections) the natural frequency ω reduces with 
respect to the continuous system (i.e. no jointed pole), while for relatively strong connections ( fC  > 5.0) this 
reduction is insignificant. Moreover, as the lamination angle β increases the natural frequency ω of the system 
also decreases (as shown in Fig. 5) and the effect of joint flexibility on the natural frequency ω is limited to 
almost 50% in the extreme case of ±45°. 
 

 
Figure 6. Natural frequency ω for various values of joint stiffness fC  and lamination angle ±β 
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A significant parameter that affects the dynamic behavior of transmission poles is the presence of a cross-arm 
that is installed at the top to hold the wires as well as possible transformer equipment. These devices are modeled 
as a concentrated mass M placed at the free end of the pole. A parametric study is performed on the effect of the 
presence of a mass M at the tip of the column with respect to the mass of the column Mc (=541 kg) (see Fig. 7). 
In the case of a jointed pole, the fundamental modal shape for flexural vibrations is significantly different than 
the one corresponding to the continuous system. At the joint position, the continuity of the modal shape function 
is broken and the slopes of the top and bottom part become different. This effect is more pronounced in the case 
when a top mass M exists. 
 

 
Figure 7. Jointed pole model and fundamental modal shapes for ∞=fC  (no joint) and 1Cf =  

 
The natural frequency and period of the fundamental model of the pole without a joint ( fC =∞) is computed 

for various cases of the mass ratio M/Mc and the results are shown in Fig. 8. It is seen in Fig. 8 that the higher 
the ratio M/Mc, the lower the fundamental frequency ω. Also, the fundamental frequency in the presence of the 
top mass M is also proportional to the effective modulus Ex but is greater for small values of the ratio M/Mc. 
This effect is shown in Fig. 8, where the natural frequency of a pole with β=±10° and R1/R2=0.5 is plotted 
against the ratio M/Mc. One can see the significant reduction of the natural frequency ω due to the presence of 
the mass Mc at the top of the column. 
 
 

 
Figure 8. Natural frequency ω of a tapered pole with R1/R2=0.5, ∞=fC versus mass ratio M/Mc  

 
In Fig. 9, the natural frequency ω of a pole with taper ratio R1/R2=0.5, lamination angle β=±10° and various 
mass ratio M/Mc is plotted for various values of the joint stiffness fC .  As previously shown (in Fig. 8), the 
presence of a mass M at the top of the column causes a significant reduction of the natural frequency ω. From 
the same figure, one can see that for relatively weak connections ( fC ≤ 2.0) the natural frequency ω reduces 
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significantly with respect to the continuous system, while for relatively strong connections ( fC  > 5.0) the 
natural frequency ω is negligibly affected.  
 

 
Figure 9. Natural frequency ω for R1/R2=0.5, β=±10° and mass ratio M/Mc versus joint stiffness fC   

 
6 CONCLUSIONS 

The most important conclusions of the present work concerning the dynamic analysis of tapered composite 
poles with flexible connections can be summarized as follows: 
• A simple finite element formulation for the dynamic analysis of tapered composite poles with hollow circular 

cross-section is presented. The tapered beam presented herein is employed to perform modal analysis of 
tapered composite poles used in transmission lines. 

• A flexible joint model is presented and incorporated into the finite element model. The joint stiffness is 
affected by the properties of the applied resin, its thickness, as well as the pole diameter at the joint position 
and the length of the joint. Thus, a joint with suitable stiffness can be formulated. 

• The natural frequency of the fundamental flexural vibration mode of the column is computed for various 
cases of lamination angle, taper ratio, top mass ratio and joint flexibility. 

• The joint flexibility affects the dynamic behavior of the pole mainly in the cases of weak connections, while 
for strong connections this effect becomes insignificant. 

• The tapered element presented in this study is valid for a cross-section with any taper ratio as well as cross-
section made from conventional materials. It can be easily extended to perform time-history analysis using 
numerical integration schemes, e.g. Newmark's method. 
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Abstract. Seismic isolation introduces flexibility at the isolation level of relatively stiff buildings to avoid 
resonance with the typical predominant frequencies of earthquakes, in order to reduce the shear forces, 
interstory deflections, and floor accelerations of a building, and, consequently, prevent damage of its structural 
and non-structural elements, as well as damage of its contents. However, since the size of the seismic gap, which 
is provided around a seismically isolated building to facilitate the large relative displacements at the isolation 
level, is usually finite due to practical limitations, poundings of the building with adjacent structures may occur 
during strong earthquakes. Therefore, it is important to be aware of how potential poundings of seismically 
isolated buildings with adjacent structures, due to stronger than expected earthquakes, may affect the 
effectiveness of seismic isolation. This research work aims to address some aspects of this problem using 
numerical simulations to investigate how the maximum floor accelerations, story shear forces and interstory 
deflections of these buildings are affected by poundings and the influence of parameters such as the flexibility of 
the isolation system, the stiffness and the nonlinearity of the impact, as well as the stiffness of the superstructure.  

1 INTRODUCTION 

Although methods of conventional earthquake-resistant design have substantially improved in the last decades, 
strong earthquakes still result in undesirable damage of buildings and their contents, even in cases of buildings 
designed according to the most rigorous seismic codes. The latter ensure the required strength and ductility to 
withstand cycles of inelastic deformations during severe seismic loads, avoiding structural collapse and 
casualties, but allowing significant structural and non-structural damage as well as damage of the contents of a 
building. This compromise is unavoidable in high seismicity areas, because it is almost impossible to build a 
conventionally fixed-supported low- to medium-rise building of reasonable cost to withstand severe seismic 
loads without inelastic deformations (Fig. 1.a). The fundamental frequencies of such buildings happen to be 
within the range of the predominant frequencies of common earthquakes, resulting in amplifications of ground 
accelerations and large interstory deflections (Fig. 1.b). In recent years, there has been an increasing demand to 
minimize structural and non-structural damage, avoid functionality disruption and protect sensitive and 
expensive equipment in buildings even under extreme earthquake excitations, which is very difficult to achieve 
with conventional earthquake-resistant design.  

Seismic isolation, an alternative earthquake-resistant design approach  [9],  [10],  [13],  [17], introduces flexibility  
(Fig. 1.c) at the isolation level of relatively stiff buildings to avoid resonance (Fig. 1.b) with predominant 
frequencies of earthquakes, and, therefore, significantly reduces the induced floor accelerations and the 
possibility of damaging the contents of the building. Moreover, interstory deflections are considerably reduced 
due to the almost rigid body motion of the superstructure, since it is relatively very stiff compared to the 
flexibility of the isolation system, avoiding, or at least minimizing, structural and non-structural damage. The 
deformations are limited at the isolators, which are specifically designed to withstand several inelastic cycles of 
deformation and to accommodate the large relative displacements at the isolation level.  

However, a practical limitation for the implementation of seismic isolation is the seismic gap (Fig. 1.c) 
that must be provided around the building to facilitate the expected large relative displacements at the isolation 
level. Often, there are practical restrictions to the size of the provided seismic gap. Consequently, a reasonable 
concern is the possibility of poundings of seismically isolated structures with adjacent structures during strong 
ground motions. Therefore, it is important to investigate that possibility and understand how the maximum floor 
accelerations and interstory deflections of seismically isolated buildings are affected by the various design 
parameters and conditions during impacts with adjacent structures.  
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Figure 1. (a) Fixed-supported building (b) response spectrum for El-Centro SE (c) seismically isolated building. 

Pounding incidences between fixed-supported buildings during strong earthquakes motivated pertinent 
research  [1],  [4],  [5],  [7],  [8],  [14],  [15],  [16], which led to reforms of relevant seismic-code provisions in order to mitigate 
the risks from poundings of fixed-supported structures. But, limited research studies have been conducted for 
poundings of seismically isolated buildings  [8],  [11],  [12],  [18], which are very flexible and have a sizable seismic gap, 
although there have been already incidences of seismically isolated structures, such as the Los Angeles FCC 
building during the 1994 Northridge earthquake  [12], that experienced poundings during strong earthquakes.  

It is evident that understanding the consequences of potential poundings on the performance of 
seismically isolated buildings is an important research issue considering that their dynamic characteristics and 
response are quite different from those of fixed-supported structures. Poundings of seismically isolated buildings 
happen as a result of large relative displacements at the isolation level, and not due to deformations of the 
superstructure as in the case of fixed-supported buildings. Furthermore, it is likely to have more rigorous 
performance requirements and higher expectations for a building that utilizes an innovative earthquake-resistant 
design approach than for a conventional fixed-supported building. Such demanding requirements for a 
seismically isolated building, particularly regarding the allowable floor accelerations and story shear forces, may 
not be satisfied if a stronger than expected earthquake causes poundings.  

The goal of this ongoing research work is to investigate how the effectiveness of seismic isolation is 
affected by poundings that may occur during strong earthquakes using parametric studies. The following section 
describes the simulation approach and some simplifying assumptions that have been used. Then, a dynamic 
analysis of a typical seismically isolated 5 -floor building under a strong earthquake is used to demonstrate the 
problem. Next, simulation results are presented for some aspects that have been considered, such as the 
flexibility of the isolation system, the stiffness and nonlinearity of the impact and the stiffness of the 
superstructure. 

2 SIMULATION APPROACH  

The superstructure is modeled as a shear-beam building with lumped masses at the floor levels (Fig 2.a), 
assuming that it remains elastic during an earthquake excitation, which is a realistic assumption, considering the 
intention of seismic isolation to avoid inelastic deformations of the superstructure. In this paper the poundings 
are assumed to happen between the moat wall and the mass at the isolation level, although this is not always the 
case. 
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Figure 2. Modeling of a seismically isolated building: (a) building and seismic gap (b) shear beam lumped-mass 
model (c) bilinear force-displacement relation due to impacts, using linear impact elements. 

The inertia, damping and elastic forces depend on total accelerations, relative velocities and relative 
displacements, respectively. The damping and elastic forces at the isolation level depend on the type and 
mechanical characteristics of the isolation system, which in this work is modeled using a linearized model with 
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an effective stiffness, effK , and damping, effC .  

Nevertheless, when poundings occur, the dynamic response of an isolated building is inherently nonlinear 
as a result of the sudden applications of impact forces, which correspond to abrupt changes of the stiffness 
during impacts (Fig 2.c). In this study, a simplified impact model, using equivalent linear contact springs and 
dashpots, is employed to simulate poundings between a seismically isolated building and the moat wall. A non-
linear Hertzian impact spring has also been considered in the last paragraph, where comparisons are made with 
the linear impact spring and the results that are computed using either of the two models.  

The contact spring and dashpot are automatically formed as soon as an impact is detected, kept as long as 
the building remains in contact with the moat wall and removed as soon as the bodies are detached from each 
other. The magnitude of the contact forces starts from zero, when the building and the moat wall first come in 
contact, and increases, either linearly or nonlinearly, as they “interpenetrate” each other up to a maximum value 
and then start decreasing, and eventually becomes equal to zero when the bodies detach from each other. Some 
overlapping of the building with the moat wall is allowed, which is justified by local deformability of the wall. 
Dashpots are used at contact points parallel to the contact springs in order to model the energy dissipated during 
impact, either in the form of local deformations or stress waves that are dispersed in the surrounding soil. 

The governing equations of motion of a seismically isolated building (Fig 2.a), modeled as a shear-beam 
building (Fig 2.b) with lumped masses and considering potential poundings, have the following general form, 
where IF , DF  and EF  are the inertia, damping and elastic forces of the structure, while C

DF  and C
EF  are the 

damping and elastic contact forces during impact, respectively:  
C C

I D D E EF F F F F 0+ + + + =       (1)                 
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Elastic forces: ( )
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The contact forces are non-zero whenever the relative displacements at the isolation level exceed the 
seismic gap leading to poundings with the moat wall, which is assumed to move with the ground during an 
earthquake. If the impact spring is assumed to be linear, the exponent of the overlap is set to p 1.0= , while, for 
the nonlinear Hertzian impact model it is set to p 1.5= . 

Using the Central Difference Method  [3], [6] for the numerical integration of the equations of motion the 
displacements at time ( )t t∆+ can be computed from the following equation: 

( ) ( ) ( )
eff

1
effU t t K t R t∆ −+ = ⋅       (5) 

The effective stiffness effK  and load effR  are given from equations (6) and (7), without and with impact:  
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3 EXAMPLE 

A 5 -story building is considered under the following three different circumstances: (a) as fixed-supported, (b) 
as seismically isolated without the possibility of impacts, and (c) as seismically isolated with a 0.10 m  seismic 
gap on either side, to illustrate the pounding effects on the response of a seismically isolated building. In 
particular, the building has 5  floors, each with a 400 tons  mass and 1 GN/m  stiffness ( )1T 0.44 s= . In the case 
of seismically isolated building, it has an additional 500 tons  mass at the isolation level and a 30 MN/m  
effective stiffness ( )1T 1.85 s= . Rayleigh damping ratio is defined using 5%  and 15%  damping ratios for the 
fixed-supported and the seismically isolated buildings, respectively.  

A linear impact model is used with impact stiffness equal to impk =500 MN/m , and damping coefficient 

impC =2 MN sec/m⋅ . For each of these three cases, a non-linear dynamic analysis of the building is performed for 

the El-Centro S00E component scaled to have a PGA=0.5g , which is a relatively strong excitation.  

Obviously, the maximum relative displacement at the isolation level is reduced when there is a finite 
seismic gap with size less than the relative displacement at that level. In this case, it is reduced from 

isol
maxU 155 mm= , in the no-impact case, to isol

maxU 117 mm= , in the case of limited seismic gap, which leads to 
poundings with the moat wall. The excess of the width of the seismic gap by the isolated building is allowed 
considering the expected deformations of the moat wall. The results confirm that the interstory deflections and, 
therefore, the story shear forces may significantly increase in the case of a seismically isolated building due to 
poundings when the seismic gap is exceeded. However, the interstory deflections of a fixed supported building 
are still much higher than those of the seismically isolated building even when poundings occur.  

Comparing the absolute floor accelerations of the building during the same excitation, the influence of 
poundings in the response of a seismically isolated building are much more pronounced as the peak acceleration 
at the isolation level (Fig 3.c) is 4  times more than the maximum acceleration at the top floor of the same 
building without any pounding incidence (Fig 3.b), approaching the magnitude of the top floor acceleration of 
the fixed-supported building. In addition, due to the poundings at the isolation level the seismically isolated 
structure may experience maximum floor accelerations at the isolation instead of the top floor of the building. It 
seems that poundings may change the mode of deformation of a seismically isolated building exciting the higher 
modes of the building, instead of moving, according to its fundamental mode, as an almost rigid body. 

 
Figure 3. Absolute floor accelerations during the El-Centro S00E scaled to PGA=0.5g : (a) top floor of fixed 
supported building (b) top floor of seismically isolated building without impact (c) isolation-level of seismically 
isolated building with impact incidences left right(gap =gap =0.10m) . 
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4 PARAMETRIC STUDIES 

Based on the above assumptions, specialized software has been developed in order to efficiently perform 
dynamic simulations of seismically isolated buildings during poundings. The developed software utilizes 
advances in modern computing and software engineering for rapid object-oriented software development and 
code reusability. A large number of simulations, of seismically isolated buildings with a variety of 
characteristics, has been conducted under a range of earthquake excitations in order to systematically investigate 
the influence of certain parameters and conditions on the maximum floor accelerations, interstory deflections, 
base shear forces and relative displacements at the isolation level, during poundings. 

Simulation results of seismically isolated buildings using single degree of freedom (SDOF) systems with 
the equivalent stiffness of the isolation system and the total mass of the superstructure are very close to results 
using more refined models, such as multi degree of freedom (MDOF) systems as long as there are no pounding 
incidences. This is evident from the response of its fundamental eigenmode and the almost rigid body motion of 
the superstructure. However, when poundings occur, higher eigenmodes are excited, their contribution can no 
longer be assumed insignificant, and simulations need to be performed using MDOF systems in order to more 
accurately capture the consequences of potential impacts. The following paragraphs present results from 
ongoing research in this area, which concern only few of the many influencing parameters and conditions that 
should be taken into account and are currently under investigation.     

4.1 Effect of the flexibility of the isolation system 

The flexibility of the isolation system for a typical 5 -story building is varied in order to obtain seismically 
isolated buildings with fundamental periods in the range from 1.0  to 5.0  seconds. Each of these MDOF 
systems is simulated for the El-Centro S00E component, scaled to PGA=0.5g , considering three different gap 
sizes: 10 cm , 15cm , and ∞ , assuming them to be equal on both sides of the building for all three cases. A 
linear impact model is used, assuming impact stiffness impk =500 MN/m  and damping coefficient 

impC =2 MN sec/m⋅ .  

The following graph presents the maximum interstory deflections, maximum absolute floor accelerations 
and the maximum base shear forces of seismically isolated systems as the flexibility of the isolation system 
varies, with and without poundings.  

 
Figure 4. Response of seismically isolated MDOF systems with varying stiffness of the isolation system, with 
and without impact, for the El-Centro S00E scaled to PGA=0.5g . 

The interstory deflections and, consequently, the corresponding story shear forces, increase due to 
poundings. However, they remain relatively low compared to the values of a corresponding fixed-supported 
building. It is evident that the major consequence of poundings on a seismically isolated building is the 
substantial increase of the floor accelerations and inertia forces, which can be detrimental for the contents of the 
building, especially if the latter are sensitive to accelerations. The effect of poundings is more pronounced for 
seismically isolated buildings with fundamental period in the range of predominant frequencies of the 
earthquake excitation, where the peak relative displacements occur, which for this specific accelogram is around 
3  seconds. 

The corresponding fixed-supported building, with a fundamental period of 0.44 s, for the same excitation 
experiences a maximum interstory deflection of 19.7 mm, a maximum total acceleration of 13.5 m/s2 
(2.76×PGA), and  a maximum base shear force of 19.7 MN, which approximates the weight of the structure.  

 a.  b.  c. 
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4.2 Effect of the impact stiffness and damping 

Considering the 5 -story building that has already been defined, the impact stiffness impK  is varied from a small 

fraction up to 2  times the stiffness of a story of the superstructure. As the impact stiffness varies, the damping 
coefficient impC  is adjusted in proportion to the square root of the ratio of the change of the impact stiffness 

according to formulas that express the impact damping coefficient  [2] in terms of the impact stiffness. 
Simulating theses systems for different sizes of the seismic gap, the maximum relative displacements at the 
isolation level, the maximum total floor accelerations, normalized with the PGA , and the maximum story shear 
forces, normalized with the total weight, w , of the structure are presented in Fig. 5.   

 
Figure 5. Response of seismically isolated MDOF systems with varying stiffness and damping of the 
superstructure, for various gap sizes, under the El-Centro S00E scaled to PGA=0.5g . 

As the impact stiffness increases, the relative displacements at the isolation level (Fig. 5.a) reduce 
approaching the size of the seismic gap, but at the same time the maximum floor accelerations (Fig. 5.b) and 
consequently the inertia forces increase substantially due to poundings and may become much higher than what 
the building would experience without seismic isolation. The maximum interstory deflections and the base shear 
forces (Fig 5.c) also increase with the impact stiffness, but remain much lower than what a corresponding fixed-
supported structure would experience. The substantial increase of the floor accelerations with the impact 
stiffness indicates that the latter should not be more than a fraction of the stiffness of the superstructure, 
especially when the contents of the building are very sensitive to large accelerations. 

4.3 Effect of the superstructure’s stiffness 

Varying the stiffness of the superstructure and examining different sizes of the seismic gap, while maintaining 
other factors constant indicates that by increasing the flexibility of the superstructure the interstory deflections 
(Fig. 6.a) are significantly increased, the total floor accelerations (Fig. 6.b) are slightly increased, while the story 
shear forces (Fig. 6.c) are reduced.  

 
Figure 6. Response of seismically isolated MDOF systems with varying stiffness of the superstructure, for 
various gap sizes, under the El-Centro S00E scaled to PGA=0.5g . 

a.  b.  c. 

a.  b. c. 
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4.4 Effect of the impact nonlinearity 

In the previous simulations it has been assumed that the impact spring is linear, i.e. the exponent p  in Eq. 7 
equals 1.0 . However, it has been suggested that a nonlinear contact spring, according to the Hertz theory of 
impact, i.e. with exponent p=1.5 , may be more appropriate in simulations of structural poundings. In order to 
look into the effect of using a nonlinear impact spring to simulate the poundings the 5 -story building that has 
been used as a practical example in the Paragraph 3 is analyzed for the El-Centro S00E component scaled to 
have two different levels of PGA , 0.4 g and 0.6 g , using both a linear and a nonlinear Hertz impact spring 
(Fig. 6.a).  

The stiffness and damping of the nonlinear impact spring is set to impk =120 KN/mm  and 

impC =3 MN sec/m⋅ , while for the linear impact model the impk =500 MN/m  stiffness  and the 

impC =2 MN sec/m⋅   damping coefficient are used. The seismic gap is assumed to be 0.10 m  on both sides of the 

building, which has 5  floors of 400 tons  mass and 1 GN/m  stiffness each and the isolation has a mass of 
500 tons  and a 30 MN/m  effective stiffness. Rayleigh damping ratio is assumed using 15%  damping ratios the 
minimum and maximum frequencies 1ω  and 2ω .  

For the same two levels of PGA , 0.4 g and 0.6 g , of the same earthquake excitation, the corresponding 
fixed-supported building would have 13.9 mm  and 20.9 mm  maximum interstory deflections, respectively, and 
2.76 PGA  maximum total floor accelerations. 

 No 
impact 

Linear 
impact 

Nonlinear 
impact 

Impact stiffness [KN/mm] - 500 120 
Impact damping [MN.sec/m] - 2 3 
                                        PGA [g]: 0.4 0.6 0.4 0.6 0.4 0.6 
Max. relative displacements [cm] 12.4 18.6 10.8 12.2 11.0 12.2 
Max. interstory deflections [mm] 3 4.5 6.7 13.5 6.4 14.3 
Max. floor accelerations [PGA] 0.42 0.42 1.65 2.61 1.46 2.85 
Max. inertia force [MN] 0.73 1.10 2.75 6.38 2.29 6.9 
Max. elastic force [MN] 3.7 5.56 6.70 13.5 6.37 14.3 
Max. impact force [MN] - - 4.15 10.9 3.80 12.2  

Figure 6. Linear and Hertz nonlinear impact models (a) Displacements vs. impact forces, at the isolation level, 
with gap=10cm  (b) peak response for the two systems, under the El-Centro S00E scaled to PGA=0.5g . 

Considering the uncertainty of various simulation parameters, the results for the two impact models are 
relatively close, justifying the use of linear impact springs for numerical simulations that aim at qualitative 
insights on the behavior of seismically isolated buildings during impacts. However, as the exceeding of the 
seismic gap increases the Hertz impact model seems to be more realistic and conservative, with respect to the 
impact forces and floor accelerations, than the linear impact model and should be preferred.  

In general, the response of a seismically isolated building using the nonlinear impact model exhibits 
lower floor accelerations and inertia forces for excitations with smaller magnitude, which relatively increase and 
eventually exceed the corresponding values of the linear impact model as the magnitude of the earthquake 
increases. This is due to the smoother introduction of the impact forces which increases rapidly with the 1.5  
exponent. Even if the beneficial effect of the gradual application of the impact forces is not exactly the case in 
reality, that can be practically achieved with the attachment of elastomeric material, which can act as shock 
absorbers, on a seismically isolated building.    

5 CONCLUSIONS 
The paper discusses the effects of poundings on seismically isolated buildings during strong earthquakes in an 
effort to gain insight into this complicated problem, considering only some of the many influencing parameters. 
It is shown that the effectiveness of seismic isolation can be significantly affected, especially when sensitive 
equipment is housed in a seismically isolated building, due to the substantially increased floor accelerations. In 
addition, due to poundings other modes of deformations are excited resulting in higher interstory deflections 
instead of the almost rigid body motion of the superstructure, which is anticipated when using seismic isolation. 
Understanding the consequences of potential poundings of seismically isolated buildings with adjacent 
structures is essential in order to rationally take into account the possibility of impact, which realistically should 
not be excluded, but should be predicted in case the expected earthquake excitation is exceeded. 

a.  b.  
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Numerical simulations demonstrate that poundings may substantially increase floor accelerations, 

especially as the stiffness of the impact is increased, and, hence, may cause damage to the contents of a 
seismically isolated building, significantly reducing the effectiveness of seismic isolation. Parametric studies 
indicate how the effectiveness of seismic isolation is influenced by certain parameters, such as the flexibility of 
the isolation system, the stiffness and nonlinearity of impact, and the stiffness of the superstructure, when 
poundings occur during stronger than expected earthquakes. Furthermore, the suitability of the impact model has 
been briefly discussed, although further research both numerically and experimentally should follow to obtain 
more realistic models and values for the corresponding parameters. It seems that the most critical consequence is 
the increase of the floor accelerations, which affects the contents of a seismically isolated building. It seems that 
the impact stiffness should be limited and preferably kept less than the stiffness of the superstructure, although 
more research work and validations are necessary to derive definite conclusions for this aspect.  

A potential practical measure to alleviate the detrimental effects of poundings could be the installation of 
flexible material with damping properties, such as elastomeric compounds, that would protrude at certain 
locations in order to act as collision bumpers. Adding pieces of such material to the moat wall or to the 
seismically isolated building can work as shock absorbers that smooth the sudden changes of the stiffness during 
poundings and therefore prevent, to some extent, the acceleration peaks due to impacts. Investigating this 
possibility is another objective of ongoing research in the area of earthquake-induced poundings of seismically 
isolated buildings during strong earthquakes. 
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Abstract.  The work is concerned with an investigation of the response of structural concrete to high rates of 
loading. It is based on a finite-element (FE) program capable of carrying out three-dimensional (3D) nonlinear 
static and dynamic analyses which has been found capable of yielding realistic predictions to the response of 
plain- and reinforced-concrete structures under arbitrary static and dynamic actions. The FE model incorporates 
a 3D material model of concrete behaviour which is characterised by both its simplicity and its attention to the 
actual physical behaviour of concrete in a structure. In the present context of impact loads, the most significant 
feature of this model is that it is based on the use of static material properties of concrete, in an attempt to 
elucidate whether or not the effect of loading rate can be attributed primarily to the inertia of the structure’s mass 
and not, as is at present widely considered, to the loading-rate sensitivity of the material properties of concrete.  
By comparing the ensuing analytical (numerical) results with published experimental data, it is shown that this 
study validates what constitutes a major departure from current thinking as regards material modelling of 
concrete under high rates of loading. 
 

1 INTRODUCTION 
Over the years a large number of experiments have been carried out on the behaviour of concrete prismatic or 

cylindrical specimens under high rates of uniaxial compressive loading [5]. The primary objective of such 
experiments is to investigate the behaviour of concrete under such extreme loading conditions at a material level, 
since the response exhibited by these specimens during the dynamic tests has been shown to differ from that of 
their counterparts tested under static conditions. This difference primarily takes the form of an increase in the 
specimens’ load-carrying capacity and maximum sustained axial strain, a difference which becomes more 
apparent as the loading rate increases. The experimental data obtained from these tests are usually processed in 
order to derive laws which are incorporated into already existing material models aiming to enhance them by 
making them sensitive to the rate of loading in an effort to enable them to describe the behaviour of concrete 
under high loading rates. The majority of these models are then incorporated into various finite-element (FE) 
packages (e.g. LS-DYNA, ABAQUS, ADINA, etc) aiming at predicting accurately the behaviour of reinforced-
concrete (RC) structures under extreme loading conditions such as those encountered in impact and explosion 
situations.  

The formulations of such material models has been based on a variety of theories, including plasticity[15, 21], 
viscoplasticity[2, 3, 8, 9, 22], continuum damage mechanics[4, 10, 11, 14] or a combination of these theories [6, 7]. Models 
such as these are referred to as phenomenological since they are based on theories capable of providing a close 
fit to experimental information without taking into consideration the causes of the observed material behaviour. 
Regardless of the theory upon which their formulation is based, these models share a number of fundamental 
assumptions, the validity of which is inherently questioned in the present work: strain softening, stress-path 
dependency and loading-rate sensitivity are the most common among such assumptions.  

The present work follows the opposite approach: it employs the FE model to reproduce the experimental data 
and, in so doing, also aims to provide a fundamental explanation for the sudden increase in concrete strength and 
the overall change in the specimen behaviour as a limiting value of loading rate is exceeded. The work is based 
on a nonlinear FE program, which incorporates a three-dimensional (3D) brittle material model of concrete 
behaviour and has been shown to be capable of yielding realistic predictions of the response of a wide range of 
RC structures under static monotonically-increasing loads [12], as well as static load reversals and earthquake 
loading [5]. The material model presently adopted for describing the behaviour of concrete is fully defined by one 
parameter only: the uniaxial compressive strength fc; moreover, it does not account for strain softening, stress-
path dependency or loading-rate sensitivity, but places special emphasis on the response of concrete to multiaxial 
(i.e. triaxial) stress conditions. The aim of the numerical investigation is to demonstrate the reliability of the 
proposed FE model in realistically predicting the behaviour of structural concrete under extreme loading 
conditions, such as those encountered during impact and explosion problems, despite its reliance on purely static 
material properties. This is achieved by comparing the results obtained from the numerical investigation with 
available experimental data. Such a comparative study allows for the validation of the assumptions upon which 
the FE model’s formulation is based and provides a simple explanation as to the causes of loading-rate effects in 
high-impact problems. 
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2 EXPERIMENTAL BACKGROUND 
The results obtained from experiments[5] investigating the behaviour of prismatic and cylindrical concrete 

specimens under high rates of uniaxial compressive loading, presented graphically in figure 1a, clearly indicate 
that the increase of the loading rate beyond certain levels leads to a substantial increase in the specimen strength. 
Furthermore, the majority of experimental data depicted in figures 1b and 1c suggest that the maximum axial 
strain exhibited prior to failure and the axial stiffness of the specimen are also characterized by a significant 
increase with respect to their counterparts under static loading. However, while it is evident that the concrete 
specimens under high-rate loading differ significantly from those under static loading, what the experimental 
data cannot provide are the reasons for these differences. 
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By inspecting the experimental data it is clear that they are characterised by considerable scatter and, 
therefore, it is extremely difficult to derive a law able to describe realistically the change in the specimen 
strength and its overall behaviour under high rates of loading. Furthermore, the existence of a number of 
parameters (such as the experimental technique adopted for the tests, the shape, size and moisture content of the 
specimens, the different types of concrete used, etc), which vary from experiment to experiment, and the absence 
of laws able to quantify accurately their individual effect on the specimen behaviour add to the uncertainty and 
difficulty in interpreting the experimental data. Additionally, the difficulty inherent in dynamic tests (in the sense 
of being able to obtain accurate and meaningful measurements) due to their extremely short duration, combined 
with the fact that many of these tests were performed before the 1980’s when the equipment used was not as 
advanced as that in use today, are also significant factors which undermine the validity of the data obtained from 
these tests. Therefore, it is clear that the experimental data can only describe the effect of the loading rate on the 
specimens’ behaviour qualitatively. 
  

3 MODELLING OF CONCRETE BEHAVIOUR 
The presently-adopted hypothesis that the material properties of concrete are independent of the rate of 

loading contrasts with the vast majority of existing constitutive models used for describing the behaviour of 
concrete under high rates of loading which are based on the assumption that there is a link between the material 
properties of concrete and the rate at which the loading is imposed (“loading-rate sensitivity”). However, 
loading-rate sensitivity is based on an uncritical interpretation of the available experimental data, the validity of 
which is questioned in the present work. By assuming that the material properties of concrete are independent of 
the loading rate, the effect of the latter on the specimen behaviour is primarily attributed to the inertia effect of 
the specimen mass: such a simple (and, arguably, obvious – though, at present, unorthodox) postulate will be 
tested in order to ascertain whether or not it is capable of reproducing the experimental data available from past 
tests. If correct, the use of such an assumption will then allow the numerical investigation to assess the 
importance and significance of the role that inertia plays in the specimen’s response when subjected to high rates 
of loading. 

Based on available experimental data[12, 24] it is clear that the descending branch does not describe material 
behaviour but is the result of interaction between specimen and testing device. This implies that concrete is 

Figure 1. (a) Variation of load-carrying capacity 
with strain rate for concrete in uniaxial 
compression (maxPd=load carrying capacity, 
maxPs=load-carrying capacity under static 
loading). (b) Variation of maximum exhibited 
strain with strain rate for concrete in uniaxial 
compression (max εd = maximum strain, max εs =
maximum strain under static loading). (c) 
Variation of specimen axial stiffness with strain 
rate for concrete in uniaxial compression (Ed= 
specimen axial stiffness, Es= specimen axial 
stiffness under static loading). 
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essentially a brittle material, a view which has recently gained wide acceptance among material specialists – as 
evidenced in the findings of the report by the relevant RILEM technical committee[23] – but has failed to be 
implemented by the majority of FE analysts working in the field of nonlinear modelling of concrete. 
Furthermore, the experimental data (upon which the analytical formulation of all concrete constitutive models, 
published to date, is based) is characterized by a significant scatter (even when using valid experimental data, 
this scatter is still substantial): experimental results[12] reveal that any stress-path dependency in concrete 
behaviour disappears within this scatter of the experimental results. Hence, any effect attributed to stress-path 
dependency cannot be quantified and it is both realistic and, for practical purposes, accurate to consider that 
concrete behaviour is stress-path independent. 

In view of the above, the present work adopts a material model for concrete which is brittle and independent 
of both stress-path and loading-rate effects. Its formulation was derived from an analysis of experimental data, 
the validity of which was verified during an international cooperative project investigating the effect of testing 
techniques on concrete behaviour under triaxial stress conditions[12]. The brittle nature of the model bypasses the 
need to introduce extra material parameters associated with the strain-softening assumption. Self-evidently, 
stress-path and loading-rate independency also result in a radical simplification to many of the material models 
used hitherto. Thus, the proposed concrete model offers considerable advantages in FE analysis in general and 
dynamic analysis in particular. 
 

4 NONLINEAR FE SOLUTION PROCEDURE 
The FE package adopted in this work was initially restricted to monotonically increasing loading[12] but has 

recently been expanded so as to encompass cyclic (static) and also generalized dynamic loadings such as those 
encountered in earthquake and impact problems[5]. In the latter problem types, the inertia of the mass is assumed 
to have a significant effect on the specimens’ overall response, as is evident by the governing equation of 
motion. Due to the nonlinear behaviour of concrete, this equation is solved numerically through the implicit 
Newmark integration scheme, with the unconditionally stable average acceleration method[1] being adopted 
throughout. 

The proposed FE package uses 3D nonlinear analysis, employing a 3D material model to account for the 
triaxial behaviour of concrete and 27-node Lagrangian isoparametric brick elements for the modelling of the 
concrete medium. The adoption of 3D analysis is dictated by the need to identify and quantify the complex stress 
field as the imposed load is increased, the allowance of unavoidable triaxiality prior to local failure (i.e. 
cracking) being reached, and the introduction of non-homogeneity and stress redistribution after cracking is 
imposed[12]. Additionally, 3D analysis also permits full allowance for the effect of inertia since it enables the 
more precise modelling of the specimen’s mass and its effect on the overall response of the specimen in general 
as well as on the area surrounding a crack (or a group of cracks) within the concrete medium in particular. The 
nonlinear analysis is based on an iterative procedure, known as the modified Newton-Raphson method[12]  which 
is used in order to calculate stresses, strains and the residual forces.  
 

5 STRUCTURAL FORM INVESTIGATED 
The structural form which provides the basis of this investigation is a concrete prism, similar to the concrete 

specimens used in various experimental investigations carried out to date on this subject[5]. The prism is assumed 
to be fixed at its bottom face, and to be subjected to an axial load applied at its upper face through a rigid 
element with the same cross-section (see figure 2) in order for the external load to be distributed uniformly on 
the upper face of the concrete prism. It is assumed that concrete and the rigid element on the top are fully bonded 
at their interface. The prism height is 253mm and its cross-section forms a square with a side of 100mm, whereas 
the rigid element has a height of 200mm. The uniaxial compressive strength of concrete fc is assumed to be 30 
MPa (a fairly typical value in practice).  

In order to explain the behaviour exhibited by the concrete specimen, the dynamic problem must be viewed 
as a wave-propagation problem. By applying the external load on the upper area of the specimen, the stress wave 
created is transferred initially from the area where the external load is imposed towards the lower part of the 
specimen. Because the latter is fixed at the bottom, the stress wave bounces off its bottom surface and moves 
back upwards. Once the stress wave reaches the top of the specimen, it bounces back down again. The wave is 
therefore trapped by the boundary conditions imposed on the specimen and moves from top to bottom and vice 
versa. 
 

6 FE MODELLING OF DYNAMIC PROBLEM 
Both the concrete prism and the rigid element (figure 2) are modelled by using the 27-node Lagrangian brick 

element[1]. Meshes consisting of 3x1x1 and 1x1x1 elements are adopted in order to model the concrete prism and 
the rigid element respectively (see figures 2a and 2b depicting possible models described below). The use of a 
sparse FE mesh contrasts with what other investigators have used previously. Usually, a dense FE mesh is 
preferred in order to model the concrete specimen with several investigations adopting FE’s as small as 2-3mm 
[11, 13, 18, 19, 20, 21]. However, the philosophy upon which the FE model adopted in the present work is based is 
different and does not employ small FE’s [12]. This is because the material model now adopted is based on data 
obtained from experiments in which concrete cylindrical specimens (subjected to various triaxial loading 
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conditions) constituted a “material unit” for which average material properties were obtained: thus, the volume 
of these specimens provides a guideline to the order-of-magnitude of the size of the FE which should be used for 
the modelling of the concrete structures (in the present instance the structure is a prism specimen). Furthermore, 
each Gauss point within an FE should correspond to a volume having a size which must be at least 3 times the 
size of the largest aggregate used in the concrete mix in order to provide a realistic representation of concrete 
rather than a description of its constituent materials.  

The mass of the specimen is modelled as concentrated masses either located on the FE nodes situated along 
the longitudinal axis of symmetry of the specimen (model A) or distributed to all FE nodes (model B). In the 
case of model A (case study 1), only mass displacement in the direction of the applied load (i.e. along the axis of 
symmetry) is allowed and hence it is sufficient to analyse only one quarter of the specimen (see Figure 2). In the 
case of model B (case study 2), the mass is allowed all three degrees-of-freedom of the nodes and, hence, in 
order to avoid wave deflection problems on the boundaries of the prism, the whole structure is analysed (see 
Figure 2). On the other hand, the external load is imposed as a force incrementally at the beginning of each time 
step. In order to vary the rate of loading, the load increments are kept constant and the time step is varied. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The specimen used for the investigation and FE models of the concrete prism under investigation: (a) 
Model A; (b) Model B. 
 

At this point, it is important to stress that there is considerable confusion in the literature regarding the way 
the loading is applied and described, and also how it is measured. For this reason, several possibilities are 
investigated. To remove any uncertainty, their definitions are as follows:   
1. Average strain rate: calculated as the average rate of displacement exhibited by the very top of the specimen 

divided by the length of the whole specimen. 
2. Maximum value of average strain rate: calculated by dividing the specimen into zones by using the nodes 

along the axis of symmetry and by evaluating which one of these zones exhibits the largest average strain 
rate. 

3. Mid-height strain rate: evaluated at the mid-height region of the specimen. 
4. Applied stress rate: defined as the load increment applied in each time step divided by the cross-sectional 

area of the specimen and the length of the time step used.  
 

7 NUMERICAL PREDICTIONS 
A comparison of the numerical results of case studies 1 and 2 reveals significant differences between the two 

FE models for the concrete prism. The results in figure 3 show that, for stress rates up to about 100,000 MPa/sec, 
the predictions obtained from the two case studies are similar; however, differences in these predictions begin to 
occur for stress rates over around 200,000 MPa/sec. In particular, the results obtained from case study 2, which 
adopts model B for the modelling of the specimen, predict a higher increase in the specimens’ load-carrying 
capacity compared to that predicted by case study 1 (which adopts model A). Moreover, the data in figure 3 
reveal that case study 2 predicts an increase of the maximum value of axial strain in the specimen prior to failure 
(maxεd) for stress rates above approximately 200,000 MPa/sec, whereas case study 1 predicts that this value 
remains constant, being practically unaffected by the rate of loading. Such differences in the predictions of case 
studies 1 and 2 increase as the rate of loading becomes higher. Up to about 100,000 MPa/sec, both models seem 
to predict approximately the same behaviour. However, as the applied stress rate increases above 200,000 
MPa/sec, the response predicted by the two case studies begins to differ, with the specimen in study case 2 
exhibiting larger load-carrying capacities and larger axial deformations prior to failure than its counterpart in 
case study 1 for the same rate of loading.  

 
Based on the predictions obtained from the numerical investigation, it can be concluded that inertia has a 

significant effect on the specimen behaviour under high rates of loading. However, it is interesting to note the 
very considerable effect of the modelling of the specimen’s mass, as evidenced by the different results stemming 
from the two case studies (1 and 2). It will be recalled that, in case study 1, the specimen mass was lumped at the 
mesh nodes situated on the longitudinal axis of symmetry and was allowed one degree of freedom in this 
longitudinal direction (model A). On the other hand, in case study 2, the mass was equally distributed at all the 
mesh nodes and was allowed three degrees of freedom (model B). Clearly, the effect of inertia in the lateral 

100mm 

Concrete prism 

Steel platen 100mm 

200mm  

253mm 
Model B. 

Longitudinal axis 
of symmetry 

Model A. 
Nodes at which the concentrated 

masses are situated

Area of cross-section 
modelled 



 D.M. Cotsovos and M.N. Pavlović 

direction has a significant effect on the predicted behaviour of the prisms, especially during the final stages of 
the loading procedure (i.e. prior to failure). Evidently, case study 2 allows for a more precise modelling of the 
problem since it is able to account for the effect of inertia in both axial and lateral directions, as well as 
providing a more refined discretized version of the actual (i.e. continuously distributed) mass of the specimen. 
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Figure 3. (a) Variation of load-carrying capacity (maxPd), normalized with respect to its value under static 
loading (maxPs), with applied stress rate for case studies 1 and 2. (b) Variation of maximum axial strain 
exhibited by the specimen (maxεd), normalized with respect to its value under static loading (maxεs), with 
applied stress rate for case studies 1 and 2. 
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Figure 4. Variation of the axial reaction recorded at the bottom of the specimen with time. 
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An interesting observation emerges from the numerical results by reference to the values of the reactions at 

the bottom of the prism. Thus, for high rates of loading, where the duration of the loading procedure is less than 
0.0001 sec (which corresponds approximately to the estimate for the time needed for the stress wave to travel 
from the top to the bottom of the specimen), the numerical results obtained from case study 2 (presented in 
figure 4) reveal that the failure of the concrete prism precedes the development of substantial reactions since the 
stress wave is unable to reach the bottom of the specimen within the time over which the loading procedure lasts. 
Therefore, it is realistic to assume that, in such cases, the external load does not affect the whole specimen but 
only a part of it extending to a level which the stress wave is able to reach in the time that the loading procedure 
lasts. Based on this, it is possible to conclude that higher concentrations of stresses (and strains) develop in the 
upper part of the specimen whereas, in the bottom part, these concentrations of stresses and strains are much 
lower. On the other hand, for low rates of loading, where the duration of the loading procedure exceeds 0.0001 
sec, the stress wave reaches the bottom of the specimen, bounces off it and starts to travel backwards and 
forwards along the length of the specimen, trapped by the imposed boundary conditions. Because of this, the 
stress wave affects the whole of the concrete specimen, adding to the complexity of the stress field which 
develops within it (except, of course, for static or quasi-static loadings). In such cases, it is difficult to predict 
where the highest concentrations of stresses (and strains) will develop because of the continuous travelling of the 
stress wave which causes the internal stress field within the concrete prism to constantly change. 

Further analysis of the numerical data obtained from case study 2 indicates that, as the rate of loading 
increases (over the value of 200,000 MPa/sec), the displacements (both axial and lateral) of the nodes close to 
the bottom of the specimen gradually decrease. In the case of very high rates of loading, these displacements 
become very small (even negligible) compared with the displacements exhibited within the upper part of the 
specimen. It appears, therefore, that the numerical results indicate that the upper part of the specimen deforms far 
more than its lower part when subjected to high rates of compressive loading, as shown qualitatively in figure 5. 

A A A

V V

V

Figure 5. Qualitative distribution of 
axial displacement (A) and lateral 
displacement (V) exhibited prior to 
failure of the specimen along the 
longitudinal axis. 
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8 VALIDATION OF NUMERICAL PREDICTIONS 

In order to establish the validity and accuracy of the predictions obtained from the proposed FE model, the 
results from case studies 1 and 2 are now compared with published experimental data. Such a comparison 
reveals good agreement between the two (see figures 6 a to d). However, the scatter that characterises the 
experimental data does not allow the immediate identification of which of the two case studies provides the 
closer fit to the experimental data. Both case studies yield results well within the scatter. However, if one accepts 
that, at high loading rates, the apparent strength of the specimen increases sharply, then it is quite evident from 
figures 6a to 6d that case study 1 yields a poorer model (as expected) since it does not mimic the sharp strain 
increase of most experiments (while agreeing with some of the data (likely to be less accurate) which records 
either no strain increase or even a strain decrease in this range). For extremely high rates of loading, there 
appears to be some divergence between numerical and experimental data. This divergence may be partly due to 
the fact that the numerical investigation is carried out by using a specimen with specific dimensions, fc and 
method of loading, characteristics which vary in different experimental investigations. However, this deviation is 
only clearly observed in figure 6a which shows the variation of maxPd/maxPs with the applied strain rate, 
whereas in figures 6b to 6d this deviation is not apparent. 

When comparing numerical and experimental results it is important to keep in mind that a high-rate loading 
test has an extremely short duration, so that it is difficult to obtain accurate measurements. This is particularly 
relevant for the case of the impact loading tests that were carried out from the early 1940’s to the 1980’s, which 
may not have been as accurate as more recent ones benefiting from modern equipment. Furthermore, measuring 
strains in the mid-height region of the specimen is based on the assumption that the specimen behaves as for the 
case of static loading. This may explain why many experimental investigations carried out before the 1980’s 
report a significant increase in their specimen strength at low strain rates. Whereas in static tests the specimen 
has a more uniform distribution of strain along its height, for the case of high-loading rate the lower part of the 
specimen deforms significantly less than the upper part. Therefore, the strain measured in the mid-height region 
of the specimen may be considerably less than that which is actually exhibited in the upper part. 
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Figure 6. (a) Comparison of numerical and experimental results describing the variation of load-carrying 
capacity with the applied strain rate. (b) Comparison of numerical and experimental results describing the 
variation of load-carrying capacity with the applied stress rate. (c) Comparison of numerical (assuming average 
strain rate) and experimental results describing the variation of maximum exhibited strain with applied strain rate 
for concrete in uniaxial compression. (c) Comparison of numerical and experimental results describing the 
variation of maximum exhibited strain with applied stress rate for concrete in uniaxial compression. 
 

In figure 7 a relationship is presented between maxPd/maxPs and strain rates evaluated by using different 
methods (namely average strain rate, maximum value of average strain rate, and mid-height strain rate). By 
comparing the three resulting relationships (figure 7) it is obvious that they are significantly different. The use of 
mid-height strain rate calculated in the mid-height region of the specimen may lead to misleading conclusions 
due to the fact that, for high rates of loading, only the upper part of the prism is affected and, therefore, the mid-
height region exhibits less deformation, so that the strain rate calculated in this region is much less than the strain 
rate exhibited in the upper area of the specimen. Comparing these relationships with the experimental data in 
figure 7, it is obvious that the relationship between the maxPd/maxPs and the maximum value of average strain 
rate is the relationship which is closest to the experimental data. 
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9 CAUSES OF THE LOADING-RATE EFFECT ON THE BEHAVIOUR OF THE SPECIMEN  
The numerical investigation carried out proves that the change in the behaviour of concrete prismatic 

elements when subjected to high rates of compressive loading can be attributed primarily to the effect of inertia. 
Furthermore, it has been proved that the inertia effect in both axial and lateral directions is significant for an 
accurate description of specimen response. However, in order to understand more comprehensively how inertia 
affects the behaviour of concrete under high rates of loading, its behaviour must be investigated at a material 
level so as to fully comprehend the cracking procedure that concrete undergoes and how this is affected by the 
loading rate. 

In a static test, the application of a uniaxial compressive load onto a concrete cubical or cylindrical specimen 
results in the development of a complex internal stress field. The complexity of the stress field is due to the non-
homogeneous nature of the material, characterized by the existence of microcracks[12, 17]. At the tips of the 
microcracks, high concentrations of tensile stresses form and, once the ultimate tensile strength of concrete is 
overcome, the cracks extend in the direction of the maximum principal stress[12]. This extension offers relief to 
concrete, as it is followed by a decrease of the value of the tensile stresses acting at the crack tips. The extension 
of the cracks continues as the applied load increases until, at some stage, the edges of the microcracks meet and 
larger cracks (macrocracks) begin to form. Under a high rate of loading the procedure becomes even more 
complicated since the effect of the inertia forces must also be taken under consideration. The effect of these 
forces is dual since, on the one hand, they affect the overall response of the concrete specimen and, on the other 
hand, they have a local effect on the area of the concrete specimen where cracks form. 
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At the final stages of macrocracking the specimen exhibits an increase in lateral strain. In the static tests this 
lateral deformation is exhibited in the mid-height region of the specimen; however, as already discussed, this is 
not the case in the dynamic tests, especially when high rates of loading are involved.  Because of the high rate of 
compressive loading imposed on the specimen, the lateral strain rate is also high. In case study 2, because the 
mass is distributed throughout the FE mesh and is active in all three directions, it reacts to the lateral 
deformation, trying to restrict it. Hence, the reaction of the mass slows down the cracking process at these final 
stages and, in doing so, allows the specimen to increase its strength. In case study 1, on the other hand, the mass 
is not distributed throughout the FE mesh and it is active only in the direction of the external load. Because of 
this, the mass is unable to respond to the lateral deformation of the specimen and, therefore, failure occurs 
earlier, the deformation being smaller than that exhibited in case study 2.   
 
10   CONCLUSIONS 

The constitutive model used by the FE program in the present study to describe the behaviour of concrete is 
based on the static properties of the material, which remain constant and independent of the strain rate. The 
comparative study between numerical and experimental data revealed that the static brittle material model used 
is capable of providing realistic predictions of the behaviour of concrete at high rates of loading. In view of this, 
it can be concluded that the effect of loading rate on the specimen’s behaviour reflects the effect of the inertia 
loads that reduce both the rate of cracking of the specimen and its effective height, factors which, in turn, lead to 
an increase of its load-carrying capacity.  

At high rates of loading the numerical results reveal that only the upper region of the concrete specimen 
deforms whereas the rest remains practically unaffected by the application of the external load. This region is 
situated under the rigid element used to apply the external load and its height becomes smaller as the rate of 
loading increases. As a result, its behaviour is also affected by the interaction between the rigid element and the 
specimen which leads to the conclusion that the experimental and numerical data describe specimen (structural) 
response, rather than concrete (material) behaviour. On the other hand, for low loading rates, the deflection of 
the stress waves on the boundary surfaces of the specimen causes a different type of interaction between loading 
mechanism and concrete specimen. The fact that the stress waves, which arise from the continuous application 
of the external load during the loading procedure, are trapped by the boundary conditions imposed on the 
specimen, leads to a non-homogeneous distribution of stress inside the specimen in which it is extremely 
difficult (if not impossible) to predict where high concentrations of stress and strain will develop. It can, 
therefore, be concluded that the specimen behaviour cannot be considered to represent the behaviour of concrete 
as a material but represents its response as a structure. 

Figure 7. Relationship between 
maxPd/maxPs and differently evaluated 
strain rates and their comparison with 
experimental data.  
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To this end, concrete specimens under dynamic loading cannot be used to describe concrete behaviour (as 
usually assumed) since, in contrast with static loading, they do not constitute a material unit from which average 
material properties may be obtained. Under dynamic tests, concrete specimens must be viewed as structures 
since their response is directly linked to the inertia effect of their mass (and, of course, boundary conditions). 
Therefore, the use of experimental data from dynamic tests in order to develop constitutive models of concrete 
behaviour under dynamic loading is questionable. Moreover, the experimental data suggest that the behaviour of 
a concrete specimen under impact loading depends on a number of parameters, the effect of which has not been 
quantified by previous research (but has been considered in the follow-up of the work described presently [5]).  
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Abstract. When dealing with non-linear dynamic response of structures there are several occasions where an 
equivalent linear formulation of the non-linear problem reduces considerably the computational effort for the 
response analysis. In a broader sense, an equivalent linear formulation can be viewed as a first-order expansion 
of the dynamic equilibrium of the system about a “static” configuration; yet caution should be exercised when 
identifying the “correct” static configuration. The paper uses as a case study the rocking response of a rigid 
block stepping on viscoelastic supports, and elaborates on the challenge of identifying the most appropriate 
static configuration around which a first-order expansion will produce the most dependable results for the 
rocking response. 

1 INTRODUCTION 

This paper elaborates on the problem of selecting the most appropriate center for the first-order expansion in 
order to linearize a strongly non-linear dynamical system. In some cases equivalent linearization may be 
attractive since it reduces appreciably the computational effort; however, caution should be exercised when 
selecting the most appropriate center for the first-order expansion. Our investigation concentrates on a case-
study, which is the rocking response of a rigid block stepping on viscoelastic supports. 

We consider the rigid block shown in Figure 1, with size 0R  and slenderness α  which can pivot about 
points L  and R  when it is set to rocking. Once in contact with the vertical supports, points L  and R  are allowed 
to move only vertically. When the motion is weak, the body is in continuous contact with both supports at pivot 
points L  and R . When the vertical uplift of the heel of the body exceeds the static deflection of the supporting 
springs, 2

s v/(2 ) /M g K gδ ω= = , then separation occurs, and the body is supported only at its toe. Accordingly, 
there are three regimes of motion: (i) full-contact at both points L  and R ; (ii) contact only at point L  (tilting to the 
left); and (iii) contact only at point R  (tilting to the right). 
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Figure 1. Schematic of a rocking block resting on viscoelastic foundation (a), Separation with right support (b), 
Rocking about left support (c). 
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The element that distinguishes the response of rocking structures from other vibrating systems is the energy 

loss at the impact points. In most practical cases the value of the coefficient of restitution, a be θ θ=  (= ratio of 
angular velocity after the impact to angular velocity before the impact), is close to the maximum admissible 
value, maxe , which depends on the geometry of the block[1]. Accordingly, the rocking response of a rigid block 
on a rigid foundation is fully described by two parameters only – its slenderness, α , and the frequency 
parameter, p , which results from its size, 0R , and the intensity of the surrounding gravitational field, g :  

 
01

gp
R

µ
µ

=
+

 (1) 

where 2
0 0/M R Iµ =  is the shape factor of the rigid block. For rectangular blocks, 3µ =  and ( )03 4p g R= . 

Accordingly, for a rectangular rigid block rocking on a rigid foundation the response θ  depends on the two 
aforementioned parameters and the excitation:  

 ( )f , ,excitationpθ α=  (2) 

In the case of a rigid block with mass M  stepping on viscoelastic supports with stiffness 2
v 2K Mω=  and 

frequency independent damping v vC Mξ ω=  the response depends also on the ratio of the velocity of the pivot 
point after the impact at the support to the velocity of the imminent pivot point before the impact at the support. 
This ratio defines an alternative coefficient of restitution, a b a b

L L R Rv v v vε = = , which has been introduced by 
Psycharis and Jennings[2]. Given the abovementioned parameters the response of a rigid block rocking on a two-
support viscoelastic foundation is expressed by:  

 ( )v vf , , , , , ,excitationpθ α µ ε ω ξ=  (3) 

The coefficient of restitution ε  introduced by Psycharis and Jennings is related to the coefficient of 
restitution e  introduced by Housner[1], as shown in the report by Palmeri and Makris[3]. 

Since the rigid block is not allowed to slide, the system has only two degrees of freedom. Among the severable 
possible choices, we select the vertical displacement of the centre of mass, v , and the rotation of the block, θ  (see 
Figure 1). Using the two degrees of freedom the equations of motion in the full-contact regime are[3]:  
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 (4) 

while the equations of motion when the rigid block is in contact with one support are[3]: 
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p g
ξ µ α θ

β

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪

⎡ ⎤ +⎪ + + ± =⎢ ⎥⎪
⎣ ⎦⎩

 (5) 

where in the case of double sign, the upper/lower sign corresponds to the block tilting to the left/right, and 
v pβ ω= . 
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2 EQUIVALENT LINEAR ANALYSIS 

2.1 Derivation of linear equations 

The equations of motion either in the full-contact regime (Eqs. (4)), or when the rigid block is separated from 
one support (Eqs. (5)) can be rewritten in a compact form as:  

 ( ), , ;r t =F x x x 0  (6) 

where [ ]T
1 2r r rF F=F  is a 2 1×  vector that consists of the left-hand side of Eqs. (4) or (5). The subscript r  

denotes the regime of motion, that is 0r =  during the full-contact regime, 1r = −  when the block is supported 
only at the left pivot point, 1r = +  when the block is supported only at the right pivot point. The vector 

[ ]Tv θ=x  collects the two degrees of freedom of the system, v  and θ . 
In order to derive the linearized equations of motion, the vector rF  can be approximated via a first-order 

expansion plus a residue:  

 ( ) ( ) ( ), , ; , , ;r r r r r r rt t= − + + +F x x x K x x C x M x F x 0 0  (7) 

in which rM , rC , and rK  are mass, damping and stiffness matrices of the system during the regime of motion, r : 

 

g g g g g g

, ,, , , , , , , , ,
( ) 0, ( ) 0 ( ) 0, ( ) 0 ( ) 0, ( ) 0

sr r
r r rr r r

u t v t u t v t u t v t

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ∂∂ ∂

= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = = = = = = =∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥
= = = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

FF FM C Kx x x 0 x 0 x x x 0 x 0 x x x 0 x 0x x x
 (8) 

and r=x x , =x 0  and =x 0  define the conditions of motion at the centre of expansion for each regime, r ; that 
is, the rigid block is assumed to be in the static configuration given by the position vector rx .  

Substitution of Eq. (7) into Eq. (6) gives the equations of motion in a linear form:  

 ( )r r r r t+ + =M x C x K x f  (9) 

in which: 

 ( )( ) , , ;r r r r rt t= −f K x F x 0 0  (10) 

2.2 Eigenvalue analysis 

Once the matrices rM , rC , and rK  are evaluated, the complex eigenvalues riλ  can be computed by solving 
the characteristic equation:  

 ( )2det j 0r ri r ri rλ λ− + + =M C K  (11) 

in which j= 1−  is the imaginary unit. Circular frequency and viscous damping ratio of the i -th mode in the r -
th regime, then, are given by:  

 
( )Re

, ri
ri ri ri

ri

λ
ω λ ξ

ω
= = −  (12) 

2.3 Motion in the full-contact regime ( 0r = ) 

When the rigid block is in the full-contact regime the centre of expansion of the non-linear equatios is merely 
the static configuration T

0 [0 0]=x , corresponding to the rest of the system (Figure 1(a)). Accordingly:  

 
2

2
0 0 v 02 2 2 2

1 0 2 0 0
, ,

0 1 cos ( ) 0 2 sin ( ) 0 sin ( ) (1 )cos( )
p p

β
β ξ

µ α µ α µ β α µ α
⎡ ⎤⎡ ⎤ ⎡ ⎤

= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M C K  (13) 

and:  
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g

g0 2

( )
( )( )

(1 ) cos( )

v t
u tt

p
g

µ α

−⎡ ⎤
⎢ ⎥= ⎢ ⎥− +
⎢ ⎥⎣ ⎦

f  (14) 

For instance, in order to derive the first row of the stiffness matrix 0K , the derivatives with respect to v  and 
θ  of 01F  (i.e., the left-hand sides of the first of Eqs. (4)), are:  

 

2 201
011

2
01 v 01

012
2cos( ) sin( ) cos( ) 0

1 0, 0

F
p K

v

F p Fg K

β

ξµ β α θ θ θ
θ µ β θ θ θ

∂
= =

∂

⎡ ⎤⎡ ⎤∂ ∂
⎢ ⎥= + ⇒ = =⎢ ⎥∂ + ∂⎢ ⎥⎣ ⎦ = =⎣ ⎦

 (15) 

Figure 2 shows the loci of the eigenvalues 0iλ  in the full-contact regime in the complex plane (shape factor 
3µ = ). Since the loci of the eigenvalues are symmetric with respect to the real axis, only the half plane of the 

positive imaginary parts is shown. In the left graph the stiffness of the foundation is constant ( 20β = ), and the 
effect of varying the viscous damping ratio is shown. The larger is vξ , the larger are the negative values of the 
real parts of the eigenvalues and, by virtue of the second of Eqs. (12), the larger is the damping experienced by 
the vertical and the angular oscillations of the system. In the right graph the viscous damping ratio is constant 
( v 0.1ξ = ), and the effect of varying the stiffness of the foundation is shown. The larger is the parameter β , the 
larger are the moduli of the eigenvalues and, by virtue of the first of Eqs. (12), the larger are the vibration 
frequencies of the system. 

In both cases the eigenvalues of the system are conjugate pairs, with negative real part (stable modes) and 
non-zero imaginary part (oscillating modes). The eigenvalues associated with the vertical oscillations are 
independent of the slenderness α , since the vertical and rocking modes are decoupled. Accordingly, for the 
entire range 0.15 0.45α≤ ≤  the eigenvalues of the vertical mode occupy the same points. On the other hand, the 
eigenvalues associated with the angular oscillations are moving along the curved arrows ( 0.15 0.45α≤ ≤ ). The 
larger is α  (stockier blocks), the larger are the moduli and the negative values of the real parts of the 
eigenvalues; that is, the frequency and damping of the angular oscillations increase with α .  

It is worth noting that in the full-contact regime, and in a linear formulation, the matrices 0M , 0C , and 0K  
are diagonal. As a consequence, the equations governing the vertical and the angular vibrations in the linearized 
form are decoupled:  

 

2
v v v g

2
g2

θ θ θ 2

2 ( )

( )(1 ) cos( )2
1 cos ( )

v v v v t

u tp
g

ξ ω ω

µ αθ ξ ω θ ω θ
µ α

⎧ + + = −
⎪⎪
⎨ +⎪ + + = −

+⎪⎩

 (16) 
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The vertical oscillation is characterized by the circular frequency v pω β=  and viscous damping ratio vξ . 

These oscillations are independent of the slenderness α . The rocking motion is characterized by the circular 
frequency, θω , and viscous damping ratio, θξ , given by: 

 
2 2 2

v
θ θ v2 2

θ

sin ( ) (1 )cos( ) sin ( ),
1 cos ( ) 1 cos ( )

p ωµ β α µ α µ αω ξ ξ
ωµ α µ α

− +
= =

+ +
 (17) 

These expressions have been presented more than twenty years ago by Psycharis and Jennings[2], who 
investigated the linearized problem with a different formulation, which gives: 

 
( )

2 2
0 0 0

θ θ
2

0 0 0 0

2 ,
2

K b M g h C b
I I K b M g h

ω ξ
−

= =
′ ′ −

 (18) 

where 0 0 cos( )h R α=  is the height of the centre of mass from the base, 0 0 sin( )b R α=  is the half-distance 
between the pivot points L  and R , and 2

0 0 0I I M h′ = +  is the moment of the inertia of the rigid block with 
respect to the base centre O′  (see Figure 1). 

2.4 Motion when the heel separates ( 1r = ± ) 

When the rocking motion is appreciable, separation occurs when the upward displacement of the heel is 
greater than the static deflection of the support. When this happens the vertical and the rotational mode of 
vibration are coupled even when the problem is linearized. At the instant when separation is imminent, and 
assuming that the block is tilting to the left, the deflection in the left support is twice the static one, i.e. L sv δ= −  
and L s2N K M gδ= = , while the right support is in the unstressed state, R sv δ=  and R 0N = . At this 
configuration the rotation is:  

 s

0 sin( )R
δθ θ

α
= ≅  (19) 

and the vertical displacement of the centre of mass is:  

 0 s 0cos( ) cos( )v R Rα δ α θ= − − + +  (20) 

Eqs. (19) and (20) define the static configuration for the expansion. Since in most practical applications the 
angle θ  is much less than slenderness α , the static configuration can be approximated as:  

 [ ]
T

T
1 s 12 20 0g

p
δ

β− +

⎡ ⎤
= − = − ≡⎢ ⎥

⎣ ⎦
x x  (21)   

In summary, when the heel separates, the static configuration is different than the one when the block is in 
full contact. More precisely, when the heel separates the centre of the first-order expansion is obtained by 
moving the rigid block downward by the static deflection ( )2 2

s g pδ β= . Accordingly, Eqs. (8) give: 
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⎡ ⎤±⎢ ⎥+⎡ ⎤ ⎢ ⎥= ≡ =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ±⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
±⎢ ⎥+⎢ ⎥=

⎢ ⎥+
± − +⎢ ⎥

⎢ ⎥⎣ ⎦

M M C

K

∓ ∓

∓

 (22)  

and Eq. (10) gives:  

301



Alessandro Palmeri, Nicos Makris. 

 
g

1
g2 2

( )
2

( ) ( )1 (1 ) sin( ) (1 ) cos( )
2

g v t
t u t

p p
g

µ α µ α

⎡ ⎤− −⎢ ⎥
⎢ ⎥=
⎢ ⎥± + − +⎢ ⎥⎣ ⎦

f∓  (23)  

In this case the damping and stiffness matrices are sparse, therefore, the equations governing vertical and 
angular oscillations are coupled even in the linearized form. 

Figure 3 (left) shows on the complex plane the loci of the eigenvalues 1iλ∓  when the heel separates (shape 
factor 3µ = ). The cases considered are the same as for the full-contact regime: v 0.1ξ =  and 10,β =  20 , 40 , 
and 60  in the lower graph; and 20β =  and v 0.1ξ = , 0.2 , 0.3 , and 0.4  in the upper graph. The analysis 
reveals that the eigenvalues of the system when the heel separates are drastically different from the eigenvalues 
when the block is in full-contact. Accordingly, even if the response of the system is assumed to be linear during 
each regime of motion, the overall response is highly non-linear. 

The most striking difference between the placement of eigenvalues in the regime when the heel separates and 
the full-contact regime is that the angular oscillations are associated with a pair of real-valued eigenvalues, 
symmetrically placed with respect to the imaginary axis; their positions in the graphs are denoted with two circles 
on the real axis. Consequently, the angular oscillations manifest a stable mode (negative real part) and an unstable 
mode (positive real part): when the negative eigenvalue prevails, the rigid block reassumes the full contact with the 
two supports. When the positive eigenvalue prevails, the rigid block overturns. It is worth noting that the 
eigenvalues associated with the angular oscillations are almost insensitive to the slenderness α  of the rigid block, 
as well as to the dimensionless parameters β  and vξ  which characterize the foundation. In all cases considered the 
values of the eigenvalues are close to p± . That is, the slenderness of the rigid block and the characteristics of the 
foundation do not affect the rocking motion once the heel has separated. It is interesting to note that the rots are 
merely the eigenvalues of the linearized equations of the rocking motion of the block on a rigid foundation. 

A second interesting difference between the behaviour of the eigenvalues is that when the heel separates the 
eigenvalues associated with the vertical mode depend on the slenderness α  of the rigid block. The less slender 
is the block, the vertical mode becomes stiffer with more damping.  

Figure 3. Loci of the eigenvalues when the heel separates according to the linearization presented in this paper 
(left – dashed line in Figure 1(b)), and according to the linearization proposed by Psycharis and Jennings (right – 
dotted line in Figure 1(b))) 
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2.5 Comparison with the work of Psycharis and Jennings (1983) 

The response of a rigid block rocking on a viscoelastic foundation when the heel separates was 
systematically examined in the seminal paper of Psycharis and Jennings[2], which presented the following set of 
linearized equations after lift-off:  

 
( )2 2

0 0 0 0 0 0 0 g 0

0 0 g

1 2 ( )
2

1 ( )
2

I C b C b v K b M g h K b v M h u t M g b

M v C v C b K v K b M g M v t

θ θ θ

θ θ

⎧ ′ + ± + − ± = − ±⎪⎪
⎨
⎪ + ± + ± = − −⎪⎩

 (24) 

These equations were not derived as a first order expansion of the fully non-linear formulation, but rather 
constructed from dynamics equilibrium after assuming small displacements. Accordingly, at that time (1983) the 
challenge of selecting the most appropriate centre of linearization to conduct the first-order expansion did not 
emerge. When the first of Eqs. (24) is divided by 0I  and the second by M , and after using the dimensionless 
parameters previously introduced, Eqs. (24) become:  

 

3
2 2 v

v

2 2 4
2

2 2

g

2 2 2
v

v

(1 )1 cos ( ) sin ( ) sin( )

(1 )sin( ) (1 )cos( ) sin( )
2 2

(1 ) (1 )cos( ) ( ) sin( )
2

sin( ) sin( )
(1 ) 2 2(1 ) 2

pp v
g

p p v
g

p pu t
g

g p g gv p v v
p

µ β ξµ α θ µ β ξ α θ α

µ βµ β α µ α θ α

µ µα α

µ β ξ β µ ββ ξ α θ α θ
µ µ

+⎡ ⎤+ + ±⎣ ⎦

+⎡ ⎤+ − + ± =⎣ ⎦

+ +
− ±

+ ± + ± = −
+ + g ( )v t

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ −⎪⎩

 (25) 

and after writing Eqs. (25) as a matrix equation with the response vector [ ]Tv θ=x , the mass and damping 
matrices are exactly the matrices 1M∓  and 1C∓  of Eqs. (22), while the corresponding stiffness matrix is:  

 

2
2
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1 2 2
2 2

sin( )
(1 )

2 (1 ) sin( ) sin ( ) (1 )cos( )

g
pp

p
g

µ ββ α
µ
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⎡ ⎤
±⎢ ⎥+⎢ ⎥=

⎢ ⎥+
± − +⎢ ⎥

⎢ ⎥⎣ ⎦

K∓  (26) 

The only difference in the stiffness matrix given by Eq. (26) and the stiffness matrix that was derived after 
taking a first order expansion of the equations of motion around the centre ( ) T2 2

1 0g pβ⎡ ⎤= −⎣ ⎦x∓ , given by 
the third of Eqs. (22), is a factor of 2  in the second term of element (2,2) . It is easy to show that the stiffness 
matrix given by Eq. (26) can be obtained after expanding the non-linear equations of motion around the centre 

[ ]T
1 00 0= =x x∓ , which is the configuration at rest (dotted line in Figure 1(b)). 
What this analysis reveals is that the linearization presented by Psycharis and Jennings assumes the same 

centre of the first order expansion [ ]T
0 1 0 0= =x x∓  for both the full-contact regime and the regime when the 

heel separates, while the linearization presented in this work assumes as centre of the first order expansion for 
the full-contact regime the position at rest, [ ]T

0 0 0=x , and for the regime when the heel separates, 
( ) T2 2

1 0g pβ⎡ ⎤= −⎣ ⎦x∓ , which is the configuration of a rigid block that is entering rocking motion. 
Obviously the linearization presented by Psycharis and Jennings correspond to a stiffer system that results to 

an unconservative response at large vibrations. The artificial stiffness/stability to the system that results from the 
Psycharis and Jennings linearization is also reflected on the eigenvalues analysis. Figure 3 (right) shows the loci 
of the eigenvalues 1iλ∓  during the regime when the heel separates according to the linearization presented by 
Psycharis and Jennings. The resulted eigenvalues are close to 2 0.707p p± ≅ ± , while the eigenvalues 
resulted from the proposed formulation are close to p± . 

A rectangular block ( 3µ = ) with frequency parameter p  has a size ( )23 4R g p= ; whereas a block with 
frequency parameter 2p p′ =  has a size ( )23 2 2R g p R′ = = . Accordingly, the linearization presented by 
Psycharis and Jennings when the heel separates results to eigenvalues for the rocking mode that corresponds to a 
block with twice the size, which is a fictitiously more stable configuration. 
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3 NUMERICAL APPLICATION 

In order to investigate the accuracy of the linearized equations of motion derived in the previous sub-sections 
we compute the rocking motion of a rigid block of slenderness 0.25α = , shape factor 3µ =  and frequency 
parameter 1.5 rad/sp =  ( 0 3.27 mR = ) when subjected to a one-sine pulse at the base.  

Figure 4 shows the time histories of normalized rotations and angular velocities of the block when the 
viscoelastic foundation is characterized by the parameters 40β =  and v 0.4ξ = . The solution of the non-linear 
equations of motion yield that the minimum amplitude of a one-sine pulse of period p 0.5 sT =  to induce 
overturning is p 2.3a g=  (first and second columns). The same value ( p 2.3a g= ) results by the proposed 
linearized equations. On the other hand, the linearized equations of Psycharis and Jennings[2] yield a minimum 
overturning acceleration equal to p 4.3a g=  (third and fourth columns).  

4 CONCLUSIONS 

This paper elaborates on the problem of linearizing strongly non-linear problems that involve more than one 
regime. In a broader sense, an equivalent linear formulation can be viewed as a first-order expansion of the 
equations of dynamic equilibrium of the system about a “static” configuration.  

The paper uses as a case study the dynamic response of a rigid block rocking on a viscoelastic foundation 
and shows that the static configuration when the block is in full-contact with both supports is different from the 
static configuration when the heel of the block separates from one support, and the block essentially rocks about 
its toe. This difference had escape the attention of part investigation, and this paper highlights its importance.  

More generally the study concludes that when more than one regimes are involved, the first-order expansion 
of the equations of motion should be conducted around the new point where the new regime engages. 
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Figure 4. Normalized rotation and angular velocity time histories of a rocking block with β = 40 and ξv = 0.4 due 
to a one-sine pulse with Tp = 0.5 s. The overturning pulse amplitude ap = 2.3 g predicted with the proposed 
linearization is in agreement with the results from non-linear time history analysis. 
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Abstract. The time domain seismic response of a representative liquefied natural gas (LNG) tank isolated at its 
base level by rubber bearings is investigated.  The problem is solved numerically by means of a detailed finite 
element model, taking into account fluid-structure interaction effects.  Two types of bearings are investigated: 
high damping rubber bearings and lead core rubber bearings.  The bearings are modeled as non-linear springs 
with the force-displacement relationships derived by fitting appropriate analytical curves to experimental data 
obtained from the literature.  The seismic excitation considered is an artificial accelerogram compatible with 
the Eurocode 8 provisions.  Results concerning base shear force, sloshing vertical displacement and deflection 
of the inner steel container are presented.  In order to measure the effectiveness of the isolation systems, 
percentage reductions of the peak response of all mentioned quantities are calculated using the non-isolated 
tank as reference. The research has been performed in the frameowork of the project INDEPTH (Development 
of INnovative DEvices for Seismic Protection of PeTrocHemical Facilities), supported by the Environment and 
Sustainable Development Programme of the European Commission Research Directorate General (Contract 
EVG1-CT-2002-00065). 

1 INTRODUCTION 

Natural gas is a fossil fuel (90% or more methane) that is usually transported at its gaseous state through 
ducts from the cite of its production to the place of its consumption.  Alternatively it is possible to cool the 
product down to -170 0C so that it condenses to its liquid state.  In that way the density of the product increases 
by approximately 600 times making it possible to ship it in specially designed vessels and store it in thermally 
insulated tanks.  The stored product can then be re-evaporated in appropriate facilities and piped to the 
consumption.  The facilities related to the unloading, storage and re-vaporisation of the Liquefied Natural Gas 
(LNG) are located in the same site which is usually called an LNG terminal. 

LNG terminals are crucial facilities for a natural gas distribution system because, besides providing a backup 
in natural gas supply, they balance the difference between the demand, which varies constantly, and the supply 
from the international ducts, which is essentially constant.  Because of the importance of the LNG tanks, but 
primarily because such a huge amount of stored energy could provoke a major disaster if uncontrollably 
deliberated, very sever requirements are imposed concerning the ability of LNG tanks to withstand several 
prescribed accidental actions such as aircraft impact, explosion, fire, major leak and earthquake.  Especially for 
the earthquake action, requirements are that LNG tanks be able to sustain a major seismic event, of a return 
period of over 5000 years, up to 10000 years, without undergoing catastrophic damage, while being able to 
remain fully operational during a medium seismic event of return period of 475 years.  Design issues for the 
LNG tanks can be found in several specialized publications, e.g. Bomhard and Stempiniewski [1] and Tajirian 
[2].  

The modern aseismic design of LNG tanks is based on the base isolation technique.  The base isolation is a 
strategy that attempts to isolate the structure at its base, moving the dominant frequency of the isolated tank 
away from the dominant frequency range of the earthquake acceleration spectrum [3].  The isolators usually 
implemented in LNG tanks are either rubber-type bearings [4,2], such as the lead core rubber bearings and the 
high damping rubber bearings, or sliding-type bearings such as the friction pendulum bearings [5,2].   

In this work the seismic protection of LNG tanks by implementation of two different base isolation systems 
is investigated numerically by means of the Finite Element Method (FEM).  The two base isolation systems 
studied are high damping rubber bearings and lead core rubber bearings [6].   Rubber bearings are formed by 
alternating layers of hot vulcanized elastomer and steel shims.  The elastomer layers provide the horizontal 
flexibility required for the decoupling of the horizontal structural motion from the ground motion, while the steel 
shims ensure adequate vertical stiffness.  In the case of high damping rubber bearings, damping is provided by 
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the chemical composition of the elastomer, while in the case of lead core rubber bearings absorption of energy is 
achieved through yielding of a lead prismatic core placed in the center of the bearing.  This difference in the 
energy absorption mechanism is reflected on the shape of the energy absorption loops, which for the first case 
are nearly viscoelastic while for the second case exhibit an almost bilinear behavior.  The seismic excitation 
considered is an artificial accelerogram compatible with the Eurocode 8 (EC8) provisions [7] for soil type C. 
Selective results concerning base shear force, sloshing and deflection of the inner steel container are presented.  
The development of the FEM model and its numerical solution are performed in the environment provided by 
the  ANSYS finite element program [8]. 

 

2 DESCRIPTION AND MODELING OF THE TANKS 

A storage tank has several functions besides the obvious one of maintaining its content: a) keeping the 
content from escaping to the environment, b) preventing the atmospheric air from entering the tank, c) defending 
the content against the effects of external events including accidents such as earthquake, fire and explosion d) 
maintaining the appropriate conditions in the tank particularly in respect of temperature and pressure (slightly 
above atmospheric).  To achieve these conditions LNG tanks are usually configured as a double shell, as shown 
in Fig. 1.  Thus, they are constituted of an outer prestressed concrete cylindrical shell which is capped by a 
spherical reinforced concrete dome and an inner steel cylindrical shell open at the top and closed at the bottom 
by a steel plate.  For the more or less typical example studied in this work the outer shell is of constant thickness 
of (0.8m) along its height, except from a small part near the base which is thicker (1.6m), while the thickness of 
the inner shell increases from top to bottom from 10.4 to 30.5mm.  The space between the two shells is filled 
with perlite to insure proper thermal insulation of the content.  The outer shell seats directly on a circular 
foundation slab, while between the bottom of the inner container and the foundation slab there is a layer of foam 
glass (0.8m) for thermal insulation purposes.  In addition, the inner tank height is 33.42m, the outer tank height 
is 37.5m, the inner tank middle radius is 32.5m, the outer tank outer radius is 34.3m, and the maximum height of 
the liquid volume is 32.601m. 

 

Figure 1: General configuration of an LNG tank with double shell 

The seismic analysis of the selected LNG tank is performed by means of the ANSYS finite element program 
[8]. The outer and the inner shell as well as the dome and the foundation slab are modeled by four-nodded, 24 
DOF quadrilateral shell elements. The foam glass layer is modeled by eight-nodded 24 DOF solid elements.  
The fluid content is modeled by eight-nodded 24 DOF fluid elements.  The fluid-structure interaction is 
approximated by prescribing appropriate coupling equations at the nodal points on the fluid-structure interface. 

3 PRELIMINARY DESIGN AND MODELING OF THE ISOLATION SYSTEMS 

All the base isolation systems under consideration consist of a number of similar rubber bearings uniformly 
distributed under the existing foundation slab.  However, the total number of required bearings is derived from 
the assumption that a single bearing supports approximately 10-12 m2 of foundation slab at maximum. Thus, 
approximately 340 bearings should be used for the tank under consideration. 

Two major assumptions are inherent in the modeling of the base isolation systems analyzed in the present 
study.  The first is that the forces applied from the devices to the existing foundation slab are uniformly 
distributed on the entire area of the slab.  The second is that the in-plane stiffness of the slab is infinite.  
Following these assumptions, the vertical stiffness of the bearings is simulated using Winckler type plate 
elements [8,9], with an appropriate foundation coefficient, while the horizontal stiffness of the bearings is 
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simulated using a single non-linear spring element connected to the centre of the slab. This model for the base 
isolation system is illustrated in Figure 2 

 

Figure 2: Modeling of the isolation systems  

 

3.1 Vertical stiffness 

The Winckler model requires the determination of the elastic foundation stiffness (EFS), which is defined as 
the pressure required to produce a unit normal deflection of the foundation and is given as 
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KN
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*

=  (1) 

 
where N is the number of the installed isolators, Kv the vertical stiffness of each isolator and As the area of the 
foundation slab.  

3.2 Horizontal stiffness 

For isolated structures a fundamental period, i.e. the natural period of the structure moving as an almost rigid 
body on the isolators, is usually selected in the range of 1.5 to 3 sec.  For this study, a fundamental period of  
2sec is chosen. Given the total mass  M  of the structure, the total horizontal stiffness  K  of an equivalent elastic 
isolation system that would lead to a fundamental period of 2 sec, can be approximately evaluated, on the 
assumption of an equivalent single degree of freedom system, from the well known relationship 

 
 22 /4 TMKeq ⋅⋅= π  (2) 

 
The force-displacement relationship for a set of high damping rubber bearings acting in parallel can be 

described by the following equations the first of which applies for loading (positive loading) and the second for 
unloading (negative loading) 
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where,  Fl  is the total force applied to the system during loading,  Fu  is the total force during unloading,  δ  is 
the displacement,  δmin  is the displacement at which loading begins after a change in the direction of the 
velocity,  δmax  is the displacement at which unloading begins,  N  is the number of isolators,  K0  is the initial 
stiffness of the system,  Kinf  is the stiffness of the system at large displacements,  te  is the total thickness of the 
elastomer compound, b  is a parameter of the model and a is constant defined as   
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Eqs (3) have been derived by integrating the G-γ relationships presented by Dusi and  Rebecchi [10]. 
For the preliminary design, all the parameters of the model, i.e.  K0,  Kinf,  te,  and  b,  should be determined. 

To this end some assumptions should be made, e.g  δmin(assumed constant for every loop) = -δmax = 0.12m,  
λ=K0/Kinf =2.6, and te=0.17m.  Additionally two more relationships can be derived from the following 
considerations: a) The secant stiffness of the isolation system at  δmax  (loading begins at –δmax) is identical to the 
stiffness  Keq  of an equivalent linear system corresponding to the desired fundamental period, as shown in 
Figure 3. b) The energy dissipated during one full oscillation between  -δmax  and  δmax,  equals the energy 
dissipated during one full oscillation of the same amplitude by an equivalent linear system corresponding to the 
desired fundamental period and an appropriate percentage of critical damping  ξ.  The percentage of critical 
damping that is feasible using high damping rubber bearings varies between 7% and 15% [11].  A value of 10% 
is considered for the preliminary analysis in this work.  On the basis of the above considerations and in view of 
Eqs (3) the following set of equations is produced 
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Once the system of Eqs (5) is solved for the unknown quantities  b  and  Kinf,  all the parameters of the model 

of Eqs (3) are determined.  Eqs (3) are implemented in the finite element model as the force-displacement 
relationship of a non-linear spring element connected to the centre of the foundation slab.  The energy 
dissipation loop produced by this force-displacement relationship for maximum displacement equal to δmax is 
plotted in Figure 3. 

 

 

Figure 3: Energy dissipation loop for the high damping rubber bearings 

The horizontal stiffness of a set of lead core rubber bearings is simulated by a bilinear elastoplastic model, as 
shown in Figure 4.  Again, some assumptions have to be made for the preliminary design of the isolation system, 
in order to evaluate the parameters  Kel  Kpl  and  Fy  of the model.  Thus,  δmax  is assumed equal to 0.18 m,  
λ=Kel/Kpl  is assumed equal to 11, and  ξ  is assumed equal to 40% which is a reasonable for structures isolated 
with lead core rubber bearings [11]. 

The considerations (a) and (b), used in the case of high damping rubber bearings for the determination of the 
parameters of the applied model, can be also employed in the case of lead core rubber bearings, too.  For this 
case the equations describing the aforementioned considerations are 

 
 dlKdpKK pleleq ⋅+⋅=⋅ maxδ  (6a) 
 maxδ=+ dldp  (6b) 
 ( )( ) 2

max max4 2 0el pl eqdp K K dp Kδ π ξ δ− − − ⋅ ⋅ ⋅ ⋅ =  (6c) 

 y elF K dp= ⋅  (6d) 
 
After computing the various unknown variables appearing in Eqs (6), the bilinear model of Figure (4) is 
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implemented in the finite element model as the force-displacement relationship of a non-linear spring element 
connected to the centre of the foundation slab.   

 

 

Figure 4: Energy dissipation loop for the set of lead core rubber bearings used in this work 

 
The parameters corresponding to the models of the two isolation systems used in this work, are presented in 

Table 1 
 

K0 (N/m) Kinf (N/m) b High damping 
rubber bearings 2.86*106 1.10*106 2.5 

Kel (N/m) Kpl (N/m) fy (N) Lead core rubber 
bearings 28.6*108 2.6*108 0.573*108 

Table 1: Parameters for the two isolation systems used in this work 

4. NUMERICAL RESULTS AND DISCUSSION 

Time domain non-linear dynamic analyses are preformed with non-linearities concentrated at the spring 
simulating the isolation system.  The linear acceleration method is used for the integration of the system of the 
equations of motion while the full Newton-Raphson method is used for the solution of the non-linear systems of 
equations.  An artificial accelerogram compatible with the EC-8 spectrum for soil type C is used as an input 
excitation.   
In the following, selective results of the analyses are presented.  In Figure 5, the base shear force below the 
foundation slab versus the corresponding base displacement is plotted for each isolation case.  In Figure 6, the 
total base shear force just above the foundation slab is plotted versus time.  For comparison purposes the base 
shear time history for the non-isolated case (fixed base conditions), is also shown.  In Figure 7, time histories of 
base displacement are plotted for each isolation case.  The time history of the horizontal displacement, relative to 
the base, of the inner shell at the fluid free surface level is plotted versus time in Figure 8.  For comparison 
purposes, the horizontal displacement of the inner shell for non-isolated (fixed base conditions) is also shown.  
Similarly, in Figure 9 the relative displacement at 2/3 of the height of the inner shell, where the maximum 
deflection is observed, is illustrated. Finally, in Figure 10 the wave height at the intersection of the fluid free 
surface and the inner shell is plotted versus time for each isolation case and, for comparison purposes, fixed base 
conditions. For completeness modal analysis has been performed for the fixed base boundary conditions. The 
eigenfrequencies of the most important modes, based on the mass participation factor (MPF), for horizontal 
seismic excitation, are listed in Table 2.  
 

Eigenfrequency 1st  2nd  3rd 
f (Hz) 7.624 8.65 14.8 Outer tank MPF (%) 54.3 19.1 7.13 
f (Hz) 0.1136 2.187  Inner tank 

(full) MPF (%) 48.95 48.7  

Table 2: Eigenfrequencies for fixed base conditions 

Fy

dp dl
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In view of the results shown in Figures 5-10, a series of conclusions can be made concerning the most 
prominent design parameters.  In terms of base shear force, reductions of the order of 70% are calculated for 
both isolation systems investigated in this work.  Similarly, maximum stresses in the inner shell are reduced by 
approximately 60%, in comparison to the non-isolated case where fixed base conditions are considered.  
However, in Figure 10 an increase of the sloshing height, in comparison to the non-isolated tank, is observed, 
particularly in the high damping rubber bearing isolation case.  This is due to the fact that the motion of the 
liquid free surface can be viewed as a synthesis of the natural sloshing motion (free vibration) and the motion of 
the base (forced vibration).  Concerning the high damping rubber bearing isolation case, the base displacement 
time history of Figure 7 is characterized by a unique dominant period of 2.04 sec, which is very close to the 
target isolation period of 2.00 sec.  Thus, the wave height time history of Figure 10 appears as the superposition 
of mainly two harmonic motions, the first one being the sloshing motion itself while the second exhibits the 
same period as the base motion and a rather large amplitude.  In the other hand, for the case of lead core rubber 
bearings, there is not a unique dominant frequency characterising the base motion of the tank but rather a series 
of significant frequencies of comparatively small amplitude.  The difference in the base motion characteristics 
between the two cases is explained by the different mechanical behavior of the two bearing types, i.e., while the 
high damping rubber bearing exhibit a weak nonlinear behavior, the lead core rubber bearings demonstrate a 
rather strong nonlinear behavior.  In conclusion, the use of lead core rubber bearings results for a more effective 
isolation of liquid storage tanks of the type studied in this work. 
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Figure 5: Base shear force below the foundation slab versus base displacement for each isolation case 
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Figure 6: Time histories of total base shear just above the foundation slab for the isolated and the non-isolated 
(fixed base conditions) cases. 
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Figure7: Base displacement time histories for each isolation case 
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Figure:8 Time histories of the relative to the base displacement of the inner shell at the fluid free surface level 
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Figure:9 Time histories of the relative to the base displacement of the inner shell at 2/3 of its height 
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Figure 10 : Wave height time histories at the intersection of the fluid free surface and the inner shell 
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Abstract. The seismic response of a typical spherical liquid storage steel tank equipped with a non-linear 
viscous bracing system is numerically investigated.  The numerical analyses are performed by means of a 
detailed finite element model, taking into account the exact geometry of the steel tank and the fluid-structure-soil 
interaction effects.  The soil-structure-interaction is modeled using discrete mass, spring, and dashpot elements, 
rigidly connected to the supporting system of the tank.  The earthquake motion is in the form of an artificial 
accelerogram compatible with the Eurocode-8 provisions.  Representative results for base shear forces, vertical 
displacements of the fluid content and displacements at characteristic locations of the spherical tank are 
presented and compared to those corresponding to a tank with a conventional bracing system. The research has 
been performed in the frameowork of the project INDEPTH (Development of INnovative DEvices for Seismic 
Protection of PeTrocHemical Facilities), supported by the Environment and Sustainable Development 
Programme of the European Commission Research Directorate General (Contract EVG1-CT-2002-00065). 

1 INTRODUCTION 

Spherical tanks are usually used in the petro-chemical industry to store pressurized and refrigerated low-
density liquids, such as chlorine, suplhur dioxide, carbon dioxide, anhydrous ammonia, polypropylene, etc.  The 
shell of a typical spherical tank is supported by a number of equally spaced columns which are resting on an 
annular reinforced concrete ring which, for all practical purposes, is considered rigid.  The lateral displacement 
of the structure is restrained by diagonal braces located between adjacent columns, as shown in Figure 1.  
Conventional bracing systems undertake only uniaxial tension loads since they buckle at low compressive 
forces.  

The seismic behavior of such structures is of great importance since the contained fluids are usually 
hazardous chemical or flammable fuels, and a possible leak could cause enormous damage such us 
environmental contamination, fires, explosions, etc., in the broader neighborhood.  Therefore, seismic protection 
systems may prove necessary for new constructions or for retrofitting existing structures, particularly in regions 
with moderate and high seismicity.  The modern anti-seismic techniques can be classified as base isolation and 
passive energy dissipation techniques. The base isolation approach attempts to isolate the structure at its base by 
moving dominant frequency of the structure away from the dominant frequency range of the earthquake ground 
motion.  The usual isolators come in the form of rubber–type bearings, such as lead core or high damping rubber 
bearings, or friction pendulum bearings.  On the other hand the passive energy technique uses energy dissipation 
or damping devices such as viscous dampers, buckling restrained braces, friction devices, etc., in an effort to 
dissipate a critical portion of the earthquake induced kinetic energy.  Although the base isolation technique has 
been successfully used for the seismic protection of new structures, it may prove ineffective, as far as the 
associated cost is concerned, in cases where retrofitting is necessary.  In these cases the passive energy 
technique appears to be much more attractive mainly due to its lower cost, compared to the base isolation 
solution, since merely replaces a conventional bracing system with one that dissipates energy.  

Despite intensive research concerning industrial storage tanks in general, only few studies related to 
spherical storage tanks are available in the literature, Ramaneyulu et al. [1], Ciampi and Addessi [2] and Martelli 
et al. [3].   However, the sloshing of liquids in spherical containers has attracted some interest, e.g. Budiansky 
[4], Abramson, Chu and Garza [5], McIver [6], Evans and Linton [7], Dutta and Laha [8], and Papasryrou et al. 
[9]. 

In this work the seismic response of a typical spherical storage tank with a conventional or a dissipative 
bracing system is investigated.  The numerical study has been performed on the basis of a detailed finite element 
model which takes into account the exact geometry of the tank, the fluid-structure interaction effects for an 
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arbitrary level of filling, the soil-structure interaction using discrete mass-spring-dashpot elements rigidly 
connected to the supporting system, as well as the non-linearities introduced by either the dissipative bracing 
system or the tension only behavior of the conventional braces.  The dissipative bracing system consists of a 
series of non-linear viscous fluid dampers. The earthquake motion is assumed to be an artificially created 
accelerogram compatible with the Eurocode-8 (EC8) provisions. The presented results concern base shear 
forces, vertical displacements of the fluid content and displacements at characteristic locations of the spherical 
tank at  50% and 98% fulleness.  

2 DESCRIPTION OF STRUCTURE 

The structure analyzed in the present study, shown in Fig. 1, is a typical spherical liquid storage tank with a 
volume of 4200m3.  The contained liquid is assumed to be refrigerated polypropylene with a density of 
522Kgr/m3.  The sphere has an inner diameter of 20m, an average shell thickness of 40mm and is constructed 
from a steel plate with E=2.1GPa, v=0.3 and ρ=7850Kgr/m3.  The equator of the sphere is 12.5m above ground.  
The sphere is supported by eleven circular columns with an outer diameter of 914.4mm and a wall thickness of 
1.7mm.  The columns are equally spaced on a circle diameter of 19.63m.  The spherical tank is laterally 
strengthened by pairs of diagonal braces between columns, i.e. 11 pairs in total, as shown in Fig. 1.  The braces 
are made of steel plate 350x30mm the mechanical characteristics of which are the same as those of the spherical 
container.  Each brace is pin-connected to the adjacent columns, at 0.5m and 7.47m above the bottom level of 
the columns.  All braces are considered to be tension-only elements since they buckle at very low compression 
levels.  The damping coefficient of the overall structure has been assumed equal to 2%.  The superstructure is 
supported on a reinforced concrete ring with an outer diameter of 22.12m, a thickness of 2.5m and a height of 
2.0m.  The foundation is characterized by the following material properties E=30GPa, v=0.29 and 
ρ=2500Kgr/m3 and it is considered rigid for all practical purposes.  The soil has been chosen, according to EC8 
[11] classification, to be of type C (medium soil) with elastic constants E=0.178GPa, v=0.33 and 
ρ=1834.8Kgr/m3. 

                                 

Figure 1. Geometry of spherical liquid storage tank 

3 NON LINEAR VISCOUS DAMPER 

In the present work, seismic protection for the above-described spherical tank is accomplished by replacing 
all the braces with viscous fluid damper devices.  Viscous fluid dampers are uniaxial, usually non-linear devices 
whose force is proportional to a power of the velocity, i.e.   

 
 aVCF ⋅=  (1) 

 
with C being a constant.  For seismic applications the exponent a usually ranges from 0.1 to 1 [10].  In the 
present study, after some numerical experimentation [11], these constants have been chosen as a =0.15 and 
C=400 KN/(m/s)0.15.  However, it should be noted that, opposite to tension-only conventional braces, viscous 
fluid dampers work both in tension and compression. 
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4 SEISMIC GROUND EXCITATION  

In the present study an artificial seismic ground motion, in accordance to EC8 [11] spectrum for Soil C and 
soil damping of 5%, is considered [Marti-Crespo-Karabalis]. The ground acceleration has a duration of 20sec 
and a peak ground acceleration (PGA) of 0.4g.  The artificial accelerogram is shown in Fig. 2a, while its 
compliance to the spectral requirements of EC8 is depicted in Fig. 2b. 
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Figure 2: (a) Artificial accelerogram used for the analysis of spherical tank; (b) Compliance of artificial 
accelerogram to the spectral requirements of the EC8, for soil type C 

5 SOIL-STRUCTURE INTERACTION  

According to Karavasilis et al. [14], the soil-structure interaction (SSI) effects on the dynamic response of a 
structure supported on a rigid annular foundation can be taken into account by modeling each of the physical 
degrees-of freedom, i.e. horizontal, vertical, rocking and torsion, of the soil-foundation system as discrete 
system with two degrees-of-freedom.  The discrete 2-mass system considered in the present analysis is shown in 
Fig. 3, and following the procedures outlined in ref. [14] the constants of all the discrete elements are computed 
as listed in Table 1.  For modeling purposes, the spherical storage tank structure under consideration is 
connected to the M1 masses of the discrete systems through rigid connections, as shown in Fig 3.  

TYPICAL 
SPHERICAL 
TANK

K3,C3
K2,C2

K1,C1

M1

M2

 
Figure 3: Two degree-of-freedom discrete system for the foundation-soil system modeling 

 
 
 
 
 
 
 

DOF K1 
[kN/m] 

C1 
[kN*s/m] 

K2 
[kN/m] 

C2 
[kN*s/m] 

K3 
[kN/m] 

C3 
[kN*s/m] 

M1 
[kgr] 

M2 
[kgr] 

Vertical 4326.8 81.8 3894.1 0 0 61.9 2039 2353 
Horizontal 3461.4 37.2 4326.8 0 0 79.3 1725 1098 
Torsional 511623.8 1919.3 317559.6 0 0 2626.3 141193 50986 
Rocking 370486.2 1414.2 317559.6 0 0 2929.4 117660 58830 

Table1: Discrete element constants for the two degree-of-freedom SSI system 

6 FEM MODEL 

The numerical analysis of the spherical storage tank structure is performed on the basis of detailed FEM 
model developed with the help of the routines available in the ANSYS Finite Element program [15], as shown in 
Fig. 4.  The spherical shell and the supporting columns are modeled by 10724 four-noded shell elements 

(a) (b) 
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(SHELL63) with six DOFs per node.  The eight node solid fluid element (FLUID80), with three DOFs per node, 
has been chosen to model the incompressible fluid content.  A total of 3000 or 5300 FLUID80 elements are 
used, respectively, for the two levels of tank fullness considered in this work, i.e. 50% and 98% fullness.  In 
order to satisfy the continuity conditions between the fluid and solid media at the spherical boundary, the 
coincident nodes of the fluid and shell elements are constrained to be coupled in the direction normal to the 
interface, while relative movements are allowed to occur in the tangential directions.  The uniaxial “tension 
only” behavior of the braces is simulated by means of the 3-D spar elements LINK10, which feature a bilinear 
stiffness matrix, i.e. the stiffness is removed if the element goes into compression.  The viscous fluid damper 
devices are modeled using the 1-D non-linear damper elements COMBIN37.  Finally, concentrated mass 
elements (MASS21) and linear spring-damper elements (COMBIN14) are used to model the discrete elements 
for the simulation of soil-structure interaction.   The motion at the base of the structure is coupled to the motion 
of the corresponding M1 masses of the discrete SSI system via a series of rigid body motion constraints.  

The above FEM spherical tank model is numerically analyzed by means of a full transient non-linear 
analysis. The governing equations of motion can be expressed in matrix form as [16] 

 
 [ ] ( ){ } ( )[ ] ( ){ } ( )[ ] ( ){ } [ ][ ] ( ){ }tuMtuuKtuuCtuM g−=++  (2) 

 
with [M], ( )[ ]uC  and ( )[ ]uK  being the mass, damping and stiffness matrices of the structure, respectively, [ ] 
an influence coefficient matrix, and ( ){ }tug  the ground acceleration.  Eq. (2) is integrated directly in time using 

the Newmark-β method. The non-linearities, introduced by the “tension-only” behavior of the conventional 
braces and by the viscous fluid damper devices, require an iterative solution with incremental load steps. In the 
present study the iterative Newton-Raphson approach is employed [15].  
 
 
 

  

Figure 4: Finite element spherical tank model 

 

7 NUMERICAL STUDY 

The seismic response of the spherical liquid storage tank with and without the dissipative bracing system is 
investigated by performing two types of analyses: (i) modal analysis and (ii) time domain analysis. The problem 
is solved for two levels of tank fullness, i.e. 50% and 98% fullness.  The interested reader can find more detailed 
analyses in Drosos, Tsinopoulos and Karabalis [17]. 

7.1  Modal Analysis 

Provided that the diagonal braces are virtually non-existent in compression (due to buckling), only one of 
them, out of each pair of braces, provides stiffness at any given displacement configuration.  However, an on-off 
element is amenable to non-linear analysis only, excluding an eigenfrequency analysis.  In order to obtain a 
sense of the possible modal shapes and corresponding eigenfrequencies, a linear analysis is attempted 
considering both braces of each pair, but with one-half of their cross section, providing stiffness, in a linear 
fashion, both in tension and compression.  The modal analysis is performed using the reduced method [15], 
since only lumped mass matrices are produced by the FLUID80 elements.  However, the Block Lanzos method 
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[15] is used to calculate the eigenfrequencies of the empty tank.  The eigenfrequencies of the most important 
modes, based on the mass participation factor (MPF), are listed in Table 2. The results correspond to idealized 
fixed base boundary conditions, assuming a non-deforming soil subgrade, and SSI conditions as described in 
section 5.  

 
 
 

   1st 
frequency 

2nd 

frequency 
f (Hz) 4.13 44.1 Fixed base  MPF (%) 97.6 1.16 
f (Hz) 5.4 3.6 

Empty 
tank SSI  MPF (%) 61.1 30.5 

f (Hz) 2.82 0.201 Fixed base  MPF (%) 56.5 38.4 
f (Hz) 2.55 0.201 50% full 

SSI  MPF (%) 55.4 35.8 
f (Hz) 1.693 1.691 Fixed base  MPF (%) 84.00 8.76 
f (Hz) 1.542 1.541 98% full 

SSI  MPF (%) 86.4 5.95 

Table2: Eigenfrequencies for fixed and SSI boundary conditions and various levels of tank fullness. 

7.2  Time Domain Analysis 

The seismic response of the spherical tank structure with a dissipative bracing system is compared to that of 
the tank with conventional bracing in order to investigate the effectiveness of the seismic protection system.  
The time history analysis corresponds to the artificial earthquake ground motion, described in section 4, applied 
in horizontal X-direction of the tank.  

50% full tank 

The time variation of the displacement in the x-direction at the top of the sphere, the total base shear and the 
vertical fluid displacement at the intersection of the fluid free surface and the tank wall are shown in Figs 5, 6 
and 7.  Figs 5 and 6 reveal a significant reduction in horizontal movement and base shear of the tank, implying 
the effectiveness of the seismic protection system.  More specifically in Fig 5, the maximum horizontal 
displacements at the top of the sphere are reduced from 7cm when conventional braces are used to 3.6cm when 
dissipative ones are employed.  Similarly in Fig 6, the total base shear peak responses are reduced from 
11586KN to 3560KN.  On the other hand, the sloshing vertical displacements of the fluid content, shown in Fig. 
7, remain almost the same, as expected, for both bracing systems.  This is due to the fact that the natural 
frequency of sloshing liquid mass (4.975sec) is well apart from the dominant natural frequencies of the structure 
and corresponds to negligible portion of the seismic excitation, see spectrum of seismic input in Fig. 2(b).  In 
Fig. 8 the hysteretic loop of the viscous damper located almost parallel to the direction of the seismic excitation 
is plotted. 
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full spherical tank tank 
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tank 

98% full tank 

Similar analyses to the 50% full tank case are performed for an assumed maximum operational level of 98% 
fullness.  Figs 9 and 10 show the time variation of displacement in the x-direction at the top of the sphere and 
the total base shear, respectively, while in Fig 11 the hysteretic loop of the viscous damper located almost 
parallel to the direction of the seismic excitation is depicted.  In conclusion, percentage reductions in horizontal 
movement at the top of the sphere and total base shear when dissipative bracing is employed, are in the order of 
42% and 74%, respectively. 
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Abstract. In this work, the parameter identification of non-linear dynamical systems is presented. More 

specifically the non-linear hysteretic behavior of seismic isolators modeled by the versatile Bouc-Wen model 

such as FPS is determined based on given data. The primal objective of this paper is to develop a parametric 

identification method for the modeling of FPS seismic isolator from periodic vibration experimental data. The 

estimation of the model parameters based on measured data from periodic experiments is implemented using a 

time domain method. The Bouc-Wen differential model is adopted to take into account the hysteretic frictional 

damping of the FPS bearings. Then, the parameter identification problem is solved using nonlinear optimization 

methods such as the Levenberg-Marquardt algorithm. The identification results, of the proposed method, are 

verified by numerical simulations and the accuracy of the identified parameters is verified by comparing the 

experimentally measured and the identified time histories. 

1 INTRODUCTION 

In recent years, the Friction Pendulum System (FPS) has become a widely accepted device for seismic 

isolation of structures. The concept is to isolate the structure from ground shaking during strong earthquake. 

Seismic isolation systems like the FPS are designed to lengthen the structural period far from the dominant 

frequency of the ground motion and to dissipate vibration energy during an earthquake. The FPS consists of a 

spherical stainless steel surface and a slider, covered by a Teflon-based composite material. During severe 

ground motion, the slider moves on the spherical surface lifting the structure and dissipating energy by friction 

between the spherical surface and the slider. 

Friction Pendulum Systems exhibit nonlinear inelastic behavior under severe dynamic loading such as 

earthquakes. In the case of cyclic loading the nonlinear restoring force of such isolators exhibits hysteretic loops 

and is memory-dependent. It depends not only on the instantaneous deformation, but also on the history of 

deformation. This memory nature makes modeling and analysis more difficult than other non-linear systems. A 

widely used model that describes hysteretic behavior that belongs to the class of endochronic models is that of 

Bouc-Wen 
[1]

. This model consists of a system of nonlinear differential equations where the memory-depended 

nature of hysteresis is taken into account with the use of an extra variable. Different values of the parameters of 

this model reveal a wide range of different mechanical behavior. This accounts for softening/hardening behavior, 

stiffness degradation, strength deterioration, pinching etc. An appropriate choice of parameters determined by the 

identification algorithm on experimental data makes it possible to describe sufficiently the non-linear dynamic 

behavior of a hysteretic system. 

In the past two decades, several researchers have devoted their efforts to identify the parameters of the Bouc-

Wen model using experimental data. From a mathematical standpoint, determination of the hysteretic loop 

parameters by identification is a problem of non-linear multivariate optimization. In this paper, this problem is 

solved using a popular gradient optimization algorithm called the Levenberg-Marquardt method. In section 2, the 

versatile Bouc-Wen model is presented to take into account the inelastic behavior of the FPS bearings. The time 

domain identification algorithm is presented in section 3. The effectiveness and accuracy of the proposed 

algorithm is addressed in section 4 with the aid of a numerical study. Finally, this paper concludes with the 

presentation of identification results using the proposed algorithm and a summary of the findings in section 5.  
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2 HYSTERETIC MODEL 

2.1 Bouc-Wen hysteretic model 

In the context of a forced single degree of freedom hysteretic oscillator the equation of motion using the Bouc-

Wen model is as follows: 

 (1 )mx cx akx a kz f+ + + − =�� �  (1) 

where , , ,m c k f and a are the mass, damping coefficient, stiffness, external excitation and plastic to elastic 

stiffness ratio respectively. The hysteretic auxiliary variable z , according to the Bouc-Wen model is given by: 

 ( )| | ( )
n

z Ax z sign xz xγ β= − +� � ��  (2) 

The ultimate value of z  is given by: 

 

1

n

MAX

A
z

β γ
 

=  + 
 (3) 

In the case of system identification, apart from the mass m  that can be measured, all the other parameters of the 

model are to be identified resulting in the following unknown parameter vector: 

 [ ]Tp a k c A nβ γ=  (4) 

2.2 Identification issues and model limitations  

The Bouc-Wen model parameters , ,A β γ are the one that control the hysteretic loop shape, whereas 

parameter n  affects the smoothness of the hysteretic curves. A large variety of complex non-linear hysteretic 

dynamic behavior can be represented by the Bouc-Wen model through an appropriate choice of these parameters. 

Wong et al 
[2, 3]

 conducted an extensive study of the parameters effect on the response of the Bouc-Wen model. 

On the other hand, Erlicher and Point 
[4]

 proved the constraints that must hold for the Bouc-Wen model 

parameters so that it is thermodynamically admissible. Therefore, during Bouc-Wen model identification, one 

must also take into account the restrictions and constraints regarding the Bouc-Wen model parameters. 

Another issue that has to do with the identification of the Bouc-Wen model is the non-smoothness of the 

hysteretic restoring force. The main advantage of the Bouc-Wen model is the ability to capture non-smooth 

dynamic behavior as the sliding of an FPS seismic isolator using an analytic mathematical formulation. However, 

the implementation of identification algorithms on rapidly changing dynamical systems, such as the FPS 

isolators, renders the common identification methodologies unable to track them. As claimed by Ching and 

Glaser 
[5]

, the reason is that all these identification methodologies possess the inherent assumption that the degree 

of change of the dynamical system studied is uniform in time. So, systems with frictional slip like the FPS are 

difficult to be identified. Additionally, the problem identification of the Bouc-Wen model becomes harder 

because of the fact that in certain cases, different combinations of some parameters may produce almost identical 

hysteretic loops 
[6]

. 

2.3 Modelling of FPS seismic isolators 

As explained in the last section, identification of the seven unknown parameters of equation possesses great 

difficulties. However, in the case of FPS bearings, the identification problem can be simplified. The natural 

period of a FPS bearing is only related to the radius of the concave surface R : 

 2
R

T
g

π=  (5) 

where g  is the acceleration of gravity.  

With the aid of equation (5), the post yield (sliding)  stiffness of the FPS can be calculated by: 
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g

ak m
R

=  (6) 

It is common among researchers 
[7]

 to assume that in the case of FPS bearings, energy is dissipated by means 

of frictional sliding of the isolator, so one can assume that there is very little or not at all viscous damping: 

 0c ≈  (7) 

Finally, the value of parameter a   usually, in the case of FPS isolators, is taken equal to: 

 0.1a ≈  (8) 

Using equation (7), the equation of motion of the FPS becomes: 

 (1 )mx akx a kz f+ + − =��  (9) 

where the hysteretic auxiliary variable z is given by equation (2). 

The post yield stiffness ak  can be calculated by equation (6) resulting to the following unknown parameter 

vector: 

 [ ]Tp A nβ γ=  (10) 

One can see that the unknown parameters were reduced from seven to four and that in the case of a periodic 

vibration experiment, the hysteretic auxiliary variable can be easily measured.   

3 TIME DOMAIN PARAMETER ESTIMATION 

In the case of a periodic vibration test of a FPS bearing, both the cyclic excitation f and response x are 

measured. One can then evaluate the post yield stiffness ak  and the evolution of the hysteretic auxiliary variable 

z using equations (6) and (9) respectively. The evolution of z�  can then be calculated by numerical differentiation 

of the variable z. Equation (2) can be rewritten as: 

 ( )( ) | | ( )
n

D t z Ax z sign xz xγ β= − + +� � ��  (11) 

If the actual force-displacement relation conforms completely to the Bouc-Wen model and p are the true model 

parameters, then equation (11) should be equal to zero regardless of time t. In fact, equation (11) never 

approaches zero due to model errors and measurement noise. Hence, the identification problem becomes a non-

linear optimization one, with equation (11) representing the error residuals. The objective function whose 

minimum one seeks, in terms of non-linear least squares, becomes: 

 
2

1

1
( ) ( )

2

t

t
F p D p= ∑  (12) 

The resulting non-linear least-squares optimization problem can be solved using the Levenberg-Marquardt 

algorithm 
[8]

. The parameters that minimize the objective function (12) are found by the iteration formula of the 

algorithm: 

 
1

1t t T Tp p J J I J Dµ
−+  = − +   (13) 

where J  is the Jacobian matrix and µ  the Levenberg – Marquardt parameter. 

The Jacobian matrix J  that is required for the implementation of the algorithm can be derived analytically by 

the equations: 
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In the time domain implementation of the algorithm, the residuals are calculated at each iteration step with the 

aid of equation (11) using the time series from the periodic vibration experiment. After that, the Jacobian matrix 

is calculated analytically using equation (14). Finally, the new parameter values are estimated using the iteration 

formula shown in equation (13). In the case where there is a range of different periodic vibration tests, the 

algorithm is implemented in a similar way, but using as an objective function the sum of residuals of each 

experiment. 

The Levenberg-Marquardt algorithm is a popular gradient method for unconstrained optimization. To 

improve convergence and stability, one can impose constraints on the algorithm by introducing new parameters 

enforced by logistic transformations as Zhang et al. 
[9]

 suggest. 

4 APPLICATION TO FRICTION PENDULUM SYSTEMS 

The identification method presented in the previous sections was examined through identification of FPS 

bearings. In order to evaluate the accuracy of the identification algorithm, a set of realistic parameters were used 

to numerically generate experimental data. The experimental data were obtained by solving numerically the 

system of non-linear differential equations (9) and (2) using a 4
th

-5
th

 order Embedded Runge Kutta method under 

sinusoidal excitation f. The Bouc-Wen model parameters used throughout the numerical simulation are 

summarized in table 1. 

 

m a k c Α β γ n 

1 0.1 10 0 1 0.1 0.9 2 

Table 1: Bouc-Wen model parameter values used throughout the numerical simulation 

This set of parameters yields maximum value for the hysteretic auxiliary parameter 1MAXz =  and it was 

chosen because it is suggested by other researchers 
[10]

 for capturing the dynamic behavior of FPS seismic 

isolators in a sufficient way. According to this set of parameters, the natural period of such a system is 

6.3secT = . 

To verify the time domain identification algorithm, a numerical experiment was conducted using sinusoidal 

excitation ( 15sin 0.1f t= ). The amplitude of the excitation was chosen so that strong nonlinearities and sliding 

of the isolator was manifested. As claimed by other researchers 
[11]

, the identification method gives best results 

with a few cycles of non-linear response. The hysteretic loops and the evolution of the hysteretic auxiliary 

variable z  are shown in figure 1 and 2 respectively. 

The identification method was conducted on the steady state part of the experimental data using a two-period 

signal. To examine whether the algorithm was sensitive to initial parameter guesses, four sets of initial parameter 

values were tried. The initial values used are shown in table 2. The results of identification algorithm are 

summarized on table 3 and it becomes evident that the method behaved very well since it managed to converge to 

the global minimum of the objective function. 

 Initial Parameter Values Sets 

Model Parameters 1
st
  2

nd
  3

rd
  4

th
  

A  0.1 1 5 10 

β  0.1 1 5 10 

γ  0.1 1 5 10 

n  0.1 1 5 10 

Table 2: Different initial parameter values sets. 
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  Identified parameter using different initial sets 

Model Parameters Real 1
st
  2

nd
  3

rd
  4

th
  

A  1 1.002 1.002 1.002 1.002 

β  0.1 0.1076 0.1076 0.1076 0.1076 

γ  0.9 0.8944 0.8944 0.8944 0.8944 

n  2 1.9962 1.9962 1.9962 1.9962 

MAXz  1 1 1 1 1 

Table 3: Identification results. 

In order to examine the effect of noise on the identification accuracy the numerical experimental data were 

corrupted with noise: 

 ( ) ( )x t x t rε= +  (15) 

where ε  represents the signal to noise ratio level and r  is a random variable with zero mean and unit 

variance. The time series of numerically obtained displacement and velocity were corrupted with discrete noise 

of various levels and the identification method was implemented again using various initial conditions. The 

results of the identification method using the second set of initial conditions are summarized in table 4. 

 

  Identified parameter using different noise levels 

Model Parameters Real e=0.001 e= 0.005 e= 0.01  e=0.02  

A  1 1.002 1.0095 1.036 1.1542 

β  0.1 0.1078 0.1455 0.2591 0.5572 

γ  0.9 0.8941 0.8626 0.7721 0.5839 

n  2 1.9888 1.8091 1.3876 0.6507 

MAXz  1 1.0001 1.0008 1.0033 1.0176 

Table 4: Identification results using noise corrupted data. 

It becomes clear from table 4 that the identification accuracy is reduced with the increase of the level of noise. 

In the case of substantial noise, identified parameter values may be completely different from the real ones. The 

most sensitive parameter seems to be n. The values of the other parameters seem to deviate from the real ones, 

but in a way such that the ultimate value of the hysteretic variable z is very close to the real one. 

Zhang et al. 
[9]

 propose the use of digital filters in series into the identification algorithm for expanding the 

capabilities of the optimization algorithm. Following their suggestion, the noisy experimental data were filtered 

using two digital filters. The first was a median filter and the second was a least-squares lowpass filter also 

known as the Savitzky-Golay FIR lowpass filter. The algorithm was implemented for various noise levels and the 

results are summarized in table 5. 

 

  Identified parameter using different noise levels 

Model Parameters Real e=0.01 e= 0.02 e= 0.05  e=0.1  

A  1 1.004 1.0037 1.0092 0.9623 

β  0.1 0.1064 0.1049 0.1482 0.0793 

γ  0.9 0.8946 0.8952 0.8576 0.876 

n  2 1.9889 1.9644 1.9212 1.8872 

MAXz  1 1.0015 1.0019 1.0018 1.0038 

Table 5: Identification results using digitally filtered data. 

A comparison between table 4 and table 5 shows that noise pre-filtering of the experimental data expands 

significantly the accuracy and effectiveness of the proposed identification algorithm. A comparison between the 

hysteretic loops obtained from noisy and noise pre-filtered data is shown in figures 3 and 4. 
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5 CONCLUSIONS 

An identification method is proposed for the estimation of parameters of the Bouc-Wen model based on 

experimental data. The identification problem is solved using nonlinear optimization methodologies developed in 

the time domain. Parameter estimation was accomplished using the gradient Levenberg-Marquardt method. It 

was shown that the identification method was able to capture the inelastic dynamic behavior in the case of 

reliable experimental data. From the parametric studies conducted, the method was found to be insensitive to the 

initial guesses of the parameter values. 

The effect of noise on the accuracy of the method was studied extensively. It was found that the method is 

sensitive to noise-corrupted data. As far as the Bouc-Wen model parameters are concerned, the presence of noise 

seems to play an important role in the final parameter values, especially for the exponential parameter n. It was 

also shown that a change in this parameter requires a significant change in the other parameter values in order to 

fit the same hysteretic loops. However, it was shown that by digital filtering the noisy experimental data, one can 

expand the capabilities and the accuracy of the identification method significantly. 
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Figure 1. Hysteresis loops obtained by numerical simulation 

 

Figure 2. Hysteresis loops obtained by numerical simulation 
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Figure 3. Comparison between hysteresis loops obtained from noisy data and noise pre-filtered data.  

 

 

Figure 4. Comparison between hysteresis loops obtained from noisy data and noise pre-filtered data.  
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Abstract. A new computer program “Plastique”, for the inelastic dynamic analysis of R/C structures is 
presented. A macro modeling approach is implemented in which structural members are represented by a single 
nonlinear element. Three different types of 2D-macro elements are formulated namely, beams, columns and 
shear walls. The mechanical properties of each element are calculated through a flexibility formulation based on 
both element edge sections and a distributed plasticity law. A fiber model is used to define the monotonic 
strength envelope at each section. The hysteretic behavior of structural elements is monitored by a smooth 
hysteretic model of Bouc-Wen type. This model is capable of expressing the stiffness degradation, strength 
deterioration and pinching phenomena which are observed in R/C elements in cyclic loading. Plane frames 
consisting of combinations of plane elements are linked at the levels of floors with diaphragms to produce a 3D 
mathematical model of the structure. Solutions are obtained by direct integration of the equations of motion, 
while an iterative procedure is implemented to satisfy equilibrium at every time step. Finally, a damage analysis 
is performed using an appropriate damage model. Numerical examples are presented, revealing the features of 
the program. 
 

1 INTRODUCTION 
A problem of significant importance in structural engineering deals with the response of R/C structures 

subjected to dynamic loading. For load factored linear elastic analysis, suggested by the codes, the results are 
quite satisfactory, but do not reveal the characteristics of the true behaviour of the structure. However, if inelastic 
response is taken into account, more refined models are needed as to achieve a realistic behaviour. In recent 
years, significant research has been carried out in order to overcome the difficulties arising in such an analysis. 
Difficulties emanate not only from the inherent complexity of  R/C structures, but also from the uncertainties 
related to terms such as dynamical loading, material nonlinearity and hysteresis.  

The macro-modeling of structures has been one of the main methods introduced to simulate these complex 
phenomena. In a macro-modeling simulation, the field of knowledge concerning the actual behaviour of 
reinforced concrete is incorporated in the structure using an element–based approach. In such a way, the well 
established, from matrix structural analysis, beam element is enriched with a moment curvature envelope 
describing the behaviour of both end sections, a hysteretic law and a relevant yield penetration rule for the beam. 
By introducing such an elasto-plastic element, one is able to simulate the gradual shift of the mechanical 
properties of the element as it passes from the elastic to the inelastic region of its response. The overall 
behaviour of the structure is assessed using a proper damage index. 

An aspect of utmost importance, for a non linear analysis, is the hysteretic rule needed to model the cyclic 
response of the structure. Over the last twenty years, significant development has occurred in the so-called 
phenomenological approach of hysteresis. Beginning with Bouc’s original formulation (1967, 1969, 1971) of the 
single degree degrading hysteresis model with pinching, many modifications have been subsequently introduced, 
such as the Bouc-Wen model (1976, 1980), the Baber-Noori model (1985, 1986) and the Reinhorn model 
(1996). These hysteresis models –also known as smooth hysteretic models- are capable of simulating a number 
of different types of loops using a single smooth hysteretic function affected by a set of user-varied parameters. 
In doing so, one can easily model the three main attributes describing the cyclic response of R/C elements-
stiffness degradation, strength deterioration and pinching behaviour due to bond-slip effects. 

Following these rules, many computer programs have been developed, capable of performing a non-linear 
structural analysis such as DRAIN-2D (Kanaan and Powell,1973), SARCF (Chung et al.,1998; Gomez et 
al.,1990), IDARC (Park et al., 1978;Kunnath et al., 1992) and ANSR (Oughourlian and Powell,1982). 
“Plastique” code presented herein, although it keeps the elastoplastic behaviour within the 2D plane frames 
works with a 3D stiffness of the entire structure based on diaphragmatic action. 
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2 MATERIAL PROPERTIES 

 
Figure 1. Stress –Strain diagrams a) for unconfined concrete and b) for reinforcing steel 

Material properties are defined through certain conventional stress-strain curves both for unconfined concrete 
and reinforcing steel. In the former a parabolic stress-strain relationship with a softening branch is used, while in 
the latter a bilinear stress-strain diagram with hardening is implemented. The aforementioned stress – strain 
curves are depicted in Figure 1. 

 

3 ELEMENT MODELING 
Three different types of two dimensional structural elements can be modelled in the present version of the 

programme, namely beams, columns and shear walls. By combining such elements one assembles multistorey 
plane frames, which are coupled through rigid diaphragms at the floor levels to create a 3D model of the 
structure. 

3.1 Beam Element 
Beam elements are considered as flexural elements with shear deformations taken into account while, axial 

deformations are neglected as the beams are part of the diaphragm. Beside the flexural part two rigid zones are 
introduced one at each end to account for the stiffness increase at the joint, if needed. The element stiffness 
matrix varies throughout the analysis due to plasticity effects. In order to simulate such effects a hysteretic law 
and a spread plasticity model are used. The hysteretic model acts upon an initial moment-curvature relationship, 
a skeleton curve. A skeleton curve must be defined for each one of the edge sections of the element. Such a 
curve can be either user defined or computed by a fiber model given certain properties of the section under 
consideration such as geometry, concrete and reinforcement properties. 

3.2 Column Element 
The column element formulation is identical to the one mentioned above. However, in this case axial 

deformations are taken into account.  

3.3 Shear Wall Element 
Shear wall elements are modelled combining an axial linear-elastic spring, a nonlinear shear and a nonlinear 

flexural spring in series. In this case one defines not only a moment-curvature skeleton curve, but a shear force-
shear deformation curve as well. These curves can be either user defined, or computed through a fiber model. 

4 SPREAD PLASTICITY MODEL 
Inelastic deformations vary along the element’s length. Consequently an element will also exhibit different 

flexibility characteristics. In order to formulate the flexibility matrix of such an element a spread plasticity model 
is incorporated in the programme. This model can formulate the element flexibility matrix taking into account 
the current stiffness (i.e. flexural stiffness concerning beams and columns and also shear stiffness for walls) at 
each end section, a corresponding yield penetration length and/or the elastic core stiffness depending on the 
values of the yield penetration lengths. 

5 YIELD PENETRATION MODEL 
A yield penetration model is used to compute the yield penetration lengths at the end sections of the element  

as shown in Figure 2. Yield penetrations parameters αΑ and αΒ specify the portion of the element where the 
current moment is greater than the corresponding section’s yield moment. For simplicity, a linear moment 
distribution is assumed even in the case of distributed loads. However one can subdivide each structural element 
in more elements in order to capture different types of moment variation. 
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a 

rb*L ra*L L΄=(1-ra-rb)*L 

L

b
αΑ*L αΒ*L 

∗In the case of 
shear wall 
elements: ra=rb=0 
and L=L΄

 

Figure 2. Yield Penetration Parameters 

As long as the current moment distribution is defined, a set of geometrical in nature rules is used in order to 
define both the yield penetration lengths and the core stiffness. The yield penetration parameters are checked 
with the previous maximum penetration lengths. The plastic state of the element can only move into increasing 
penetration lengths. 

6 THE HYSTERETIC MODEL 
The smooth model presented herein is a variation of the model originally proposed by Bouc (1967) and 

modified by several others (Wen 1976; Baber Noori 1985, Reinhorn 1996). The model was developed in the 
context of moment-curvature relationships of beam-columns. Therefore, the stress variable is here referred to as 
“moment” (M) and the strain variable as “curvature” (φ). However, these can be replaced by any other work-
conjugate pair. 

The use of such a hysteretic constitutive law is necessary for the effective simulation of the behavior of R/C 
structures under cyclic loading, since often structures that undergo inelastic deformations and cyclic behavior 
weaken and loose some of their stiffness and strength. Moreover, gaps tend to develop due to cracking causing 
the material to become discontinuous. The Bouc-Wen Hysteretic Model is capable of simulating stiffness 
degradation, strength deterioration and progressive pinching effects. 

The model can be visualized as a parallel combination of a linear and a nonlinear element, as shown in Figure 
3. The relation between generalized moments and curvatures is given by: 

 ( )( )( ) 1 ( )y
y

tM t M z tφα α
φ

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (1) 

where My is the yield moment; φy is the yield curvature;  α is the ratio of the post-yield to the initial elastic 
stiffness and z(t) is the hysteretic component defined below. 

 
Figure 3. Bouc-Wen Hysteretic Model 

The hysteretic function z(t) is obtained from the non-linear differential equation: 

1 1 1 ( ) | ( ) | ( )( ) ( ( ), ( ))  or alternatively   where  
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 (2) 

In the above expression A, B, C, D & E are constants which control the shape of the hysteretic loop for each 
direction of loading, while the exponents nB, nC, nD & nE govern the transition from the elastic to the plastic state. 
Small values of ni lead to a smooth transition, however as ni increases the transition becomes sharper tending to a 
perfectly bilinear behavior in the limit (n→∞). 

The program defaults are: 
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Kpl=αKel
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My
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Kpl

Kel αMy
φ φy curvature
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ϕ
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−

+

−
= = = =  (3) 

The parameters C, D control the gradient of the hysteretic loop after unloading occurs. The assignment of 
null values for both, results to unloading stiffness equal to that of the elastic branch. Also, the model is capable 
of simulating non symmetrical yielding, so if the positive yield moment is regarded as a reference point, the 
resulting values for B and E are those presented in equation (3). The hysteretic parameter Kz is then limited in 
the range of 0 to 1, while the hysteretic function z varies from - +

y y- M / M  to 1. 
Finally, the flexural stiffness can be expressed as: 

  ( ) ( ) ( )0
1 1 11 1 1y y z z
y y y

dM dzK EI M M K EI K
d d

α α α α α α
φ φ φ φ φ

⎡ ⎤ ⎡ ⎤
= = = + − = + − = + −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4) 

6.1 Hysteretic behavior with Degradation  
a) Stiffness Degradation 

The stiffness degradation that occurs due to cyclic loading is taken into account by introducing the parameter 
η into the differential equation: 

 ( ) max
0

1 1     1.0
2

z z
k

y

K Kdz K EI where S
d

µ µ
α α η

φ η φ η
+⎡ ⎤

= → = + − = +⎢ ⎥
⎣ ⎦

 (5) 

The parameter η depends on the current, / yµ φ φ= , and maximum achieved plasticity, max max / yµ φ φ= . Sk is 
a constant which controls the rate of stiffness decay. Common values for Sk are 0.1 and 0.05. 
b) Strength Deterioration 

The strength deterioration is simulated by multiplying the yield moment My with a degrading parameter Sβ: 

 ( )( )( ) 1 ( )y
y

tM t S M z tβ
φα α
φ

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 (6) 

The parameter Sβ depends on the damage of the section which is quantified by the Damage Index, DI: 

  
2

max

1

1 11   where  
1

1
4

pd S
c p diss

mon

S S DI DI
S dE

E

β
µ
µ

−
= − =

− ⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∫
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In the above expression Sd, Sp1, Sp2 are constants controlling the amount of strength deterioration; µc is the 
maximum ductility factor that can be reached, /c u yµ φ φ= ; dissdE∫  is the energy dissipated before unloading 
occurs and finally Emon is the amount of energy absorbed during a monotonic loading until failure as shown in 
Figure 4. 

 

Figure 4. Dissipated Energy (Ediss) and Monotonic Energy (Emon). 
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c) Pinching or Slip 
Pinching of hysteretic loops due to shear cracking and bond slip of the reinforcement is commonly observed 

in reinforced concrete structures during cyclic loading. This phenomenon is taken into account by introducing 
the “slip length” parameter a and a function f (z) in the expression of Kz: 

 
1 a ( )

=
+ ⋅ ⋅

pin z
z

z

K
K

f z K
 (8) 

In the above equation pin
zK  is the hysteretic parameter affected by pinching, Kz is the original expression of 

the hysteretic parameter obtained from (3) and a, f(z) are given by: 

 
2
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(z-z )
a ( ' 1)  &  f(z)=exp -s

s

A
z

µ
⎡ ⎤

= − ⎢ ⎥
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 (9) 

where As is a control parameter which may be linked to the size of crack opening or reinforcement slip or 
both; µ΄  is the normalized curvature attained at the load reversal prior the current loading circle; zs is the range 
where slip occurs. A non zero value of the parameter zm will shift the effective slip region to become symmetric 
about z=zm. 

7 METHOD OF ANALYSIS 
The computer program “Plastique” which is described herein, is able to perform the following types of 

analysis: 
- Push-over analysis 
- Quasi-static analysis 
- Eigenvalue analysis 
-Non-linear dynamic analysis 
The first two analysis types, although significantly simplified, can lead to valuable conclusions concerning 

the behavior of the structure and the possible collapse mechanism. The applied procedure can be described in 
brief as follows. In the case of 2-D analysis the structure is assumed to consist of a finite number of nodes 
interconnected by a finite number of elements. The types of elements have been described in section  3. In the 
case of 3-D analysis the structure is assumed to consist of the aforementioned 2-D frames, assuming a rigid 
diaphragm assemblage of their horizontal dof’s per floor slab. Loads may be applied to the nodes or to the 
elements. In both cases though, they are transformed to nodal loads. 

After the stiffness matrix has been formulated the equilibrium equations are solved by an efficient algorithm 
based on the Gaussian elimination method. The structure stiffness is stored in a banded form to optimize the use 
of core storage and during the elimination process virtually all unnecessary arithmetic operations are avoided. 
An incremental method is applied for all types of analysis. The specified loads are divided to sufficiently smaller 
sub-loads, in order to simulate more efficiently the stress redistribution which occurs due to the non linear 
behaviour of the structure. An iterative process (modified Newton Raphson Method) is incorporated in each load 
step so that a higher level of accuracy can be achieved, as shown in Figure 5. 

 
Figure 5. Modified Newton Raphson Method 
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The member forces are computed for each load increment and the tangent stiffness matrix is updated to account 
for changes in any of the element stiffnesses. A spread plasticity model is used, as described in section  4, in 
order to simulate the changes in the flexibility of each element. In the case of the dynamic analysis the Newmark 
Method is used for the direct integration of the equations of motion. 

The equation of motion that is solved at any stage of the analysis is written as: 

 int[ ]{ } [ ]{ } { } { } [ ]{ }{ }ext gM U C U P P M S U+ + = = −  (10) 

where [M] is the mass matrix; [C] is the damping matrix; [Pint] is the internal load vector of the structure; 
[Pext] is the external load vector of the structure; [S] is a modal influence vector; [U] is the structure displacement 
vector and { }gU  is the ground acceleration vector. 

The above system of equations is solved using the constant acceleration method, according to which equation 
(10) can be rewritten for time t+∆t and iteration k as: 

 [ ] { }( ) ( ) ( 1) ( )
int[ ] { } { } [ ] { } { }t tt t k k t t k t t t k t t

t extM U C U P K U P+∆+∆ +∆ − +∆ +∆⋅ + ⋅ + + ⋅ ∆ =  (11) 

The hysteretic model applied is the Bouc Wen - Baber Noori model which, as mentioned previously, is able to 
simulate R/C characteristics such as stiffness degradation, strength deterioration and pinching behaviour. At 
every step of the analysis, the elements’ and the structure’s Damage Indices are calculated providing an 
evaluation not only of the damage occurred, but also of the structure’s residual strength and capacity to 
withstand further loading. The Damage Index for each section is given by (7). The Damage Index for each 
element is computed as the maximum of its sections’ Damage Indices and finally the Damage Index of the whole 
structure can be obtained from the following expressions:  

 ,

,
( )tot i

i
i tot i

i

E
DI DI

E
= ∑∑

 (12) 

where (DI)i is the Damage Index for each element and Etot,i is the total amount of absorbed energy per element. 

8 EXAMPLES 

8.1 Example 1 
This example deals with the behavior of structures subjected to dynamical loading of varied frequency 

content The Tabas (Iran – 0.68g) earthquake was used for this particular analysis and the method of wavelets 
was applied for the construction of the corresponding time-frequency spectrum. The carried out analysis 
examines the response of a structure that has a natural frequency close to the primary frequency of the dynamic 
load, demonstrating the fact that consecutives resonances might occur as the structure proceeds deeply in its 
plastic deformation region.  

The original Tabas accelerogram is presented in Figure7 accompanied by its corresponding time-frequency 
spectrum Fig. 8. 

 
From the time-frequency spectrum one can distinguish the three peaks presented in the first three rows of 

Table 1. Since Max2 and Max3 belong in the same frequency domain and arise in relatively close time periods 
we can substitute them by an “equivalent” spectral frequency presented in the last row of Table 1. 

Figure 7. Tabas accelerogram Figure 8. Time-Frequency spectrum 
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The structure studied in the present example is depicted in Figure 9. A convenient set of geometrical and 
mechanical properties was used in order to achieve a natural frequency variation for the primary mode which 
would start from a value of 8.12Hz at around t=11.1 sec and then reach 5.50 Hz at 13sec. The structure’s 
response is presented in Figure 10. The structure shows evidence of primary resonance in the time period from 
t=10 to t=11sec and finally failure occurs just after t=13sec. 

        
By filtering out the first primary spectral frequency of the excitation (of approximately 8.12Hz) and carrying out 
the previous analysis one can get a qualitatively different response with no failure mechanism occurring (Figure 
11).  

8.2 Example 2 
This example demonstrates the use of the different analysis and design options of program “Plastique”. The 

structure used in the particular example is a two column frame shown in Figure 12. A monotonic push-over 
analysis can provide the possible collapse mechanism of the particular structure as shown in Figure 13. 

 
Next, a dynamic analysis is carried out. The accelerogram of the Northridge earthquake, normalized at 0.50g, 

was chosen for the particular analysis (Figure 14). 
The resulting displacement time history, the force displacement hysteretic loop, as well as the final Damage 

Indices (DI) and yield penetration lengths are presented in the following figures. 
In Figure 16, one can easily notice the gradual shift in the column section’s stiffness due to stiffness/strength 

degradation and pinching effects. A transition factor n=2 has been used in the current example, which accounts 
for the smooth transition of the section from the elastic to the inelastic region. 

Figure 13. Possible Collapse Mechanism Figure 12. Structure -2 Column Frame
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Figure 9. Structural Model 
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Figure 10. Top story disp. history (failure) 
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Figure 11. Top story disp. history (no failure)
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The damaged state of the structure at the end of the analysis is depicted In Figure 17. The reduced sections are a 
graphical representation of the inelasticity distribution along each member’s length. 
 

 

9 CONCLUSIONS 
A new computer program “Plastique” for the inelastic analysis of R/C structures is presented. A macro 

modeling approach is implemented, combined with spread plasticity and a yield penetration model to account for 
the impact of inelastic phenomena on structural response. By introducing a smooth Bouc-Wen type hysteretic 
model, a reliable and automatic simulation of R/C cyclic response is achieved. An iterative procedure is used to 
solve the equilibrium equations. The program proves to be a versatile tool for different types of static and 
dynamic analysis. 
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Figure 16. Moment-Curvature Hysteretic loop
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Figure 17. Final DI and yield penetration lengths
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Figure 15. First floor displacement time history Figure 14. Northridge accelerogram 
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Abstract. This paper focuses on the application of system reliability to steel structures, relating story drifts, 
which is one of the most sensitive engineering demand parameters (EDPs) that cause significant damage to 
structures, and direct loss demands after an earthquake event. First and second order reliability measures 
(FORM, SORM) are used to quantify the probability of failure of the system and a sensitivity analysis is 
performed to identify the importance of the parameters that are used as threshold values for direct loss and story 
drifts.  
 In order to determine representative data for story drifts, rigorous non linear time history analysis is used 
for 20 ground motions. Incremental Dynamic Analysis is used in order to scale the ground motions to produce 
mean quantities for 7 levels of intensity. The direct loss of each scenario is also taken into consideration using 
ATC-13 manual empirical relationships.  
 It is concluded that direct losses are more critical for lower levels of intensity in comparison with story 
drifts. The latter is the governing parameter for intermediate levels of intensity. Both parameters contribute the 
same for higher hazard levels. The reliability index is more sensitive to the threshold value for direct loss based 
on a sensitivity analysis.  
 
1.0 INTRODUCTION 
 
 Until recently, structural reliability was not routinely analyzed or quantified in the design process. 
Reliability was accounted for tacitly by the factor-of-safety approach to design in most of the engineering codes 
(ATC [1], Eurocode[10], FEMA[5],[6]). Also practical guidelines and lessons learned helped to improve reliability. 
The structural designer/analyst did not perform a formal risk analysis on newly designed structure. The 
complications that reduce the ability to quantify reliability reside in the stochastic nature of design inputs.  
 The primary purpose for establishing a factor-of-safety for design is to ensure safety. In the field of 
structural reliability, the performance of a structure is evaluated with respect to a prescribed set of limit states 
that define acceptable and unacceptable behavior. If the response of a structure violates one or more limit states, 
its performance is deemed unacceptable. This fact suggests that future design and design processes might benefit 
greatly by focusing on reliability targets rather than factors-of safety. Many attempts have been made for loss 
estimation after an earthquake (HAZUS [8], Miranda et al. [9], Rojahn et al. [14]) and also fragility curves have 
been developed to estimate the probability of failure of different systems as a function of the system 
characteristics and the frequency content of the ground motions ( Krawinkler and Ibarra [11]). 
 The present paper focuses on the application of system reliability to steel structures, based on story drifts, 
which is one of the most sensitive EDPs that cause significant damage to structures, and also direct loss. First 
and second order reliability measures (FORM, SORM) are used to quantify the probability of failure of the 
system and a sensitivity analysis is performed to identify the importance of the parameters that are used as 
threshold values for direct loss and story drifts. In the next paragraphs, the basic assumptions, theoretical 
background and applications are documented.  
 
2.0 CHARACTERISTICS OF THE BUILDILG 
 
 The 9-story SAC1 building in Los Angeles, presented in figure 1a, is used to define the system reliability. 
The building was designed for the SAC Phase II Steel Project and is 150ft by 150ft and 122ft in plan view and 

                                                 
1 Joint venture of three non-profit organizations: The Structural Engineers Association of California (SEAOC), 
the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering 
(CUREE). 
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elevation, respectively. Furthermore, in both north-south (N-S) and east - west (E-W) directions it consists of 
five bays, each 30ft long. Floor to floor heights are considered to be 13ft, except the first story, which is 18ft. 
Concrete foundation walls with 12ft height exist in the building and, together with the surrounding soil, they are 
assumed to restrain the structure from horizontal displacement at the ground level. The columns of the system are 
50ksi steel wide – flange sections. Monolithic column pieces are connected every two levels. Column splices are 
located on the 1st, 3rd, 5th, and 7th levels at 6ft. More information for the building are presented by Chopra and 
Goel[2]. 
 The floor system is composed of 36ksi steel wide-flange beams. Each of the frames resists one half of the 
seismic mass associated with the entire structure. The seismic mass of the structure is 66.0kips.sec2/ft for the 
ground level, 69.0kips.sec2/ft for the first level, 67.7kips.sec2/ft for the second through the eighth level, and 
73.2kips.sec2/ft for the ninth level. Note that the total weight W of the structure is 10989kips. Also, the 
predominant period T1 of the structure is 2.27sec. Based on NEHRP[5] provisions, the base shear V of the 
building is determined to be 180kips.  
 The building is modeled in DRAIN-2DX (Prakash et al.[3]) using the standard bilinear model with 3% strain 
hardening, without deterioration, in order to take into consideration the material nonlinearity. Geometric 
nonlinearities (P-∆ effects) are included into nonlinear time history analysis and collapse indeed can happen only 
due to P-∆ effects. 
 

  
Figure 1: (a) Plan view and elevation of SAC building, (b) normalized actual and bilinear pushover curve 

 
3.0 GROUND MOTIONS AND INCREMENTAL DYNAMIC ANALYSIS 
 
 The seismic excitation that is used in the present investigation is defined by a set of 20 large-magnitude 
small - distance records (LMSR) (6.5 < Mw < 7.0, 13km < R < 30km). The records were selected from the PEER 
database. Details for the ground motions can be found in Mendina and Krawinkler [12]. In particular, the same 
ground motions have been used to evaluate seismic demands over a wide range of hazard levels based on the 
widely used Incremental Dynamic Analysis (IDA) (Vamvatsikos and Cornell [16]).  
 Seven levels of intensity have been used for this evaluation and the control parameter used to “scale” the 
ground motion intensity for a given structure strength, or to “scale” the structure strength for a given ground 
motion intensity, is the parameter [Sa(T1)/g]/γ, where Sa(T1) is the 2% damped spectral acceleration at the 
fundamental period of the structure (without P-∆ effects), and γ is the base shear coefficient, i.e., γ = Vy/W, with 
Vy being the yield base shear. Based on figure 1b, in which the actual and bilinear normalized pushover curves 
are presented, γ parameter is estimated to be 0.15. The parameter [Sa(T1)/g]/γ represents the ductility dependent 
strength reduction factor (often denoted as Rµ), which in the context of present codes, is equal to the 
conventional R factor if no overstrength is present. 
 
4.0 RESPONSE STATISTICS AND STORY DRIFTS 
 
 Presented in this paper are the median values, x , defined as the geometric mean, of n observed values xi and 
the dispersion δ defined as the standard deviation of the logarithm of the n observed values,  
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 Equations (1) and (2) are logical estimators for the median and dispersion, especially if the data are sampled 
from lognormal distribution, an appropriate distribution for the peak earthquake response of structures (Shome 
and Cornell [15]). This basic approach is denoted as computed statistics. This approach is used in order to fit 
lognormal distributions to data that was created using IDA for story drifts.  
 
5.0 DIRECT LOSS ESTIMATION 
 
 In order to estimate the direct loss demands for each earthquake, the probability of earthquake damage needs 
to be related to peak roof drifts. The required input is provided to estimate building damage, using fragility 
functions. In particular, model building type and seismic design level are selected. The output of fragility curves 
is an estimate of the cumulative probability of being in, or exceeding, each damage state for the given level of 
ground shaking. Discrete damage state probabilities are created using cumulative damage probabilities. 
 The 9-story building that is used is a high-rise steel moment frame S1H, as tabulated in HAZUS [8]. These 
model building types are based on the classification system of FEMA 178 [13]. In addition, a moderate seismic 
design level has been selected in order to develop the building damage functions assuming lognormal 
distribution. Note that the building is located in seismic zone 2B or map area 5 (FEMA [4], [7]).  
 Fragility functions that are used are characterized by median and lognormal standard deviation. Peak roof 
displacement has been used as the critical parameter for structural and nonstructural damage. The probability of 
being in or exceeding a given damage state is modeled as a cumulative lognormal distribution and the probability 
of being in or exceeding a damage state, ds, is modeled as, 
 

  
d,ds

s

θ1 r,maxP d θ = Φ lnr,max β Sds

⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 (3) 

 

in which, d,dsS  is the median value of spectral displacement at which the building reaches the threshold of the 
damage state, ds, βds is the standard deviation of the natural logarithm of the spectral displacement of damage 
state, ds, and Φ is the standard normal cumulative distribution function.  
 Median values of structural component fragility are based on building drift ratios that describe the threshold 
of damage states. Damage-state drift ratios are converted to spectral displacement using the relationship, 
 

  d,Sds dsR,S 2S = δ a h⋅ ⋅  (4) 
 
in which, R,Sdsδ is the drift ratio at the threshold of the structural damage state ds, a2 is the fraction of the building 
(roof) height at the location of push-over mode displacement and h is the typical roof height, in inches, of the 
model building type of interest.  
 Finally, the loss is determined for each ground motion, based on the relationship, 
 

  slight mod ext completeslight mod. ext. completeLoss = P L + P L + P L + P L⋅ ⋅ ⋅ ⋅  (5) 
 
in which, Pslight , Pmod. Pext, and Pcomplete are the probabilities for slight, moderate extensive and complete damage 
of the building respectively. slight mod ext completeL L L and L, ,   are direct losses for moderate extreme and complete 
damage of the building respectively. 
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6.0 SYSTEM RELIABILITY AND THRESHOLD VALUES 
 
 System reliability for the 9-Story SAC building is defined for a given level of intensity based on a set of 10 
limit state functions. 9 of these functions represent the story drift, which is assumed to have a lognormal 
distribution, and the one left represents the direct loss, which is again assumed to have a lognormal distribution. 
Each of them is the basic component problem, 
 
 Zi = Ri - Si (6) 
 
and they all constitute a series system, due to the fact that the system will fail if any of its components fails. The 
system function for a given level of intensity Sa(T1)/g/γ, for the series problem is, 
 

 ( ) ( )
10

s a 1 1 2 10 i
i=1

a (S (T )/g/γ) = Ψ a = min a , a , ...a = a∏  (7) 

 
 In order to create the limit state functions for each story, given the intensity measure, threshold values need 
to be assumed for drifts and direct loss. The suggested values are 6% for story drifts and 75% of the total cost of 
the building for loss demands. The 6% story drift is used due to the fact that beyond this point it is assumed that 
collapse of the system occurs. Also, the amount of drift threshold should be at a comparable level with the loss 
threshold. 
 
7.0 RESULTS 
 
7.1 Roof displacements 
 

Mean values, the 16% and 84% percentile of roof displacements of the structure are presented in figures 2a 
and 2b together with individual responses as determined by IDA with rigorous nonlinear time history analysis. A 
different way of normalization has been used for each figure. In the first case, the intensity measure is plotted 
versus the roof drift θr,max which is the roof displacement over the total height of the building. In the second case, 
roof drift is normalized with respect to the first mode spectral displacement. Note that the roof drift is used to 
estimate the direct loss demands for each seismic excitation and level of intensity.  
 

Normalized mean values of roof drift θr,max
SAC building, ξ=2%, T1 = 2.27sec, γ=0.15, bilinear model
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Normalized mean values of roof drift θr,max/Sd(T1)/H
SAC building, ξ=2%, T1 = 2.27sec, γ=0.15, bilinear model

0

1

2

3

4

5

6

0 1 2 3 4
θr,max/Sd(T1)/H

(b)

S a
(T

1)
/g

/γ

Individual
Responses
Mean

16% Percentile

84% Percentile

 
Figure 2: (a) Mean roof drifts θr,max and (b) normalized mean roof drifts θr,max/Sd(T1)/H (IDA curves) 

 
7.2 Interstory drifts – fitted distributions 
 
 An important response quantity in performance - based engineering, are story drifts. For this particular case 
story drift ratios θs,max are presented in figures 3a and 3b for R = 2 and 5 levels of intensity using computed 
statistics, as determined by NL-THA. For the sake of brevity, results for the other 5 levels of intensity are not 
included here. Interstory drift ratios are normalized with respect to the spectral displacement Sd(T1), 
corresponding to the predominant period of the structure, over the total height of the building.  
 A lognormal distribution is assumed to fit the data. The parameters λ and Z of the lognormal distribution for 
each story are defined. Note that correlation between story drifts was assumed to be zero, due to lack of 
reference. An attempt to define the correlation directly from the data that were determined by (IDA) was 
performed but it is concluded that the difficulty was extremely high and results were not reliable. Also, no 
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correlation was assumed between story drifts and direct loss. Given the level of intensity, using the Bootstrap 
method to take into consideration the uncertainty of the statistical estimator the final parameters λ and Z are 
presented in tables 1 and 2, respectively, for each story. The difference between the latter and initially estimated 
parameters is negligible, so it is concluded that results based on fitted distributions are reliable.  
 

Normalized Median Story Drifts θs,max/[Sd(T1)/H]
 Sa(T1,2%)/g/γ=2.0, N=9, T1 = 2.27sec γ=0.15, P-∆ effects
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Figure 3: (a) Normalized median story drifts for Sa(T1,2%)/g/γ = 2.0 and (b) Sa(T1,2%)/g/γ = 5.0 

 
  Intensity level Sa(T1)/g/γ 

Story 0.5 1 2 3 4 5 6 
1 1.2383 2.3332 3.9346 4.6275 5.1769 5.9167 6.1843 
2 1.3986 2.5542 3.9287 4.7723 5.3629 5.9378 6.2457 
3 1.0784 1.9935 3.0673 3.9951 4.5263 5.0307 5.4788 
4 0.9457 1.6770 2.4741 3.4443 4.1939 4.8553 5.7337 
5 0.9598 1.7250 2.9180 4.1278 4.9553 6.0798 7.0384 
6 0.9430 1.7679 3.2903 4.9021 6.2012 8.0120 9.7626 
7 0.8458 1.5729 3.2720 5.0905 6.5702 8.7361 10.9198 
8 0.8674 1.6390 3.1803 5.3205 7.3795 9.9857 11.9470 
9 1.4526 2.5543 4.1376 7.0247 10.0021 13.7407 18.5520 

Table 1: Parameters λ of the assumed lognormal distribution for story drifts, for 7 levels of intensity after 
Bootstrap method 

 

  Intensity level Sa(T1)/g/γ 
Story 0.5 1 2 3 4 5 6 

1 0.5729 0.4505 0.3880 0.2773 0.2798 0.2809 0.2600 
2 0.4533 0.3645 0.3186 0.2211 0.2544 0.2956 0.2252 
3 0.3444 0.3339 0.3070 0.2746 0.3158 0.3367 0.2587 
4 0.2517 0.2088 0.3007 0.2966 0.2363 0.2065 0.1825 
5 0.2534 0.2317 0.2773 0.2646 0.2455 0.1708 0.1657 
6 0.1747 0.1580 0.2447 0.2391 0.3034 0.2944 0.2756 
7 0.1391 0.1169 0.1920 0.2685 0.3445 0.3731 0.3595 
8 0.1523 0.0991 0.1942 0.3160 0.4364 0.5239 0.7433 
9 0.2118 0.0831 0.2306 0.3974 0.5362 0.6850 1.0587 

Table 2: Parameters Z of the assumed lognormal distribution for story drifts, for 7 levels of intensity, after 
Bootstrap method 

 
7.3 Fragility functions and loss estimation 
 
 As it was presented in paragraph 4.0, fragility functions are defined for each damage state, in order to 
determine direct loss. It is assumed that the latter follows a lognormal distribution, for a given intensity level. 
Fragility functions that are used are presented in figure 4a. The probability of being at or exceeding a damage 
state is computed versus the mean peak roof displacement that was obtained from NL-THA. Values that were 
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used for each of four damage states for mean and standard deviation are presented in table 3 as determined by 
HAZUS [8]. Loss estimation can be easily computed for each seismic excitation, given the ground motion 
intensity. Using equation (5), loss is specified and then a lognormal distribution is assumed to fit the data. Mean 
and standard deviation of each distribution (one for each level of intensity) are presented in table 4 in million 
dollars.  
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Figure 4: (a) Fragility functions for the 4 damage states, (b) reliability index β as determined using FORM 

 
 

Slight Moderate Extensive Complete 

m
∧

 β m
∧

 β m
∧

 β m
∧

 β 
2.88 0.64 4.99 0.65 11.29 0.70 28.82 0.84 

Table 3: Mean value and standard deviation as determined by HAZUS for 4 damage states 
 

Intensity level Sa(T1)/g/γ Parameters 
0.5 1 2 3 4 5 6 

Mean Loss $ 0.2058 0.4383 0.6225 0.7412 0.7998 0.8566 0.8944 
Standard Deviation $ 0.0412 0.0534 0.0762 0.0845 0.0869 0.0741 0.0646 

Table 4: Mean and standard deviation of loss in million $ for each level of intensity 
 
7.4 First and second order reliability measure – FORM, SORM 
 
 A system reliability analysis is performed using first order reliability measure (FORM) for each level of 
intensity. As can be seen in figure 4b, for lower levels of intensity Sa(T1)/g/γ the βFORM value is high, compared 
to values for higher values of Sa(T1)/g/γ, and this is something that was expected, since the probability of having 
failure in a low intensity excitation should not be significant. In figure 5a the probability of failure Pf is plotted 
versus the intensity measure. Above a level of intensity 5, the system fails since the probability of failure 
becomes practically 1.  
 For low levels of intensity the failure due to direct loss is more likely to occur, since the threshold values 
that are used for drifts are too far from the mean values that were obtained from NL-THA. The opposite is 
observed for high levels of intensity. The structure is more likely to fail due to drifts, as can be seen from figure 
5b, in which the probability of drift failure is plotted versus the probability of loss failure. Note that it is assumed 
that all random variables are independent. 
 The same analyses were performed using the second order reliability measure (SORM). The same results 
with FORM were determined for each level of intensity, since the system consists of 10 simple component 
problems.  
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Figure 5: (a) Probability of system failure versus the intensity measure, and (b) probability of drift failure versus 

probability of Loss failure  
 
7.5 Sensitivity analysis 
 
 A sensitivity analysis is performed with respect to the parameters Lo and do, threshold values for loss and 
drift demands, respectively. As shown in figure 6a, there is an increasing tendency of the gradient of b at level of 
intensity 1. For higher levels of intensity, the sensitivity analysis showed approximately constant gradient with 
respect to the parameters. On the other hand, the importance of parameter Lo is increasing with increasing level 
of intensity, as presented in figure 6b.  
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Figure 6: Sensitivity analysis for (a) drift threshold value do, and (b) direct loss threshold value, versus the 

intensity measure 
 
8.0 CONCUSIONS 
 
 A system reliability analysis was performed for the 9-story SAC building in Los Angeles, based on story 
drifts and direct loss. Lognormal distributions were assumed in order to fit data for both story drifts and direct 
losses after an earthquake. Using FORM it can be seen that system reliability is satisfactory up to levels of 
intensity of 3. The probability of system failure for higher levels of intensity approaches unity. Checking the 
individual first order reliability indexes it can be seen that direct loss demands are more critical for low levels of 
intensity in comparison with drift demands, due to the fact that the threshold value that is used for drifts is far 
from the mean value of the recorded data. For intermediate levels of intensity, story drifts control the probability 
of system failure, but for higher levels of intensity, both contribute approximately the same. A SORM analysis 
has been also used and results were identical with the ones obtained with FORM due to the fact that the limit 
state functions of the series system are simple component problems.  
 Finally, a sensitivity analysis was performed, and it is concluded that the reliability index is more sensitive 
to the threshold value Lo that is used for the direct loss. The gradient of b with respect to the parameter Lo is 
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increasing with the level of intensity. On the other hand, only for the 2nd level of intensity (Sa(T1)/g/γ =1) there is 
a tendency of increasing sensitivity for all story drifts. For all the other levels of intensity, the gradient of first 
order reliability index with respect to do is approximately constant.  
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Abstract. The paper presents a methodology to arrive at optimal truss designs using Ant Colony Optimization 
(ACO) algorithms. Ant Colony Optimization is a population-based, artificial multi-agent, general-search 
technique for the solution of difficult combinatorial problems with its theoretical roots based on the behavior of 
real ant colonies and the collective trail-laying and trail-following of its members in searching for optimal 
solutions in traversing multiple paths. In essence, ACO is inspired by the foraging behavior of natural ant 
colonies which optimize their path from an origin (ant nest) to a destination (food source) by taking advantage 
of knowledge acquired by ants that previously traversed the possible paths and the pheromone trail these ants 
leave behind as the traverse the paths to optimal solution. In computer implementations of the ACO algorithms, 
artificial ants are agents and solution-construction procedures that stochastically build solutions by considering 
(1) artificial pheromone trails which change dynamically at run time to reflect the agents’ acquired search 
experience, and (2) heuristic information on the problem/network being solved. The paper outlines the 
fundamental mathematical background of the ACO method and a suggested possible implementation strategy 
for solving for optimal truss designs (geometrical configuration and member characteristics).  
 

1 INTRODUCTION 

Truss design optimization is of paramount importance to both designers and owners, since it provides for 
more efficient (structurally and financially) structures. The goal of truss optimization is to maximally utilize the 
geometry and material of the proposed design elements to result in the lightest structure while satisfying all the 
design, manufacturing and other physical constraints. Traditionally, truss optimization is performed using 
mathematical, or numerical, optimization techniques for a truss with a fixed configuration which, in essence, 
optimize the members’ cross sectional areas given the geometry and topology of the proposed structure. 

Truss design is usually originated with a given distance that the desired structure needs to span and the 
assumed extreme loading conditions. Designers then determine the depth and overall profile of the truss 
(geometry), the number and arrangement of truss members (topology), and the shape and cross sectional areas of 
each member (component properties) such that proposed truss design can satisfy both loading/resistance  
requirements service requirements. The goal of truss optimization is the arrival at optimal truss topology 
configurations that result in the lightest possible structure while satisfying all design and other constraints. 

Traditionally, optimization is performed using mathematical optimization techniques assuming a truss with a 
fixed configuration (where, given the geometry and topology, the member cross sectional areas are optimized). 
In the past decade, genetic algorithms (GAs) were employed to solve for optimized designs (selection of 
members, angles of inclination) given fixed topologies[6],[7] and more recently GAs were employed to optimize 
the topology as well[2]. The latter is based on an assumed starting topology based on a triangularized shape that 
then is adjusted to satisfy problem constraints (locations of supports and loads), followed by shape optimization 
based on stress. 

More recently, further adaptations of genetic algorithms were utilized to arrive at complete topology 
optimizations either by mutations[11], floating-point genetic algorithms[12] or random-cost methods[1]. The 
random-cost method is of particular interest because of the similarities in the approach, of minimizing an 
objective function through “random-walks” in the topology. 

The following sections present preliminary work on the application of agent-based methods for the 
optimization of truss topologies. The method of interest is called “Ant Colony Optimization” and originates 
from the field of agent-based artificial intelligence.  
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1 ANT COLONY OPTIMIZATION 

2.1 Introduction 
 
Ant Colony Optimization (ACO) is a population-based general search technique, proposed by Dorigo (1992, 

1996), for the solution of difficult combinatorial problems. The method is inspired by the foraging behavior 
exhibited by real ant colonies and the essential characteristic of ACO algorithms is “the combination of a priori 
information about the structure of a promising solution with a posteriori information about the structure of a 
previously obtained good solution”[10].  

Real ant colonies exhibit interesting behaviors, suitable to network traversing and thus optimization. In 
particular, an ant can find shortest paths between food sources and a nest and in doing so deposit a chemical 
substance, called “pheromone”, forming “pheromone trails” which can then be followed by other ants in the 
colony. When choosing their way through the possible path routes, ants can smell the deposited pheromone and 
tend to follow those paths marked by stronger pheromone concentrations. In essence, while an isolated ant 
moves essentially at random, an ant encountering a previously traversed path and pheromone-laid trail can detect 
that the path was previously traversed and then decide with high probability to follow this path and subsequently 
reinforce the trail with its own pheromone.  

The collective behavior is therefore characterized by a positive (reinforcing) feedback loop where the 
probability with which each ant chooses the path to follow increases with the number of ants having chosen the 
same path in the preceding steps. The final result is the relative quick convergence of the path-traversing to the 
shortest path. 

 

 

Figure 1: Basic ACO concepts (pheromone laying and shortest path searching) 

 
Figure 1 depicts this behavior for a hypothesized “ant colony” of eight, traversing a path from the nest to the 

food source (1a) and its behavior when encountering a path obstacle (1b). In this case the population randomly 
follows possible paths (1b) laying pheromone on the way to the food source and then back to the nest (1b, 1c). 
The pheromone trail is reinforced with each successive pass until the ant population and path traversing 
converge to the shortest path between source and destination (1d). 

 
2.2 Theoretical Framework of the ACO Metaheuristic 

 
A number of ACO algorithms, starting from the original work by Dorigo[3],[4], have been developed and 

proposed over the years, the most known of which are the Ant Colony System (ACS), the Elitist Ant System, the 
MAX-MIN Ant System, a Rank-based version of Ant System, and the Best-Worst Ant System. 

The common framework for ACO applications was proposed posteriori to be the ACO metaheuristic[4], with 
artificial ants seen as stochastic solution procedures and acting as agents. The solution construction is biased by 
the pheromone trails which change at run-time, the heuristic information on the problem instance and the ants’ 
private memory. 

The generic problem topology is as follows[11]: 
 

• A finite set of components is given, { }Ncccc ,,,, 321=C . 

• The states of the problem, { },,,, kji ccc=x , are defined in terms of sequences 

(relationships) over the elements of Cand the set of all possible sequences is denoted by X . A 
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finite set of constraints in the system, Ω , defines the feasible states, XX ⊆ . 

• A set of feasible solutions, *S , is given with X⊆*S . 
• A cost function ( )tsf ,  is associated with each candidate solution Ss∈ , and in some cases a 

separate cost function is defined and associated to states other than solutions. 

 
The generic behavior of the artificial ants can also be outlined as follows (Stützle et al. 2002): 

• Ants build solutions by moving on the construction graph ( )RC,=G , where Cis the set of 
components in the network, and R is the set of relationships (connections) fully connecting the 
components. Even though both feasible and infeasible solutions can be built, artificial ants, in 
general, try to build feasible solutions. The problem constraints,Ω , are implemented during the 
network traversing and policy followed by the artificial ants. 

• The components, C⊆ic , and connections, R⊆ijr , can have a pheromone trail, τ , associated 

with them which allows for the implementation of a long-term memory policy about the ant search 
process. Similarly, the components, C⊆ic , and connections, R⊆ijr , can have a heuristic value, 

η , which allows incorporation of problem-specific information. 

• The path that each artificial ant, k , follows can be stored in the ant’s memory kM . 
• Each artificial ant, k , can be assigned a start state, ,k

sx and one or more termination conditions, ke . 

The construction procedure of ant k  stops when at least one of the termination conditions ke  is 
satisfied. 

• When in state ( )ixx rr ,1−=  an ant attempts to move to any node j  in the feasible solutions subset 

(immediate successors) k
iN . If this is not possible, it might be allowed to move to any other node 

that it is not part of the immediate-successors subset. 
• The move to a successor node is determined by a stochastic decision rule and it is subject to a 

function of the locally pheromone and the connection’s heuristic, the ant’s memory, and the 
problem constraints. 

• Each addition of a component jc to the current solution updates the pheromone trail associated with 

it. 
• Once a solution is built the ant retraces the same path backwards and updates the pheromone trails 

of the used components or connections. 
 

 
2.1 Ant Colony Optimization Algorithm 

 
The above described topology and ACO metaheuristic form the basis for most ant colony optimization 

algorithms found in literature. A pseudocode adaptation of such algorithm is shown below. 
 

procedure AntColonyOptimization 
    Initialize topology_parameters 
    ConstructNetwork  
    Initialize pheromone_trails 
    for each Ant 
                  while (termination condition not met) do 

ConstructSolutions 
ForwardTraversePath 

                ApplyLocalPheromoneUpdate 
                BackwardTraversePath 

      ApplyLocalPheromoneUpdate 
                  end 
    next ant 
end AntColonyOptimization 
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2 ANT COLONY OPTIMIZATION AND TRUSS DESIGN OPTIMIZATION 

2.1 Introduction 
The concepts and methodology employed by the Ant Colony Optimization metaheuristic can find 

applications in truss design optimization since the underlying topology and optimal path searching exhibit 
several similarities. The idea is to treat a proposed truss topology as a maze to be traversed by artificial ants 
looking for the best way to reach an end (truss supports) from a starting point (nodes where the loads are 
applied). This “best way” can be a combination of optimization parameters such as the traveling distance (thus 
the length of truss members traversed), the resistance to movement (stress within such members, thus the interior 
member forces and corresponding cross sectional areas), the cost of the truss members, etc.  

If one makes the simplistic assumption that the optimal design takes advantage of longer distances between 
truss nodes (to “tone down” internal forces in them as a result of longer spanning distances and increased 
resistance), and if one substitutes the search for shortest path (ACO) to the search for longest path (truss 
optimization) and treats ACO ants, states, connections and a cost function to truss optimization’s external loads, 
truss members, connectivity and internal forces respectively then the ACO metaheuristic can be employed in 
solving for the longest path in connected, acyclic graphs (such as truss topology problems).  

The optimization starts with a fully connected graph of truss nodes/members that is successively analyzed for 
the longest path from the nodes where the loads are applied to the nodes where the truss supports are. The 
shortest path for each such combination is pruned (corresponding elements are removed) and the resulting 
topology is analyzed structurally for obtaining the internal forces in each element. The method is iterative and it 
stops when the necessary conditions are met or when successive optimization designs converge to a proposed 
topology. 

 
2.1 ACO-Based Algorithm 

For a given truss topology defined by a graph ( )AN,=G , with N being the set of nodes (truss nodes) 
and A being the set of arcs (truss elements) connecting the subject nodes, the proposed ACO-based procedure 
for finding the longest path(s) between chosen nodes 1N  and 2N  can be summarized by the following steps: 

1. Initialize all arcs with small amount of pheromone, 0τ . This value can be an inverse line-distance 
between the nodes 1N  and 2N , or the inverse line-distance of the subject arc. 

2. An artificial ant is launched from node 1N  (the start node) pseudo-randomly walking from a node 
to a successor node via the connecting arcs until it reaches either the end-node ( 2N ) or a dead end. 
When at a given node, the artificial ant’s selection of an arc to follow is probabilistic, based on a 
stochastic assignment of each thi  arc’s likelihood of selection, as defined by  

∑
=

i
ii

ii
ip

β

β

ητ
ητ

      (1) 

In the above equation, iτ  is the pheromone concentration on the thi arc, iη  is an a priori available 

heuristic value for the thi arc and iβ  is a parameter determining the relative influence of the 
heuristic information. The value of iη can be defined either as the inverse of the length of the arc, or 
the inverse of the length of the plus the line-distance between the subject node and 2N . It should be 
noted that previously visited arcs are excluded from the selection (to enable complete “tree 
spanning” and avoid “memorization”).  

a. The selection is further assisted by the consideration of a randomly generated 
number, 10 ≤≤ q , which is compared to a predefined value, 0q , specific to the network 
topology. If 0qq ≤ then the arc with the highest value ip  is selected. Otherwise, a random 

selection of an arc is used based on the distribution defined by the equation for ip . 

3. Upon crossing each thi arc during the aforementioned solution-constructing phase a local 
pheromone update rule is applied to update the level of pheromone concentration at the given arc. 
The updated pheromone level is defined by  

( ) 01 ρττρτ +−= ii      (2) 
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where ρ is another network topology parameter ( 10 ≤≤ ρ ). As already noted, the goal of the local 
updating is to enable exploration of more path/route variations by making already traversed arcs less 
likely to be chosen again during the randomization of the arc selection process. 

4. Steps (2) and (3) are repeated for all ants in the ant colony and the most successful ant (i.e. the one 
whose path defines the solution) is used to globally update the network’s pheromone trails. The 
global update rule is defined by 

( ) Lii αττατ +−= 1      (3) 

whereα  is yet another network topology parameter ( 10 ≤≤ α ) whose value determines the level 
of evaporation of pheromone concentrations. The factor Lτ  is a value inversely proportional to the 
path length of the best solution in case of an arc visited by the best ant or zero for all other ants.  

a. The global update rule can be applied by either the “global-best” or the “iteration-best” ant. 
In the first case, the ant to perform the update is the one that obtained the best solution 
(found the longest path in the network) during the entire optimization process. In the 
second case the update is performed by the ant reaching the best solution during each 
iteration of the algorithm. 

5. Steps (2) - (4) are repeated for either a fixed number of iterations or until a predefined condition is 
met, and upon termination of the algorithm the pheromone trail in the graph ( )AN,=G  is used to 
determine the solution (the arcs with highest pheromone concentration form the longest path of the 
network). 

 
2.1 Sample Application 

 
The ACO algorithms were implemented by means of custom software developed with truss topology 

optimization in mind, so as to enable integration with structural analysis software. The developed software 
application can be executed in either “test mode” (randomized network topologies) or “project mode” (actual 
truss topologies to be solved) and integrated with external database management systems to account for 
additional common design features such as standard truss members (steel members, cross sectional areas, etc.), 
material costs, etc. 

The sample truss design optimization considered consists of a two-layer truss system (2x5 nodes), simply 
supported at the bottom edges and loaded with equal loads at the top layer (P = 100 units) as shown in Figure 2. 
A non-symmetric geometry was chosen on purpose, to serve as a stepping stone for a second-phase research 
work that will consider allowance of wider spatial modifications (such as adding/pruning nodes, modification of 
x,y coordinates of existing nodes, resizing of elements/spans, etc.)  

 

Figure 2: Initial topology of sample truss optimization problem 

 
The optimization process starts with the automatic generation of a fully-connected network of truss nodes 

and elements as shown in Figure 3a. The ACO algorithm then performs a first-cut path-traversing optimization 
sequence, based on a population of 50 artificial agents which, after traversing the interconnected nodes, report 
on the longest paths from a node to any other node. At the end of this first-cut simulation process all elements on 
each node-to-node shortest path are pruned (deleted from the connection graph) resulting in the topology shown 
in Figure 3b, based on an imposed constraint that no peripheral elements are deleted during the process. 

 

L = 85 

h = 30 

P P P P P 

26 29 15 15 
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Figure 3: Topology of sample truss optimization problem, (a) at the start of the process (iteration 0) and (b) at 
the end of the ACO search for shortest node-to-node paths (iteration 50). 

 
The next step in the optimization process involves the integration of the external truss-analysis software and 

the external database of truss members and their properties. The system calculates the internal element forces at 
the end of every specified simulation iteration (e.g. every 50 cycles of path traversing by an artificial agent) and 
upon ranking these forces in descending order it then prunes the element with the smaller internal force, less 
than a given threshold value (considering such element to be unnecessary). Appropriate members are selected 
automatically from an electronic database of truss members and the total weight of the structure is calculated. 
The process continues until the structure becomes indeterminate, or until there is convergence of the resulting 
total weight of it. Sample resulting truss topologies are shown in Figure 4, with resulting total truss weights 
tabulated in Table 1. The topologies were optimized with assumed identical truss members (A=1, E, ρ) of 
variable lengths, as dictated by the generated geometry. The goal at this early stage of the research is the 
optimization of geometry and not necessarily section types. The selection of section types for the truss elements 
can be achieved by linking the ACO metaheuristic and software code with a database of readily available truss 
elements and the corresponding sectional and material properties, from which the program can select the 
sections with minimum weight satisfying the stress and displacement constraints and tolerances dictated by the 
user. 
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Figure 4: Topology of sample truss optimization problem at the end of various stages of the optimization 
process. 

 
The results of the ACO topology optimization algorithm for six sample network topologies are shown in 

Table 1. The ACO topology parameters were kept constant ( 5.00 =q , 0.1=β , 5.0=ρ , 5.0=α , 100=C ) but 
the other network characteristics varied (the number of nodes and arcs in the network topology, and the number 
of “ant nests” (i.e. the number of possible start nodes in the network) as a result of adding and pruning elements 
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during optimization.  

 
Truss Topology Iteration 

No. Figure Nodes Elements
 

Total 
Length 

Total 
Weight 

50 3(a) 10 45 2066 2066 
100 3(b) 10 29 1144 1144 
150 4(a) 10 17 464 464 
200 4(b) 9 18 462 462 
250 4(c) 8 15 436 436 
300 4(d) 8 14 375 375 

Table 1 : Best-ant solutions for sample topologies 

3 CONCLUSIONS 

The ACO seems to be functioning well in searching for optimal truss topology solutions. As Table 1 shows, 
the ACO metaheuristic was able to improve on the initial topology, in terms of total truss weight and resulted in 
a modified topology of reduced weight prior to reaching an indeterminate structure. The algorithm stopped at the 
topology shown in Figure 4(d), while attempting to prune the element ‘3-7’ (its internal force was zero) and 
causing singularity (indeterminate structure). Attempts to prune elements ‘5-6’ or ‘1-2’ (elements with the 
smaller internal forces in the network) were also the cause of indeterminacy and their pruning was abandoned. 

At this early stage of the research the results are encouraging. Future work will focus on linking the ACO 
algorithm to external databases of typical truss sections of known sectional and material properties and 
automating the selection of such elements to optimize truss weights subject to given topologies, and also 
modifying the algorithm to allow for reconfiguration of the truss topology in terms of locations of truss nodes 
and therefore element lengths (not just adding and pruning of elements). 
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Abstract. This paper considers the problem of active vibrations-suppression of smart structures with structural 
uncertainties. A linear, discrete dynamical model of the structure is used. Damages or further inaccuracies in 
the structural system are considered and modeled as uncertainties in the structural parameters of the system 
using the linear fractional transformation (LFT) technique. The control design is based on the H∞ optimal 
control theory. A suboptimal numerical algorithm is used for the numerical solution of the control problem. 
Numerical examples demonstrate the efficiency of the proposed approach. 
 
 
1 INTRODUCTION 

Active or passive feedback control of structures provides a number of potentially interesting applications in 
vibration-suppression for civil engineering, like the design against earthquake or wind loads. The classical theory 
of optimal control has been extensively used for the study of academic demonstrative examples and for real 
applications. Besides the technological limitations, a serious problem related to active structural control is related 
to uncertainties in the structure or/and in the external loads. The case of structural uncertainties arisen in the 
main parameters (mass, stiffness and damping) of the structure is considered in this paper. They may represent 
incompleteness or inability of the used structural analysis model and damage- or ageing-related deterioration of 
the structure. Since the optimal control will be designed with the use of a nominal model, its efficiency on a 
modified model is not always guaranteed. Robust control methods, which take into account the presence of 
certain amount of uncertainty during the design, are suitable. 

The concept of robust optimal control using the H∞  approach is suitable for systems with certain classes of 
structured uncertainties [1, 7]. In fact, since we consider linear structural systems, uncertainties that can be 
represented in the form of linear fractional transformations (LFT) are introduced [7]. The importance of robust 
control for real-life applications has been discussed in several recent publications, among others in [2, 4, 5, 6]. 

The model of the structure is given by means of classical matrix structural analysis or finite element methods. 
A simple shear-type frame is used for demonstration here. Damages and inaccuracies can be attached to mass, 
damping and/or stiffness characteristics. Their LFT model can be correlated to damage-induced or other type of 
uncertainty.  

 

2 MODELING AND PROBLEM STATEMENT 

Let us suppose a classical discretized system of structural dynamics with the typical mass, damping, and 
stiffness matrices, the vector of nodal degrees of freedom, the loading vector and an additional control loading 
vector. Let us further suppose that the main parameters (mass, damping and stiffness) of the dynamical structure 
are not known exactly and can be represent as an uncertain system of the following form  
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Here ( )X t  is the vector with the degrees of freedom (usually, displacements), M , C , K  are the nominal 

parameters of the structure, and M∆ ,  C∆ , K∆  are normed matrix functions (actually, members of a Hardy 
space), corresponding to uncertain parameters, that for every t  satisfy the conditions 
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where I  is the unique matrix. The coefficients Mp , Cp , Kp  correspond to some parameters of perturbation 

and F  is the external disturbance (usually, loading). The uncertainty in the matrices 1M − , C , K can be 
represented by upper linear fractional transformation (LFT) in the perturbations M∆ , C∆ , K∆ . 

To this end, let us denote by MY , CY , KY  the inputs to perturbations M∆ ,  C∆ , K∆  , add the vector 

[ ]M C KY Y Y Y∆ =   to the outputs of the system, denote by MU ,  CU , KU  the outputs of M∆ ,  C∆ , K∆  

and add the vector [ ]M C KU U U U∆ =  to the inputs of the system. After this shaping and by using the 
canonical form of the equation (1) we receive the state-space matrix form of the dynamical system: 
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where H is control location matrix. Please, note that from relation (3) [ ]X x x= &  denotes the state-space 
vector which involves both displacements and velocities of relation (1). The matrix G  of the system (3) 
contains only physical nominal parameters of the system and is known. The uncertainty matrix of the system 

[ ]M C K∆ = ∆ ∆ ∆  is a block-diagonal structural matrix and influences the input/output connection 

between the control U and the output Y  in a way that can be represented as a feedback by the upper LFT  
 

( , )UY F G U= ∆ .       (4) 
 
The linear system (4) can be described with the structural scheme of Figure 1, where F is the external 
disturbances and E  is a normed error.  
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Figure 1. Closed-loop diagram of uncertainty system for robust H∞ control 

 
Let [ ]TW U F∆= denote all external inputs coming to the system and let [ ]TZ Y E∆= denote all 

signals that characterize the system’s behaviour. The system (3) can be represented in compact form by the 
equation 
 









=








u
w

P
y
z

,      (5) 

             
The aim of this work is to design a numerical control algorithm in order to suppress the external disturbances 

of the uncertain system (5). The problem consists in designing of a suboptimal H∞  control feedback law in the 
form  

 
( )U X t= −Θ ,      (6) 

 
that ensures for any admissible uncertainties:  
a) suppression of external excitations in a given ratio 
 

  2

2

Y
w

γ≤       (7) 

 
for zero initial conditions and all excitations bounded in 2L  space, where 

2
Y  denotes the norm of ( )Y t  in 

2L , and   
b) the asymptotical stability of the equilibrium state when the system is not excited.  
The solution of this problem will be done using a LFT technique. The closed loop transfer matrix of the system 
(5) from disturbances W  to regulated outputs Z  is given as a lower LFT in Θ  
 

( , )LZ F P W= Θ ,      (8) 
 

 Then the suboptimal H∞  control design problem can be formulated by the equation 
 

( , )LF P γ
∞

Θ < ,      (9) 
 
Since the described problem may have, in general, multiple solutions and local minima, one speaks about a 
suboptimal solution. The robust H∞  suboptimal control law is determined in the classical way from the 
solutions of certain matrix Riccati equations.  
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3 CONTROL DESIGN 

The robust performance and the robust stability for the closed loop system are of paramount importance. 
The system matrix G  describes the set of perturbed models. For the robust stability analysis the controller Θ  
can be viewed as a known system component that is absorbed into an interconnection structure P  together with 
the plant G . For the robust stability we are interested in finding the smallest admissible perturbation ∆ in the 
sense of the  maximal singular value )(∆σ  such that destabilizes the closed loop framework. The loop is well-
posed and internally stable if and only if  
 

1))((sup <∆
∈

ωµ
ω

jP
R

,      (10) 

 
where µ∆  is the structured singular value. 

The parameter perturbations can amplify significantly the effect of the external influences. As a result the 
performance of the closed loop system can be deteriorated before loosing stability. To arise at a desirable 
performance it is necessary that, for all frequencies, the following relation is satisfied 

 
( ) 1pW I G

∞
+ Θ < .      (11) 

 
The weight matrix pW , reflects the relative importance of different frequency ranges on the performance and 

controls the system’s performance via an iterative process. Let us assume for pW  the diagonal form  
 

( ) ( )p pW s w s I= ,      (12) 

 
Thus, the assumption (11) implies that the maximal singular value of the sensitivity transfer matrix must satisfy 
the following inequality  
 

     1 1[( ) ( )]
( )p

I G j
w j

σ ω
ω

−+ Θ < .     (13) 

 
The exact values of the parameters in the weighing function pw  depend on the application and were chosen here 

by trial-and-error. For the numerical simulations the weight function pw  is chosen as 
 

           
2
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8
2 7 0.008p
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The corresponding H∞  suboptimal controller in frequency domain has been obtained by using MATLAB 

routines and has the following form: 
 

           
3 2

4 3 2

239.09 915.56 2664.07 8366.22
15.84 101.23 203.19 0.23

s s s
s s s s

+ + +
Θ =

+ + + +
.   (15) 

 
The parameter γ  achieves the value 19.9966 . For a γ  less than this value the matrix Riccati equations have no 
stable solutions. 
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4 NUMERICAL RESULTS AND SIMULATIONS  

Numerical results are given for two-storey shear-type building. The horizontal displacements are measured 
and controlled. The mass of every storey is taken 2000 and the stiffness of each storey is taken to be equal to 
20.106 in compatible units. The damping matrix is considered as linear combination of mass and stiffness 
matrices (Rayleigh assumption) with coefficients equal to 0.03. The perturbation coefficients Mp , Cp , Kp  are 

taken equal to 0.05. The H∞  suboptimal controller is designed on the nominal model and takes into account the 
perturbation coefficients. The intervals for the admissible perturbations of the nominal parameters of the 
structure in which the controlled system remains stable are related but are not directly equal to Mp , Cp , Kp . 
They are influenced from the chosen  weight function as well. The numerical simulations show that the system 
remains stable for perturbations higher than two times of the assumed perturbation coefficients.   

 Two kinds of external load impulsive and random are applied for simulations. The response of uncontrolled 
and controlled structure is compared. The results for the nominal (not perturbed) system are shown in Figures 2 
and 3.  
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Figure 2. Transient response of the uncontrolled (dot)         Figure 3. Transient response of the uncontrolled (dot) 
and controlled (solid) structures due to impulsive load         and controlled (solid) structures due to random load 

 
To demonstrate the good closed loop transient response in tracking we supply the structure system with 

periodic impulsive command input without external loading. The time response to the reference is shown in 
Figure 4. Suppressions of redundant vibrations directly reflect to rejections of disturbances. The good closed 
loop transient response in disturbance rejection due to periodic isolated influences is demonstrated in Figure 5. 
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  Figure 4. Transient response of the structure         Figure 5. Transient response of the structure (solid) 
  (solid) to reference (dot)      and disturbance (dot) 
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Comparing the maximal singular value of the closed loop sensitivity transfer matrix with the inverse of the 

weight matrix we observe that the magnitude of its maximal singular value satisfies the inequality (12) and lies 
under the inverse of the performance weight matrix for any frequency. These properties indicate good robust 
performance with good disturbance rejection and transient response. The result is displayed in Figure 6.  
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Figure 6. Frequency response of the inverse of the weight     Figure 7. Frequency response of the controlled  
function (dashed) and of the sensitivity function (solid)          structure 

 

In the Figure 7 the frequency response of the closed loop structure is shown. Investigation of the robustness 
of the obtained controller is done in the last set of numerical results. Uncertainty is considered by a change of the 
mass, stiffness and damping matrix of the structure. Then the performance of the robust H∞  controller, which 
has been designed with information taken from the nominal system, is tested on the modified dynamical system. 
In Figure 8 a comparison of the responses between the nominal system and a system with ten percent higher 
mass is shown. It can be observed that by virtue of the good sensitivity of the controlled system the magnitude of 
the suppressed vibrations is slightly increased but the system remains stable. In Figure 9 analogous results are 
provided for the case of a system with ten percent less stiffness than the nominal one Finally the robustness of 
the controlled system for the case of a twenty percent higher damping value is demonstrated in Figure 9 is shown 
the robustness of the controlled system when uncertainty twenty percent occurs in the damping matrix. The 
response of the controlled system is modified. However, it remains stable. At this point it should be mentioned 
that when the mass and stiffness matrices are changed significantly, a case which appears after extended 
deterioration of the system, the controller fails and the system looses its stability. 
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Figure 8. Response of the robust controlled nominal         Figure 9. Response of the robust controlled nominal 
        (dot) and mass perturbed (solid) systems   (dot) and stiffness perturbed (solid) systems 



Georgios E. Stavroulakis, Daniela G. Marinova, and Emmanuel C. Zacharenakis. 

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1
x 10

-3 RESPONSE TO RANDOM LOAD for G, Gc

TIME (sec)

D
IS

PL
A

C
EM

EN
T 

(m
)

 

Figure 10. Response of the robust controlled nominal (dot) and damping perturbed (solid) systems 

 

11 CONCLUSIONS 

Uncertainty in engineering design is an unavoidable fact of life. Practical methods to account for the worst-
case scenario have been developed within the area of optimization in the presence of uncertainty. In optimal 
control of dynamical systems the corresponding investigations are known under the name of robust control. This 
paper demonstrates the applicability of the robust control methodology on civil engineering structures with the 
example of the old-fashioned, well-known shear-type frame of aseismic design. The robust control system, 
which is designed with the nominal structural data, continues to work, even with some acceptable lower 
performance, on the modified structure, provided that the modification lies within the assumed uncertainty level. 
A comparable classical optimization scheme (say, LQR) is, in general, less effective or even fails to work. The 
extension of this approach to general systems modeled with the finite element method is straightforward. 
Furthermore the uncertainty levels may be correlated in several ways with damage-, fatigue- or crack-induced 
modifications of the structure, depending on the application. For example, in the aseismic design of buildings the 
uncertainty levels may be related with the damage levels predicted from a nonlinear push-over analysis. 

From the theoretical point of view it should be mentioned that for higher levels of uncertainty the complexity 
of the corresponding problems and of their numerical solution increases. In several cases one could identify the 
source of the higher difficulty: a convex optimization problem becomes nonconvex, therefore multiple solutions 
and local minima may appear. Currently available numerical tools, like the ones used in this paper, can only 
guarantee the calculation of a suboptimum. Further investigation on the applicability of global optimization tools 
in this area seems to be justifiable. 
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Abstract. In this paper a robust and efficient methodology is presented for treating large-scale reliability-
based, structural optimization problems under seismic loads using the pushover analysis method. The 
optimization problem is solved with the Evolution Strategies method, while the reliability analysis is carried out 
with the Monte Carlo simulation method. In order to reduce the excessive computational cost of the reliability-
based optimization process the repeated structural analyses that are required during the Monte Carlo 
simulations are replaced by an efficient neural network approximation scheme.  
 
 
1 INTRODUCTION 

Reliability analysis methods have been developed significantly over the last decades and have stimulated the 
interest for the probabilistic optimum design of structures. Despite the theoretical advancements and the 
improvements in the efficiency of the reliability analysis techniques, they still require disproportionate 
computational effort for treating practical reliability problems. On the other hand, structural optimization is the 
only rational procedure to assess whether the design adopted meets the required performance targets. In 
addition, modern earthquake engineering design philosophy has introduced the concept of performance-based 
design (PBD)[1-6] for structures subjected to seismic loading conditions. In conjunction with the advancements in 
the computational tools for earthquake engineering, the shift from design procedures based on conventional 
static analysis to more realistic non-linear analysis procedures is possible and also necessary. 

It is generally accepted that performance-based design has to be reliability-based[7,8]. The most effective way 
to treat the inherent probabilistic nature of geometry, material properties and loading conditions is to consider 
them in a framework of a Reliability-Based Optimization (RBO) process[9]. However, the computational cost for 
the solution of large-scale structural systems under seismic loading is orders of magnitude higher than in the 
case of a conventional seismic design, especially when, as in the present study, a non-linear analysis method is 
employed in order to evaluate the inelastic behavior of the structure. 

In this paper a robust and efficient methodology is presented for performing RBO of space steel frames 
under seismic loading. The proposed methodology combines efficient structural optimization and reliability 
analysis procedures. For the solution of the optimization problem the efficient Evolution Strategies (ES) 
algorithm is used. The employed reliability analysis procedure requires that a particular structural design 
satisfies certain displacement-based performance criteria and it is carried out via the Monte Carlo Simulation 
(MCS) method. Finally, for the structural analysis an efficient pushover scheme is employed using a fiber-type 
beam element, which has been chosen in order to achieve a more accurate simulation of the inelastic behavior. 

In order to reduce the excessive computational cost and make the whole procedure viable for real-life 
engineering applications the use of Artificial Neural Networks (ANN) is incorporated in the proposed 
methodology[10]. The use of ANN was motivated by the time-consuming repeated analyses required by the MCS 
in the reliability analysis phase and by the ES during the optimization process. According to the proposed 
implementation, the pushover analysis required in every simulation is replaced by a neural network based 
metamodel. An efficient training algorithm is implemented for training the ANN utilizing available information 
generated from selected analyses. In the reliability analysis phase the training data for the ANN are derived from 
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a “coarse” initial Latin hypercube sample. In the sequence the discretization of the sample space becomes finer 
in order to approximate the probability of failure via fast and accurate metamodel predictions. As far as the 
optimization phase is concerned, the structural analysis is replaced by a neural network prediction for the 
computation of the necessary data, i.e. values of the objective and constraint functions, for the ES optimizer. The 
proposed methodology has been applied in sizing structural optimization of a characteristic 3D steel frame. 

2 DESIGN UNDER SEISMIC LOADING 

Performance-based design concepts have been introduced over the last ten years by various guidelines 
(ATC-40 (1996), FEMA-273 (1997), SEAOC (1995)) for the assessment and rehabilitation of existing structures 
and the analysis and design of new ones. The main objective is to increase the safety against natural hazards and 
in the case of earthquakes to make them having a predictable and reliable seismic performance. In other words, 
the structures should be able to resist earthquakes in a quantifiable manner and to present levels of acceptable 
possible damages. Performance-Based Earthquake Engineering (PBEE) is a multi-level design approach where 
various levels of structural performance are considered. For example FEMA-273 suggests the following 
performance levels: operational level, immediate occupancy, life safety and collapse prevention.  

The structural performance can be measured either in terms of stresses, or in terms of displacements. Since 
the latter approach provides a better indicator of damages it is usually preferred, especially when expressed in 
terms of maximum interstory drift limits. The guidelines suggest various types of analysis methods: linear static, 
non-linear static, linear dynamic and non-linear dynamic. The most commonly used approach is the non-linear 
static, or pushover analysis method. Pushover analysis allows for the direct evaluation of the performance of the 
structure at each limit state as opposed to conventional static analysis based design procedures, such as that of 
EC3, where the structure is designed for the ultimate limit state while for the serviceability limit state a number 
of deflection checks are performed at the end of the design process. 

The purpose of the present pushover analysis based optimization problem is to obtain optimum designs that 
satisfy design codes provisions in order to be acceptable in current practice. In the iterative optimization 
procedure each candidate design is initially checked against the provisions of EC3 and EC8. Two design load 
combinations are considered 

 d kj ki
j i

S 1.35 G " "1.50 Q= +∑ ∑  (1) 

 d kj d 2i ki
j i

S G " "E " " Q= + + ψ∑ ∑  (2) 

where “+” implies “to be combined with”, the summation symbol implies “the combined effect of”, Gkj denotes 
the characteristic value of the permanent action j, Ed is the design value of the seismic action, and Qki refers to 
the characteristic value of the variable action i, while ψ2i is the combination coefficient for quasi permanent 
value of the variable action i, here taken as 0.30. The multi-modal response spectrum analysis procedure is 
employed for the calculation of the stress resultants of the earthquake action, while the imposed lateral loading 
scheme is obtained from the elastic design spectrum of EC8 for a peak ground acceleration (PGA) that 
corresponds to a frequent earthquake, small enough to cause no yielding on the structure. 

All EC3 and EC8 checks: axial, flexural (or combined axial-flexural) and shear capacity of each member are 
considered. Furthermore, the strength ratio of column to beam is calculated and also a check of whether the 
sections chosen are of class 1, as EC3 suggests, is carried out. The later check is necessary in order ensure that 
the members have the capacity to develop their full plastic moment and rotational ductility, while the former is 
necessary in order to have a design consistent with the strong column - weak beam design philosophy. In order 
to ensure that the structure is not potentially unstable an additional constraint is imposed. Finally, an inter-storey 
drift ratio limit of 3% is introduced in order to control the seismic damage severity on the structure. 

2.1 Pushover analysis 

The purpose of pushover analysis is to assess the structural performance in terms of strength and deformation 
capacity globally as well as in the element level. The structural model is “pushed” using a commonly used 
lateral load pattern, which is proportional to the fundamental mode of the structure. The method can provide the 
sequence of the member yielding and identify the regions where inelastic deformations are expected to be high. 
Pushover analysis is based on the assumption that the response of the structure is related to the response of an 
equivalent single degree of freedom system.  

The pushover analysis step is initiated as soon as the structure has satisfied the initial static analysis step. 
Gravity loads are present and follow the load combination of Eq. (2). The lateral loads are increased 
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automatically via the constant arc-length criterion, which has been implemented in order to reduce the number of 
necessary iterations required and also to increase the robustness of the elasto-plastic analysis algorithm. 
Geometric nonlinearities were also considered. The analysis is terminated as soon as the target displacement that 
corresponds to the 2% in 50 (2/50) years earthquake is reached or earlier if the algorithm fails to converge 
because a collapse mechanism has been formed. The target displacement is obtained from the FEMA-356 
formula: 

 
2

0 1 2 3 24
δ =

π
e

t
T

C C C C Sa g  (3) 

where C0, C1, C2, C3, are modification factors: C0 relates the spectral displacement to the likely building roof 
displacement; C1 relates the expected maximum inelastic displacements to the displacements calculated for 
linear elastic response; C2 represents the effect of the hysteretic shape on the maximum displacement response; 
and C3 accounts for P-∆ effects. In the present study C1 and C3 are both set equal to 1.0, while C2 is equal to 1.0, 
1.1 and 1.2 depending on the structural performance level considered. Te is the effective fundamental period of 
the building in the direction under consideration. Sa is the response spectrum acceleration at the Te period. The 
pushover curve is converted to a bilinear curve with a horizontal post-yield branch using an iterative process that 
balances the area below and above the curve. 

2.2 Finite element analysis  

The so-called BEC fiber beam element based on the natural mode method[11] is employed for the FE 
modeling in order to perform the pushover analysis. This finite element formulation is based on the description 
of the variation of the displacement field along the beam on quantities with a clear physical meaning known as 
the natural modes of the beam element. The fiber approach is used to account for material inelasticity. Each 
structural element is discretized into a number of sections. Each section is further divided into a number of small 
fibers, which are restrained to beam kinematics and each employs its own constitutive model. The sections are 
located either at the center of the element or at the Gaussian integration points. The main advantage of the fiber 
approach is that each fiber has a simple uniaxial material model allowing an easy and efficient implementation 
of the constitutive model. A bilinear material law was used in this study. For the solution of the system of 
nonlinear equations an incremental-iterative numerical procedure is engaged using the arc-length method. 

3 STRUCTURAL RELIABILITY ANALYSIS 

The inherent probabilistic nature of design parameters, material properties and loading conditions involved 
in structural analysis is an important factor that influences structural safety. Reliability analysis leads to safety 
measures that a design engineer has to take into account due to the aforementioned uncertainties. Most often a 
limit state function is defined as G(R,S)=S-R and the probability of structural failure is given by 

 f R S
G 0

p p[G(R,S) 0] f (R) f (S)dRdS
≥

= ≥ = ∫  (4)
 

In general, it is practically impossible to evaluate R analytically for complex and/or large-scale structures. In 
such cases the integral of Eq. (4) can be calculated only approximately using either simulation methods, such as 
the Monte Carlo Simulation, or approximation methods. Despite the fact that the mathematical formulation of 
the MCS is relatively simple and the method has the capability of handling practically every possible case 
regardless of its complexity, this approach has not received an overwhelming acceptance due to the excessive 
computational effort that is required. Efficient sampling techniques, advanced solution methods and parallel 
processing have been recently implemented having a beneficial effect on the efficiency of MCS. Expressing the 
limit state function as G(x)<0, where x=(x1,x2,...,xM) is the vector of the random variables, Eq. (4) can be written 
as 

 f x
G(x) 0

p f (x)dx
≥

= ∫  (5)
 

where fx(x) denotes the joint probability density function for all random variables. In order to estimate fp  an 
adequate number of N independent random samples is produced using a specific, usually uniform, probability 
density function of the vector x. The value of the failure function is computed for each random sample xj and the 
MCS estimation of pf is given in terms of sample mean by 
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 H
f

N
p

N
≅  (6) 

in which NH is the number of failure simulations (G(x)<0) and N the total number of simulations. In order to 
reduce the number of simulations and the computational cost of the standard MCS one of the most efficient 
sampling reduction techniques[12,13]: Latin Hypercube Sampling (LHS) has been used. 

4 RELIABILITY-BASED OPTIMIZATION  

In reliability-based sizing optimization of large-scale multi-storey 3D frames the main aim, apart from 
minimizing structural weight, is to minimize the overall probability of failure of the structure. The probabilistic 
variables are chosen to be the cross-sectional dimensions of structural members and the material properties, 
modulus of elasticity E and yield stress σy. Due to engineering practice demands the members are divided into 
groups having the same design variables. Due to manufacturing limitations the design variables are not 
continuous but discrete since cross-sections belong to a certain set provided by the manufacturers. Thus, a 
discrete RBO problem can be formulated as follows: 

 
j
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f a

min              F(s)
subject to     g (s) 0   j=1,...,m

                    s R ,     i=1,...,n
                    p p   

≤

∈
≤

 (7) 

where F(s) is the objective function, s is the vector of design variables, hj(s) are the deterministic constraints 
imposed by the design codes, while pf is the probability of failure of the structure required to remain below a 
threshold value (pa) which comprise the probabilistic constraint.  

5 ARTIFICIAL NEURAL NETWORKS 

The aim of the present study is to train a neural network to provide computationally inexpensive estimates of 
analysis outputs required during the MCS process. A trained ANN provides a rapid mapping of a given input 
into the desired output quantities, thereby enhancing the efficiency of the structural analysis process. This major 
advantage of a trained ANN over the conventional procedure, under the provision that the predicted results fall 
within acceptable tolerances, is that it leads to results that can be produced in a few clock cycles, representing 
orders of magnitude less computational effort than the conventional process. In this work a fully connected 
network with one hidden layer is used. The learning algorithm, which was employed for the training, is the well-
known Back Propagation (BP) algorithm. 

In the present implementation the objective is to investigate the ability of the ANN to predict the probability 
of failure for different values of the basic random variables used by the MCS method for reliability analysis. The 
results of the reliability analyses are used to verify the feasibility or not of the design with respect to the 
probabilistic constraint function. The ANN training comprises the following tasks: (i) select the proper training 
set, (ii) find a suitable network architecture and (iii) determine the appropriate values of characteristic 
parameters such as the learning rate and momentum term; two user defined BP parameters that effect the 
learning procedure. 

6 EVOLUTION STRATEGIES  

The two most widely used optimization algorithms belonging to the class of evolutionary computation that 
imitate nature by using biological methodologies are the Genetic Algorithms (GA) and Evolution Strategies 
(ES). In this work ES are used as the optimization tool[10]. ES were introduced in the early seventies and have 
three characteristics that make them differ from other conventional optimization algorithms: (i) in place of the 
usual deterministic operators, they use randomized operators: mutation, selection, recombination; (ii) instead of 
a single design point, they work simultaneously with a population of design points; (iii) they can easily handle 
continuous, discrete and mixed optimization problems. 

6.1 Reliability-based structural optimization using ES and ANN 

In RBO problems the probabilistic constraints enforce the condition that the probability of a local failure of 
the system or the global system failure is smaller than a certain value (i.e. 10-5 to 10-3). In this work the overall 
probability of failure of the structure, as a result of pushover analyses, is taken as the global reliability 
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constraint. The probabilistic variables are chosen to be the cross-sectional dimensions of the structural members 
and the material properties (E, σy). The proposed ES-ANN methodology can be briefly described with the 
following algorithm: 
 

1. Parents Initialization. 
2. Deterministic constraints check: all parents become feasible. 
3. Monte Carlo Simulation step:  

3a. Selection of the ANN training set. 
3b. ANN training. 
3c. ANN Monte Carlo Simulations. 

4. Probabilistic constraints check: all parents become feasible. 
5. Offspring generation. 
6. Deterministic constraints check: if satisfied continue, else go to step 5. 
7. Monte Carlo Simulation step: 

7a. Selection of the ANN training set. 
7b. ANN training. 
7c. ANN Monte Carlo Simulations. 

8. Probabilistic constraints check: if satisfied continue, else go to step 5. 
9. Parent selection step. 
10. Convergence check. 

7 TEST EXAMPLE  

A characteristic test example has been considered in order to illustrate the efficiency of the proposed design 
procedure in structural optimum design problems. The structural elements of the six storey space frame are 
divided into five groups, each of them having one design variable, i.e. element’s cross-section, thus 
corresponding to 5 independent design variables. The space frame consists of 63 members (6 adaptively 
distributed BEC elements per member and approximately 100 fibers in each W-shaped member) with 383 beam 
elements and approximately 2100 d.o.f. The modulus of elasticity is 200 GPa and the yield stress is fy=250 MPa.  
The objective function is the weight of the structure. The deterministic constraints are imposed on the inter-
storey drifts and stress constraints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Test example – Geometry and member grouping 

The structure is loaded with a 19.16 kPa gravity load on all floor levels and a simplified earthquake load, i.e. 
the lateral load distribution applied at each node in the front elevation along the x direction follows the 
fundamental structural mode according to EC8 design spectrum. The constraints of the pushover analysis step 
concern maximum interstorey drift limits. More specifically, the maximum interstorey drift that corresponds to 
the displacements of the 2/50 earthquake should be less than 3%. The type of probability density functions, 
mean values, and variances of the random parameters are presented in Table 1. The mean value for each 
geometric variable (i.e. the cross-sectional dimensions) is taken as the value the current design step of the 
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corresponding variable si. The probabilistic constraint that is imposed requires pa to be less or equal than 0.001. 
The probability of failure caused by uncertainties related to material properties and geometry of the structures is 
estimated using MCS with the LHS technique.  

For the optimization part the (µ+λ)-ES approach is used with µ=λ=5 following the rule that µ, λ should be in 
the same order as the number of design variables. For the standard RBO process a sample size of 500 for the 
MCS employing the LHS procedure is used. As it can be observed from Table 2 the probability of failure for the 
deterministic optimum (DBO) is unacceptable since it exceeds substantially the allowable value. The same 
observation can be made for the standard RBO procedure due to relatively small sample size, while in the case 
of RBO-ANN the sample size is not a problem any more and the target probability of failure is achieved. On the 
other hand, the optimum weight achieved using RBO is 18% more than the deterministic one. 

For the application of the RBO-ANN methodology the number of ANN input units is equal to the number of 
random variables, whereas one output unit is needed corresponding to the probability of failure. Consequently 
the ANN configuration results in a 7-7-1 ANN architecture, which is used for all runs. The number of 
conventional analyses for the training of ANN is taken equal to 60. As it can be observed in Table 2 the 
proposed RBO-ANN optimization scheme manages to achieve the optimum weight in one third of the CPU time 
required by the conventional RBO procedure (which in addition violates the probabilistic constraint). As it was 
previously mentioned, the number of MCS in the case of ANN scheme can be extremely large, thus RBO-ANN 
increases computational efficiency and accuracy of the whole RBO process, due to the trivial computing time 
required by the ANN to perform MCS.  
 

Random 
variable 

pdf Mean 
value (µ) 

St.dev. 
(σ) 

E N 200 0.10E 
σy N 25.0 0.10σy 

Design variables N si 0.1si 

Table 1. Characteristics of the random variables 

 

Optim. 
Procedure 

ES 
cycles pf 

Opt. 
weight 
(kN) 

Time 
(h) 

DBO 40 0.1 10-0 1126 1.6 
RBO 

(500 siml.) 47 0.21 10-1 1317 129.2 

RBO-ANN* 47 0.93 10-3 1375 17.7 
*For 100,000 ANN simulations  

Table 2. Performance of the methods 

8 CONCLUSIONS 

The solution of realistic RBO problems in structural mechanics is an extremely computationally intensive 
task. Due to the size and the complexity of seismic RBO problems a stochastic optimization method, such as ES, 
appears to be the most suitable choice. In the test example considered the conventional RBO procedure was 
found eighty times more expensive than the corresponding deterministic optimization procedure. The aim of the 
proposed RBO procedure is to increase the safety margins of the optimized structures under various model 
uncertainties, while at the same time minimizing the weight of the structure as well as the additional 
computational cost. This goal was achieved using ANN predictions to replace the pushover analyses involved in 
the standard RBO process. The implementation of the proposed RBO procedure in a parallel computing 
environment could further improve its computational efficiency. 
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Abstract. Due to the inherent flexibility of engineering structures, transient and residual vibrations occur 
during their motion, raising thus several practical restrictions concerning their fast, accurate and safe motion. 
Numerous command shaping techniques for the effective suppression of the excited residual vibration in actual 
applications have been implemented over the years. The dominant tradeoff that these methods have to deal 
with is between the robustness of the command and the speed of response of the system. Traditional digital 
filters have been proven to be efficient for vibration suppression in several flexible systems and mechanisms, 
when they are properly designed. Among them, a special class of Finite Impulse Response (FIR) filters has 
been shown to present a maximally robust behavior, while simultaneously introducing the minimum possible 
delay. In this work, the exploitation of this class of filters is considered for structures that present highly 
complex and vigorous dynamic response, characterized by wide bands of dense clusters of eigenfrequencies. 
The proposed filtering method is implemented for the generation of the motion profile of a multibay truss. 
First, the transient responses of the truss at multiple points are computed in order to identify the 
eigenfrequencies of the system. Then, properly designed Finite Impulse Response (FIR) filters are applied to 
the motion commands of the system. The resulting filtered motion commands are shown to effectively suppress 
the truss vibration during and after its motion, covering uniquely all the excited modes of the structure. 
 

1 INTRODUCTION 

Lightweight flexible structures are often encountered in civil engineering, aerospace and several industrial 
applications. The performance of these systems is straightforwardly affected by the presence of undesirable 
vibration in their transient responses, due to the inherent excitation of several flexible modes. In practice, these 
structures are essential components incorporated in larger mechanical systems, which as a direct result 
influence even more their dynamic response in a rather complex and unpredictable manner. 

The dynamic analysis of extended multibay lightweight trusses poses interesting technical challenges. This 
is because such structures generally posse high modal densities, with clusters of densely packed modes, existing 
even at relatively low frequencies[1-3]. The problem of moving effectively a flexible structure, such as a multibay 
truss, cannot be rationally addressed, unless a thorough analysis in terms of system dynamics identification is 
primarily preceded[4,5]. The described framework explains the particular engineering interest from the optimal 
motion control aspect. 

The traditional approaches to minimize the effect of residual vibrations are focused on either redesigning 
the structure of the system, in order to obtain acceptable dynamic characteristics, or on using sophisticated 
closed loop control methods. Each one of them is subjected to a number of disadvantages and drawbacks. An 
alternative approach for suppressing residual vibrations is the proper design of a pre-specified excitation 
pattern, the Guidance, so that the system moves exactly to the desired end position without any residual 
vibration[6]. 

A typical well-known example of such methods is the input shaping approach, based on the convolution of 
an arbitrary guidance function with a series of impulses[7-8]. While input shaping methods present a good 
performance in a variety of systems and applications, their robustness is limited in local areas around the 
system natural frequencies and can be increased only by increasing the total duration of the pulse sequence. 
This causes undesired delays in the total duration of the system motion. 

The existing literature concerning control of flexible structures by utilizing input shaping methods, 
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although plentiful in applications and examples concerning SDOF systems that justify the time-optimization 
approach[13,14], lacks characteristically in evaluation to more sophisticated systems. The vast majority of the 
proposed input shaping methods when implemented to MDOF, or generally multi mode systems[9-12], are most 
of the times restricted to two mode systems, revealing a limited prospective for further exploitation. 

In reality, control of flexible structures becomes an even more complex issue, taking into account the 
deterministic non-linear behavior that real systems posse. The input shaping techniques can compensate for 
this, if only a detailed dynamic model of the system is expressed, and a rather strict linearization procedure for 
the determination of the several natural frequencies and damping ratios is implemented[15,16]. 

In order to overcome the above problems of limited robustness offered by the existing open loop or “input 
shaping” methods, a new framework has been proposed, according to which the design of an appropriate 
guidance function for vibration suppression can be transformed to the proper design of a low-pass digital 
filter[20]. Based on five requirements, that ensure vibration suppression with minimum residual vibration error, 
short delays, increased robustness, and proper rigid body motion, a systematic design procedure has been 
introduced, which is based on the concept of Delay-Error-Order (DEO) curves. 

The effectiveness of conventional filters for residual vibration suppression has been extensively examined, 
both theoretically and experimentally. Experimental demonstrations on a flexible robot[18,20] have shown that 
the exploitation of both FIR and IIR filter types can effectively suppress the excited vibration. Furthermore, the 
application of the method to large structures, such as the case of a rotary crane[21], has shown that it can 
compensate for the highly non-linear characteristics of the system, and drastically diminish the sway excitation 
phenomena. The main advantage of the method is that it can be applied to any mechanical system by simply 
digital filtering the guidance input, no matter what pattern does the original force input follows. 

The objective of the present work is to demonstrate that the proposed filtering approach in[18] can be 
effectively applied to precondition the motion profiles of flexible structures, in order to suppress both transient, 
as well as residual vibration, in the optimal time. The interest is focused in a characteristic case of a rather 
flexible structure, such as a multibay truss, which comprises plethora of characteristics that form a sophisticated 
dynamic system. Initially, the exact transient dynamics of the impulsively loaded flexible truss are extracted, by 
employing a Finite Element based simulation. Then, the time optimal motion profiles for the motion of the 
truss are proposed, followed by the description of the alternative input preconditioning approach using FIR 
digital Filters. Finally, the new motion profiles are applied numerically to the system, and the results justify 
uniquely the usage of the motion command filtering technique. The maximally robust features, introduced by 
the filtered commands, present also a time optimal behavior, while achieving an almost vibration free motion of 
the flexible structure. 

 

2 PROBLEM DEFINITION 

2.1 Truss description 

The truss structure examined (Fig. 1) is exactly the same one considered in [3]. It consists of 18 periodic sets 
(bays) connected by clamped joints. Each periodic set consists of coupled beams undergoing axial and bending 
vibrations. The joints connecting the beams of each periodic set transmit longitudinal (axial) and transverse 
forces, as well as bending moments. The (6 1)×  vector (i)

Lu  of generalized displacements at the left boundary of 
the ith periodic set can be defined as follows: 

T(i) (i ) (i) (i) (i ) (i ) (i )
L 1,L 2,L 1,L 3,L 4,L 2,Lu u u u u = θ θ                (1) 

where (i )
p,Lu  and (i )

k,Lθ , p 1 4= − , k 1, 2=  represent the horizontal or vertical displacements, and the rotations 

respectively, of the joints at the left boundary of the set (Figure 1).  
During the subsequent analysis, the following assumptions are made:  
1. The truss structure is considered to be free (unsupported) in space,  
2. The damping effect is neglected, and 
3. The influence of gravity is neglected. 

2.2 Truss characteristics 

The structural members of the truss are considered to be out of aluminum[3]. Indicative values of the 
material properties and geometric parameters of these elements, employed in the numerical simulations, are: 

EI 5.587=  Pa m2, (E: modulus of elasticity, I: moment of inertia of a beam member),  
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6EA 2.216 10= ⋅  Pa, (E: modulus of elasticity, A: cross-section of a beam member), 

_

m = 0.0855 Kg/m, (mass per unit length of a beam member), 
2700ρ =  Kg/m3, (Aluminium density) 

y vertl l 0.903= =  m (length of a vertical beam member), and 

x horizl l 0.903= =  m (length of a horizontal beam member). 
The computation of the transient responses at a given location on the truss were performed using ANSYS©

 

v8.0, while the FFT and any other necessary numerical operations were conducted using MATLAB© 7.0. 
 

 

Figure 1. (a) The truss structure consists 18 periodic sets (bays), (b) Generalized displacements as they are 
defined at an individual truss beam. 

 

3 SIMULATION OF THE TRANSIENT DYNAMICS 

3.1 Impulsive excitation 

The detailed dynamic response of the truss has been extensively studied before[1,2]. However, in order to 
rationally proceed to its motion control, a simple numerical experiment will be implemented for the proper 
identification of fundamental dynamic characteristics of the system. The features extracted by this analysis will 
define the filter preconditioning approach that will be adopted, as this is described later. 

The truss is subjected to a simulated impulsive excitation. The impulse force is applied vertically on the 
upper joint of the truss’s left boundary (Figure 2). The characteristic trapezoidal shape of the force is described 
by the equation[1]: 

10t,
1,F(t)
6 10t,
0,




=  −
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t 0.6

≤ <
≤ <
≤ <
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                                (2) 

In Figure 3 some representative numerical FFTs for the three degrees of freedom (horizontal/vertical 
displacement and rotation) of a joint at three individual joints of the truss are presented. We note that 
resonances in this system occur in dense clusters, which correspond to propagation zones of the various 
wavemodes of the corresponding truss of infinite spatial extent[4]. These dense clusters of eigenfrequencies are 
extended in a very wide frequency band (0 Hz – 60 Hz) when referring to the vertical displacement and rotation 
of a joint. In comparison, the clusters of eigenfrequencies appearing at the FFTs of horizontal displacements are 
limited to relatively low frequencies (0 Hz – 10 Hz). 

The last remarks are better clarified if the respective acceleration time series for horizontal and vertical 
directions at the three joints of the truss are computed (Figure 4). It is noticeable that the magnitude of the 
accelerations in the vertical direction is approximately 10 times larger compared to the accelerations in the 
horizontal direction. This is logically justified because the vertical impulsive load excites a steady vibration, 
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with predominantly vertical motions of the joints of the truss. Respective results are extracted if a horizontal 
impulsive load is applied to the truss[1]. 

 

Figure 2. The truss structure is subjected to vertical forcing at the upper joint of the left boundary. 
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Figure 3. Numerical FFTs for the three degrees of freedom (horizontal/vertical displacement and rotation), at 

three individual joints on the upper part of the truss (1,10 and 19) for the case of a single vertical forcing. 
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Figure 4. Acceleration time series at the three individual joints on the upper part of the truss (1,10 and 19).  
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4 TRUSS MOTION PROFILES 

4.1 Time optimal profiles 

The truss structure can be seen either as an individual system actuated at its right boundary, or as a 
component attached to a larger mechanical system, through its right joints boundaries. In order to define the 
appropriate commands for the time optimal point-to-point motion, the truss is temporarily treated as a rigid-
body structure. The feedforward control problem is to generate the force required for acceleration of the truss 
mass, over a desired distance. Conversely, the motion distance should be such that the force is allowable and 
can be generated by the actuating device.  

Taking into account that the current problem is approached by means of numerical implementation, the 
interest focuses basically on the proper generation of the force. The exact determination of the moving distance 
is a separate problem and is out of the interest of this study. 

It is assumed that the force that determines the exact motion of the truss is applied at the right boundary of 
it. The geometry of the structure dictates the split of this force to two equal forces of half of the initial 
amplitude, acting respectively at the two joints of the right boundary (Figure 4). If the maximum acceleration 
and velocity along the moving direction are defined, then the quickest motion of the truss can be derived using 
a bang-bang or bang-off-bang force input. 

Since no specific values for the maximum acceleration, or velocity, of the truss are available, a 
representative force profile can be formed if a rough estimation is made based on conservative values of its 
motion characteristics (acceleration, velocity). Given that the mass of the structure is approximately 4Kgs, a 
maximum acceleration of approximately 0.5m/s2 is considered to be rather realistic and safe. The rigid-body 
approach implies that for a mass of 4Kg to be optimally accelerated with 0.5m/s2, a minimum force of 2N must 
be applied. Hence the amplitude of the force acting at each of the two joints at the right boundary will be 1N. 

If the estimated maximum force value is adopted, an indicative motion profile can be obtained by the 
sequential completion of the following tasks: The maximum acceleration (0.5m/s2) is applied for time duration 
equal to 5 sec until the assuming maximum velocity of motion is reached (2.5m/s). Then a constant velocity 
motion is performed for 10s, and finally the maximum deceleration is applied for 5s until the motion stops. 
When such inputs are applied, the response of the system can be numerically calculated using ANSYS. 
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Figure 5. Filter frequency response of a FIR filter and a close up of it, focused at the area of the cutoff frequency 
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Figure 6. Comparison of Time Optimal vs Filtered Force Inputs, and their placement on the truss. 

4.2 Input preconditioning using FIR filters 

The objective of the filtering procedure is to move the truss at an end point at the optimal time, while 
vibration at the truss joints remains minimum. The filtering procedure can compensate for these variations, by 
forming appropriately a filter frequency response function, which is as close as possible to zero at the frequency 
bands coinciding with the anticipated natural frequencies of the dynamic system. 
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According to the proposed preconditioning approach, instead of the direct implementation of the original 

input force functions F, conditioned guidance functions FC can be alternatively used, obtained by appropriately 
digital filtering the original guidance functions. 

A FIR filter, designed according to the Parks-McClellan method, is then used for suppressing the truss 
vibrations. Although several types of filters can be equivalently used, FIR filters of the Parks-McClellan type 
have been shown[19,21] to belong in the class of the best performing filters. The permissible vibration error is set 
at 5%. Due to the highly non-linear, time varying nature of the problem considered, the filter order was 
respectively selected to be N=256. According to [18], the chosen filter order results to a very large relative 
robustness of almost 99%. The total time delay introduced by the filtering process is equal to approximately 
1.37s, which is approximately 1.25 times the highest natural period of the system. The rest of the filter design 
parameters were retrieved from the DEO curves and the look-up tables corresponding to the specific filter[18]. 

The filter transfer function is shown in Figure 5. The stop band of the filter covers frequencies from 0.87Hz 
up to approximately 190Hz. This stop band is significantly wider than that actually needed, in view of the 
actual bands of the spectrums presented in Figure 3. The size of the stop-band ripples is less than 0.05 while 
the amplitude of the pass-band is equal to one. 

5 NUMERICAL RESULTS 

5.1 Original (time optimal) inputs to the system 

The profiles for the time optimal bang-bang types of commanded inputs of the truss motion are shown in 
Figure 6 as they result from the procedure described in paragraph 4.1. Figure 7 presents respectively the 
velocity and acceleration time series for horizontal and vertical directions, and rotations, at three individual 
joints of the truss, for the above force input of Figure 6. It can be observed that the vibration is excited as soon 
as the motion starts. 

This excited vibration clearly indicates that although the motion profiles are theoretically designed to be 
time-optimal, in practice due to the low damping ratio of the structure proved to be ineffective in terms of 
optimal control in general. 

5.2 Effects of the preconditioned inputs 

The filter designed in paragraph 4.2 is then used to filter the commanded inputs. The resulting filtered 
inputs are shown in Figure 6, in comparison to the original inputs.  

The resulting velocity and acceleration time series for horizontal and vertical directions, and rotations, at 
three individual joints of the truss are illustrated in Figure 7, together with the original vibrations. It can be 
easily observed, that the vibration magnitude remains practically negligible in both cases of the transient and 
residual state. 

It must be underlined that although the filter procedure itself introduces a small delay, this is compensated 
for by the fact that no vibration is now present. Thus, the long periods of rest-times, due to the low damping 
ratio of the initial vibration, need not to be encountered in a practical situation. 

The results indicate that the application of a filtering method to non-linear time-varying flexible systems, 
such as the case under consideration, is legalized. Furthermore, taking into account that the vibrations at the 
joints of the truss are practically negligible during the entire motion, the flexible structure presents an almost 
rigid body behavior. 

This implies that once a specific filter has been designed, it can be applied to all operating conditions of the 
truss. Moreover, the flexibility offered by the filter design procedure of [18] can meet different design 
requirements, such as acceptable vibration level, acceptable filter delay, minimization of power consumption 
etc. 

5 CONCLUSIONS 

Transient and residual vibrations of flexible structures can be controlled efficiently when appropriate 
conventional digital filters are used to precondition the motion inputs to the system. As shown by the results 
presented, the preconditioned inputs reduce significantly both the transient and the residual vibrations of the 
multibay truss, even under extreme conditions. 

The only cost anticipated, is a small time delay for the motion, which is of the order of magnitude of the 
largest expected natural period of the system. However, this drawback can be also efficiently handled, since the 
vibration suppression capabilities of the proposed method omit the long rest times introduced by lightly damped 
systems. 
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The method is simple to implement in actual configurations, it is efficient and does not require special 

sensors or other equipment. Although, in this work, this method is presented as an open-loop control approach, 
it can be also efficiently combined with simple close-loop positioning controllers. 
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Figure 7. The resulting velocity and acceleration time series for horizontal and vertical directions, and 

rotations, at three individual joints of the truss (1, 10, 19). 
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Abstract. The present work is concerned with assessing the vulnerability of seismically excited structures using 
non-deterministic analysis concepts, in order to take uncertainties into account. In this respect, uncertainties in 
both structural properties and earthquake loads are considered. Hence, the variation characteristics of 
uncertain material parameters along the length of frame members are modeled using Gaussian stochastic fields. 
Moreover, non-Gaussian probabilistic earthquake loading is assumed, which is described with the use of 
random variables based on data obtained from natural ground motion records. The modeling of uncertainties 
using random variables and fields is implemented in the framework of the direct Monte Carlo Simulation (MCS) 
method, in order to calculate structural response statistics and estimate the reliability for multi-storey frames 
with stochastic properties subjected to random seismic excitation. This MCS process can be incorporated into a 
multi-objective Robust Design Optimization (RDO) formulation, in which the aim is to minimize the response 
variability and the weight of a structure, in order to obtain the global Pareto front curve. 
 
 

1 INTRODUCTION 

Uncertainty is inherent in structural mechanics applications, since an imperfect state of knowledge is usually 
involved in material and geometric properties of engineering structures and systems, as well as in the imposed 
loading and boundary conditions. Experience shows that several of these uncertainty types – depending each 
time on the particular structural problem at hand – result in severe variations of structural response and therefore 
directly affect structural safety and reliability. Therefore, the treatment of such uncertainties has been established 
as a research area of great importance and interest within the structural mechanics community. 

The present work is concerned with assessing the vulnerability of seismically excited structures using non-
deterministic analysis concepts, in order to take uncertainties into account. This topic, as well as the broader 
field of stochastic structural dynamics, has been a subject of investigation for decades[1]. Past research efforts in 
this scientific field have mainly considered uncertainties involved in seismic loading. In this respect, several 
procedures have been proposed for evaluating statistical moments of response quantities or for estimating the 
reliability of deterministic structures subjected to random earthquake excitation[2-5]. A number of studies have 
also appeared assuming that both the seismic ground motion and the structural resistance are non-deterministic. 
In these investigations, apart from modeling uncertainties in earthquake loading, selected structural properties 
are typically treated as simple random variables[6-9]. Thus, it can be generally stated that the area of seismic 
structural reliability has attracted considerable attention by engineering mechanics researchers. However, despite 
numerous and important relevant contributions, there is still great need for research work in this area due to the 
difficulties encountered in effectively modeling and treating parameters and phenomena, which are random in 
nature. 

Seismic vulnerability is assessed in this work by taking into account uncertainties in both structural 
properties and earthquake loads. In this respect, uncertain material parameters are modeled using Gaussian 
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stochastic fields. Hence, material randomness is included in the seismic risk analysis process by considering a 
detailed representation of the variation characteristics of material properties along the length of frame members. 
Moreover, non-Gaussian probabilistic earthquake loading is assumed, which is described with the use of random 
variables based on data obtained from natural ground motion records. This modeling of uncertainties using 
random variables and fields is implemented in the framework of the direct Monte Carlo Simulation (MCS) 
method, in order to calculate structural response statistics and estimate the reliability for multi-storey frames 
with stochastic properties subjected to random seismic excitation. 

As a result of the importance of the uncertainties mentioned above, stochastic performance measures are 
increasingly being taken into consideration in many contemporary structural optimization applications. In 
deterministic-based structural sizing optimization problems the aim is to minimize the weight or the cost of the 
structure taking into account certain behavioral constraints, mainly on stresses and displacements, as imposed by 
design codes. To incorporate stochastic performance measures into the structural optimization process, two 
distinct formulations can be used: the multi-objective Robust Design Optimization (RDO) and the single-
objective Reliability-Based Design Optimization (RBDO)[10]. According to the RDO formulation, the aim is to 
minimize the influence of the stochastic variation of some structural parameters on the design, while the main 
goal in the RBDO formulation is to achieve optimum design with respect to extreme uncertain events. The 
present work aims in incorporating uncertainties in structural properties and earthquake loads into the RDO 
formulation. The aim of minimizing the response variability and the weight of a structure in the context of the 
multi-objective RDO approach may be handled with a non-dominant cascade evolutionary algorithm-based 
methodology[11], in order to obtain the global Pareto front curve. 

2 STOCHASTIC MODELING OF UNCERTAIN STRUCTURAL PROPERTIES 

There are basically two approaches for the modeling of uncertain structural properties: using simple random 
variables or random fields. In the simple random variable case, an uncertain property has a constant value across 
the structural domain at hand; this constant value is then assumed to follow some probability distribution, which 
describes the random characteristics of the property. In the random field case, the value of the property varies 
across the structural domain according to some correlation pattern and the resulting structural investigation is 
called stochastic analysis; hence, several random variables are invoked, in order to adequately represent the 
random field of the property. Under the condition that sufficient information on the spatial variation of the 
property across the structural domain is available, the stochastic approach allows for more detailed description 
of the property’s uncertain characteristics than the use of a simple random variable. 

Following the above discussion, a basic assumption in stochastic formulations is that the variation of an 
uncertain structural property P across a one-dimensional domain (or a certain region of it) can be represented at 
each point x as: 

 ( ) [ ])(10 xfPxP += , (1) 

where P0 is the mean value of P and f(x) is a zero-mean random field, which describes the variation of P about 
P0. As an example, Fig. 1 illustrates a random field sample for the stochastic modulus of elasticity of a beam. 
Stochastically modeled structural properties are utilized in the present work in the framework of the direct MCS 
method. In this respect, the spectral representation method is used to generate Gaussian stochastic field samples, 
while the midpoint method is applied to derive discretized random field values. 
 
2.1 Spectral representation of stochastic fields 

According to the spectral representation method, the sample required at the ith MCS for a one-dimensional 
univariate (1D-1V) homogeneous Gaussian stochastic field, which describes an uncertain parameter of the 
structure at hand, can be digitally generated by the following series of cosines formula as N→∞ [12]: 
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where )(i
nφ  (n=0,1,…,N-1) denotes the ith realization of the random phase angle nφ , which is uniformly 

distributed in the range [0, 2π]. An is given by: 

 κκSA nffn ∆= )(2 , (3) 

with: 
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Figure 1. Gaussian random field sample for the stochastic modulus of elasticity E of a beam with length L=10m 

(mean value of E: E0=210GPa). 

 

 κnκ n ∆= , 
N
κ

κ u=∆ . (4) 

In the above expressions, the power spectrum Sff of the stochastic field is a real nonnegative function of the wave 
number κ, while ∆κ is the wave number increment. The upper cut-off wave number κu defines the active region 
of the power spectrum, since Sff(κ) is assumed to be zero beyond the value of κu. The power spectral density 
function used in the present work is expressed as: 

 ( ) κb
ff κbσκS −= e

4
1 232 , (5) 

where σ represents the coefficient of variation of the stochastic field, while b is the correlation length parameter. 
Correlation length b measures the distance of two different stochastic field locations, over which the correlation 
between the respective random variables approaches zero or a practically very small value. Hence, b→∞ implies 
a perfectly correlated stochastic field with all its random variables being linearly dependent, while b→0 
corresponds to white noise yielded by an uncorrelated random field. 

The spectral representation method is a widely used technique due to its robustness and straightforward 
implementation[13,14]. For sufficiently large N-values this method yields stochastic processes, which are Gaussian 
within engineering accuracy. Hence, using equation (2), a Gaussian random field may be sampled per MCS for 
each uncertain parameter involved in the stochastic analysis. By considering a large number of simulations nsim, 
a set of corresponding structural problems is produced. Thus, structural response variability and/or reliability 
may be evaluated by processing the response statistics obtained by the nsim structural solutions. 
 
2.2 The midpoint method 

The midpoint method[15] uses a single random variable per element to delineate a stochastic field, since the 
field’s random characteristics are represented only at the centroid of each element. Thus, given a stochastic field 
( )xf , the midpoint method provides discretized values of f for all ne elements of the structural model at hand 

by: 

 ( ) ( ) ee xxfxf Ω∈= ,ˆ , (6) 

where ex  represents the location of the centroid of element e and ( )xf̂  is an approximation of the original field 

( )xf  over the element’s domain eΩ . Hence, any sample of f̂  is piecewise constant and discontinuous at the 

element boundaries, since the single f̂ -value considered per element is assumed to be constant over the entire 
element. Consequently, the random vector 

 ( ) ( ) ( ){ }
enxfxfxf ,...,, 21 , (7) 
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Figure 2. Natural record response spectra and their median. 

 
suffices to define the approximated field f̂ . 

The midpoint method belongs to the point discretization class of methods for stochastic field representation. 
Alternative representation options are discussed by Matthies et al.[16] 

3 MODELING OF UNCERTAIN SEISMIC EXCITATION 

The most common approach for the definition of seismic input is the use of design code response spectrum. 
This approach is general and easy to implement. An alternative option providing seismic input of potentially 
higher precision is to use spectra derived from natural earthquake records. Since significant dispersion on 
structural response has been observed due to the use of different natural records, the aforementioned spectra 
must be scaled to the same desired earthquake intensity. The most commonly applied scaling procedure is based 
on the Peak Ground Acceleration (PGA). 

A set of 20 natural accelerograms is used in the present work to derive probabilistic seismic input. The 
natural records of this set are given by Papadrakakis et al.[17] and correspond to various earthquake magnitudes, 
soil properties and PGA-values, i.e. to a wide range of earthquake damage potentials. In order to ensure 
compatibility between these nrec=20 records, they are scaled to the same PGA-value of 0.31g, which is 
associated with the hazard level of a rare earthquake with an exceedance probability of 10% in 50 years. The 
response spectrums corresponding to the 20 scaled records are shown in Fig. 2. 

Following the distributional seismic response characteristics justified and used in relevant studies[18-21], 
spectral acceleration data are assumed to follow the lognormal distribution. Therefore, median values µSA and 
standard deviations σSA are calculated for the aforementioned set of 20 spectra using the following expressions:  
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where Rd,i(T) is the response spectrum value of the ith record for a period equal to T (i=1,…,nrec). The median 
spectrum obtained is depicted in Fig. 2. Thus, for a given period value, Rd is described by a random variable 
following the lognormal distribution with mean value µSA and standard deviation σSA. 

4 FORMULATION OF THE ROBUST DESIGN OPTIMIZATION PROBLEM 

In a robust design sizing optimization problem, except of the weight of the structure, an additional objective 
function is considered which is related to the influence of the random nature of some structural parameters on 
the response. Thus, the aim is to minimize both the weight and the variance of the response of the structure due 
to the uncertainty of the random parameters. This problem can be treated as a two-objective optimization 
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problem using the weighted Tchebycheff metric[11]. The mathematical formulation of the RDO problem may be 
expressed as: 
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where Φ(s) is the multi-objective function 
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In the above equations s represents the vector of n design variables taking values from the discrete data-set dR , 
( )sg j  are the k constraint functions, f(s) is the weight of the structure and ( )sσ

iu  is the standard deviation of the 

response of the structure. Moreover, wi are m weighting coefficients and *
iz  are utopian objective function 

values. 

5 NUMERICAL EXAMPLE 

The seismic vulnerability of a two-dimensional frame is parametrically investigated in this section. Multi-
Modal Response Spectrum (MMRS) analysis is used, which is the basic procedure for the performance 
evaluation of arbitrary frame structures under earthquake loading according to Eurocode 8[22]. MMRS analysis is 
based on a simplification of the mode superposition approach, in order to avoid time history analyses required 
by the direct integration and mode superposition approaches. The structure examined is the two-bay, four-storey 
concrete plane frame shown in Fig. 3, which is supported by assuming zero displacements at its ground nodes. 
The dimensions of outer and middle columns are 40×40cm2 and 50×50cm2, respectively, while the dimensions 
of all beams are 30×60cm2. A permanent load of 5kN/m2 and a variable load of 2kN/m2 are applied. The frame 
is considered to be part of a three-dimensional structure with each frame 5m apart. 

Uncertainties in both material properties and seismic excitation are taken into account. Hence, the frame is 
subjected to probabilistic earthquake loading according to the description of section 3. Moreover, the variation 
of the modulus of elasticity E along the length of the frame members is represented by a 1D-1V homogeneous 
Gaussian stochastic field with mean value E0=2.9·109kN/m2, coefficient of variation σ and correlation length b 
(see section 2). Although E is the only stochastic variable considered, other material and/or geometric properties 
of the frame could also be represented by random fields in the same manner. 

MMRS analyses are carried out in the framework of the direct MCS method. In any simulation run 
performed, the aim is to calculate the coefficient of variation of the structure’s maximum inter-storey drift δmax: 
 
 

x

y

4x4.0m

4.5m6.0m  
Figure 3. The concrete plane frame test problem. 
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COV(δmax) Correlation 
length 

Mesh Average 
element 
size (m) 

 

σ=10% σ=20% 

b=5m M0 4.50  9.9% 22.5% 

 M1 2.05  8.2% 18.0% 

 M2 0.98  8.0% 17.3% 

 M3 0.50  8.0% 17.2% 

b=1m M1 2.05  6.7% 14.9% 

 M2 0.98  3.9% 9.1% 

 M3 0.50  2.6% 6.1% 

 M4 0.25  2.5% 5.9% 

b=0.5m M2 0.98  4.7% 10.7% 

 M3 0.50  2.3% 5.7% 

 M4 0.25  1.3% 3.4% 

 M5 0.15  1.3% 3.4% 

Table 1. Concrete plane frame test problem: variability of maximum inter-storey drift δmax for various correlation 
lengths, σ-values and meshes. 
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Figure 4. Concrete plane frame test problem: COV(δmax) as a function of the number of simulations for various 
meshes and values of parameters σ and b. 
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where )( maxδµ  and )( maxδσ  are the mean value and standard deviation of δmax, respectively. Drifts are often 
utilized as vulnerability measures for seismically excited structures. Preliminary results obtained for COV(δmax) 
are summarized in Table 1. In order to effectively represent the generated random field samples of E using the 
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midpoint method, various element sizes are used to provide discretizations of various refinement levels for the 
20 column and beam members of the concrete frame. Thus, 6 different meshes M0 (original mesh – each 
structural member corresponds to one element), M1, M2, M3, M4 and M5 are considered with 20, 44, 92, 180, 360 
and 604 elements, respectively. As illustrated in Fig. 4, several hundreds or even thousands of simulations are 
needed to reach converged structural response statistics with the direct MCS approach. 

The numerical results reported show the influence of random field parameters on drift variability. Hence, 
larger random field coefficients of variation σ induce larger drift variability. Moreover, the value given to 
correlation length b appears to play a decisive role in the evaluation of COV(δmax): drift variability is rather large 
for larger b-values, but it tends to diminish as smaller b-values are taken. It should also be noticed that 
converged simulation results are obtained with element sizes equal to ¼ to ½ of the correlation length value. The 
latter conclusion is in accordance with observations in other stochastic analysis studies[15]. Due to limitations in 
the length of this paper, results on the application of the MCS process in the RDO framework are not presented. 

6 CONCLUDING REMARKS 

The aim of the present work is to combine modeling approaches for uncertain structural properties and 
earthquake loads, in order to accurately represent randomness in seismically excited structures. For this purpose, 
stochastic fields are utilized to describe the variation of structural properties along the length of frame members, 
while probabilistic spectral acceleration data are derived from natural ground motion records. The presented 
modeling and analysis techniques allow the evaluation of structural response statistics and/or the estimation of 
reliability for seismically excited multi-storey frames. 

Although dynamic structural analysis taking uncertainties into account is a computationally very intensive 
task (especially when the direct MCS method is applied), simulation runs can be drastically accelerated with the 
use of parallel processing and the implementation of efficient computational techniques[23-25]. The use of such 
computational approaches is increasingly important as the size of the structural problem or the number of MCS 
becomes larger. Especially in the case of evolutionary robust optimization, in which the MCS procedure needs 
to be invoked for each candidate optimum design, the arising computing costs are excessive and the utilization 
of advanced computational techniques is practically necessary in realistic problems. 
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Abstract. This paper aims at optimizing the dynamic behavior of a fixed-tank, two-axle vehicle, with respect to 
its lateral stability performance. A linear full-car model with ten degrees of freedom is proposed, subject to 
typical road surface profiles and all the corresponding stiffness and damping characteristics of the model are 
optimized with respect to design limitations, as well as to any geometrical constraints of the vehicle. For the 
optimization tasks, the Complex method is implemented. 
 
 

1 INTRODUCTION 

Fixed tank vehicles are torsionally very rigid, therefore the tank must be fitted in a way that the chassis 
retains sufficient and gradual torsional flexibility, by avoiding areas of high stress, and the vehicle maintains an 
acceptable dynamic performance. Considering manufacturer recommendations, ADR Agreement[1] and relative 
European Regulations, the installation of tanks requires the use of an appropriate auxiliary frame, in which the 
rigid mounts are installed in a position corresponding to the rear suspension supports and the flexible mounts as 
near as possible to the rear support of the front suspension. Furthermore, the effect of load on lateral force at a 
given slip angle is of fundamental importance in problems of handling. As far as the dynamic performance of 
the vehicle is taken under consideration, several studies have been reported[2-5], regarding the dynamics of heavy 
vehicles, as well as the optimal shape of the installed tank, with respect to vehicle’s rollover stability[6].  

This paper aims at optimizing the dynamic behavior of a fixed-tank two-axle vehicle, with respect to its 
lateral stability performance. For this, a linear full-car model with ten degrees of freedom (DOF’s) is proposed, 
subject to typical road surface irregularities and all the corresponding stiffness and damping characteristics of 
the model are optimized, with respect to any design limitations and geometrical constraints of the vehicle. The 
Complex method has been selected for the numerical implementation of the optimization procedure, as it has 
been shown to be flexible in non convex problems; it’s very simple to program, computationally efficient and 
usually reliable in the search for global optimum. 

The rest of the paper is organized as follows: In Section 2 the suspension model is presented and in Section 3 
the corresponding optimization problem is formulated and a brief presentation in Complex method is given. 
Section 4 covers the optimization tasks and in Section 5 the results are concluded and suggestions for further 
research are given.  

 

2 THE FULL-CAR SUSPENSION MODEL 

A typical two-axle truck vehicle, with a two supports' fixed tank installed on the chassis frame, is presented 
in Fig. 1, while in Fig. 2-3, the corresponding pitch-bounce-roll model is displayed. The tank and the vehicle are 
modeled as rigid bodies with 3 DOF’s, that is bounce xT(t) & xM(t), pitch φΤ(t) & φM(t), and roll angle θΤ(t) & 
θΜ(t), respectively. The front and rear supports have been considered as mass-less elements with corresponding 
stiffness and damping characteristics. Each tyre is modeled as an unsprung mass with a single DOF (bounces 
xfr(t), xfl(t), xrr(t) and xrl(t)) and corresponding stiffness and damping, and it's connected to the vehicle through 
the relative suspension. 
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Figure 1. Two axle fixed-tank vehicle.  

 
Despite their simplicity, as suspension nonlinearities or complexities of the sprung masses' motion are not 

modeled, this kind of models illustrate many critical characteristics of the lateral dynamics of heavy vehicles[7] 
and may used for design purposes. The part of the model that describes the vehicle is not symmetric with respect 
to the pitch axis, neither in its centre of mass, nor in its front and rear wheelsets, while the installed tank is 
generally assumed symmetric in fixed-tank vehicles. 

 

 

Figure 2. Full-car model, pitch-bounce view. 

 
With respect to the above described model, the equivalent stiffness and damping, which describe the 

dynamic interconnection between the chassis and the tank, are the structural characteristics that must optimized. 
Naturally, in the case where there is the availability to further interfere in vehicle’s structural components, such 
as the suspension system, it’s of crucial importance to simultaneously optimize their relative stiffness and 
damping, so that a more complete view of the whole vehicle set up may assessed. As far as concerned the lateral 
dynamics, it’s obvious that the corresponding lateral force is affected by critical factors, such as the vertical 
load, the roll angle and the tyre construction. Thus, a simple technique to interconnect lateral and vertical 
dynamics is by optimizing the roll angle relative DOF’s and requiring at the same time that the tyres are keeping 
their contact to the ground.  

3 THE OPTIMIZATION PROBLEM 

Taking under consideration the required symmetry of the structural characteristics with respect to the roll 
axis, a total of eight parameters is entered in the optimization vector, corresponding to the stiffness and damping 
of the suspension and the supports. The objective function for the specific optimization problem can be 
formulated as,  
 

        { } ∑⋅+∈=
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Figure 3. Full-car model, roll-bounce view. 

 
where p is the parameter vector, q(t) any vibration displacement, velocity or acceleration data, which is available 
over a [0 T] time interval, M is a penalty coefficient and ci(p) are all the required constraints, related to the 
feasible values of stiffness and damping, as well as to the limited working space of the suspension. 

Obviously, the above formulation covers the most general case of the corresponding optimization problem. 
Referring to the model described in Section 2, the vibration data may be taken either from the vehicle chassis, or 
from the tank. A more detailed assessment of the specific optimization problem, regarding the selection of the 
data and the selection of penalty criteria, is given in Section 4, where the numerical implementation is taking 
place. 

 

3.1 The Complex Method 

The Complex optimization method belongs to the family of semi-stochastic algorithms. It was originally 
given by Spendley, Hext and Himsworth and further developed by Nedler and Mead. According to Complex 
method, an initial parameter vector p0, which represents any available insight about the problem of interest, is 
determined and a number of k random parameter vectors is consequently generated according to normal 
distribution, with p0 their mean value. The basic idea is to compare the values of the objective function at the 
k+1 vectors and move the parameter population toward the optimum point. This movement is achieved using 
three operations, known as reflection, expansion and contraction. The k+1 vectors are sorted in descending 
order of their corresponding objective function value. The first (and worst) vector is notated as pH, while the last 
(and best) as pL and a new vector is generated, known as weight centre according to: 
 

                 ∑
+

=

⋅=
1

2

1 k

j
jA k

pp                                                    (2) 

 
The weight centre vector is used for the search of the reflection vector pR, in the opposite direction to that of 

the pH,  
 

                        )( HAAR R pppp −⋅+=                                                    (3) 
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where R is the reflection factor, taking values in the [1 1.7] interval. Depending on the value of objective 
function at pR, three cases are considered: 
 

 Case 1: )()()( HRL fff ppp <<  
 
In this case the algorithm returns to the initial stage, after replacing the worst vector pH by the reflection 
one, pR. 
 

 Case 2: )()( LR ff pp <  
 
In this case the expansion procedure is executed and a corresponding vector is generated, 

 
                        )( ARAE E pppp −⋅+=                                                    (4) 
 

where E is the expansion factor, taking values in the [1.8 2.2] interval. If )()( RE ff pp < , the worst 

vector pH is replaced by pE, otherwise, if  )()( RE ff pp > , pH is replaced by pR and the algorithm 
returns to the initial stage.  
 

 Case 3: )()( HR ff pp >  
 
The contraction procedure is executed in this case and a new vector is formulated as, 

 
                        )( AHAC C pppp −⋅+=                                                    (5) 

  
where C is the expansion factor, which belongs to [0.3 0.8] interval. If )()( HC ff pp < , the worst 

vector pH is replaced by pC, otherwise, if )()( HC ff pp > , all the vector population is substituted 
according to:  

                     1,...,1  ,
2

+=
+

= kiLi
i

pp
p                                                    (6) 

 
It's obvious that the Complex method does not implement any computation of derivatives, thus is 
computationally very efficient. Additionally, it's easily programmable and does not require large computer 
storage. The initial vector p0 may, however, affects the convergence procedure, although is has been reported 
that this is not a major restriction.  

 

PARAMETERS CONSTRAINT UNIT 

Suspension Stiffness 10000-100000 N/m 
Suspension Damping 1000-10000 Ν.s/m 

Support equivalent Stiffness 100-5000 N/m 
Support equivalent Damping 10-500 Ν.s/m 

Suspensions’ available working space 
(from the equilibrium point) 2.0±  m 

Stability of the system - - 
Road-handling ability - - 

Table 1 : Constraints of the optimization problem. 
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4 NUMERICAL IMPLEMENTATION 

In order to study and optimize the dynamic performance of the fixed-tank vehicle, it was assumed to travel with 
a constant velocity of 40 km/h and the vibration data selected as objective function was chassis’ roll angle. The 
required constraints are presented in Tab. 1. As far as concerned the limits of the quantities in the parameter 
vector, these were a-priori satisfied, using a simple change of variable. More specifically, if lower and upper 
bounds are specified for a variable as 

                8,..,1   ,)( =≤≤ iuil i
uv

i
lv p                                                        (7) 

 
they can be satisfied by transforming p(i) as  
 

           )(sin)()( 2 iluli i
lv

i
lv

i
lv hp ⋅−+=                                                   (8) 

 
where h(i) is the new variable, which can take any value, assuring that the original vector satisfies the 

inequality constraints. This is a very simple and efficient way of avoiding additional penalty functions into the 
objective function, which disaffect the search space of the optimization problem. It must be noted though that, 
prior to the change of variable, a rescaling of the quantities in the parameter vector has been applied, with 
respect to Tab. 1, in order to avoid well-known numerical drawbacks, due to the different ranges of the 
respective variables.  

 

Figure 4. Sine peak road excitation. 

  

Figure 5. Average quality road profile. 

As far as concerned the road excitation profiles, two distinct cases where implemented: in the first, a sine 
peak (see Fig. 4) was applied to the right path of the vehicle, while in the second, an average quality road profile 
(see Fig. 5), according to the Draft-ISO formulation[7] , was simultaneously applied on both paths of the vehicle, 
keeping the same sine peak an the right.  
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Figure 6. Initial (dashed line) and optimized (continuous line) roll angle of the chassis, 1st case of road 
excitation.  

 

 

Figure 7. Initial (dashed line) and final (continuous line) roll angle of the tank, 1st case of road excitation.  

 

 

Figure 8. Initial (dashed line) and optimized (continuous line) roll angle of the chassis, 2nd case of road 
excitation.  
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Figure 9. Initial (dashed line) and final (continuous line) roll angle of the tank, 2nd case of road excitation.  

 
In both cases of road excitation, the initial parameter vector was selected in the mid range of the variables’ 
limits. Figures 6 to 9 display the resulted roll angles for the chassis and the tank, where the sufficient decrease in 
the maximum values of the relative vibration curves is obvious. The Complex method managed to overcome the 
constraints at a low number of iterations and additionally, returned optimized vibration data for both the chassis 
and the tank. Table 2 displays the final values for the optimization vector, for the two cases of road excitation. 
Clearly, the installation of the tank is resulted with elastic front support and rigid rear, followed by 
contradictious damping setup, for every road profile. A big difference is observed in the rear suspension’s 
stiffness, where in the case of an average road profile, the corresponding installation requires a vehicle with the 
same stiffness in its front and rear suspensions.   

 

PARAMETERS 1st road excitation 2nd road excitation 

Front Suspension stiffness (N/m) 11974 10767 
Rear Suspension stiffness (N/m) 38961 12401 

Front Suspension damping (N.sec/m) 7563 9604 
Rear suspension damping (N.sec/m) 1549 4814 

Front support’s stiffness (N/m) 398 115 
Rear support’s stiffness (N/m) 484 319 

Front support’s damping (N.sec/m) 357 430 
Rear support’s damping (N.sec/m) 210 189 

Table 2 : Results of the optimization procedure. 

6 CONCLUSIONS 

This paper attempted to optimize the structural characteristics of a two-axle fixed-tank vehicle, with respect 
to its lateral stability. A 10-DOF full-car suspension model was proposed and all the design and geometric 
limitations were considered for the optimization tasks, which where implemented using two different kinds of 
road irregularities. The Complex method managed to perform consistently, producing acceptable results that 
were, naturally, varied, as far as concerned the suspension system, for every profile. Yet, a useful conclusion 
which can be extracted is the installation of the tank upon the chassis frame, using an elastic front support and a 
more rigid rear.     

Nowadays, the increased demands for safety in the road transport of dangerous goods force on the 
understanding of the dynamic performance of a fixed body, which is installed on a chassis' frame, and the 
mechanisms that may reduce the reliability of the vehicle. Minimization of failure in vehicle’s components, as 
well as of road damage, plays also a vital role. In order to highlight all these important issues in heavy vehicles, 
more complicated models may be implemented and many of their critical characteristics can be optimized with 
respect to safety and cost. 
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Abstract. This paper proposes a new methodology for the estimation of ARMA models, based on the 
implementation of a hybrid optimization algorithm and a corresponding estimation procedure. The specific 
algorithm attempts to interconnect the diverse characteristics of two entirely different optimization techniques, 
deterministic and stochastic, combining high convergence rate with increased reliability in the search for global 
optimum. The corresponding estimation procedure is split into two parts, due to the mixed linear-nonlinear 
relationship between the prediction errors and the parameter vector, and assures the stability and invertibility 
of the resulted models. The parametric identification test case, which is considered in this study, refers to the 
estimation of an ARMA model for the description of a half-car passive suspension system of a road vehicle, 
taking into account that the response data consists of a noise-corrupted, at 10% noise to signal ratio, vertical 
acceleration of the sprung mass. 
 
 
1 INTRODUCTION 

Parametric identification relies mostly on the Prediction-error method (PEM)[1,2], which formulates the one-
step ahead prediction errors sequence, between the actual response and the one computed from the model, and 
uses a scalar-valued index function (loss function) to evaluate that sequence. Over a set of candidate models, the 
one which minimizes the loss function is chosen, with respect to the corresponding fitness to data. In the case 
where a moving average polynomial is present in the model, PEM turns into a mixed linear-nonlinear 
optimization problem and requires iterative numerical techniques to estimate the parameter vector. Yet, the 
relative optimization methods that have been implemented for this kind of problems present some well-known 
drawbacks[3,4] and in the case of noise-corrupted observations are even more dysfunctional. 

To overcome this difficulty, an alternative approach, based in the implementation of stochastic optimization 
algorithms, has been developed in the past decade. Several techniques have been formulated for parameter 
estimation and model order selection, using mostly Genetic Algorithms (GA). The basic concept of these 
algorithms is the simulation of natural evolution for the task of global optimization, and they have received 
considerable interest since the work done by Kristinsson and Dumont[5], who applied them to the identification 
of both continuous and discrete time systems. Relative studies are reported in the work of Tan and Li[6], Gray et. 
al[7], Billings and Mao[8], Rodriguez et. al[9], Kanarachos et. al[10]. Fleming and Purshouse[11] have presented an 
extended survey on these techniques, while Schoenauer and Sebag[12] address the use of Domain knowledge and 
the choice of fitness functions in Evolutionary System Identification. Yet, the main drawback of these methods 
is that they are computationally expensive, even for parameter vectors of low dimension, they often fail to 
converge in real-world, noisy systems[8,11] and their application in identification problems with unobservable 
excitation is largely unexplored. On the other hand, the implementation of hybrid optimization algorithms in the 
parameter estimation problem is considerably less reported in the literature[13-15], where they appear to be 
effective, in the sense that they significantly reduce the computational cost, in comparison to conventional 
stochastic optimization algorithms, leading in many cases to better results, due to the involvement of a local 
search procedure. 

This study proposes a hybrid optimization algorithm and a corresponding estimation technique, for the 
estimation of ARMA models, by means of PEM. The algorithm interconnects the advantages of its deterministic 
and stochastic components, combining high convergence rate together with increased reliability in the search for 
global optimum. Its stochastic component has been selected to be the (µ+λ)-Evolution Strategy (ES)[16], which 
uses unaltered recombination and selection operators, while the deterministic counterpart consists of an 
algorithm especially designed for nonlinear least-squares (NLS), which replaces the original mutation operator 
of ES. The specific algorithm takes advantage of analytical gradient information and uses a secant 
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approximation to compute one portion of the Hessian matrix, as well as a mixed trust region / line search 
technique, in order to obtain global convergence characteristics and to reduce the computational cost. The 
corresponding estimation procedure takes advantage of the fact that the ARMA parameter estimation problem 
may considered as a mixed linear-nonlinear one, so it consists of two stages: in the first, the estimation of an AR 
model is implemented, while in the second stage the resulted vector is mixed with the coefficients of the noise 
polynomial, which are randomly selected from the normal distribution, to form the initial population of the 
algorithm. For the practical evaluation of the above, the proposed method is implemented in the parametric 
identification of a half-car passive suspension system under unobservable excitation, taking into account that the 
response data consists of a noise-corrupted at 10% noise to signal ratio vertical acceleration of the sprung mass. 

The rest of the paper is organized as follows: In Section 2 the ARMA structure is presented and PEM is 
outlined. In Section 3 the corresponding optimization problem is implemented and the hybrid algorithm is 
described, while in Section 4 the estimation methodology is presented. Section 5 illustrates the identification 
experiments. Finally in Section 6 the results are discussed and some final remarks are made. 

 

2 THE ARMA PARAMETER ESTIMATION PROBLEM 

ARMA is a notation for the Auto-Regressive (AR), Moving Average (MA) model, and it has the following 
general form[1,2],  

 

tt eqCyqA ⋅=⋅ )()(            (1) 
 

with )(qA and )(qC  polynomials that represent the AR and MA parts respectively, having the following form:  
 

     na
na qaqaqA −− ⋅++⋅+= K1

11)(           (2) 
 

In Eq. 1, ty  is the output time-series, q  is the backshift operator, so that ktt
k yyq −

− = , and te  white 

noise with zero expectance and autocorrelation function given by { } leltt eeE δσ ⋅=⋅ +
2 , where }{∗E  denotes 

expectation, 2
eσ  is the white noise variance , and lδ  Kronecker's delta. For the successful representation of a 

vibrating system, by means of ARMA models, required conditions are the stability and invertibility of the noise 
transfer function )(/)( qAqC [1], which means that the roots of the MA and AR polynomials must lie inside the 
unit circle with zero origin, in the complex plane. 

The parametric identification problem focuses on the determination of the ARMA parameters (polynomial 
orders and coefficients, white noise variance), by means of any available time-series, which yield a 
corresponding model, capable to describe the dynamics of the system, as well as the presence of noise in the 
measurements. For a given series over the time Nt ,...,1= , the one step ahead prediction-errors sequence, 
between the actual system's response and the one computed by the model, is 
 

)/1(ˆ)/1(ˆ 1 pyype ttt
rr

−= +           (3) 
 

where [ ]ii cap =
r

 is the parameter vector to be estimated, 1+ty  the measured output, )/1(ˆ pyt
r

 the 

model's predicted output and )/1(ˆ pet
r

 the residualsi. PEM uses the loss function to evaluate the residuals, 
leading to a standard optimization problem, in which the loss function has to be minimized using numerical 
methods. Yet, PEM combines asymptotic ( ∞→N ) optimality with statistical consistency[1], compared to 
other identification methods[2].  

                                                 
i The argument )/1( pr  denotes conditional probability and the hat indicates estimate. 
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3 THE HYBRID ALGORITHM 

3.1 The optimization problem 

Assuming a quadratic loss function of the form 
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the corresponding PEM optimization problem is 
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subject to 
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    { }{ } 1)(max <qCroots           (7) 

 

3.2 Description of the algorithm 

The hybrid algorithm is based on the distribution of the local and the global search for the optimum. The 
method consists of a super-positioned stochastic global search and an independent deterministic procedure, 
which is activated under conditions in specific members of the involved population. Thus, while every member 
of the population contributes in the global search, the local search is realized from single individuals. Similar 
algorithmic structures have been presented in several fully stochastic techniques that simulate biological 
procedures of insect societies. Such societies are distributed systems that, in spite of the simplicity of their 
individuals, present a highly structured social organization. As a result, such systems can accomplish complex 
tasks that in most cases far exceed the individual's capabilities. The corresponding algorithms use a population 
of individuals, which search for the optimum with simple means. The synthesis, though, of the distributed 
information enables the overall procedure to solve difficult optimization problems. Such algorithms were 
initially designed to solve combinatorial problems[17,18], but were soon extended to optimization problems with 
continuous parameters[19-21].  

The algorithm is based on a mechanism that aims at the cooperation between the (µ+λ)-ΕS and a NLS 
algorithm. The conventional ES is based on three operators that take on the recombination, mutation and 
selection tasks. In order to maintain an adequate stochastic character of the new algorithm, the recombination 
and selection operators are retained without alterations. The improvement is based on the substitution of the 
stochastic mutation operator by the NLS algorithm. The new deterministic mutation operator acts only on the ν 
non-privileged individuals in order to prevent loss of information from the corresponding search space regions, 
while any other alternatives that were tested led to various types of problematic behavior[22]. 

3.3 The NLS operator 

A NLS algorithm substitutes the original mutation operator of the (µ+λ)-ES. If ( ) ( )[ ]TN pepep rrr /1 ˆ ... /1 ˆ)(r 1=  

is the residual vector and NxnRp   )(J ∈
r

 the Jacobian matrix of )( pr r
, the first and second order derivatives of 

)( pf r
 are respectively 
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where  
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The NLS algorithm utilizes a modified version of the full Newton's method in the optimization problem 

stated in Eq. 5, using a successful secant approximation of the matrix )( pS r
, proposed by Dennis et. al[23], as 

well as a mixed trust-region / line search technique, introduced by Nocedal and Yuan[4]. The interesting reader 
should refer to Koulocheris et. al[22] for a thorough description of the operator.  

In the original Newton’s method the parameter vector is updated using 
 

         [ ] )()( 121 pfpfpp jj rrrr
∇⋅∇−=

−+                                                (11) 
 

The recurrent formula which updates kS initiates with zero entries, so that initially the NLS operator 
coincides with the Newton one. However, due to the stochastic nature of the (µ+λ)-ES, a globally convergent 
algorithm must implemented as mutation operator. Thus, at each iteration the constrained subproblem 
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subject to jj ∆≤s is solved, and if the corresponding direction js does not result in a sufficient decrease of 

the objective function, a line search is performed along to that direction, which assures the required decrease of 
the objective function[4]. Additionally, at each iteration the corresponding direction of the Gauss-Newton 
direction is also computed (that is the part of the Hessian without the secant update) and the NLS operator 
selects the model with the best results. For the computation of the Jacobian matrices, a version of the recursive 
formulas used in[22] is implemented. 

  

4 THE ESTIMATION PROCEDURE 

The estimation of ARMA models is split into two stages. In the first, an AR(na) model of the form 
 

       tt eyqA =⋅)(                                                                       (13) 
 

is estimated using linear least squares[1,2], based on the fact that the innovations have a linear relationship with 
the [ ]ia  part of the parameter vector pr . In the second stage, the hybrid algorithm is implemented for the 
estimation of ARMA models using µ parent population and λ offspring. Among the µ parents, only one keeps 
the AR stage information unaltered, while the others are generated using the normal distribution. The µ parents 
are recombined to form the λ offspring, according to the original ES operator, and after the evaluation of (µ+λ) 
vectors, only the ν worst are mutated, according to the NLS algorithm.  

As far as the constraints are taken under consideration, it can be proved[22] that if  
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5 IDENTIFICATION EXPERIMENTS 

The identification test case considered in this study consists of a half-car, linear, passive suspension model, 
which is presented in Fig.1. The frequency band of the 4-degrees of freedom system lies in the [1-10] Hz 
interval, with two pairs of closely spaced frequencies being present, that is chassis' bounce and pitch at 1.16 and 
1.81 Hz respectively, and front and rear wheels' bounces at 9.8 and 10.1 Hz. The simulation of the system was 
implemented for 30 sec with sampling period Ts=0.01 sec. The resulted vertical acceleration of the sprung mass, 
noise-corrupted at 10% noise to signal ratio, form the time-series presented in Fig.2.  

 

 

Figure 1. The half-car suspension model. 

 
For the identification experiments the data set was mean-value subtracted and the first 500 data samples were 

excluded in order to avoid transient dynamics. Two phases were employed, each one for the determination of 
AR and MA polynomials, respectively. In every phase the corresponding models were compared using the BIC 
and RSS criteria[1], for the determination of polynomial order (which in the AR estimation phase coincides with 
the identification of structural degrees of freedom). Regarding the ES-NLS algorithm, a version with 3 parents 
and 6 offspring was implemented. The statistical properties of the estimated models were validated in every 
phase. That is, the sample autocorrelation of residuals and the covariance matrix (estimated as 

[ ])()()(T2
e pSpJpJ rrr

+⋅σ ) of the parameter vector were examined. 
 

 

Figure 2. The chassis acceleration time-series. 
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Figure 3. The sample autocorrelation of residuals for the ARMA(12,11) model. 

 
In the first phase, employed for the estimation of AR polynomial order, ARMA(k,k) models were estimated 

for k=4,...,30. The hybrid algorithm presented satisfying performance and resulted in stable and invertible 
models in a few number of iterations and objective function evaluations. As expected, the BIC and RSS criteria 
showed contradictious performance, with the former penalizing the higher orders and the latter decaying up with 
increasing order. The autocorrelation of residuals was generally kept in the N/96.1±  statistical bounds, but 
for model order up to 10, prejudging that overdetermination was inevitable.  

 

  

Figure 3. One second portion of estimated (dashed line) and noise-corrupted (continuous line) series. 

 
After the selection of the ARMA(12,12) model, the phase that followed ( ARMA(12,k) models , with k=10,..., 
30) yielded similar performance to that of the first. Figures 3 and 4 display the autocorrelation of residuals and 
the time-series for a portion of data, respectively, for the selected model, which was ARMA(12,11). The 
residuals can be classified as white, while the percentage fitness to the noise-corrupted time-series (at about 
81%) is satisfying. 
 

6 CONCLUSIONS 

This paper presented a hybrid optimization algorithm and a corresponding estimation procedure for the PEM 
estimation of ARMA models. The optimization algorithm interconnected the diverse characteristics of its 
stochastic and deterministic counterparts, combining reliability in the search for minimum with fast local 
convergence, and the estimation procedure took advantage of the mixed linear-nonlinear dependence between 
the residuals and the parameter vector. The main characteristics of the above can be summarized as follows:  
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 Guaranteed convergence to a stationary point, even in the presence of noise-corrupted data. 
 Guaranteed stability and invertibility, regardless the size of the parameter vector. 
 Sufficiently lower number of iterations and objective function evaluations, compared to 

conventional Evolutionary Algorithms. 
 Statistical consistency. 

 
The total performance of the proposed methodology throughout the identification experiments was 

satisfying. Yet, the required overdetermination, as well as the algorithmic complexity of the hybrid algorithm 
may be viewed as its main drawbacks.  
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Abstract. This paper reviews some of the author’s research work on hydraulic fracturing carried out in the 
research centre of Schlumberger in Cambridge. The work concentrates on the effect of rock plastic behaviour on 
the pressure needed for propagation, on the dimensions of the created fractures and on the fracture closure. The 
studies were based on a finite element analysis with a fully coupled elastoplastic hydraulic fracturing code. It 
was found that plastic yielding provides a shielding mechanism near the tip resulting in an increase of the 
effective fracture toughness. Higher pressure is needed to propagate an elastoplastic fracture and the created 
fracture is shorter and wider than an elastic fracture.  
 
1 INTRODUCTION 

Hydraulic fracturing (HF) is a technique used to stimulate oil and gas reservoirs by inducing fractures in the 
formation and then propagating them by the injection of a high viscosity fluid. HF is also used in Environmental 
engineering for waste disposal in shallow formations, for cleaning up contaminated sites and in Geotechnical 
projects such as injection of grout, permeability testing, deep well injection and dam construction. A correct 
prediction of fracture geometry is vital for a safe design of such a process.  Modelling the propagation of 
hydraulic fractures is usually carried out prior to fracturing in order to optimize the treatment. The fracturing 
fluid-pressure is the only parameter measured in the field that is available for controlling and evaluating the HF 
treatment. Classical hydraulic fracturing simulators are based on linear elasticity and often underestimate the 
down-hole pressures which are measured in field operations[1,2,3]. The differences between model predictions 
and actual field measurements are higher in weak formations[4]. 

 A particular task of this work was to investigate the effect on non-linear rock behaviour on the hydraulic 
pressure needed for propagation and on the dimensions of the created fractures.  Extension of this study into 
fracture closure examined the influence of rock plastic deformation on the closure pattern and the redistribution 
of the geostatic stresses near the fracture faces. The influence of inelastic rock behaviour in hydraulic fracturing 
was investigated experimentally[4,5,6]. 

The physical and mathematical modelling of hydraulic fracturing leads to strong non-linearity characterized 
by full coupling between the viscous flow of the fracturing fluid, the rock deformation and the fracture 
propagation processes. We solved the problem numerically by developing a fully coupled elastoplastic HF FEM 
code in which we incorporated a non-linear cohesive type fracture propagation criterion. In the FE code we 
incorporated a meshing/ remeshing scheme and a special continuation method (arc-length type) based on the 
volume of the injected fluid for controlling the solution during fracture propagation and closure. 

This paper presents an overview of a numerical study on rock plasticity in hydraulic fracturing. In the next 
section we summarize the essential components of the coupled elastoplastic hydraulic fracturing model. In 
section 3 we present the main results of fracture propagation and fracture closure. In section 4 we summarize the 
main findings and we discuss some of the practical implications. 

2 A FINITE ELEMENT COUPLED ELASTOPLASTIC HYDRAULIC FRACTURING MODEL 

The study was based on fracture propagation and closure of a plane strain (KGD) elastoplastic fracture. The 
fracture propagates perpendicular to the direction of the minimum insitu stress and parallel to the direction of the 
maximum insitu stress (Figure 1). The fluid pressure leads to extensile loading of the rock ahead of the fracture 
tip whereas in the area near the tip intensive shearing takes place resulting in rock plastic yielding. Rock 
deformation is modelled by Mohr-Coulomb plasticity for a cohesive-frictional dilatant material. A cohesive 
model based on the softening behaviour of rocks is employed as the propagation criterion. Such a criterion is 
often used in the modelling of the cracking process in concrete[7].  Fluid flow in the fracture is modelled by 
lubrication theory and the complete mass conservation equation. Depending on formation properties, insitu 
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stresses and pumping parameters, the fluid may not necessarily reach the fracture tip thus allowing for the 
possibility of a dry zone (fluid lag) near the fracture tip. A special continuation method based on the volume of 
injected fluid in the fracture is used for direct coupling of the fluid-flow with rock deformation and for driving 
the solution during propagation. A fine mesh was used and a meshing/remeshing scheme was employed in order 
to carry out longer propagations with fine mesh near the fracture tip. Detailed information on the numerical 
implementation is provided in reference [8]. 

 
 

 
Figure 1: Geometry for a plane strain hydraulic fracture 

 
The parameters upon which the numerical computations were based are given in Table 1. The only extra 

material parameters required for propagating an elastoplastic fracture are the plastic constants. With the chosen 
material parameters and in-situ stresses the rock is initially elastic but very close to a yielding state. 

 
Pumping parameters  

Fluid viscocity µ=10-7 MPa sec=100cp 
Flow rate q = 0.0005 m3/sec 

Insitu stresses  
Vertical S'vert = 14.49 MPa 

Minimum horizontal S'hmax = 9 MPa 
Maximum horizontal S'hmin  = 3.7 MPa 

Elastic constants  
Young’s modulus Eunloading = 9Eloading MPa 

Poisson ratio ν= 0.3 
Plastic parameters  

Friction angle φ= 28o 
Dilation angle ψ= 28o 

Loading modulus Eloading = 1785 MPa 
Initial UCS σc = 4 MPa 

Fracturing parameters  
Fracture toughness KIC = 1 MPa m1/2 

Tensile strength σT = 0.5 MPa 
 

Table 1: Input parameters for finite element computations 
 
 

2     COMPUTATIONAL RESULTS 

2.1  Fracture Propagation 
Figure 2 shows the profiles of propagating elastic (solid-lines) and elastoplastic (dashed-lines) fractures for 

the same fracture lengths. The cusping of the crack tips with zero slope is a result of the cohesive model which 
was incorporated as the propagation criterion.  
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Figure 2: Fracture profiles for elastoplastic (solid lines) and elastic (dashed lines) 
 
As mentioned earlier, the model of the elastoplastic fracture requires an initial fracture length which was set 

to 0.5 m; the influence of this can be seen in the width profiles in Fig.2. If we compare the fracture openings in 
the region where the fractures were propagated (i.e., distance from wellbore between 0.5 and 2.2 m) we see that 
the width profile of the elastoplastic fracture is much wider than the width profile of the elastic fracture. 

Figure 3 shows the comparison of the net-pressure (difference between fluid-pressure in the fracture and 
minimum insitu stress) profiles in the fracture for the same fracture length. The very narrow opening of the 
elastic fracture results in greater pressure drop near the fracture tip and significant fluid-lag. Higher energy is 
required for propagating the elastoplastic fracture. Most of this energy is coming from the smaller fluid lag 
region.  
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Figure 3: Net-pressure profiles on fractures 
 
 
 Plastic yielding near the tip of a propagating fracture provides an effective shielding, resulting in an increase 

in the effective rock fracture toughness[9]. This is shown in Fig.4 where we plotted the increase in the effective 
fracture toughness as a function of the fracture growth. The effective fracture toughness was determined using 
the calculated, path independent, J-integral[10]. The value of the effective fracture toughness is directly related to 
the size of the plastic zones. In other series of computations with different parameters much higher values of the 
fracture toughness were calculated. These results suggest that the field fracture toughness is much higher than 

407



P.  Papanastasiou  
the fracture toughness measured in laboratory experiments on small cores. This discrepancy may partially 
explain the higher net-pressures accounted in field conditions. Scaling and tables with values of the effective 
fracture toughness for a representative set of physical parameters were presented in reference[9]

. 
In addition, numerical studies with the elastic model in comparison with the plastic model, showed that for 

long propagation better results are obtained when the unloading elastic modulus it is used in the elastic model[11]. 
This is explained by the unloading state near the bulk of the fracture behind the advancing crack whereas the 
plastic deformation around the tip can be embedded in the increase value of the apparent fracture toughness   
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Figure 4: Apparent fracture toughness vs fracture extension 

2.2  Fracture Closure 
The elastoplastic fracture was propagated further to reach a length of 8 m before examining the closure 

pattern (Fig.5). Figure 6 shows the width profile of a receding elastoplastic fracture. It was assumed that there 
was no fluid-flow in the fracture during closure, therefore the pressure acting along the fracture was constant. 
The elastoplastic fracture makes contact initially near the tip and then the closure moves towards the 
wellbore[12]. This closure pattern agrees with the experimental results reported on soft rock samples[6]. 
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Figure 5: Propagation of elastoplastic fracture 
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Figure 6: Closure of elastoplastic fracture 
 
Figure 7 shows the corresponding net-pressure at the wellbore vs fracture length during propagation and 

closure after the fracture has reached a) 5 m and b) 8 m length. These results show that the net-pressure drops to 
zero while the fracture is still wide-open along a large proportion of the original length. The decrease of the 
fracture surface during closure will result in the underestimation of the insitu leak-off coefficient at the late stage 
of the pressure decline analysis. More accurate leak-off predictions can be obtained in the early stage of pressure 
decline analysis, immediately after shut-off of the pumping stage. The results of Fig.7 suggest that the fracture 
will close completely at negative net-pressures (fluid pressure less than the far-field stress). Application of 
classical analysis, which assumes that the fracture closes completely when the fluid-pressure drops to the value 
of the far-field stress, would lead to the underestimation of the minimum insitu stress. Furthermore, special 
considerations are necessary to identify the time instant the pressure in the fracture is equal to the far-field 
confining stress. This has been recognized in reference[13] which introduced diagnostic methods to detect 
deviations from ideal behaviour in practice. 

Figure 8 shows the stress profiles on the propagation plane after the last closure step. The irregularity in the 
stress distribution in the area near the wellbore is due to the effect of the initial fracture length. As a result of the 
fracture closing first near the tip, the closure stress S_hmin is higher than the in-situ stress in this area (5-8 m) and 
lower near the wellbore. This implies that the closure stress on the proppant will be higher near the fracture tip 
and lower in the area near the wellbore (S_hmin in Fig.8). In addition, after fracture closure, due to permanent 
deformation, the stress state does not return to the original state. The risk of formation failure is significantly 
reduced after fracturing and closure not only due to increase of minimum insitu stress as a result of the enlarged 
propped fracture but also due to decrease in the other two insitu stresses[14]. Avoiding rock failure will minimize 
the risk of sand production which is one of the major problems in petroleum production from weak formations. 

Finally the difference in the results obtained with the elastic model and elastoplastic model depend on the 
contrast of the magnitude of the insitu stresses, on rock strength and elastic modulus and also on the pumping 
parameters (fluid viscosity and flow rate). 
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Figure 7: Net-pressure at wellbore vs fracture length 
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Figure 8: Redistribution of formation stresses on fracture plane after closure 
 

3      CONCLUSION 

We reviewed the work on the effect of rock plastic behaviour on the pressure needed for propagation and on 
the dimensions of the created fractures. We found that plastic yielding provides a shielding mechanism near the 
tip resulting in an increase of the effective fracture toughness which was determined using the J-integral. Higher 
pressure is needed to propagate an elastoplastic fracture and the created fracture is shorter and wider than an 
elastic fracture. The difference in the results obtained with the elastic model and elastoplastic model depend 
strongly on the contrast of the insitu stresses, on rock strength and elastic modulus but also on the fluid viscosity 
and flow rate. 

We demonstrated that the standard HF simulators, which are all based on elasticity, will yield better results if 
the unloading modulus is used as the Young's modulus. We have also modelled fracture closure in an 
elastoplastic formation. In practice, the measured pressure vs time is analyzed during closure for determining the 
insitu stresses and permeability. It was found that the assumption made that the fracture closes completely once 
the fluid-pressure in the fracture drops to the value of the far-field stress, is not valid. In addition we showed that 
the formation will be more stable after it is fractured due to the redistribution of the stresses.  
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Abstract. This paper explores the concept of strain energy density rate in relation to the crack initiation in 
fracture analysis problems arising in creeping cracked structural components. The analysis of the components 
is performed by using the boundary element methodology in association with the employment of singular 
boundary elements for the modeling of the crack tip region. The deformation of the material is assumed to be 
described by an elastic power law creep model. The strain energy density rate theory is applied to determine the 
direction of the crack initiation for a center cracked plate in tension which is subjected to Mode I loading 
conditions. 
 
 
1 INTRODUCTION 
 Cracks can degrade the integrity of structural components. This is a particular concern in the design of aircraft 
engines and steam turbines where the high temperature prevails and failure by creep components deformation is 
a concern. In these high level of temperatures the time-dependent creep fracture phenomenon can be considered 
as of multi-scale nature, particularly when physical size is scaled down to the dimensions of the material 
microstructure. For a dominant crack in metallic components that undergo creep deformation, the creation of 
macrocrack surface along the main crack (Mode I) path should be distinguished from the creation of microcrack 
surfaces off to the side of main crack where the creep enclaves are located. In this sense, creep fracture could be 
also considered as a multiscale process. 

More than two decades ago, the strain energy density criterion was proposed[1] as a fracture criterion in 
contrast to the conventional theory of G and K of the Griffith's energy release rate assumptions in elastic fracture 
mechanics. This provided an alternative approach to failure prediction for the same stress solution. The 
distinctions were empasized in the works of Sih[2]. The strain energy density criterion gained momentum and  
credibility in engineering. A review on the use of this criterion can be found in Ref. 3 and 4.  

It is well known that for cases of realistic and practical problems in time-dependent fracture analysis of 
creeping cracked components the use of numerical solutions such as finite element method (FEM) and boundary 
element method (BEM) become imperative. For a review on the subject on can consult Beskos[5]. In the search 
for an accurate, yet generalized, computational method for evaluating singular crack tip stress and strain fields, 
the singular element approach in conjunction with boundary element method (BEM) has been properly used in 
various fracture mechanics applications. Several researchers have contributed to this field: Blandford et al[6] was 
the first who introduced the traction singular quarter-point boundary element approach in combination with a 
multi-domain formulation to the solution of both symmetrical and non-symmetrical crack problems. Thereafter, 
this approach has been extensively used in the application of the boundary element method to two- and three- 
dimensional crack problems. An extension of the quarter-point element technique was used by Hantschel et al[7] 
who made an attempt to model crack tip fields arising in two-dimensional elastoplastic cracked panels by 
introducing some special singular boundary elements which took into account the HRR singularity field 
(Hutchnison[8]; Rice and Rosengren[9]) near the crack tip.  

In connection with the boundary element determination of near crack tip stress and strain fields in 
cracked structural components undergoing two-dimensional inelastic deformation one should mention the works 
of Professor Mukherjee and his co-workers for Mode I and II[10, 11] and Mode III[12]. A more comprehensive 
review in BEM solutions of inelastic could be found in the review article of Aliabadi[13]. 

In the present paper, the strain energy density rate concept is applied as a fracture criterion in 
association with the use of a previously developed, by the present authors, creep strain-traction singular element 
(CR-STSE) to determine the crack initiation involved in creeping cracked two-dimensional plates. A numerical 
example is presented for a shallow edge cracked plate (SENT). The creep constitutive model used in the 
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numerical calculations is the Norton power law creep model (Nortan[14]) but any other creep constitutive model 
having similar mathematical structure can be easily implemented in the proposed algorithm. 

 
2 ASYMPTOTIC CRACK TIP FIELDS IN A CREEPING MATERIAL 
The material behavior in this paper is described by the elastic-nonlinear  viscous constitutive relation according 
to the Norton power law relation 
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where E is the elasticity modulus, σ0 is a reference stress, 0ε  is a reference creep strain rate and m is the creep 
exponent. Under the assumption of multiaxial stress states, the extension of equation (1) can be read as  
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where Sij are the components of the deviatoric stress tensor and 3/ijkkijijS δσσ −= and σe is the Misses 

effective stress defined by ( ) 2/1)2/3( ijije SS=σ . From the inspection of (1) and (2) it could be noted that if 

there is a singular crack tip field at time t=0 the elastic singularity fields prevail at the crack tip. In subsequent 
time step and at distances sufficient close to the crack tip the creep strain part of the total strain rate is much 
larger than the elastic strain rates and it seems to control the crack tip fields (m>1). Thus, the constitutive 
equations (1) and (2) become power law creep relationships. Using the Hoff analogy[15] to contrast the power-
law creep relation with the power-law hardening relation, Riedel and Rice[16] and Ohji et al[17] presented the 
HRR-type singularity fields for power-law creep material described by the equations 
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where the radial distance r from the crack tip and the angle θ in relation to the x axis are shown in Figure 1. 
The dimensionless constants In and the θ-variation functions of the suitably normalized functions 

ijijij u~ and ~,~ εσ  depend on the creep exponent m and have been tabulated in Shih[18]. 

 
Figure 1.  Geometry of the crack tip and CR-STSE element configuration 

 
3 DERIVATION OF BOUNDARY INTEGRAL EQUATIONS 
The Navier equation for the displacement rates of a structural component undergoing plane strain deformation 
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and under the presence of non-elastic strains can be written as  
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where Fi is the prescribed body force per unit volume,  G, ν  and α are the shear modulus, Poisson's ratio and 
coefficient of linear thermal expansion, respectively, ui is the displacement vector. Suitable traction and 
displacement rate boundary conditions must be prescribed. The integral representation of the solution of a point 
P on the boundary of the body (with Fi = 0 ) has the following initial strain form 
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where δij  is Kronecker delta, P,Q are boundary points, q is an interior point, Γ and Ω are the boundary and the 

surface of the body, respectively. The kernels Uij,Tij, jkiΣ and jkiΣ~  are known singular solutions due to a point 

load in an infinite elastic solid in plane strain (Mukherjee[19]). The traction and displacement rates are denoted by 
τ  and u , respectively. The coefficients Cij are known functions of the included angle at the boundary corner at 
P, the angle between the bisector of the corner angle and the x-axis. Equation (5) is a system of integral 
equations for the unknown traction and displacements rates in terms of their prescribed values on the boundary, 
and the non-elastic strain rates. The unknown quantities only appear on the boundary of the body and the surface 
integrals are known at any time through the constitutive equations. 
  The stress rates can be obtained by direct differentiation of equation (5) resulting in 
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where G and K are the shear and bulk modulus, respectively; ijklΣ and ijklΣ~  are inelastic and temperature effect 

kernel functions, respectively, which are also defined in the work of Mukherjee[19]. 
 
4 SINGULAR ELEMENT IMPLEMENTATION AND SOLUTION PROCEDURE 
The integral equations (5) and (6) are expressed in this paper by discretizing the boundary and the interior into a 
number of standard three-noded quadratic boundary elements and nine-noded quadratic quadrilateral interior 
surface elements, respectively, provided that they are not adjacent to the crack tip. 

By following the procedure developed in Providakis and Kourtakis[20] to produce a special element 
which presents the HRR-type singularity of equations (3) at the crack tip (Figure 1), one can obtain the 
following new set of shape functions u

aN  which depend upon the creep exponent m 
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where l is the length of the new special quadratic element, the distance r=l-x and the ratio can be defined in 
terms of the intrinsic coordinate ζ as (r/l)=(1-ζ)/2. By taking the derivatives of the new shape functions (7) one 
can observe that these derivatives display a r-m/(m+1) singularity near the crack tip which is the actual situation 
for the strain rate singularities according to (3). 

Since in boundary element methodology displacement and tractions are independently represented the 
above derived singular element for the simulation of crack tip behavior of displacement rates, fails to model the 
expected from equations (3) crack tip behavior of tractions which displays an order of –1/(m+1) singularity. 
Thus, for the proper simulation of the traction rate singularity different shape functions are derived by the use of 
the derivatives of the shape functions (7) and finally modified to the following separate forms t

aN  in terms of 
creep exponent m 
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where now r=x and the ratio (r/l)=(1+ζ)/2. A simultaneous simulation of displacement and traction rate fields, by 
the use of  the shape functions (7) and (8), respectively, yields to the proposed, in the present BEM approach, 
creep strain-traction singular element (CR-STSE) (Figure 1). Then, by applying a boundary nodal point 
collocation procedure to the discretized versions of equations (5) and (6) one can obtain the following system of 
equations in matrix form 

 
[ ]{ } [ ]{ } { } }]{[][ Tn bTEBuA ++= ετ       (9) 

{ } [ ]{ } { } }]{~[]~[~ T
n bTEB ++= ετσ       (10) 

 
However, the vector { }nε  is known at any time through the constitutive equations and the stress rates of 

equation (6) while the vector { }Tb  could be easily computed through the known values of temperature profile 

for the whole structural component. Half of the total number of components of { }u  and { }τ  are prescribed 
through the boundary condition while the other half are unknowns. 

Then, the initial distribution of the nonelastic strain has to be prescribed. Thus, the only existed strains 
at time step t=0 are elastic and then, the thermal and initial stresses and displacements can be obtained from the 
solution of the corresponding elastic problem. By the use of equations (9) and (10) the displacement and stress 
rates can be obtained at time step t=0 while the rates of change of the nonelastic strains can be computed from 
constitutive equations. Thus, the initial rates of all the relevant variables are now known and their values at a 
new time ∆t can be obtained by integrating forward in time. The rates are then obtained at time ∆t and so on, and 
finally the time histories of all the variables can be computed. Another important task in this approach is the 
choice of a suitable time integration scheme. For the purposes of the present paper, an Euler type algorithm with 
automatic time-step control is employed. 
 
 
5 THE STRAIN ENERGY RATE 
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For power law creep materials the strain energy density rate (SEDR) can be analytically determined as 
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The SEDR was estimated according to the boundary element procedure developed previously by solving in time 
the system of equations (9) and (10) and then by using the analytic equation (11) for each time step. 
 
  
6 NUMERICAL RESULTS 
Consider a central cracked plate (CCP) specimen with height (h) and width (w) = 16in x 8in made by a power 
law creeping material (superalloy Inconel 800H at 1200oF) with properties E=22294 Mpsi,, 
σ0=60487psi,ν=0.33, creep exponent m=5 and the parameter 

hpsixB m /)(101.2 527

0

0 −−==
σ
ε      (12) 

The specimen contains a central crack of depth a= 0.125w. The specimen is subjected to a remote uniform load 
of 18750 psi which is suddenly applied. The symmetry of the specimen was used and thus a quarter of the plate 
was analyzed.  

The computer software established according to the BEM methodology presented in this paper can 
provide sufficient data related to stress and strain distribution history. Based on these data and after using 
equation (11) the strain energy density rate distribution could be predicted at each time step. Typical diagrams of 
contours of strain energy density rate distributions for a quadrant of the specimen and for two different time 
steps (t=0.0 and 5.01 hours) are shown in Figures 2 and 3, respectively. 

 
Figure 2. Contours of strain energy density rate for time step t=0.0 hours 

 
 

 
Figure 3. Contours of strain energy density rate for time step t=5.01 hours 
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Depicted in Figure 4 are the angular variations of the strain energy density rate for different time steps. It could 
be noted from the inspection of this figure that the strain energy density rate decreases with increasing time. This 
trend was expected since the applied load remains fixed in time and the crack is assumed to be stationary. It 
could be also noted that all curves posses a minimum at angle θo=0.  
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Figure 4. Angular variation of strain energy rate for different time steps. 

 
Taking into account the strain energy density criterion[2] this indicates that crack would initiate at θo=0 and 
along the axis of symmetry of load symmetry under present crack mode I. 
 
7 CONCLUSIONS 
In this paper a  new singular boundary element approach based on the implementation of a special singular 
boundary element is performed for the estimation of the strain energy density rate distribution close to crack tip 
fields arising in creeping structural components undergoing Mode I deformation under the effect of remote 
loading condition. 
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Abstract. The SE/E rock corner slope of Acropolis Hill in Athens is composed of fractured limestone resting on 
the Athenian Schist. This slope forms also the base of the SE/E part of the Acropolis Wall, an ancient structure 
with appreciable fissuration, mainly running in a vertical direction. Here is presented a preliminary analysis 
that has been made by exploiting the existing topographical and geological data of the site and by applying the 
key-block method, and the dynamic three dimensional distinct element algorithm 3DEC. The study of the frac-
tured rock mass lead us to the identification of a critical rock block whereas the distinct element simulation of 
the Wall revealed similar fissuration patterns as the ones superficially observed.  
 

1 INTRODUCTION 

The general hydrogeological conditions that are prevailing in the SE/E part of Acropolis Hill in Athens, the 
dense network of discontinuities in the rock and the fallen rock blocks (Figure 2) that are observed around the 
rocky slope are the main reasons that earlier studies[1] characterize the same part of the Acropolis Hill as a zone 
of significant damage. An additional factor affecting the stability of the rock slope is the negative slope at its 
base, which can be distinguished in the picture below that was taken in 1880 (Figure 1). Examining photographs 
that were taken before the restoration and in parts reconstruction of the SE/E part of the Acropolis Wall, like the 
one below that is dated back to 1920 (Figure 1), we can easily ascertain its sharp vertical fissuration. Moreover 
some of the fissures are believed to be connected with the traces of the rock discontinuities. Despite the repara-
tions that have been made by filling and covering these fissures, today the wall appears again fissured (Figure 
2).Taking into account the above conditions and observations we could argue that the system rock-wall is evolv-
ing. 

 

  

Figure 1. Left: Photo of the SE/E part of the Acropolis Hill in Athens in 1880. The negative slope of the rocky 
slope is easily distinguishable. Right: Photo of the SE/E part of the Acropolis Hill and Wall in Athens taken in 

1920.  The Wall is sharply vertically fissured. 
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Figure 2. Left: Recent photo of the SE side of the SE/E part of the Acropolis Wall in Athens. The fissures on it 
are apparent. Right: Sizeable detached rock block of the SE/E part of the Acropolis Hill in Athens 

2 GEOLOGICAL DATA 

According to existing geological studies[1] the region of Athens is covered by the Athenian Schist, which 
also forms the base of the rock slope we study. It is a flysch formation, which is constituted by argileous schist, 
sandstone, quartzitic sandstone, marl, limestone and the transitive-combination types of the above rocks (i.e. 
sandstone marls or argileous schist limestones).The limestone rocks appear mostly to the upper soil layers of the 
region of Athens and they are related with the presence of the limestone Hills of Athens, which are Acropolis, 
Filopappou, Lycabetus and others. These massive limestone rocks are dated to the late cretaceous period and as 
far it concerns the way of their creation many theories exist, the most popular among them wants these limestone 
masses native and sited over the Athenian schist[1]. As a consequence the possibility of a generalized activation 
of the tectonic contact, which could lead to significant seismic instabilities, is rejected in the study of B. An-
dronopoulos and G. Koukis[1]. For the most part the limestone that constitutes the SE/E part of the rock of 
Acropolis is not laminated. It is not covered by soil and therefore it is susceptible to erosion; it is appearing car-
sted and hydropermeable. The erosion phenomena are in places very intense and justify the rock cavities, of 
which the smaller ones have been filled with calcareous and marley material. Finally the limestone rock mass 
appears intensively fractured. Mostly the discontinuities are filled with soil material, which according to sam-
pling measurements[2] is composed of 64.2% sand, 31.7% silt and 4.1% clay.  

3 TECTONIC DATA 

At the SE/E part of the Acropolis Hill we observe many smooth surfaces which are considered to be the slid-
ing or detachment surfaces of the rock blocks, some of them are found fallen around the rocky slope. A sizeable 
fallen rock block is shown at Figure 2. Examining carefully the same picture we perceive that the fallen block 
leans on the ruins of the Dionysus ancient theater wall, which was built during the Classic period and was func-
tioning until the end of the Roman period. Consequently we infer that the detachment of the rock block from the 
slope took place in the last two millennia. Looking into the ballistics of this fall we could in principle infer the 
possible original location of this block. 

The determination of the geometrical characteristics of the fractures that intersect the rock mass of the SE/E 
part of the Acropolis Hill is of great importance as they determine the different possible failure mechanisms and 
so they influence directly the stability of the rock slope. Exploiting the existing geological studies[1],[2], we detect 
a total of 24 fractures (Figure 3). At this point it has to be mentioned that a detailed and exact tectonic map of 
sufficient resolution at the SE/E part of Acropolis Hill is not available. Therefore our analysis and  
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Figure 3. Left: Tectonic Map[2]. With bold lines are depicted the traces of the fractures. Right: Stereographic 
projection of 24 fractures of the SE/E part of the Acropolis Hill in Athens.  

Three families of fractures are distinguished. 

 
the 3D models that were made may not represent the exact topography and tectonics. In spite of the fact that in 
reality the discontinuities are not necessarily planar, in our analysis they were assumed as planes. Taking into 
account that the area of interest is of limited geological scale the aforementioned assumption is very close to re-
ality. Notice that this assumption is central to the key-block method[3],[4], which is usually applied to problems of 
similar geological extend. Moreover, extracting data from the traces of the fractures[2],[5],[6] and from  the topog-
raphy of the slope and applying to these data the least square method (for planes) we calculated a correlation co-
efficient (R-squared value) very close to unity. At Figure 4 are presented two snapshots of the three dimensional 
CAD that represents the SE/E rock corner of Acropolis Hill and was developed during our analysis in order to 
help us in the evaluation of the assessment of  the various rock blocks that the fractures form (Figure 3). In this 
3D model we show the discontinuities of the rock mass as infinite planes. 

 
 

  

Figure 4. 3D CAD model of the SE/E part of the Acropolis Hill in Athens. 
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4 ROCK STABILITY 

For our analysis we used the Distinct Element Method, applying the three dimensional software 3DEC, 
which is especially adapted to problems of Rock Mechanics. Significant advantages of this software is the pos-
sibility of studying and reproducing complex three dimensional failure mechanisms and the displacement moni-
toring of the rock blocks. However our analysis with 3DEC did not reveal more complex failure mechanisms 
except the plane slide of rock block A over the discontinuity plane R12 and the wedge sliding of rock block B 
over the discontinuity planes R8 and R9 (Figure 5). These results from 3DEC are in agreement with the results 
of the key-block method.  

The application of the key-block method proved two rock blocks that are considered as removable. Failure 
on the discontinuity interface is considered according to the Mohr-Coulomb failure criterion when: 
τ > τmax = σ tanφ + c, where τ is the applied shear stress , τmax is the maximum shear stress, σ the applied normal 
stress, φ the friction angle and c the cohesion of the interface. The safety factor of a rock block is defined as the 
ratio of the moving forces that act on a rock block, including seismic action (pseudo-static approach[7]), to the 
resisting forces that act on the same rock block. Disregarding the role of the cohesion to the stability of the rocky 
slope (c = 0, φ = 25°[2]) the value of the safety factor was calculated equal to S.F. = 3,30 > 1 for rock block B 
and extremely low and equally to S.F. = 0,14 < 1 for rock block A. In other words if we do not take into account 
the influence of the cohesion of the discontinuity interface to the stability, the rock block A appears potentially 
instable.  

The fact that the rock block A has not failed until day is attributed to the value of the cohesion c  of the joint, 
for which however we do not have reliable experimental data. In most cases the adhesion of the rock and the fill 
material is assumed to be very low and accordingly the assumed cohesion c of the interface is neglected. Conse-
quently the cohesion of the discontinuity plane R12 should be principally attributed to the interlocking of the 
rock blocks and to the existence of rock bridges[10]. We should mention however that the experimentally deter-
mined cohesion of the filling material equals to c = 48,71 kPa (the standard deviation of the samples was 22% of 
this value[2]). If we assume this value in our analysis, then the safety factor of rock block A is calculated equal to 
S.F. = 1,32 > 1. In any case the minimum value of the joint cohesion is c = 40,00 kPa (S.F. = 1). Assuring the 
aforementioned cohesion value with anchor support, a total force of 16 GN is needed. Currently the rock slope 
appears to be reinforced by 15 anchors[2] that can totally apply a force of 2,3 GN (15×150 kN) to the rock 
block A, which corresponds to 15% of the needed force. Here we have to notice that these anchors have been in-
stalled before thirty years and we don’t know if they should be considered as “permanent” or not. Moreover the 
length of these anchors is only 12 m and as a result we have doubts on the degree that the aforementioned rock 
block is sufficiently supported. From our point of view the length of the anchors should be at least 20 m in order 
to assure that the head of the anchors is being well encastred to the healthy rock mass. 

 
 
 

 

Figure 5. 3DEC Model of the SE/E part of the Acropolis Hill in Athens. A and B are the rock blocks which were 
characterized as removable during our analysis. 
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5 WALL FISSURES 

Analysing the SE/E part of the Acropolis Hill rock mass we determined the vertical displacements of the 
various rock blocks at the base of the SE/E part of the Acropolis Wall (Figure 6). As we have already mentioned 
the Acropolis Hill rests on the Athenian schist. Due to the lack of experimental data for the mechanical proper-
ties of the schist at the base of the rock slope we study, we will consider the schist mechanical properties from 
nearby regions[8]. As far it concerns the joints’ mechanical properties we assume that they behave elastically un-
der compression provided that sliding did not occur at the joint interface. Consequently we will use the me-
chanical properties (Young Modulus) that were specified at previous studies[2].  

With the above hypotheses for the mechanical properties of the system we applied at the region of the rock 
mass that the Wall occupies (Figure 6) a uniformly distributed vertical loading of 0,1 MPa (approximately three 
times the weight of the wall and the filling material behind it). The application of the aforementioned loading 
enabled us to determine the vertical displacements at the base of the Wall and the behavior of the Wall structure 
because of these vertical displacements. At Figure 6 are presented the vertical displacements at the base of the 
SE/E part of the Acropolis Wall. It should be mentioned that at the Wall corner the vertical displacement of the 
rock mass is much lesser than the vertical displacements at the two sides of the Wall, resulting to a differential 
subsidence at the base of it and consequently to its charging. 

The building blocks that construct the SE/E part of the Acropolis Wall vary in size and quality. The total 
non-homogeneity of this part of the Wall is being increased by previous reparations and fillings of the damaged 
segments of the Wall with building blocks of different size and quality. The thickness of the Wall is approxi-
mately 6 m but it varies a lot from place to place. For our analysis with the DEM method we made the following 
simplifications-assumptions in our model: 

• The building blocks of the Wall are considered as orthogonal parallelepipeds of the same dimensions. 
Their dimensions have been chosen to be equal to the average dimensions of the wall blocks 
(1,2 m width, 0,7 m height and 0,6 m thick). 

• The modeled Wall is being constructed by only one layer of blocks (in cross section). On the contrary 
the number of the blocks would enormously increase the calculation time. 

• The blocks are considered as rigid and unbreakable in our 3DEC model. 
• The system Wall-rock mass is considered uncoupled, meaning that the mechanical behavior of the Wall 

does not influence the mechanical behavior of the rock mass. Consequently we managed to study sepa-
rately, in a different DEM model, the mechanical behavior of the Wall. The simulation of the Wall was 
carried out introducing the vertical displacements of the rock mass that we had previously determined 
to the base of the Wall structure. 

As a result of these simplifications-assumptions is the fact that the interlocking of the wall blocks in the ver-
tical direction of the wall length is ignored and that the mechanically weak zones (repaired areas of the Wall) are 
not taken into account. Thus the analysis is focused on the investigation of the impact of the rock mass dis-
placements on the wall fissures. In Figure 7 we present the results from our simulation with 3DEC. Comparing 
the results from 3DEC with the fissures superficially observed (Figure 1 and Figure 2) we could easily distin-
guish the similarities. 

 
 

6 CONCLUSIONS 

In this paper we applied the key-block and distinct element method to investigate the stability of the SE/E 
part of the Acropolis Hill in Athens. Our analysis revealed one instable rock block (rock block A Figure 5). The 
type of failure for this rock block is sliding over the discontinuity plane R12. A cohesion of c = 40,00 kPa over 
the discontinuity plane R12 is needed for the limit equilibrium of this rock bock (including seismic action, 
pseudo-static approach[7]). This value of the cohesion is believed to be attributed to the interlocking of the rock 
blocks and to the possible rock bridges that have been probably developed.  

The system rock mass-Wall is still evolving. The simulation of the SE/E part of the Acropolis Wall and rock 
mass with the three dimensional distinct element code 3DEC showed that the mechanical behavior of the wall 
depends on the mechanical behavior of the rock mass. In other words a possible increase in the loading of the 
system (rainfall, seismic action, etc.) could lead to similar fissuration patterns as the ones superficially observed.  
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Figure 6. Left: The region that the SE/E part of the Acropolis Wall occupies. The number in the brackets express 
the different rock blocks of the rock mass that the Wall is based on and the numbers in the parenthesis are the 

displacement monitoring points in 3DEC. 
Right: With dashed line are depicted the vertical displacements in millimeters of the base of the Wall in our 

3DEC model after the application of a vertical uniformly distributed loading of 0,1 MN/m2 to the area that the 
Wall occupies. The straight line depicts the average values of the results from 3DEC per rock block. From this 

diagram we conclude also the rotation of the rock blocks. 

 

 

Figure 7. Vertical displacements vectors of the bricks of the SE/E part of the Acropolis Wall because of differ-
ential subsidence of the rock mass. The displacements of the rock mass have been  

multiplied by a factor of ten. 
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Abstract. The wire cutting process is used in the food industry during the manufacture and testing of products. 
The cutting process involves fracture as well as large strain deformation and surface friction. This paper 
investigates the mechanics of the wire cutting process of cheese through a combination of experiments and finite 
element simulations. The experiments revealed that there was secondary damage on the cut surface, thus a 
higher fracture energy is consumed than the common assumption of a single crack propagation. The numerical 
simulations showed that there was a six-fold change in the strain rate when wire diameters of 0.25mm to 2mm 
are used. The numerical models were also used to predict the cutting forces using two failure criteria: critical 
strain, which was applied to the initiation of cracking, and a cohesive zone model to simulate crack 
propagation. Both criteria showed reasonable success in predicting the cutting forces, particularly for cuts 
made with small wire diameters. 
 
 

1 INTRODUCTION 

 Many food processes, such as shredding and cutting, involve breaking the food into smaller components. 
Fracture of food also occurs during mastication when the structure of the food is broken down and the flavour 
and aroma are released. The concern of food technologists is in designing foods that break down in the optimal 
way. For example, during a separation process, the food must not crumble to reduce wastage. When eaten, the 
food must fracture in a way which provides the optimal sensorial experience. Few studies in the literature have 
investigated in detail the fracture behaviour of foods.  
 The three-point-bend test has been utilised in studies of cheese at low temperatures [1-3]. However, at room 
temperature, cheese exhibits a high degree of non-linearity, viscoelastic effects and low stiffness. Therefore, 
conventional fracture tests that are widely used to determine the fracture properties of engineering materials are 
not suitable. The wire cutting test has been proposed as a simpler alternative to measure the fracture toughness 
[2,4,5]. The wire cutting test involves pushing wires of known diameters through specimens from an initial 
indentation to a steady-state cutting stage. The steady state cutting force, F, when divided by the width of the 
cut, b, gives an apparent value of the fracture toughness, Gc, i.e. the energy released during fracture divided by 
the new surface (cracked) area. The force-displacement relationship depends on a combination of fracture, 
plastic/viscous deformation and surface friction effects, but the exact details of the mechanics of cutting are still 
not understood. The objective of this study was to evaluate the possibility of predicting the steady state cutting 
forces during wire cutting; for this accurate failure criteria are needed. 

2 EXPERIMENTS 

Two cheeses, mild Cheddar and Gruyere, were tested at 21°C and 50% relative humidity. Mechanical tests in 

the form of monotonic uniaxial compression tests were performed at true strain rates, 
.
ε , of 0.25, 2.5 and 

25/min, and stress relaxation tests were performed at a true strain rate of 2.5/min up to a strain of 0.04 [6]. The 
true stress - true strain curves from the compression tests are shown in figure 1. The stresses increased 
significantly with increasing strain rate, but the fracture strains remained constant at approximately 0.5 and 0.45 
for mild Cheddar and Gruyere respectively. 

Wire cutting tests were performed using steel wires of diameter, d , of 0.25, 0.5 and 0.89mm, as well as 
dowel pins of diameter 1.6 and 2mm. The specimens for the wire cutting tests were rectangular blocks of length 
25mm, height 20mm and width 15mm for the three smaller diameters. Blocks of length 30mm, height 30mm, 
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and widths 20mm and 30mm were used for the 1.6mm and 2mm diameters respectively. Three cutting speeds, 
v , of 5, 50 and 500mm/min were used. For each case of d  and v , three cuts were made on a new specimen each 
time. The experimental steady-state cutting force, F , divided by the specimen width, b , is shown in figure 6. 
The cutting forces are seen to increase as the test speed and the wire diameter increase. The dependence on wire 
diameter is due to the increase in the plastic/viscous and frictional energy dissipations. 
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Figure 1. Stress-strain relationships for (a) mild Cheddar and (b) Gruyere. 

3 MATERIAL MODEL 

The cheese samples were assumed to be incompressible and homogeneous. A non-linear viscoelastic model 
consisting of separable strain and time dependent functions was chosen to model the constitutive behaviour of 
the cheese. During a step strain relaxation test, the model characterises the relaxation stress as the product of 
separable strain ( ( )εσ 0 ) and time ( ( )tg  ) dependent functions, i.e., 

  
( ) ( ) ( )tgt εσεσ 0, =            (1) 

 
where σ  is the stress at true strain ε  and time  t. The strain dependent function has dimensions of stress and 

the time dependent function is dimensionless. 
The strain dependent behaviour was modelled using the Van der Waals hyperelastic potential [7,8]. For this 

potential, the stress during the uniaxial deformation state is expressed as, 
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where ψ is the shear modulus, λm and a are dimensionless material constants, and λ is the stretch ratio in the 

direction of load and is calculated from the strain, i.e. ( )ελ exp= . 
The time dependent behaviour was defined by the Prony series: 
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where τi  are time constants with values of 0.1s, 1s, 10s, 100s and 1000s for i =1 to 5 respectively. The 

dimensionless constants, gi, are related via: 
  

1
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For any general loading condition, the stress can be calculated via the Leaderman form of the convolution 

integral [9]: 
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( ) ( ) ds
ds

dstgt o
t

εσ
εσ ∫ −=

0

),(          (5) 

 
The above integral was evaluated numerically as in Goh et al [10] and the result was used to determine the set 

of material parameters that results in the best fit between the analytical model and the experimental data from the 
mechanical tests. A summary of the parameters is presented in Table 1. 

 

(kPa)

mild Cheddar 190 2.54 2.19 0.304 0.303 0.114 0.106 0.089 0.084

Gruyere 236 2.64 1.98 0.221 0.333 0.117 0.123 0.097 0.109

ψ mλ a 1g 2g 3g 4g 5g ∞g

 
Table 1. Material parameters. 

4 FRICTION PROPERTIES 

The surface friction between the wire and the cheese was assumed to be described by Coulomb friction. The 
coefficient of friction, µ, was assumed from previous studies of mild Cheddar and Gruyere [11] where cylindrical 
specimens of various initial height/diameter ratios were compressed between steel platens under nonlubricated 
conditions. The values of µ  were found to be 0.16 and 0.14 for mild Cheddar and Gruyere respectively.  

5 NUMERICAL SIMULATIONS AND FAILURE CRITERIA 

The numerical simulations were performed using the commercial finite element code ABAQUS [7]. Two 
separate models were developed, and schematics of the models are shown in figure 2. The first model (figure 2a) 
was used for the prediction of crack initiation. The second model was used to simulate crack propagation. In all 
cases, the bulk material was modeled using four noded, plane strain, solid (continuum) elements. Large strain, 
non-linear, time-dependent analysis was used through the command *VISCO. The wires were defined as rigid 
surfaces and were prescribed to move at the same speeds as in the experiments. The bottom surface of the 
models was constrained in the vertical (y) direction but was allowed to move freely in the horizontal (x) 
direction. 

 
 wire

cheese

x
y

(a)

wire

cheese

x
y

cohesive 
elements
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Figure 2. Finite element geometry for (a) crack initiation (b) crack propagation models. Not to scale. 

 
Two fracture criteria were utilised to predict the steady-state cutting force. The first criterion is based on a 

critical strain to predict crack initiation. The critical strain, εcrit, was assumed to be equal to the fracture strain as 
measured in the uniaxial compression test (see figure 1). The maximum tensile strain, εxx max, in the model was 
monitored such that when εcrit was reached, the corresponding reaction force on the wire was assumed to be the 
steady-state cutting force [6]. For this criterion, the model shown in figure 2a was used. 

In the second criterion (see figure 2b), a single crack was assumed to propagate along the line of symmetry. 
The fracture process was modeled by cohesive elements as used by Chen et al [12]. The traction-separation law of 
these elements (see Figure 3) is described by a third order polynomial: 

 

( )δδδδδ
δ

223
4 212

critcrit
crit

cGT +−=         (6) 
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where T is the traction, δ is the separation, δcrit is the critical separation and Gc , the fracture toughness of the 
material, is given by the area under the curve. The peak stress, σ̂ , is given by critcG δ916 . 
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Figure 3. Traction-separation curve of cohesive zone model. 

The cohesive elements were implemented using a ‘user subroutine’ (*UEL) in ABAQUS. The cohesive 
elements are linear, four noded, and each one connects two solid elements on either side of the line of symmetry. 
The size of the solid elements along the fracture path was 0.009mm by 0.009mm. For diameters of 1.6mm and 
2mm, a longer crack path was necessary to achieve the steady-state cutting phase. Therefore, the solid element 
size was increased to 0.025mm by 0.025mm to reduce computation costs. 

6 RATE EFFECTS ON WIRE CUTTING 

The effective strain rate in wire cutting increases as cutting speed increases whereas it decreases as wire 
diameter increases. Experimentally, the strain distribution is difficult to measure, so it was estimated from the 
finite element models shown in figure 2a. Since the strain distribution is not uniform, the rate of change of the 
maximum tensile strain in front of the wire was taken as an indication of ε . These estimates are shown in Table 
2 for v =5mm/min. For v =50 and 500mm/min, the values of ε  are respectively ten and a hundred times the 
values shown in Table 2 for the same d. It can be seen that ε  decreases by about six fold as d increases from 
0.25mm to 2mm. 

 

Wire diameter,     (mm) 0.25 0.5 0.89 1.6 2

Strain rate,     (1/min) ~ 6.0 ~ 3.4 ~ 2.1 ~ 1.2 ~ 1.0ε

d

 
Table 2. Approximate rate of change of the maximum tensile strain in the x-direction in front of the wire for 

v =5mm/min. 

The change in strain rate will have an effect on the parameters of the cohesive model, i.e. Gc and σ̂ . There is 
no independent data to evaluate the strain rate dependence of cG , but as shown in figure 4, the relationships 
between bF  and v  follow a power law relationship: 

 

nn t
b
Fv

b
F −∝⇒∝           (7) 

 
where t  is time and n is a constant and approximately equal to 0.17 for both cheeses.  
In addition, figure 5 shows the stress-strain data from figure 1 re-plotted as isometric curves. The stresses are 

found to be related to ε  via: 
 

mm t−∝⇒∝ σεσ           (8) 
 
where m is a constant and equal to 0.17 for both cheeses. The agreement between m and n suggests that the 

rate dependency of the constitutive and fracture properties is similar. 
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Figure 4. Relationships between F/b and speed. (a) mild Cheddar (b) Gruyere. 
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Figure 5. Relationships between stress and strain rate. (a) mild Cheddar (b) Gruyere. 

7 RESULTS 

The predictions of bF  using the crack initiation model are compared with the average experimental values 
of bF  in figure 6. The agreement is reasonable for most cases, suggesting that the critical strain criterion can 
be utilised to predict the steady state cutting force. 
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Figure 6. Prediction of wire cutting energies using critical strain fracture criterion. (a) mild Cheddar (b) Gruyere. 

In the absence of independent fracture data to calibrate the traction-separation laws, the values of cG  and σ̂  
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could only be determined by matching the numerical steady-state energies to the experimental data through a 
trial and error approach. This was performed for d =0.25mm and v =5mm/min. The validity of the parameters 
was checked by applying them to the models for the other cases of d and v . The ratio of cG  to σ̂  was chosen 
so that critδ  was arbitrarily fixed at 0.22mm and smaller than 0.25mm which was the smallest d  used in the 
experiments. 

The estimations of cG  and σ̂  from the trial and error approach were 15J/m2 and 120kPa for mild Cheddar 
and 25J/m2 and 200kPa for Gruyere. Figure 7 shows the numerical predictions of bF  when the same values of 

cG  and σ̂  were applied to all wire diameters for v =5mm/min. There is a reasonable agreement between the 
numerical predictions and the experimental data for the three smallest wire diameters, but a larger discrepancy is 
observed for d =1.6 and 2mm. This is probably due to the increase in the amount of secondary cracks as d  
increases; these were obvious in the fracture surfaces which are shown in figure 8. Secondary cracks imply 
higher fracture energies and hence higher cutting forces. If the values of cG  and σ̂  are changed through the 
power laws of equations (7) and (8) so that the new values reflect the changes in ε , the predicted values of bF  
will be lower (see figure 7). This is due to the decreasing ε  with increasing d  which leads to even larger errors 
in the predictions at larger wire diameters. 
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Figure 7. Wire cutting data at v =5mm/min. The numerical results numbered ‘1’ are obtained using the same 

values of cG  and σ̂  for all wire diameters. The numerical results numbered ‘2’ are obtained using the values of 

cG  and σ̂  adjusted for the change in ε . 
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Figure 8. Fracture surface of wire cutting specimens for mild Cheddar( v =5mm/min). Direction of cuts is from 
top to bottom. 

For the simulations of the cutting process at v =50 and 500mm/min, the values of cG  and σ̂  were increased 
using the power law approximations. The same values of cG  and σ̂  were applied to all wire diameters and the 
results are shown in figures 9 and 10 for v equal to 50mm/min and 500 mm/min respectively. The predictions 
when v is 50 mm/min are reasonably good for the three smallest wire diameters. However, similar to the trend 
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seen for v =5mm/min, the finite element results are increasingly lower than the experimental measurements as d 
increases. The finite element predictions for v =500mm/min are much lower than the experimental data. The 
erroneous predictions from the finite element model at high speeds are probably due to the inaccurate calibration 
of the constitutive model. For v =500mm/min, the strain rates in the wire cutting process may reach 100-
600/min (see table 2). However, the constitutive models were calibrated using stress-strain data which were 
measured only up to ε =25/min (see figure 1). Because the same inadequacies apply to Gruyere, the finite 
element analysis for this cheese at v =500mm/min was not pursued. 
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Figure 9. Wire cutting data for v =50mm/min. 
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Figure 10. Wire cutting data for mild Cheddar for v =500mm/min. 

The discrepancies between the numerical model and the experimental data show that there are still some 
areas which require further investigation. Although the numerical model predicted the cutting energies for the 
small wire diameters, it would be necessary to include the effect of the secondary damage for more accurate 
predictions of the cutting conditions when large wire diameters are used. This can be achieved by incorporating 
the cohesive elements within the bulk material and not just along a single, predefined, fracture path. 
Furthermore, the current computer code for the cohesive element does not allow for the element to ‘deform’ as it 
comes into contact with the wire. Instead, the cohesive elements overlap the wire for a certain period before the 
critical separation is reached. This is not a true reflection of reality, where complete decohesion occurs ahead of 
the wire. 

8 CONCLUSIONS 

This study has revealed some new information regarding the mechanics of the wire cutting process. For 
example, the variation in the strain rate when cutting viscoelastic materials with different wire diameters has to 
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be taken into account when estimating the fracture toughness. The presence of secondary cracks makes the 
cutting process less predictable since a higher fracture energy is required. The errors due to the secondary 
damage can be limited by using small wire diameters. 

The numerical predictions based on a maximum strain criterion were computationally cheaper to use and 
more successful in predicting cutting forces. This method however does not allow an estimation of the fracture 
toughness nor can it be used for the prediction of crack paths. The use of cohesive zone models allows the 
simulation of crack propagation based on an energy release rate approach and has been shown to successfully 
predict the cutting energies for small wire diameters at two speeds. Improvements to the cutting models, so that 
they can predict the crack path as well as the cutting force will be considered in the future. 

An understanding of the wire cutting process is important to eliminate the problems relating to distorted cuts 
and lost yield as currently faced in the food industry. From a more general perspective, a model of the fracture 
process in food systems is also required in computer simulations of mastication. Such simulations are needed to 
give a clearer picture of the important interactions between texture, flavour and odour. 
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Abstract. In this paper the study of the diametral compression of a disc with flat edges (flat Brazilian test) is 
presented. The test is studied numerically for two different loading cases.  The critical value of the loading angle 

a2 , which guarantees the crack initiation at the centre of the disc, is investigated according to stress analysis and 
Griffith’s strength criterion. Also the coefficient k  is calculated for each loading angle, which is used for the 
determination of the tensile strength tσ . 
 
 
1 INTRODUCTION 

The conventional method of measuring the tensile strength of rocks is the direct tension test, which, 
however, presents experimental difficulties and is not commonly conducted in rock mechanics laboratories. This 
is due to both the bending stresses or torsion moment (caused by the eccentricity of applied axial loads) and the 
localized concentrated stresses (caused by improper gripping of specimens)[1, 2]. 

Because of these experimental difficulties, alternative techniques were developed to determine the 
tensile strength of rock. The Brazilian test uses a circular solid disc, which is compressed to failure across the 
loading diameter. In principle, the stress field, which induces tensile failure when the disc is compressed 
diametrically, can be fully determined, provided that the material maintains a perfect linear elastic behavior up to 
the point of failure. Hondros[3] has analytically solved the Brazilian test configuration in the case of isotropic 
rocks, while Pinto[4] extended Hondros’ method to anisotropic rocks and checked the validity of his methodology 
on schisteous rock. Recent investigations have led to a closed form solution for an anisotropic disc[5, 6], a series of 
charts for the determination of the stress concentration factors at the center of an anisotropic disc[7] and explicit 
representations of stresses and strains at any point of an anisotropic circular disc compressed diametrically[8]. 

However, the Brazilian test has the disadvantage that high shear stresses are induced close to the 
loading platens apart from the tensile stresses, which are developed in the disc. Failure may be attributed not 
only to the development of a tensile crack at the center, but also to the formation of small wedges at the contact 
surfaces. So the fundamental question “how to guarantee the centre crack initiation” of the specimen remains 
unresolved. 

For the proposed configuration of the flattened Brazilian test, an exact analytical elasticity solution 
cannot be obtained, so a Finite Element Analysis program is used to calculate the stresses for various lengths of 
the two parallel flat ends that are introduced to the disc. 

The main objective of this paper is the determination of the critical loading angle a2 , which 
corresponds to the flat ends, so as to ensure crack initiation at the centre of the disc. Also a formula for the 
determination of the tensile strength is provided, based on a coefficient k  that is calculated by the finite element 
analysis. 
 
2 THE FLATTENED BRAZILIAN TEST. 

The proposed configuration of the flattened Brazilian test is presented in Fig. 1. The elastic, 
homogeneous, continuous and isotropic disc of diameter D  and thickness t , is subjected to a uniform diametral 
pressure p  acting  
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over two equal-width ( )b2  parallel ends which correspond to the loading angle a2 . 

Throughout this paper (unless stated otherwise) tensile stresses and strains are considered to be positive 
quantities and consequently compressive stresses and strains are taken as negative quantities. 
 
 
3 NUMERICAL ANALYSIS 

For the elastic equilibrium of a homogeneous, continuous, isotropic disc with diameter RD 2=  and 
thickness t , subjected to a uniform radial pressure p  acting along an arc which corresponds to a loading angle 

a2  (original Brazilian test), the exact stress solution on the loading diameter is given by the following 
relationships[9]: 
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At the centre of the disc these stresses become: 

Dt
P

π
σθ

2
=  

Dt
P

r π
σ 6

−=  
(2) 

 
where P  is the total force. 

 
 

Figure 1. The flattened Brazilian disc specimen under uniform diametral compression. 



However, for the flattened Brazilian disc (Fig. 1) a similar closed-form solution cannot be obtained, so a 
Finite Element Analysis program is used to calculate the tangential ( )θσ  and radial ( )rσ  stresses along the 
loading diameter for different loading angles a2 . 
 
3.1 Geometry 

The test was modeled in 2-D space in the MSC.Mentat front-end program, and it was solved by the 
MSC.Marc Finite Element Analysis program[10 ,11]. To fully simulate the behavior of the material during 
diametral compression, both the specimen and the steel platens used to apply the load were modeled. Two sets of 
seven different models were developed, according to the loading angle a2  of the specimens: o5 , o10 , o15 , 

o20 , o30 , o40 ,  o50  and the loading conditions: uniformly distributed traction was applied in the vertical 
direction and traction free in the horizontal direction on the flat ends of the specimen (Case A) and the same 
traction in the vertical direction on a platen between the flat end of the specimen  with friction coefficient 

4.0=µ  in the horizontal direction (Case B) (Fig. 2). Contact elements were used to model the interface between 
steel platens and specimen. Symmetry across axis x was taken into consideration, so the final model was the 
upper half of each specimen category. Dimensions of each model matched the actual dimensions for future 
experimental investigation. The diameter of the discs was 54 mm. 

Two typical models for each case are shown in Fig. 3. The number of elements and nodes used for the 
discretization of each model is presented in Table 1. 
 
 
3.2 Material models and boundary conditions 

The steel platens and the specimen were modeled as linearly elastic isotropic materials with elastic constants 
GPaE 210= , 3.0=ν  and GPaE 80= , 25.0=ν , respectively. Boundary conditions were as follows: 

 
(a): Case A 

 

 
(b): Case B 

 
Figure 2. A series of specimens for both Cases A (a) and B (b) with diameter mmD 54=  and four different 

loading angles a2 . 
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a. A maximum pressure of 39.51 MPa was applied on the upper flat edge of the specimen (Case A) and 33.07 
MPa on the upper horizontal edge of the steel platen (Case B), in twenty linear loading steps. 

b. The central vertical line of nodes for each model was fixed for vertical displacement ( )0=dx . Simulations 
were run using a plain stress assumption. 

c. The nodes along the horizontal diameter of the disc were fixed for horizontal displacement ( )0=dy . No 
other boundary condition was required (Fig. 4).  

 

 
Case A 

Loading Angle a2  5 10 15 20 30 40 50 
Elements 2980 1792 2928 2124 1896 2046 2052 

Nodes 3103 1886 3050 2229 1988 2147 2158 
Case B 

Loading Angle a2  5 10 15 20 30 40 50 
Elements 3092 1912 3198 2388 2050 2430 2514 

Nodes 3238 2029 3354 2529 2172 2574 2670 
 

Table 1: Mesh generation parameters for each model 
 
 
4 THEORETICAL ANALYSIS AND RESULTS 

Fig. 5 presents a typical distribution of horizontal stress contours for a flattened Brazilian specimen with 
oa 202 = . Similar results were obtained for all models.  

 
 
 

 
 

 
(a)                                                                                         (b) 

 
Figure 3.  Discretization of the model with loading angle oa 202 =  for Case A (a) and Case B (b). 



 
 
 

 

 
 

(a)                                                                                      (b) 
 

Figure 5. Distribution of horizontal stress on flattened Brazilian specimen ( oa 202 = ) for Case A (a) and B (b). 

 
(a)                                                                                       (b) 

 
Figure 4. Typical boundary conditions for all models. Model with loading angle oa 202 =  for Case A (a) and 

Case B (b). 
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Figure 6 presents the variation of the dimensionless 
DtP π

σθ

/2
 and 

DtP
r

π
σ
/2

 along the loading diameter 

for the models with oa 202 = , o30  and the case of the original Brazilian test. 
The Griffith strength criterion[12] is considered suitable for these stress conditions. If the tensile stress is 

considered positive and 321 σσσ ≥≥ , the equivalent stress Gσ  is calculated as follows: 
 

when 131 ,03 σσσσ =≥+ G  (3) 

when ( )
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2
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31 8
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In the case of the original Brazilian test, eq (3) becomes 03 31 =+σσ  at the disc center, which yields 

Dt
P

G π
σ

2
= . The latter represents the basic formula for the determination of the tensile strength using the 

Brazilian test, either by Gσ  or θσ . As a result, it follows that central crack initiation is fundamental for a 
Brazilian test. 

For the flattened Brazilian test θσσ =1 , rσσ =3  and 03 <+ rσσθ  for all studied loading angles a2 , 
so the equivalent stress Gσ  can be calculated using equation (5). 
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Fig. 7 presents the variation of the dimensionless quantity 
DtP

G

π
σ
/2

 with 
R
r  along the loading diameter 

for different values of the loading angle a2  for both cases A and B. 
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 (a)                                                                                        (b) 

 
Figure 6. Variation of the calculated dimensionless θσ  (a) and rσ  (b) at the vertical diameter, for Case A. 



 

It is evident that only when oa 202 ≥  for Case A and oa 152 ≥  for Case B the disc centre has a larger 
value of Gσ  than any point elsewhere at the loading diameter, so the crack is most likely to initiate at the centre 
of the disc. These loading angles are the conditions for a valid test using the flattened Brazilian configuration. In 
this case, the tensile strength can be determined using the following equation: 
 

Dt
P

k f
t π

σ
2

=  (6) 

 
where fP  is the failure load and k  is a coefficient related to the loading angle (when oa 02 = , coefficient 

becomes 1=k  - original Brazilian test). For a given value of a2 , k  can be determined by finite element 
analysis using the following formula: 
 

DtP
k G

π
σ
/2

=  (7) 

 
The values of coefficient k  for different loading angles a2  and for both Cases A and B are presented in 

Table 2. It can be noted that the values of the coefficients k  for the loading angles o20  and o30  in Case A are 
in full agreement with the corresponding values presented by Wang et al.[13]. 
 

Case A 
Loading Angle a2   20 30 40 50 

Coefficient k   0.9646 0.9299 0.8600 0.7878 
Case B 

Loading Angle a2  15 20 30 40 50 
Coefficient k  0.9660 0.9401 0.8737 0.7923 0.6789 

 
Table 2: The coefficient k  for each model. 

 
 
5 CONCLUSIONS 

Two series of 2D numerical models were created to simulate the Flattened Brazilian test. The numerical 
results obtained for Case A are in full agreement with the corresponding values presented by Wang et al.[13]. The 
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(a)                                                                                       (b) 
 

Figure 7. Variation of the dimensionless calculated Gσ  at the vertical diameter, for both Cases A and B. 
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models for Case B, however, represent a more realistic simulation of the experiment. As a result it is 
proposed that the loading angle for centre crack initiation should be at least oa 152 = . 

It should be noted that the designing and manufacturing of the two parallel flat ends demands additional 
time with respect to the original Brazilian test, but it is essential for the centre crack initiation of the specimen. 

Finally, based on the numerical results for the coefficient k  for each loading angle a2  and equation 
(6), the indirect tensile strength can be calculated. 
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Abstract: The propagation of stress waves due to rock blasting is responsible for rock fragmentation. This work 
presents a two-dimensional simulation of stress wave propagation in anisotropic rock. The influence of rock 
discontinuities such as joint planes is also investigated. Six models were developed using 2D finite element 
methodology. Results concerning the magnitude of the stress wave in various locations along the stress path are 
presented and critically evaluated.  
 
1. INTRODUCTION 
 

For efficient blasting, it is necessary to understand the fragmentation mechanism under the influence of stress 
waves propagating from the blast hole to the free surface.  Although this is a complicated mechanism, it can be 
assumed to take place in two discrete phases. The first phase is created by the stress waves imparted to the rock by 
the rapid release of energy, during the detonation of the explosive in the blast hole (dynamic phase). The second 
phase is created immediately following the first phase due to the gases released by the chemical reaction. The 
pressure developed is responsible for creating a quasi-static stress field around the blast hole, which helps separate 
and displace the broken rock. Both phases can be treated as parts of the same function of pressure versus time [1, 2].  
However, in the present work, only the first phase is investigated.  

When studying the fragmentation, due to stress wave propagation, the rock mass weakness, local 
inhomogeneities, fractures, beddings and/or joints should be taken into account.  Due to the complexity of the 
dynamic problem, most researchers focus on isotropic – weakness free media.  However, rock formations are by 
nature not homogeneous and isotropic. Variations can occur due to difference in the origin of the formations, current 
and previous tectonic regime, etc.  Furthermore, it is the interaction between the features of the rock mass and the 
stresses generated due to an explosive detonation, which may cause favorable or unfavorable blasting results. For 
example, when the propagating transient waves encounter discontinuities positioned in a favorable direction, then the 
performance of the particular blast design is enhanced, whereas adversely oriented discontinuities may not achieve 
the desired fragmentation [2].  

Many researchers have studied the damage in the media (i.e., rock) caused by the stress waves induced by 
blasting. Some have proposed a simple dynamic damage model based on the equivalence theory between the 
damaged media and the non damaged media [3]. Others presented a non local analysis of the dynamic damage 
accumulation processes in brittle solids as well as a transient dynamic finite element computer code based on the 
same work [3]. However the damping properties induced by the opening and closing of the joints are ignored by such 
theories.    

The main objective of this paper is to study the effect of a joint, which is transversely positioned across the path 
of a propagating wave. Since rock break easier in tension than in compression, it is evident that the reflected 
compressive waves returning as tensile waves may cause more damage than the original waves. This analysis is 
performed in both isotropic and anisotropic rock. The basic mechanism of waves propagating through jointed media 
is given below. 

A rock media with a straight joint is shown in Figure 1. The joint, having a width of d, is assumed to be empty 
inside and can be closed under pressure waves. An incident wave Pi with incident angle a1, strikes the joint surface 
A-A’. There are only two cases possible. A) The wave can propagate to the other side B-B’ and B) the wave is not 
strong enough to pass through the joint. In Case A, the wave passes through the joint after the joint is closed. Two 
stages can be observed. Initially, before the joint is closed, only reflected waves are generated when the incident 
waves propagate to the joint face (a free boundary). If the magnitude of the stress pulse is strong enough, the face A-
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A’ moves against face B-B’. Thus the stress wave causes the joint to close and consequently part of the incident 
wave can be transmitted through the joint, making the face A-A’ and B-B’ to move together as an elastic body [4]. 
 

 d

 A

 A’

 B

 B’
 Pi

 Pr  Pt

 a1

 
 

Figure 1. Transmitted (Pt) and reflected (Pr) waves at the joint face 
 
2. NUMERICAL ANALYSIS 
 
2.1 Geometry 
 

The simulation was carried out in 2-D space utilizing MSC.Mentat/MSC.Marc suite of programs. Mesh design 
and generation was accomplished in MSC.Mentat and the models were solved by MSC.Marc, a nonlinear finite 
element standard code [5]. Two basic geometric schemes were designed as shown in Figure 2 utilizing repetitive 
symmetry (i.e. symmetry on both sides). These schemes correspond to single row blasting considering plain strain 
conditions. For a single row blasting the spacing (S) may be taken as twice the burden (B) (Figure 2) to maximize the 
output of the fragmented rock. Note that if fragmentation conditions are not good, then the ratio S/B may be reduced 
to 1:1.5 or lower. The borehole is located at the center back of the models and the ratio between the borehole radius 
(r) and the burden (B) is 2.5:100 (i.e. for a 10 cm diameter blast hole the burden is 2 m). The joint has an aperture 
width (d) of 0.05 cm and is located exactly in the middle of the burden (50% B) with the tips forming an angle of 900 
with the borehole (Figure 2). The number of elements and nodes used for the discretization are presented in Table 1. 

 
 B

 S

 r

 d

 
 

Figure 2. Geometry of the models 
 
2.2 Material Properties 
 

Three material models where generated for the geometries shown in Figure 2. The rock was modeled at first as 
linear elastic and isotropic. Then it was also modeled as linear elastic orthotropic with a) the strong material direction 
in the X axis (OrthoX) and b) the strong material direction in the Y axis (OrthoY). The material properties for the 
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three material models are presented in Table 1. In order to achieve realistic conditions during the explosion, Rayleigh 
damping was also considered. A percentage of 5% damping in the rock is the most common in many rocks, so the 
Rayleigh damping coefficients were the same in all simulations and are as follows: a = 0.001, b = 0.01. 
 

 

 Isotropic Orthotropic A (xx is 
strong direction) 

Orthotropic B (yy is strong 
direction) 

Elements 3200 3200 3200 
Nodes 3321 3356 3356 

Exx (GPa) 20 20 10 
Eyy (GPa) 20 10 20 
Ezz (GPa) 20 20 10 

 vxy 0.30 0.30 0.11 
 vyz 0.30 0.11 0.30 
 vzx 0.30 0.30 0.11 

Gxy (GPa) 7.69 7.69 4.50 
Gyz (GPa) 7.69 4.50 7.69 
Gzx (GPa) 7.69 7.69 4.50 

 
Table 1. Mesh generation parameters and material properties for both geometry schemes 

 
2.3 Boundary Conditions 
 

The boundary conditions which were applied on the models are presented in Figure 3 and were as follows: 
a. The pressure applied to the borehole walls corresponds to a typical value for a decoupled charge. A maximum 

pressure of 6000 MPa was considered. 
b. The nodes on the upper and lower boundary (i.e. in the horizontal direction) were fixed for vertical displacement 

(dy=0), satisfying the condition of repetitive symmetry in the media (i.e. a row a blast holes against a free 
surface)  

c. The nodes on the left boundary (i.e. in the vertical direction) were fixed for horizontal displacement (dx=0). This 
condition also implies a symmetry on the Y axis, (i.e. that there is a free surface to the left, in symmetry to the 
one on the right). Previous investigations have shown that this model yields similar results with models where the 
left boundary is 10B to the left of the borehole[6]. Hence, the simpler model is utilized. 

d. Contact elements are used around the boundaries of the discontinuity with a friction angle of about 22 degrees. 
 

 
Figure 3. Discretization and boundary conditions of the models 

2.4 Loading Conditions and Time Integration Scheme 
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To fully simulate the dynamic phase of the explosion, the actual time duration of the phenomenon must be taken 
into account. The time duration is 30-50 msec depending mainly on the type of the explosive and the type of the 
media (i.e. rock). The time of the dynamic phase begins from the moment of the explosion and finishes when the 
wave reflects on the free surface and returns back to the borehole. In Figure 4, the pressure profile versus time for a 
total time of 0.05 second is presented.  
provided 

In dynamic transient wave analysis, the number of elements, which are used, is bound with the time step of the 
time integration. Furthermore, the size of the elements must be calculated (and thus specified) so that the stress wave 
propagation does not surpass two elements in each propagation step, otherwise an error called numerical dispersion 
is introduced in the solution. The time step used for the analysis was ∆t = 0.00033 sec [5]. Thus for a total time 
duration of 50msec, 150 iteration steps were needed for each model. Note that in this type of analysis, the total time 
should include the necessary time space for the transient phenomenon to be completed. In this case, the pulse is 
applied in 15msec, but 50msec are allowed to study the stress wave propagation.  
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Figure 4. Loading conditions of the models 
 
For the dynamic analysis, the Newmark time integration scheme was used. The relationships for Newmark’s method 
are as follows [7]: 
 

1221 )
2
1( ++ ∆+∆−+∆+= nnnnn tttvuu αβαβ  (Displacements)                          (1) 

 
11 )1( ++ ∆+∆−+= nnnn tatavv γγ                (Velocities)                              (2) 

 
Where n is the number of the time step. For the method to be unconditionally stable when this type of dynamic 
equations are used (which correspond to the trapezoidal integration rule), the values for the constants β,γ should be 
β=0.25 and γ=0.5. The classic equation of motion of the system takes the form:  
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where the external forces are given by the relationship: 
 

∫ Τ=
V

dvR σβ                                                                            (4) 

 
Substituting R from equation (4) in (3) the implicit solution of the system is obtained: 
 

uuu nn ∆+=+1                                                              (5) 
 
3. ANALYSIS AND RESULTS 



E.Sarris, Z.Agioutantis 
 

 
In total six models were developed and solved. Three pertain to the first geometry scheme (without 

discontinuity) and three are for the second geometry scheme. The stresses were studied by taking history plots in 
three discrete nodes. These nodes were located a) on the borehole perimeter, b) at 50% of the burden, c) on the free 
surface and are shown in Figure 5a. In the models with the pre-existing discontinuity, the node in the middle of the 
burden (b) was selected to the right of the discontinuity so that an estimation of the magnitude of the transmitted 
stress waves through the joint could be obtained (Figure 5b).  
 

         
 

Figure 5. (a) Location of the studied nodes   (b) Detail of center node 
 
Figure 6 presents a typical distribution of the horizontal stress contours for the isotropic models with and without the 
pre-existing discontinuity respectively. Similar results were obtained for all models. 
 

               
 

                                          (a)                                                                                              (b) 
 

Figure 6. Distribution of horizontal stress (σ11) of the models without and with pre-existing discontinuity 
 

Figure 7a presents the horizontal stress (σ11) while Figure 7b presents the vertical stress (σ22) versus time respectively 
for the nodes on the borehole. Positive values correspond to tension and negative values to compression. Figures 8ab 
and 9a,b present the horizontal stress (σ11) and the vertical stress (σ22) versus time respectively for the nodes at the 
middle of the burden and on the free surface for the case without any discontinuity for all three material models.  
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More specifically, Figure 7 presents the stress history of the explosive excitation. It is evident that the excitation 
profile is different for the cases of orthotropic media.  Also, the stresses in the X direction remain compressive 
throughout the duration of the simulation, while the stresses in the transverse direction remain tensile.  In Figure 8a 
the stress regime is compressive at the beginning of the event, but as time progresses, stresses become tensile. This is 
due to the tensile wave created by the reflection of the compressive stress at the free surface, which passes through 
the center node traveling towards the blasthole. Similarly in Figure 8b, the stress regime is compressive but becomes 
tensile at the end of the event duration. In the case where the X direction coincides with the weak material direction 
(Ortho Y) the stresses remain compressive at the end of the simulation. This suggests that more time is needed for 
such stresses to become tensile.  

The transverse stress history depicted in Figures 9a,b shows that tensile stresses are predominant throughout the 
event at magnitudes capable of breaking the rock under tension. Again in the case of model Ortho Y (Figure 9b), it 
seems that tensile stresses are developed later in time during the event.  
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Figure 7. Stress history of the nodes on the borehole for the stresses (σ11) and (σ22) respectively 
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Figure 8. Stress history (σ11) of the nodes at a) 50% of the burden and b) on the free surface (no discontinuity) 
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Figure 9. Stress history (σ22) of the nodes at a) the 50% of the burden and b) on the free surface (no discontinuity) 

 
Figures 10a,b, present the horizontal stress history of the nodes (a) at the middle of the burden and (b) on the 

free surface, for the case which includes a pre-existing discontinuity (Figure 2) for all three material models. It 
should be noted that the horizontal and vertical stress history on the nodes on the borehole (excitation profiles) are 
exactly the same as those presented in Figure 7 for the models without discontinuity. 

More specifically, Figure 10a presents the magnitude of the horizontal compressive stress wave that passes 
through the discontinuity. The stress magnitude is in the same order of magnitude as in the previous case but it is 
lower in value, which shows that for the specific discontinuity geometry, the crack has closed and has allowed 
enough energy through. Figure 10b presents the magnitude of the stress wave as it hits the free surface.  Again it can 
be observed that the stress values are in the same order of magnitude after passing through the discontinuity (but are 
diminished compared to the intact media)  
 

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0.00 0.01 0.02 0.03 0.04 0.05

Time (sec)

St
re

ss
 1

1 
(M

Pa
)

Ortho Y

Ortho X

Isotropic

  

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.00 0.01 0.02 0.03 0.04 0.05

Time (sec)

st
re

ss
 1

1 
(M

Pa
)

Ortho Y

Ortho X

Isotropic

 
(a)                                                                                           (b) 

 
Figure 10. Stress history (σ11) of the nodes at a) the 50% of the burden and b) on the free surface (with discontinuity) 
 

Similarly, Figure 11a presents the magnitude of the vertical stress wave that passes through the discontinuity, 
while Figure 11b presents the magnitude of the vertical stresses that are generated at free surface.  In this case, the 
presense of the discontinuity alters the shape of the profiles (no compression is evident at the center node, and no 
tension at the free surface node). Again, this can be interpreted in the sense that opposite stresses will be developed 
at a much later time and of less magnitude. 
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Figure 11. Stress history (σ22) of the nodes a) at the 50% of the burden and b) on the free surface (with discontinuity) 
 
4. CONCLUSIONS 
 

Three series of numerical models were created in order to simulate the dynamic phase of rock blasting under the 
influence of pre-existing discontinuities in isotropic and orthotropic media. Parameters include the duration of the 
dynamic phase and the profile of the initial pulse, the damping coefficients, the rock properties, the discontinuity 
properties, etc.  

According to the simulation results regarding longitudinal and transverse stresses generated as the pulse 
propagates to the free surface, structure characteristics (e.g. joints) affect the properties of wave propagation in the 
jointed media. This is manifested either in the form of a) reduction of stress magnitudes and b) delay of the 
development of tensile or compressive stresses due to symmetry or reflection. In addition, it is shown than a single 
discontinuity is not capable of inhibiting the generation of tensile stresses that result in rock fragmentation.   

Furthermore, additional work is needed to establish a discontinuity density and/or orientation at can adversely 
affect blasting fragmentation.  Also, given the multitude of unknowns in a real life blasting operation, a parametric 
analysis as well as a sensitivity analysis can be very useful in establishing the critical parameters that affect this 
event.  
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Abstract. We consider the use of initially rigid cohesive interface models in a dynamic finite element solution
of a fracture process. Our focus is on convergence of finite element solutions using rigid cohesive interfaces to
a continuum solution as the mesh spacing∆x (and therefore time step∆t) tends to zero. We present pinwheel
meshes, which possess the “isoperimetric property” that for any curveC in the computational domain, there is an
approximation toC using mesh-cell edges that tends toC including a correct representation of its length, as the
grid size tends to zero. We suggest that the isoperimetric property is a necessary condition for any possible spatial
convergence proof in cohesive zone modeling in the general case that the crack path is not known in advance.
Conversely we establish that if the pinwheel mesh is used, the discrete interface first activated in the finite element
model will converge (as the mesh size tends to zero) to the continuum initial crack. We carry out mesh refinement
experiments to check convergence of both nucleation and propagation. Our results indicate that the crack path
computed in the pinwheel mesh is more stable as the mesh is refined compared to other types of meshes.

1. RIGID COHESIVE MODELS

Cohesive zone modeling, which was originally proposed by Dugdale [3] and Barenblatt [1], and which was
generalized and put in modern form by Rice [13], postulates that the separation of bulk material is resisted by
cohesive forces governed by a constitutive model relating opening displacement to traction. Cohesive zone models
are well suited for finite element analysis. The usual approach combines a volume mesh of bulk elements (to model
the elastic or inelastic behavior of the undamaged material) with a network of cohesive elements that lie on some of
the interfaces between the bulk elements. It is particularly natural to apply cohesive modeling to problems where
defined interfaces exist. In such analyses, the fracture path is assumeda priori and can usually be justified by
the nature of the problem (e.g., physical weak interfaces indelamination problems) or by experience gained from
experiments (e.g., observations that fracture occurs frequently along inter-granular polycrystal boundaries). The
interface elements are placed along the fracture path.

In applications where the crack pattern is not known in advance, notably in dynamic applications in the absence
of bimaterial interfaces, interface elements cannot be prepositioned along the crack path. Instead, every edge of the
bulk elements must be considered as a potential fracture surface, and the crack propagation path must be resolved
as part of the solution of the governing equations. In this setting, an adaptive approach [2, 8] is often followed,
in which cohesive surfaces are inserted as needed. The surface therefore is inactive prior to insertion and upon
insertion is governed by the cohesive constitutive model. We call this type of model initially rigid or simply rigid
(also called extrinsic [6]).

The crack path in this finite element model is composed of activated interfaces all of which lie on boundaries
of cells in the initial mesh. A continuum crack path, on the other hand, has no such constraint. Allowing the
crack to grow along element interfaces only, introduces obvious mesh dependence, which, if not addressed, may
preclude convergence of the method as the mesh is refined. In what follows, the issue of the discrepancy between
the true crack path and the discretized crack path of bulk element interfaces is considered, and a solution is pro-
posed, namely, the pinwheel mesh. A theoretical convergence result is presented, and the paper concludes with a
computational experiment.
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2. REPRESENTING THE CRACK PATH IN THE MESH

To analyze the impact of mesh dependence, we must first consider the sense in which a discrete sequence of
crack representations can converge to a continuum path. Note that a sequencePi can converge to a pathP in
the Hausdorff sense, whereaslength(Pi) converges to a quantity strictly greater thanlength(P ). The Hausdorff
distance betweenPi andP is the maximum over all pointsa ∈ Pi of the distance from pointa to the closest point
b ∈ P .An example like this is not pathological; indeed, failure of length to converge is the typical behavior for any
family of structured meshes.

The length of the discrete versus continuum crack path is significant physically because the energy needed
to create a crack is proportional to its length. This leads usto conjecture that a necessary condition for spatial
convergence in cohesive modeling is that the sequence of meshesM1,M2, . . . must contain a sequence of paths
P1, P2, . . . such thatPi → P in the Hausdorff sense and such thatlength(Pi) → length(P ), whereP is the
continuum crack solution.

To provide some evidence for this conjecture, we carried outa computational simulation of the experiment used
by Kalthoff and Winkler [5] to study failure mode transition. In the setup shown in Fig. 1 a plate of high strength
steel with two edge notches was impacted by a steel projectile with speedvo. Two different modes of failure were
observed asvo was varied. At low impact speeds, the plate failed in a brittle manner with a crack propagating at an
angle of about70◦ counterclockwise with respect to the original notch. Ductile failure in the form of an adiabatic
shear band occurred at high impact speeds, with the shear band forming ahead of the notch at an angle of about
10◦ clockwise. We only simulated the brittle fracture mode.

vo

100

200 

50 

50 

Figure 1: Schematic of the double edge-cracked specimen. Dimensions in mm.

To investigate the effect of mesh angles on the computed crack path, a4mm× 8mm region ahead of the initial
crack tip was discretized by a structured mesh consisting ofrectangular cells, each subdivided into four triangles;
the rest of the domain was covered with a gradually coarsenedunstructured mesh to reduce computational time.
The corresponding cells’ height-to-width aspect ratios are 1.67, 1 and 0.6 respectively. A complete unstructured
mesh was also used for comparison. Fig. 2 shows the fracture paths obtained with the four meshes. It is obvious
that the results depend on the layout of the mesh. In particular, the100 × 120 mesh and the unstructured mesh
seem to best match the experiment, and these also are the meshes that have the best approximation to a70◦ crack
path.
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Figure 2: Fracture paths obtained with meshes having different aspect ratios. The dashed reference line is70◦

counterclockwise from the origin.
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3. PINWHEEL MESHES

As mentioned earlier, the goal of rigid cohesive modeling isoften to solve problems in which the crack path is
not known in advance but is an outcome of the simulation. Based on the results in the previous section, we conclude
that if spatial convergence is desired, the family of meshesmust represent every possible crack path both in the
Hausdorff sense and in the sense of length. There is one family of meshes known to have this property, namely,
pinwheel meshes in two dimensions. The pinwheel mesh is derived from Radin and Conway’s [11] pinwheel
tiling, which we now describe. The pinwheel tiling starts with a1 : 2 :

√
5 right triangleT0 and subdivides it into

five 1 : 2 :
√

5 subtriangles that are similar to each other. See Fig. 3. Thissubdivision process may be repeated
indefinitely, yielding a tiling of the original triangle with an arbitrary level of refinement. The distinction between
a tiling and a mesh is that the triangles in a tiling are not required to meet edge-to-edge and therefore may have
hanging nodes.

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

A 

B 
C 

D 

E 

θ 

Figure 3: The basic pinwheel subdivision of a1 : 2 :
√

5 right triangle.

Radin and Sadun [12] have proved that the pinwheel tiling hasthe following isoperimetric property. Let
M1,M2, . . . be the sequence of pinwheel tilings such thatMi repeats the construction in the previous para-
graph to theith level (and thus contains5i tiles). LetL be an arbitrary line segment in the initial triangleT0. Then
Mi contains a pathLi such that theLi’s converge toL in the Hausdorff and length sense. Their theorem extends
easily to arbitrary curves, since any curve can be approximated in the two senses by a path of line segments, and
then the line segments can be approximated by the mesh.

In recent work [4], we generalized the pinwheel tiling to arbitrary triangles (not only1 : 2 :
√

5) and showed
how to use this generalization to create a mesh generator that possesses the isoperimetric property for arbitrary
two-dimensional polygonal domains.

4. SPATIAL CONVERGENCE THEOREM

Rigid cohesive models defined on pinwheel meshes satisfy what we believe to be the necessary condition for
spatial convergence, so we can now consider whether spatialconvergence is indeed attained on these meshes. This
question is far from trivial, since the presence of a path that approximates the continuum solution does not imply
that a cohesive finite element model will find that path.

In this section we present a convergence result that is a firststep toward a complete theory of spatial conver-
gence. Our theorem covers only nucleation, i.e., the initial formation of a crack. Our setting for the continuum
problem is as follows. We consider a two-dimensional body whose motion is governed by linear elastodynamics.
We hypothesize that a crack nucleates in this body whenever the stress tensor first attains a principal value ofσc,
whereσc > 0 is called the critical stress. We assume that the crack nucleates at the point whereσc is first achieved.
We hypothesize that its orientation is orthogonal to the dominant principal axis of the stress tensor at that point.

Our finite element model is the usual discretization of linear elasticity on triangles. We assume initially rigid
cohesive interfaces at all element boundaries with an activation criterion that the normal traction on the interface
reachesσc.

We also hypothesize that the sequence of meshesM1,M2, . . . has grid size tending to zero and is quasi-
uninform. The sequence also has the following property. Forevery pointx in the computational domain, for every
angleθ, and for everyǫ > 0, there is anI > 0 such that every meshMI , MI+1, . . . contains an interface whose
distance fromx is at mostǫ and whose orientation is at mostǫ away fromθ. Our pinwheel family of meshes have
these properties. Note that these properties are differentfrom, but apparently closely related to, the isoperimetric
property.

Under all these assumptions plus a few more technical assumptions about smoothness, we prove that the first
interface to activate in the discrete model converges to thecontinuum nucleation point in three senses: the location
of the interface converges to the location of the continuum point, the orientation of the interface converges to the
continuum nucleation orientation, and the time of nucleation converges to the continuum time. Our proof [10]
is not difficult but is technical in the sense that it relies heavily on compactness arguments. Our theory does not
extend to crack propagation. It would extend to three dimensions if a three-dimensional analog of pinwheel meshes
could be constructed.

5. A MESH REFINEMENT STUDY
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The setup of the study is of the compression compact specimen(CCS) impact-experiment used by Rittel et. el.
[14, 7]. The schematic of the experiment is shown in Figure 4.The PMMA specimen is fractured by impacting
with a Hopkinson bar, and the load at the bar-specimen interface can be measured and subsequently used for the
boundary condition of our simulations. We investigate, through a series of simulations, the effects of different
mesh layouts on the crack path. This setup is more suitable for a convergence study than the Kalthoff-Winkler
experiment because the crack path is not a straight line segment, and therefore there is no structured mesh that
exactly represents it.

striker incident bar CCS

interface

gauge

Figure 4: Schematic of compression compact specimen impact-experiment. The dimensions of the specimen are
51mm high 46mm wide, 11mm deep. The notch at the bottom is 12 mmlong, and the U-shaped notch is 15mm
wide and 27.5mm high.

Three mesh types—structured, unstructured, and pinwheel—are considered with several different levels of
refinement repeated for each. Since this problem has no knownanalytic solution, a comparison of crack paths from
different levels of refinement of the mesh seems to be the bestapproach for checking convergence.

The meshes in the crack-path zone are generated by mapping a mesh of a rectangle (either structured, unstruc-
tured, or pinwheel) via a curvilinear coordinate transformation. The three families of meshes of the crack-path
zone are shown in Fig. 5. In each mesh family, there is a secondparameter (besides degree of refinement) that
can be varied, namely, the aspect ratio of the rectangle usedas the domain of the coordinate transformation. In
order to study mesh dependence, we consider variation of this second parameter. If a family of meshes leads to
a convergent solution, then one expects that variation in this second parameter should matter less and less as the
mesh is refined. On the other hand, if the solutions exhibit mesh-dependence (nonconvergence), then varying this
parameter will continue to affect the solution to the same degree as the mesh is refined.

(a) (b) (c)

Figure 5: Diagrams of the crack-path zone meshes:(a) pinwheel,(b) structured,(c) unstructured. The portion
of the mesh shown corresponds to the portion of the domain starting at the tip of the slit and connecting to the
large U-shaped hole in the CCS specimen. These meshes were generated by mapping a pinwheel, structured and
unstructured mesh of a rectangular region via a curvilinearcoordinate transformation.

The cohesive model is the initially rigid model of [15] withσc = 105MPa,Gc = .0048MPa-m,β = 1. This
model is time continuous, a property that leads to better behaved numerical solutions [9]. In Fig. 6, we observe that
the crack paths in the fine mesh appear to be closer to each other than in the coarse mesh as desired. In contrast,
the crack paths in the structured mesh shown in Fig. 7 and in Fig. 8 do not appear to be any closer in the fine mesh
than they were in the coarse mesh, indicating a lack of spatial convergence.
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Figure 6: Crack path results for the pinwheel mesh:(a) coarse mesh and(b) fine mesh. The various paths illustrated
in each plot correspond to different values for the aspect-ratio parameter of the mesh described in the text. The fine
mesh shows less sensitivity to this parameter in the crack path than the coarse mesh.
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Figure 7: Crack path results for the structured mesh:(a) coarse mesh and(b) fine mesh. The various paths
illustrated in each plot correspond to different values forthe aspect-ratio parameter of the mesh described in the
text. The coarse and fine meshes shows equal sensitivity to this parameter particularly in the lower part of the
crack, indicating lack of convergence.
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Figure 8: Crack path results for the unstructured mesh:(a) coarse mesh and(b) fine mesh. The various paths
illustrated in each plot correspond to different values forthe aspect-ratio parameter of the mesh described in the
text. The coarse and fine meshes shows equal sensitivity to this parameter indicating lack of convergence. In the
fine mesh, one of the choices of the parameter caused activation of many interfaces in a widespread zone of the
material; this activation pattern is illustrated by the cloud of dots in(b).

Since our theoretical result applies only to the first activeinterface of the crack, we have also provided close-up
pictures of the initial portion of the crack path for each of the three families of meshes. These zoomed-in views
are shown in Figs. 9, 10, and 11. The initial portion of the crack shows convergent behavior for both the pinwheel
and structured meshes. The latter result is not surprising since the initial part of the crack path in this case follows
a mapped vertical grid line that is preserved in all the meshes. Therefore, the appearance of convergence in the
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structured case is probably misleading. The unstructured figures seem to show no convergence of the initial portion
of the path.

−12 −10 −8 −6 −4 −2 0 2 4

x 10
−4

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

x 10
−3 Pinwheel mesh(coarse)

3x2
4x2
5x2
3x4

−10 −8 −6 −4 −2 0 2

x 10
−4

−14

−12

−10

−8

−6

−4

x 10
−4 Pinwheel mesh

3x2
4x2
5x2

(a) (b)

Figure 9: Close-up view of crack path results for the pinwheel mesh: (a) coarse mesh and(b) fine mesh. The
various paths illustrated in each plot correspond to different values for the aspect-ratio parameter of the mesh
described in the text. The fine mesh shows less sensitivity tothis parameter in the crack path than the coarse mesh.
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Figure 10: Close-up view of crack path results for the structured mesh:(a) coarse mesh and(b) fine mesh. The
various paths illustrated in each plot correspond to different values for the aspect-ratio parameter of the mesh
described in the text. These meshes show complete agreementof the initial portion of the crack path, but this
agreement is an artifact of the mesh generation procedure: the vertical gridlines in the structured mesh of the
rectangle are preserved in all meshes shown.
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Figure 11: Close-up view of crack path results for the unstructured mesh:(a) coarse mesh and(b) fine mesh.
The various paths illustrated in each plot correspond to different values for the aspect-ratio parameter of the mesh
described in the text. The coarse and fine meshes shows equal sensitivity to this parameter indicating lack of
convergence. In the fine mesh, one of the choices of the parameter caused activation of many interfaces in a
widespread zone of the material; this activation pattern isillustrated by the cloud of dots in(b).
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Abstract. In this paper, numerical implementation and algorithmic aspects of a new multi-dimensional 
anisotropic hyperelastic-viscoplastic damage model, introduced by the authors, are presented. Anisotropy has 
been introduced into the model through a fabric tensor formulation. In the beginning, the governing equations of 
the model are developed. The paper then concentrates on the numerical and computational aspects of the 
complete anisotropic model. A robust integration algorithm for the nonlinear differential equations is described; 
also the algorithmic (consistent) tangent moduli are derived. The model is implemented into the finite element 
environment ABAQUS to study boundary value problems. The implementation is done through user subroutines 
UHYPER and UMAT. Triaxial and shear tests at constant height are studied as boundary value problems and 
model’s predictions are compared to these experiments. Finally, a section of a pavement is studied as a 
boundary value problem to assess the capability of the model to predict accumulation of permanent 
deformations in the pavement. 
 
 
1 INTRODUCTION 

Rutting, fatigue cracking and thermal cracking are the three most prominent distress mechanisms in asphalt 
concrete. In an industry wide survey, conducted by researchers at the University of Maryland, rutting was rated 
the most significant distress type regarding damage in pavements (Witczak[1], Christensen[2], Witczak[3]). A 
thorough understanding of the rutting phenomenon is required in order to improve pavement design and 
performance. Rutting is defined in ASTM Standard E 867 as “a contiguous longitudinal depression deviating 
from a surface plane defined by transverse cross slope and longitudinal profile”. The longitudinal depressions 
(sometimes referred to as “ruts”) are accompanied by upheavals to the side. In the asphalt – concrete layer, the 
rutting is caused by a combination of densification (compaction) and shear flow. The initial rut is caused by 
densification of the pavement under the path of the wheel. However, the subsequent rut is a result of shear flow 
of the mix. In properly compacted pavements, it has been found that shear flow in asphalt – concrete layer is the 
primary rutting mechanism, see e.g. Eisenmann and Hilmer[4]. A great need for a constitutive model for asphalt – 
concrete exists in order to analyze and predict the rutting caused by this layer of the pavement. In this paper, a 
multi-dimensional constitutive model to describe the reversible and rate dependent permanent deformations in 
asphalt concrete is developed and also the numerical implementation of the model is presented.  

2 CONSTITUTIVE MODEL 

 The proposed constitutive model is a hyperelastic viscoplastic model. Damage is also introduced into the 
model through effective stress theories as shown later in the paper. Asphalt mix exhibits volumetric/deviatoric 
coupling when subjected to shear loading. This coupling behavior is modeled using elasticity since the evolution 
of normal stresses is apparent from the very first cycles, see e.g. Sousa[5]. A second order hyperelastic model is 
chosen over first order linear elastic model as first order model would not capture the characteristic 
volumetric/deviatoric coupling in asphalt concrete. The viscoplastic component describes the rate dependent 
behavior and is based on Perzyna’s theory of viscoplasticity. 
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2.1 Hyperelastic model 
 

Materials whose elastic response function is restricted by the existence of strain energy functions are called 
hyperelastic materials. Eq. (1) describes a general hyperelastic constitutive law, 

ij
ij

Wσ
ε

∂
=

∂
,       (1) 

where W is the elastic strain energy function and is a function of strain given as follows: 
 

2 3
0 1 1 2 1 3 1 4 1 2 5 2 6 3W b b I b I b I b I I b I b I= + + + + + + ,   (2) 

 

where b0, b1, b2, b3, b4, b5, and b6 are material constants and 1 2 3, ,I I I  are the strain invariants. The model should 

be able to represent the material at its natural state. In other words, at zero strain state, the stress is equal to zero. 
This condition requires that the parameters b0 and b1 be equal to zero. From Eqs. (1) and (2), the stress tensor is 
given as  
 

31 2

1 2 3
ij

ij ij ij

II IW W W
I I I

σ
ε ε ε

∂∂ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂
    (3) 

 

                                                          or ( ) ( )2
2 1 3 1 4 1 5 4 1 62 3ij ij ij im mjb I b I b I b b I bσ δ ε ε ε= + + + + + .       (4) 

 
Eq. (4) represents a second order hyperelastic stress strain relation. To determine the material parameters in 

the second order hyperelastic model, the tests conducted by Sousa et al.[6] at the University of California, 
Berkeley are used. The following three experiments:  simple shear test, volumetric test and uniaxial strain 
compression test were conducted in the elastic range. In other words, the experiments were conducted at low 
strain levels to minimize the permanent strain effects and at low temperature (4oC) to minimize the viscous 
effects. The model was made to fit simultaneously to all three experimental data obtained from the above 
mentioned experiments and parameters were evaluated based on a nonlinear optimization scheme. The objective 
function for the optimization procedure is the least square function constructed using the model predictions and 
experimental results. The optimization procedure is carried out using the optimization toolbox of the 
mathematical software MATLAB®, developed by Mathworks Inc. The model fit to experimental data is shown 
below in Figures 1, 2 and 3.  With the values of parameters obtained from the optimization procedure the 
model’s predictions of dilatancy are compared to experimental results. Figure 4 shows model’s predictions of the 
axial force developed during the simple shear test. As the figure shows the model has the ability to predict 
dilatancy.    

 

 
Figure 1. Shear Stress vs. Shear Strain. 

 
Figure 2. Volumetric Stress vs. Volumetric Strain. 
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Figure 3. Axial Stress vs. Axial Strain. 
 

Figure 4. Axial Stress vs. Shear Strain. 
 
 
2.2 Viscoplastic model 

In this section, a viscoplastic model based on loading surface is proposed to describe the time dependent 
permanent deformations in asphalt concrete. The model is then appropriately modified to account for damage, in 
order to characterize the softening behavior of asphalt concrete, as well as for anisotropy. In a recent work by 
Bahuguna et al.[7] the evolution of permanent strains of asphalt concrete has been successfully modeled, but 
without taking into account rate effects. The basic aspects of the viscoplastic model are given below. The 
primary requirements in such models are the loading surface, the hardening law and the flow rule. The loading 
surface considered for the viscoplastic model is similar to the Vermeer type and is given by Eq. (5) 

 

1 2 3f I I I Hα κ= + − ,     (5) 
 

where H is the hardening parameter, κ is the isotropic hardening variable and 1 2,I I  and 3I are the invariants of 
the stress tensor. Flow rule, which represents the evolution of plastic strain in a deformation process is given by  

 

( )
1

m
vp

l

f
xη κ

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
ε ν ,     (6) 

 
where ν is the normal to the viscoplastic potential, η  is the temperature dependent viscosity parameter, κ is the 
hardening variable and x, l, and m are parameters. The normal to the viscoplastic potential, denoted by Ω , is 
given by  

 
                                                                      ∂Ω

=
∂

ν
σ

.      (7)

  
In an associative flow rule the viscoplastic potential Ω  is same as the loading function and the plastic flow 

is normal to the loading surface. Associative flow rule predicts excessive plastic dilatancy and to avoid this, a 
non-associative flow rule is assumed. The viscoplastic potential chosen here is of Drucker-Prager form and it is 
expressed as  

 
                                                                    

2 1J IγΩ = + ,      (8) 
 

where 2J is the second invariant of the deviatoric stress tensor and γ is a material parameter. History is taken 
into account through hardening. The evolution equation of the hardening variable is given by  
 

( )
1

m

l

f
x

κ
η κ

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠

.     (9) 

 
The anisotropy which is due to the preferred orientation of aggregate particles, is included in the model through 
the so called fabric tensor F, which was first introduced by Oda and Nakayama[8]. The three dimensional fabric 
tensor is written in terms of a vector magnitude ∆  as  
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( ) ( )

( ) ( )
( ) ( )

1 3 0 0
0 1 3 0 .
0 0 1 3

− ∆ + ∆⎛ ⎞
⎜ ⎟= + ∆ + ∆⎜ ⎟
⎜ ⎟+ ∆ + ∆⎝ ⎠

F
   (10) 

 
The vector magnitude ∆  is an index measure to show the intensity of the preferred orientation of particles, it 

was first introduced by Curray[9] in 1956 and is defined as  
 

                                      ( ) ( )
1
22 2

1 1

1 cos 2 sin 2
M M

k k

k kM
θ θ

= =

⎡ ⎤
∆ = +⎢ ⎥⎣ ⎦

∑ ∑ ,                                (11) 

 

where kθ  is the inclination angle of a unit vector km  corresponding to a thk particle on a two dimensional 
section of the material and ranges between 

2
π−  and 

2
π  and M is total number of measurements. Anisotropy is 

incorporated into the model by appropriately modifying the loading function by introducing the fabric tensor in 
it.  First, the stress invariants are modified as follows: 
 

( ) ( )1 1 2 1 2
T

ii ij ijI a a F a tr a trσ σ= + = + Fσ σ    (11) 

( ) ( )( )2 6 7 6 72 4 2 4
TT T
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3 1 2

3
1 2 ,

lj nl jn il ij nl jn

TT T

I c c F

c tr c tr

σ σ σ σ σ σ= +

= + Fσ σ σ σ
     (13) 

 
where the operator tr denotes the trace of a tensor. Accordingly, the modified loading function is given by Eq. 
(15). 

1 2 3f I I I Hkα= + − .      (14) 
 
Damage is included in the model to capture the softening behavior exhibited by asphalt mixes. Effective stress 
theory, proposed by Kachanov, forms the basis for the damage model developed in this paper. The damage 
variable is a scalar denoted by ω and defined as   

0

; 0 1A
A

ω ω=   ≤ ≤ ,      (15) 

where A is the damaged area and 0A  is the undamaged original area. The damage variable is a positive, 

monotonically increasing function i.e. 0ω > ; in other words, the damage is irreversible. Effective stress given 
by aσ  is defined as 

 

1a
σσ

ω
=

−
,       (16) 

 
where σ  is the nominal stress. Following this principle, damage is incorporated in the model and stress 
invariants are modified accordingly as 

1
1 1
e II

ω
=

−
,

( )
2

2 21
e II

ω
=

−
,

( )
3

3 31
e II

ω
=

−
 .   (17) 

 
Then the updated loading surface is given by  

 

1 2 3
e e e ef I I I Hkα= + − .     (18) 

 
The damage variable is assumed to be a function of total plastic strain as follows, 

 
3

1 2 ( )dpd dω ε= + ,      (19) 
 

where 1 2 3, ,d d d  are parameters. 
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3 NUMERICAL IMPLEMENTATION OF THE MODEL 

The complete model can be thought of as a model in series and accordingly, the total strain is additively 
decomposed into elastic and viscoplastic parts, i.e.  

  e vp= +ε ε ε .    
 
This decomposition is valid since the strains involved are small. 

Let [ ]0,T R⊂ be the time interval of interest. At time [ ]0,nt T∈  it is assumed that the total strain and 

viscoplastic strain fields, as well as internal variables are known, that is  
:n total strain tensor   ε  

:   vp

n viscoplastic strain tensor ε  

:  nκ isotropic hardening variable  

are given at time nt . The elastic strain is then obtained by Eq. (21) as 
 

e p
n n n= −ε ε ε ,      (20) 

 
and the stress tensor is obtained using the elastic stress strain relationships,  

 
( )e

e

W∂
=

∂

ε
σ

ε
,                  (21) 

 
where W is the strain energy function introduced for the hyperelastic model. The stress components can be 
calculated using Eq. (21). 

Let 1
i
n+∆u be the incremental displacement field, which is assumed to be resulting from the ith iteration of the 

global equilibrium equations at time step 1nt + . The basic problem is to update the field variables to 

[ ]1 0,nt T+ ∈  in a manner consistent with the elasto-viscoplastic constitutive equations developed previously. 

The problem is strain driven in the sense that the total strain tensor is updated according to   
 

( )1
s i

n n n+1+ = + ∇ ∆uε ε .               (22) 
 

where ( )s∇ • denotes the symmetric gradient operator.  The evolution equations for the continuum problem are 

transformed into discrete, algebraic equations by applying an implicit backward –Euler difference scheme, 
which is first order accurate and unconditionally stable. Applying the backward-Euler difference scheme and 
using initial conditions, a system of coupled nonlinear equations is obtained, which is given below. 
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η κ
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⎛ ⎞
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⎜ ⎟ +⎝ ⎠

,    (24) 

 

where t∆ is the time step increment, i.e. 1n nt t t+∆ = − . These equations are supplemented by Eq. (21) and Eq. 
(22). This system of nonlinear coupled equations is solved under the general framework of predictor-corrector 
algorithm. The predictor phase consists of an elastic problem and the internal variables are assumed to be frozen. 
In the corrector phase, the internal variables evolve, and the total plastic strain and hardening parameter are 
updated to time step 1nt + . This is obtained as a solution of the evolution equations Eq. (23) and Eq. (24) by a 
Newton scheme (in multi dimension).  See, Panneerselvam[10] for more details on the numerical implementation 
of the model. To complete the global procedure, the algorithmic tangent moduli, which are defined as the 
derivative of the stress tensor with respect to (total) strain tensor at time step 1nt +  after convergence at the local 
level has been obtained, are calculated. See, e.g. Simo and Taylor[11], Simo and Hughes[12] and Panoskaltsis and 
Lubliner[13]. The algorithmic tangent moduli for the complete model are derived as follows: 
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 ,     (25) 

 
where D is the Hessian matrix obtained from the hyperelastic model. Therefore, the algorithmic tangent moduli  
can be written as:   
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The second term in the expression for Calg is determined from  Eqs. (24) and (25) as follows.     
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3.1 Results from finite element analysis 

The numerical integration algorithm described so far can be implemented into a finite element environment 
in order to study boundary value problems. In our case the combined hyperelastic-viscoplastic-damage 
anisotropic model is implemented into the finite element program ABAQUS®, which is a commercial finite 
element code developed and marketed by ABAQUS Inc. The implementation is done through user subroutine 
modules UHYPER and UMAT. The repeated simple shear tests under constant height (RSST-CH) and triaxial 
experiments are modeled as boundary value problems and the results obtained from finite element analysis are 
compared to experimental results. In the triaxial experiments, performed by Tashman et al.[14] at Texas A&M 
University, cylindrical specimens of 4 in diameter and 6 in height are subjected to uniaxial stresses at different 
rates and different confining pressures. The specimens were loaded at three rates, namely at 46.42%/min, 
8.03%/min, and 1.6%/min and at two confining pressures of 0 psi and 15 psi. The base of the cylinder is fixed 
and the top of the cylinder has displacement boundary conditions in the axial direction. The uniaxial 
compression tests are performed using displacement control in the axial direction. The results from the finite 
element analysis are compared to the experimental data and this is shown in Figure 5 and Figure 6 for 0 and 15 
psi confining pressures respectively. 

 
Figure 5. Axial stress vs. axial viscoplastic strain.     
Comparison of finite element results to experi- 
mental data at 0 psi confining pressure.                    

 
Figure 6. Axial stress vs. axial viscoplastic strain.    

   Comparison of finite element results to experi- 
        mental data at 15 psi confining pressure.                   

 
  

 
Next, the repeated simple shear test at constant height (RSST-CH) developed by Sousa et al. at the 

University of California, Berkeley, see e.g Sousa[6], is modeled and solved as a boundary value problem. In the 
RSST-CH experiment a cylindrical specimen of asphalt concrete is subjected to repeated shear loading, while 
the height of the specimen is kept constant. A haversine load of 0.05 s loading and 0.05 s unloading time is 
applied on a 0.2 in thick steel plate, which is glued to the cylindrical specimen of asphalt concrete of dimensions 
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6 in diameter and 2 in height. The asphalt specimen is subjected to cyclic shear loading at two different loading 
amplitudes, namely 8 psi and 10 psi. A striking characteristic of these experiments is that the accumulation of 
permanent strain with increasing number of cycles is a straight line on a log-log scale. The evolution of 
permanent shear strain with number of cycles predicted by the model is compared with the experimental data for 
the two loading amplitudes and the results are shown in Figure 7 in a log-log plot.   

 
Figure 7. Evolution of permanent shear strain with number of cycles. 

 
Next, a section of a pavement, subjected to repeated tire pressure loading, is studied as a boundary value 

problem under plane strain conditions.  This is a two dimensional model in which the two wheel pressure loads 
have been simulated as continuous loading strips, consistent with the plane strain assumption. The boundary 
conditions used in the model are consistent with physical conditions of the pavement and also the symmetry in 
the road section has been used effectively; this results in more efficient computational time. The asphalt concrete 
layer is taken to be 15 in deep and rests on a 40 in deep subgrade. The bottom edge and also the sides of the 
subgrade are fixed. The width of the half pavement is 80 in and the width of the subgrade is 160 in. The outer 
edge of asphalt pavement is assumed to be unsupported and is free to deform. Traffic load is applied as two tire 
pressure loads of magnitude 100 psi; the wheel loads are 10 in wide and they have a distance equal to 12 in. The 
plane strain conditions, under which the complete model of the pavement section is studied, is a good 
assumption for a section of a highway where the traffic does not stop or start. A more complicated three 
dimensional pavement model could be used to represent pavement sections such as intersections, where traffic 
accelerates, decelerates or stands still. The asphalt concrete pavement is modeled using the anisotropic 
hyperelastic-viscoplastic-damage model developed in this work. The subgrade in reality is a granular material 
and a nonlinear material model would best represent its behavior. However, for simplicity and to keep the 
computational time down, the subgrade is modeled as a linear elastic material with elasticity modulus of 20000 
psi and Poisson’s ratio of 0.3; see Sousa et al[6]. Figure 8 shows the deformed shape of the pavement at the end 
of 15 cycles, magnified 100 times, and also the stress distribution in the pavement section. The figure shows 
permanently deformed shape and also shows the upheavals to the sides due to shear flow and dilation and is 
similar to those observed in rutted pavement sections. This simulation of rutting pattern illustrates the capability 
of the model to study boundary value problems representing pavement sections as well as model’s potential for 
rational analysis and design of pavements. 
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Figure 8. Stress distribution in the deformed pavement. 

4 CONCLUSIONS 

A new multi-dimensional anisotropic hyperelastic-viscoplastic-damage model has been developed in order to 
describe the permanent deformations and coupling behavior of asphalt concrete. The reversible component of 
the asphalt concrete response is modeled by a second order hyperelastic model, which captures the coupling 
behavior. Predictions of the hyperelastic model show good agreement with experimental results. The viscoplastic 
component depicts the rate-dependent behavior of the material and is based on Perzyna’s theory of 
viscoplasticity. The constitutive model developed in this work also takes into account the anisotropy exhibited 
by the material and in addition it can describe damage. The model is implemented into the finite element 
environment ABAQUS® to study boundary value problems. The model predictions show good agreement with 
triaxial and RSST-CH experimental results modeled as boundary value problems. In addition, the model is 
capable of representing the pavement’s rutting behavior. 
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Abstract. The existence of frequency-dependent fundamental solutions for anisotropic, inhomogeneous continua 
under plane strain conditions is a necessary pre-requisite for studying wave motion in geological formations 
with both depth and direction-dependent material parameters. The path followed herein for recovering these 
solutions is to (a) use a simple algebraic transformation for the displacement vector so as to bring about a 
governing partial differential equation of motion with constant coefficients, albeit at the cost of introducing a 
series of constraints on the types of material profiles; (b) carefully examine the constraints, which reveals a 
rather rich range of possible variations of the elastic modulii in both vertical and lateral directions; and (c) use 
the Radon transformation for handling material anisotropy. Depending on the type of constraints that have been 
introduced, two basic classes of materials are identified, namely ‘Class A’, where further restrictions are placed 
on the elasticity tensor and ‘Class B’, where further restrictions are placed on the material profile. The present 
methodology is quite general and the homogeneous isotropic medium can be recovered as a special case. 
 
1 INTRODUCTION 

The ability to model anisotropic, inhomogeneous materials is of paramount importance in many engineering 
fields such as acoustics, fluid and solid mechanics, electromagnetism, geophysics and seismology[1]. In general, 
there has been a surge of work in the last two decades regarding numerical work on elastodynamics of various 
types of man-made and naturally occurring media. A review of the literature can be found in some of the earlier 
papers by the present authors[2, 3, 4]. Specifically, there is relatively little work dealing with the combined 
inhomogeneous-anisotropic material. We mention here Ref. [5], where the dual-reciprocity BEM for elastostatic 
non-homogeneous problems was employed. Also, Refs. [6,7], investigated mode I crack problems in an 
inhomogeneous orthotropic medium, with the former work assuming static and the latter transient conditions. 
Finally, fracture of a plane FGM orthotropic strip containing an edge crack, as well as an internal crack 
perpendicular to the boundaries, was studied in Ref. [8]. To the author’s best knowledge, in-plane elastic wave 
propagation problems involving inhomogeneous and anisotropic materials have not been treated so far. 

The mathematical background behind wave motion in non-homogeneous media involves solution of partial 
differential equations with variable coefficients. In general, these equations do not possess explicit and easy to 
calculate fundamental solutions (or Green’s functions), which prevents reduction of the physical boundary-value 
problem (BVP) to a system of boundary-integral equations (BIE) that is processed by standard numerical 
quadrature techniques. The key role played by the fundamental solution in a BEM formulation is to reduce a 
given BVP into a system of BIE through use of reciprocal theorems[9]. It is for this reason that the recovery of 
fundamental solutions in analytical form, or at least in an easy to calculate numerical form, is so important. 

Thus, the aim of this work is to derive fundamental solutions for a point force in a domain whose material 
properties are dependent on both direction and position. Briefly, the main points are: (a) An algebraic 
transformation is applied to the displacement vector and the governing equations of motion now posses constant 
coefficients; (b) the Radon transformation reduces the system of coupled partial differential equations to a 
system of coupled ordinary differential equations; and (c) subsequent application of the inverse Radon transform 
yields the displacement fundamental solution in terms of an integral over the unit circle. 

2 PROBLEM STATEMENT 

Consider a Cartesian coordinate system 1 2Ox x  in 2R  and let Ω  be an inhomogeneous anisotropic domain. This 
domain has mass density ( )xρ  and its mechanical behavior is defined through elastic tensor ( )i j k lC x , which is 
symmetric and positive definite: 
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 ijkl jikl klijC C C= =  (1) 

Furthermore, 0i j k l i j k lC g g >  for every nonzero, real and symmetric tensor i jg . Assume now that all material 
parameters vary in the same fashion with coordinate 1 2( , )x x x= as follows 

 0( ) ( )i j k l i j k lC x C h x=  , 0( ) ( )x h xρ ρ=  (2) 

where  
 2 ( )h C∈ Ω  , 0( ) 0 ,h x h x≥ > ∈Ω . (3) 

The governing equations of motion for this domain, written in terms of displacement vector iu , in the 
absence of body forces and under time-harmonic conditions, are as follows:  
 ( ) ( ) ( )2

, 0i j j ix x u xσ ω ρ ω ω+ =, ,  (4) 

The stress tensor is defined here as ,( , ) ( ) ( , )i j i j k l k lx C x u xσ ω ω= , while ,i j jσ  are its spatial derivatives and ω  
is the frequency of vibration. 

If eqn (4) is to be treated by BIE formulations, then a special BVP for a point load needs to be solved first in 
order to obtain a fundamental solution. These types of solutions, which besides being useful on their own right, 
form the basic ingredient (i.e., the kernel functions) of BEM formulations that have been most successful in 
dealing with problems involving semi-infinite domains. In general, if the coefficients of eqn (4), which is of the 
elliptic type, are analytical functions, then a fundamental solution exists. The corresponding BVP that yields the 
fundamental displacement tensor solution denoted by (*) is therefore  
 * 2 *

, ( )j k i i k j k ju e xσ ρω δ ξ+ = − −  (5) 

where * *
,j k i j k p q i p qC uσ = , δ  is Dirac’s generalized function and k je  is the unit tensor. Our aim is to identify a 

class of functions h  and a range of values for constants 0
0, ,i j k lC ρ ω  for which fundamental solutions * *{ }k ju u=  

can be derived in closed form, suitable for numerical implementation within the BEM. 

3. TRANSFORMATION OF THE GOVERNING EQUATIONS 

We will employ the algebraic transformation used for isotropic materials in Ref. [10]. Specifically, eqn (4) 
transforms into an equation with constant coefficients, under some additional restrictions besides those given in 
eqn (3) for function ( )h x . The key step is to introduce a smooth transformation of iu  in Ω  as 

 1/ 2 ( )i iu h x U−=  (6) 

so that the homogeneous part of eqn (4) can be written in terms of the transformed displacement iU  as 

 ( )1/ 2 1/ 2 1/ 2 1/ 2 2
, , , , , ,( ) ( ) 0i j k l k j l j k l l k j k j l iC x U h h U h U U h x Uρ ω−⎡ ⎤+ − − + =⎢ ⎦⎣

 (7) 

By reducing common factor ( )h x  in both ( )i j k lC x and ( )xρ , and using eqs (2)-(3), we obtain 

 ( )0 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 2
, , , , , , 0 0i j k l k j l j k l l k j jl k iC U h h U h U h h U Uρ ω− −⎡ ⎤+ − − + =⎣ ⎦  (8) 

We will now specify additional constraints on h  and 0
i j k lC  under which eqn (8) has constant coefficients. 

Suppose there exist constants ,i k ip q  such that  

 0 1/ 2 1/ 2
,i j k l j l i kC h p h=   and  ( )0 0 1/ 2 1/ 2

1 2 2 1 ,i k i k k iC C h q h− =  (9) 

Then, expression ( )0 1/ 2 1/ 2 2
, 0i j k l j l k iC h h U Uρ ω−− +  has constant coefficients with respect to iU  if 

(a) 0 1/ 2 1/ 2
,i j k l jl i kC h h p− = . 

Also note that ( )0 1/ 2 1/ 2 1/ 2
, , , ,i j k l j k l l k jC h h U h U− − = ( )0 1/ 2 1/ 2 1/ 2

1 2 ,1 ,2 ,2 ,1i k k kC h h U h U− − − ( )0 1/ 2 1/ 2 1/ 2
2 1 ,2 ,1 ,1 ,2i k k kC h h U h U− − =  

( )0 1/ 2
i k kC h h U−= ∇ ×∇ ,where 0 0 0

1 2 2 1i k i k i kC C C= −  and ( )×  denotes the vector product. This last expression has 
constant coefficients with respect to the gradient of transformed displacement kU∇  if either 
(b) 0 0i kC = , without additional constraints on h , or 

(c) 1/ 2 1/ 2h h d− ∇ = , where d  is a constant vector, without additional constraints on 0
i j k lC . 

In sum, eqn (9) is fulfilled either under combinations (a)&(b) or (a)&(c), in which case eqn (8) becomes a partial 
differential equation with constant coefficients. 
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We note here that combination (a)&(b) with 0i kp =  was used in Ref. [11] for the elastostatic case. For the 
isotropic case, the first condition translates as 0 0λ µ=  for the Lame constants. Furthermore, condition (b) 
simply imposes additional symmetry on the elastic tensor, while condition (c) is essentially a restriction on the 
class of available functions h  and on the domain Ω . For the orthotropic case and with the principal elastic axes 
parallel to the coordinate axes, 16 26 0C C= =  and the independent material constants are now four: 

11 12 22 66, , ,C C C C . 
 
3.1 Material Profiles 
Combination (a)&(b), labeled as ‘Class A’, yields the following inhomogeneous material profiles: 
(1) 2( , )( ) a x bh x e += , where 1 1 2 2,a x a x a x= +  is the scalar product, in 2RΩ =  

(2) 2( ) sinh ( , )h x a x b= + , in the half-plane { }, , 0x a x bδ δΩ = + ≥ >  

(3) 2( ) cosh ( , )h x a x b= + , in 2RΩ =  

(4) 2( ) sin ( , )h x a x b= + , in the strip { }
1 2, 1 2,0 ,x a x bδ δ δ δ πΩ = < ≤ + ≤ <  

(5) 2( ) cos ( , )h x a x b= + , in the strip 
1 2, 1 2, ,

2 2
x a x bδ δ

π πδ δ⎧ ⎫Ω = − < ≤ + ≤ <⎨ ⎬
⎩ ⎭

 

(6) 2( ) ( , )h x a x b= +  , in the half-plane { }, , 0x a x bδ δΩ = + ≥ >  

For combination (a)&(c), labeled ‘Class B’, the only possible example is again (1) 2( , )( ) a x bh x e +=  in 2RΩ = . 
 
3.2 Transformed Equations 
By algebraically transforming eqn (5) using eqn (6) and conditions (9), we recover the following governing 
equation in lieu of eqn (8): 
 1/ 2 2 *( ) ( ) ( ) ( , ), ( , )ik ik ik ks ish x M N U x xδ δ ξ ξ⎡ ⎤∂ + ∂ + Γ = − ∈Ω×Ω⎣ ⎦  (10) 

where 2 0( )i k i j k l j lM C∂ = ∂ ∂ , 0
1 2 2 1( ) ( )i k i kN C q q∂ = ∂ − ∂  are differential operators and 2

0i k i k i kpδ ρ ωΓ = − =  
2

0 2 ( )I P qρ ω= − . Dividing eqn (10) by 1/ 2 ( )h x  and keeping in mind that 1/ 2 1/ 2( ) ( , ) ( ) ( , )h x x h xδ ξ ξ δ ξ− −= , 
since the support of ( , )xδ ξ  is on { }x ξ= , we obtain 

 2 * 1/ 2( ) ( ) ( ) ( , ), ( , )ik ik ik ks isM N U h x xδ ξ δ ξ ξ−⎡ ⎤∂ + ∂ + Γ = − ∈Ω×Ω⎣ ⎦  (11) 

The above is a system of two coupled linear partial differential equations of second order with constant 
coefficients, whose solution will be recovered by use of the Radon transformation. 

4 RADON TRANSFORM 

The Radon transform is a powered tool for deriving fundamental solutions of elastodynamics. As examples, see 
Ref. [12] for inclusion problems in 3D elastostatics, Ref. [13] for a steadily traveling point load on the surface of 
the half-space, and Ref. [14] for anisotropic homogeneous media. For completeness, we define the Radon 
transform[15], which is defined in 2R  for f ∈ℑ , the set of rapidly decreasing C∞  functions, as follows: 

( ) ( )
,

ˆ ( , ) ( ) ( ) ,
x m s

R f f s m f x dS f x s x m dxδ
=

= = = −∫ ∫ , 1,s R∈  1m S∈  is the direct transform and  

1 * *
2 ,

1

1ˆ ˆ ˆ( ) ( ( , )) ( ( )) ( ) ( )( , )
4 s m x

m

f x R f s m R K f R f K f s m dm
π

−

=
=

= = = = ∫  is the inverse transform, where 

ˆ ( , )ˆ( )
f m

K f d
s

σ σ
σ

σ

∞

−∞

∂
=

−∫ . The transform is linear, and if ( )L ∂  is a homogeneous differential operator of degree 

k  with constant coefficients, then ˆ( ( ) ( )) ( ) ( , )
k

kL f x L m f s m
s

R ∂
∂ =

∂
. The Radon transform is defined on the 

space of distributions and ( ( , )) ( , )x s mR δ ξ δ ξ= − . Applying the Radon transform to both sides of eqn (11) 
yields 
 2 * 1/ 2

2
ˆ( ) ( ) ( , , ) ( ) ( , )s sM m N m U s m h s m Iω ξ δ ξ−⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (12) 

where 2I  is the unit matrix in 2R , 0{ ( )}, ( )ik ik ijkl j lM M m M m C m m= = , 0{ ( )}, ( ) ( )ik ik ikN N m N m C d m= = × , 
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2
0{ ( )}, ( )i k i k i k i kpω ω δ ρ ωΓ = Γ Γ = − , and variable 2 , 1m R m∈ =  is the unit circle. 

The above is a system of two second-order, ordinary differential equations with constant coefficients. Under 
the conditions specified in eqn (1), matrix M  is symmetric and positive definite, matrix N  is skew-symmetric 
and matrix Γ  is symmetric. In order to solve eqn (12), we recover its canonical form by diagonalizing matrices 

M  and Γ  . Specifically, we start with the eigenvalues ( )2
1,2

1( ) Tr (Tr ) 4det
2

m M M Mα = ± −  of M , where 

Tr  is the trace and det  is the determinant. For an isotropic material, 1 22 ,α λ µ α µ= + = , while for the 
anisotropic material, 1,2α  depend on m , 1m = . Next, let 1 2,g g  be the two corresponding normalized 

eigenvectors of M  so that orthogonal matrix 
1 1
1 2
2 2
1 2

g g
G

g g
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 transforms the basis to canonical form as 

11

2

0
0

G MG A
α

α
− ⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

. Now define *ˆ ˆU GV= , in which case the transformed displacement vector V̂  satisfies 

equation 
 2 1/ 2

2
ˆ ( ) ( , )s sMG NG G V h s m Iξ δ ξ−⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (13) 

Left-hand side multiplication of eqn (13) by 1G−  gives  

 2 1/ 2 1
1

ˆ ( ) ( , )s sA N V h s m Gξ δ ξ− −⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (14) 

where the commutative property of skew-symmetric matrix N  and of orthogonal matrix G  has been used to 
give NG GN= , along with the fact that 1

1 G G−Γ = Γ .  Matrix A  is strictly positive for every , 1m m = , so 
1/ 2A  exists. A subsequent displacement vector transformation, denoted by 1/ 2ˆ ˆW A V= , is introduced in eqn (13) 

yielding  
 1/ 2 2 1/ 2 1/ 2 1/ 2 1

1
ˆ ( ) ( , )s sA NA A W h s m Gξ δ ξ− − − −⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (15) 

An additional left-hand side multiplication of eqn (15) by 1/ 2A−   results in  
 2 1/ 2 1/ 2 1

2 2
ˆ ( ) ( , )s sI Q W h s m A Gξ δ ξ− − −⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (16) 

Observe 1/ 2 1/ 2Q A NA− −=  is skew-symmetric. Also, matrix  1/ 2 1/ 2
2 1A A− −Γ = Γ  is symmetric, has two real 

eigenvalues ( )2
1,2 2 2 2

1( ) Tr (Tr ) 4det
2

mη = Γ ± Γ − Γ  and the corresponding normalized eigenvectors are 

1 2,e e . Use of the orthogonal matrix 
1 1
1 2
2 2
1 2

e e
E

e e
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 transforms the basis to canonical form as 

11
2

2

0
0

E E R
η

η
− ⎛ ⎞
Γ = = ⎜ ⎟

⎝ ⎠
. A third (and final) displacement vector transformation, defined as  1ˆ ˆZ E W−= , is 

introduced in eqn (16) resulting in  
 2 1/ 2 1/ 2 1

2
ˆ ( ) ( , )s sE QE E Z h s m A Gξ δ ξ− − −⎡ ⎤∂ + ∂ + Γ = − −⎣ ⎦  (17) 

As before, pre-multiplication of the above equation by 1E−  yields 
 2

2
ˆ ( )s sI Q R Z s Fδ τ⎡ ⎤∂ + ∂ + = −⎣ ⎦  (18) 

where 1/ 2 1 1/ 2 1( )F h E A Gξ− − − −= − , and ,mτ ξ= . At this point, it is important to note that matrices 
1/ 2 1/ 2

0 M M− −Γ = Γ  and 2Γ  have the same eigenvalues, namely 1 2,η η , since the characteristic polynomials of 

0Γ  and 2Γ  are the same. 

5 FUNDAMENTAL SOLUTION FOR ‘CLASS A’ MATERIAL 

With matrix 0Q = , eqn (18) assumes the form given below 

 2
2

ˆ ( )s I R Z F sδ τ⎡ ⎤∂ + = −⎣ ⎦ . (19) 

and because matrix R  is diagonal, eqn (19) is uncoupled. As previously noted, since the elements jη  of matrix 

R  are invariants, the eigenvalues of matrix 1/ 2 1/ 2M M− −Γ  depend on 0 , , ikpρ ω  and on , 1m m = . Using 
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Silvester’s theorem and compactness arguments with respect to m , we ascertain that the number of positive, 
negative and zero eigenvalues is preserved. Therefore, the following five different sub-cases can be identified: 
 (i) 1 2 0η η≥ >  (ii) 1 20, 0η η> =  (iii) 1 20, 0η η> <  (iv) 1 20, 0η η= <  (v) 1 20 η η> ≥  (20) 
The fundamental solutions corresponding to these five sub-cases behave differently. For instance, we note the 
possibility of double eigenvalues for arbitrary values of m  for sub-cases (ii) and (iv). Which sub-case is 
actually realized depends on the elasticity constants (through matrix M ), on the degree of inhomogeneity 
(through function h ), on the density and on the frequency (through matrix Γ ). For example, if matrix { }ikP p=  
is negative, only sub-case (i) materializes; if P  is positive, then all five sub-cases can occur, with (i) 
corresponding to large values of frequency ω , (v) to small values of ω , and (ii)-(iv) to intermediate values of 
ω . In the quasi-homogeneous case, matrix 0P =  and only sub-case (i) can be realized[3]. In the purely 

homogeneous case, it is also true that 0P =  and two wave numbers are recovered as 0

( )j j
j

k
m

ρ
η ω

α
= = . 

Finally, wave numbers jk  are independent of variable m  in the isotropic case only. 
Therefore, in view of the above, eqn (19) can be re-written as  

 2 ˆ ( )s v f sη δ τ⎡ ⎤∂ + = −⎣ ⎦ , 1/ 2
0( ) ( , )f h f mξ ω−=  (21) 

where parameter η  can be positive, zero or negative. In order to find the fundamental solution of eqn (11), 
which is one step away from the final form, we start by solving eqn (21) to recover v̂  for different values of η . 
Next, we compute the first component of the inverse Radon transform as ˆ( )u K v= , which is subsequently 
integrated with respect to , 1m m = . This step completes the inverse Radon transformation and yields *U  in 

terms of the original basis functions u . It is also possible to compute the spatial derivatives of *U . Finally, the 
simple algebraic transformation specified in eqn (6) produces *u , the fundamental solution of the original 
equation of motion. 

Using calculus of distributions, we recover v̂  and ˆ( )u K v=  for the following three possibilities regarding 
parameter η : 
(a) Possibility η  is positive (superscript +): 

Let 0,η > or  2kη = . Then, ˆ i k sv e τα −+ = ,  
2
if
k

α = −  and let 
2
fγ + = − . We compute  

 

( )

( )

ˆ( ) ( ) cos 2 ( )cos( ) ( )sin( )

2cos 2 ( )sin( ) ( )cos( ) sgn( )

z s

s
z s

v s K v kz ci kz kz si kz kz

v k kz k ci kz kz si kz kz s
z

τ

τ

γ

γ τ

+ + +

= −

+ +

= −

⎡ ⎤= = − +⎣ ⎦
⎫
⎪
⎬
⎪⎡ ⎤ ⎭∂ = − − + − −⎢ ⎥⎣ ⎦

 (22) 

where cos sinci( ) , si( )
p p

t tp dt p dt
t t

∞ ∞

= − = −∫ ∫  are the cosine and sine integral functions, respectively. 

(b) Possibility η  is zero (superscript 0): 

Let 0η = , and then 0ˆ
2
fv s τ= − , with 

 

0 0

0

ˆ( ) ln

sgn( )

z s

s
z s

v K v f z

fv s
z

τ

τ

τ

= −

= −

= = ⎫
⎪
⎬

∂ = − − ⎪
⎭

 (23) 

 (c) Possibility η  is negative (superscript -): 

Let 0,η < 2 , 0k kη = − > . Then ˆ k sv e τα − −− = ,  
2
f
k

α = −  and 
2
fγ − = . We compute 

 

( )

( )

ˆ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

2( ) 2 ( ) ( ) ( ) ( ) sgn( )

z s

s
z s

v s K v ch kz chi kz ch kz shi kz sh kz

v k sh kz k chi kz sh kz shi kz ch kz s
z

τ

τ

γ

γ τ

− − −

= −

− −

= −

⎡ ⎤= = + −⎣ ⎦ ⎫
⎪
⎬⎡ ⎤∂ = + + − − ⎪⎢ ⎥ ⎭⎣ ⎦

 (24) 
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with 
0 0

1chi( ) ln , 0, shi( )
z zch t sh tz dt z z z dt

t t
−

= + > =∫ ∫   the hyperbolic cosine and sine integrals.  

5.1 Inverse Radon Transform 

Details regarding this procedure is given in Ref. [4]. The inverse Radon transform is 

 * 1 * *
2 ,

1

1ˆ( ) ( )
4 z m x

m

U R U U z dm
ξπ

−

= −
=

= = ∫  (25) 

By denoting 
1 2

1 1 1 1
1 2
2 2 2 2

ˆ( )
f u f u

K Z
f u f u

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 and 
1 2

1/ 2 1 1
1 2
2 2

t t
GA E

t t
− ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, eqn (25) for the fundamental solution and its 

spatial derivative assumes the form 

 

1 2 1 2
* 1 1 1 1 1 1

2 1 2 1 2
2 2 2 2 2 21 ,

1 2 1 2
* 1 1 1 1 1 1
, 2 1 2 1 2

2 2 2 2 2 21 ,

1( , )
4

1( , ) sgn( , )
4

m z m x

z z
k k

z zm z m x

t t f u f u
U x dm

t t f u f u

t t f u f u
U x m m x dm

t t f u f u

ξ

ξ

ξ
π

ξ ξ
π

= = −

= = −

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎫⎝ ⎠⎝ ⎠ ⎪

⎪
⎬
⎪

⎛ ⎞⎛ ⎞∂ ∂ ⎪⎭= −⎜ ⎟⎜ ⎟
∂ ∂⎝ ⎠⎝ ⎠

∫

∫

 (26) 

where  

1/ 2 0

, 0

( , , ) ( ) , 0

, 0

j j

j j j

j j

u

u s m h u

u

η

ξ ξ η

η

+

−

−

⎧ >
⎪⎪= =⎨
⎪

<⎪⎩

     and     1/ 2 0

, 0

( , , ) ( ) , 0

, 0

s j j

s j s j j

s j j

u

u s m h u

u

η

ξ ξ η

η

+

−

−

⎧ ∂ >
⎪⎪∂ = ∂ =⎨
⎪
∂ <⎪⎩

 

The aforementioned five sub-cases are now  
(i) j ju u+=   (ii) 1 1u u+= , 0

2 2u u=    (iii) 1 1u u+= , 2 2u u−=   (iv) 0
1 1u u= , 2 2u u−=   (v) j ju u−=  

Following Ref. [3] and combining eqs (6) and (26), we obtain the two fundamental solutions for the original 
equation of motion, along with the necessary expressions for the spatial derivatives as follows: 

 

* 1/ 2 1/ 2 *

* 0 *
,

( , ) ( ) ( ) ( , )

( , ) ( ) ( , ), or

ij ij

z z
ijk ijml mk l

u x h x h U x

x h z C u x z x

ξ ξ ξ

σ ξ ξ ξ

− −= ⎫
⎪
⎬
⎪= = ⎭

 (27) 

where  

 

* 1/ 2 1/ 2 * 1/ 2 1/ 2 *
, , ,

* 1/ 2 1/ 2 * 1/ 2 1/ 2 *
, , ,

( , ) ( ( )) ( ) ( ) ( )

( , ) ( ( )) ( ) ( ) ( )

x x
mk l l mk mk l

mk l l mk mk l

u x h x h U h x h U

u x h h x U h x h Uξ ξ

ξ ξ ξ

ξ ξ ξ

− − − −

− − − −

= + ⎫
⎪
⎬
⎪= + ⎭

 (28) 

6 INHOMOGENEOUS ISOTROPIC MATERIAL 

We will illustrate the ‘Class A’ material by considering a specific example involving the isotropic case, where 
inhomogeneity is of the form  02 ,( ) q x qh x e +=  (see section 3.1) with 1 2 00 , 0q q q> = = . More details can be 
found in Ref. [4], along with an additional example addressing the ‘Class B’ material. 

All matrices involved in eqs (12)–(18) are given below for this specific type of material as   
2 2

0 0 1 0 2 0 0 1 2
2 2

0 0 1 2 0 1 0 0 2

( 2 ) ( )
( )

( ) ( 2 )
m m m m

M m
m m m m

λ µ µ λ µ
λ µ µ λ µ

⎛ ⎞+ + +
= ⎜ ⎟⎜ ⎟+ + +⎝ ⎠

,
2

0 0 1
2

0 1

( 2 ) 0
( ) ( )

0
q

P q M q
q

λ µ
µ

⎛ ⎞− +
= = −⎜ ⎟⎜ ⎟−⎝ ⎠

, 

0 0 1 2

0 0 1 2

0 ( )
( )

( ) 0
q m

N m
q m

λ µ
λ µ

−⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

, 

 
2 2

0 0 0 1
2 2

0 0 1

( 2 ) 0
( , )

0
q

q
q

ρ ω λ µ
ω

ρ ω µ
⎛ ⎞− +

Γ = ⎜ ⎟⎜ ⎟−⎝ ⎠
, 0 0

0

2 0
0

A
λ µ

µ
+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 1 2

2 1

m m
G

m m
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, 
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0 0
1 2

0 0 0

0 0
1 2

0 0 0

( )
0

( 2 )
( , )

( )
0

( 2 )

q m

Q q m
q m

λ µ
µ λ µ

λ µ
µ λ µ

−⎛ ⎞
⎜ ⎟+⎜ ⎟= ⎜ ⎟−
⎜ ⎟−
⎜ ⎟+⎝ ⎠

, 

2
20
1

0 0

2
20
1

0

0
2

( , )
0

q
R m

q

ρ ω
λ µ

ω
ρ ω
µ

⎛ ⎞
−⎜ ⎟

+⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

and 

1 1 1 1

1 2

0 0 0 0 0 01 2

2 1 2 1

0 0 0

1 0
2 2 2

10

q q

m m

m m
F e e

m m m m
ξ ξ

λ µ λ µ λ µ

µ µ µ

− −

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟+ + +−⎛ ⎞ ⎜ ⎟⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. 

6.1 Analytical Results for ‘Class A’ Material and Sub-cases 

For this case, 0 0λ µ= , 
1 0
0 1

E
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and system of eqs (21) becomes 

1 1

2
1 22 20

1
0 00 11 12

2
21 22 2 12 20

1
0 00

0
3 3ˆ ˆ3

( , )
ˆ ˆ

0

s
q

s

m m
q

v v
e s m

v v m m
q

ξ

ρ ω
µ µµ

δ ξ
ρ ω

µ µµ

⎛ ⎞⎛ ⎞ −∂ + − ⎜ ⎟⎜ ⎟
⎛ ⎞ ⎜ ⎟⎜ ⎟ = − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟∂ + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. 

All sub-cases (i)–(v) listed in eqn (20) can now be realized, depending on the actual values of material 
parameters 0 0 1, , , qµ ρ ω : 

Sub-case (i): If  
2

20
1

0

0
3

q
ρ ω
µ

− >  and 
2

20
1

0

0q
ρ ω
µ

− > , then all four solutions of eqn (21) are as in case (+) (see 

eqn (20)). 

Sub-Case (ii): If  
2

20
1

0

0
3

q
ρ ω
µ

− = , i.e., 
2

2 0
1

03
q

ρ ω
µ

= , then 
2 2 2

0 0 0

0 0 0

2
0

3 3
ρ ω ρ ω ρ ω
µ µ µ

− = >  and  two solutions of  eqn 

(21) are as in case (+), and two more are as in case (0) . 

Sub-case (iii): If  
2

20
1

0

0
3

q
ρ ω
µ

− < , but  
2

20
1

0

0q
ρ ω
µ

− > , then two solutions of eqn (21) are as in case (-), and two 

more are as in case (+). 

Sub-case (iv): If  
2

20
1

0

0
3

q
ρ ω
µ

− < , but  
2

20
1

0

0q
ρ ω
µ

− = , then two solutions of eqn (21) are as in case (-), and two 

more are as in case (0). 

Sub-case (v): If  
2

20
1

0

0
3

q
ρ ω
µ

− <  and 
2

20
1

0

0q
ρ ω
µ

− < , then all four solutions of eqn (21) are as in case (-). 

It is seen that we can control (theoretcally at least) the type of the fundamental solution we wish to recover by 
changing the value of the frequency ω . 

7 CONCLUSIONS  

In this work, the combined algebraic plus Radon transforms were applied to the governing time-harmonic 
equations of motion for the general anisotropic, inhomogeneous material under plane strain conditions for 
recovering fundamental solutions. The former transform addresses material inhomogeneity and yielded a finite 
number of material profiles that were compatible with the transform itself. The latter transform was then used to 
treat the equations of motion, which now posses constant coefficients, for a rather wide range of direction-
dependent elastic parameters. Analytical results were derived for the type of material that was labeled as ‘Class 
A’, while Ref. [4] gives additional information for materials belonging to ‘Class B’. Finally, numerical results 
will be communicated in a future publication. In closing, the aforementioned fundamental solutions may be used 
within the context of integral equation formulations as kernel functions for the solution of boundary-value 
problems involving realistic material profiles for geological as well as other types of continua. 
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Abstract. Most studies of dynamic pile response are restricted to homogeneous or horizontally-layered soil. 
This work considers a soil medium, which is inhomogeneous both vertically (with depth) as well as in the 
horizontal (radial) direction. Vertical inhomogeneity typically arises from sedimentation of soil particles 
forming layers and from overburden effects. On the other hand, radial inhomogeneity may arise from soil 
disturbance due to pile installation as well as from material nonlinearity due to pile loading. In this study, the 
problem is treated in the realm of linear elastodynamic theory by means of a rigorous finite-element formulation 
developed by the Authors. The study is concerned with the effect of this double soil inhomogeneity on: (1) pile 
head stiffness, (2) pile radiation damping, (3) modulus of equivalent Winkler springs and dashpots along the 
pile shaft. Swaying, rocking, and vertical oscillations are considered, arising from concentrated harmonic 
forces and moments imposed at the pile head. It is shown that ignoring soil inhomogeneity may substantially 
underestimate pile head stiffness and overestimate damping. On the other hand, modeling a vertically 
inhomogeneous deposit as a stiffness-equivalent homogeneous layer may grossly overestimate radiation 
damping leading to un-conservative predictions of dynamic pile movements. Implications of radiation damping 
effects in design are discussed. 
 
 
1 INTRODUCTION  

The problem of determining the elastic settlement of a pile has been investigated extensively over the past 
decades, starting from the simple case of a single pile in homogeneous soil under static loading, and progressing 
to the more complicated cases of dynamic loading, inhomogeneous soil, and pile groups (Poulos, H. G. and 
Davis, E. H.[1]; Roesset, J. M.[2]; Novak, M.[3]; Mylonakis, G. and Gazetas, G.[4]; Randolph, M. F.[5], among 
others). Most early studies consider the static case for determining pile head settlement for design against gravity 
loads. More recently, the dynamic case has been analyzed for designing piles to support vibrating machines 
and/or resist earthquake and blast loads. To this end, a variety of theoretical methods has been developed 
(Kaynia, A. M. and Kausel, E.[6]; Novak, M.[3]). In most studies the supporting soil has been treated as 
homogeneous or horizontally layered with constant material properties within each layer. A more realistic 
assumption is perhaps that of combined vertical and horizontal inhomogeneity to account for the weakening of 
the soil in the vicinity of a pile due to installation and/or loading effects. Only a handful of studies on the effect 
of radial inhomogeneity are available today. Most of these efforts adopt simplified plane-strain models which 
cannot adequately capture salient features of the problem, such as static stiffness and cut-off frequencies (e.g., 
Novak, M. and Sheta, M.[7]; Veletsos, A. S. and Dotson, K. W.[8]; Han, Y. C. and Sabin, G. C. W.[9]; 
Michaelides, O. et al.[10]). Regarding combined vertical-horizontal inhomogeneity, no systematic investigations 
of its effect on dynamic pile response are available to date. 

The available solutions indicate that radiation damping in the soil generally decreases as a result of 
inhomogeneity, leading to increased response at the pile head for a given dynamic load. These effects are 
expected to be stronger under combined vertical and horizontal inhomogeneity, having significant implications 
in design (Poulos, H. G.[11]; Novak, M.[3]; Syngros, C.[12]). 
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2 PROBLEM DEFINITION AND MODEL DEVELOPMENT 

The system considered is depicted in Figure 1: A solid cylindrical pile of length L and diameter d embedded 
in a viscoelastic soil layer of thickness H over rigid or elastic bedrock, is subjected to an axial or lateral 
harmonic head force or bending moment. For the simulation of the pile and the surrounding soil, quadratic 
isoparametric triangular elements are used in axisymmetric mode. The mesh is designed to be finer close to the 
pile (where large stress gradients are anticipated), and coarser towards the boundaries. The change in element 
size is done accordingly. 

A finite-element computer code named K-PAX has been developed (Syngros, C.[12]) to produce numerical 
results. In developing the code special modelling options have been incorporated, such as variable soil modulus 
within the elements, special transmitting boundaries to minimize wave reflections at the boundaries of the mesh, 
and a novel integration scheme to properly evaluate element stiffness close to the axis of symmetry. 

Linear variation in Young’s modulus within the elements is considered, by linearly interpolating the value of 
the modulus at the corner nodes. This is to better describe soil inhomogeneity and minimize potential wave 
reflections due to stiffness discontinuities at the interfaces between neighbouring elements. Since voids ratio and 
water content vary spatially much less than stiffness, mass density is considered constant within the elements. 

The transmitting boundary developed by Kellezi, L.[13]) is adopted in this work. For the static case special 
infinite elements which exhibit superior accuracy over dynamic transmitting boundaries, were implemented 
following Marques, J. M. M. C. and Owen, D. R. J.[14]). 

Concerning the integration of stiffness matrices close to the axis of symmetry, the Rational-Gauss stencil 
developed by Price, T. E.[15]) for the evaluation of the associated singular integrals is adopted. For more 
information the Reader is referred to the above study. 

H

L

S

z
r

S

z r

H

L

 
Figure 1. Typical F.E. mesh used in this study 

3 FORMULATION OF RADIAL INHOMOGENEITY 

3.1 Treatment of radial soil inhomogeneity 

In their pioneering work, Novak, M. and Sheta, M.[7] model a radially inhomogeneous soil around an 
oscillating pile with a toroidal inner zone (“near-field”) of reduced elastic properties, and an outer zone (“far-
field”) of constant properties using an axisymmetric plane-strain model. This formulation introduces a 
discontinuity in stiffness at the boundary of the two zones, thus making the results sensitive to both frequency 
and ring radius. In subsequent studies, Veletsos, A. S. and Dotson, K. W.[8] and Kim, Y.-S.[16] introduce a 
smooth transition of soil properties to the far-field by adopting concentric soil rings of increasing elastic 
properties. More recently, Han, Y. C. and Sabin, G. C. W.[9] Michaelides, O. et al.[10] and El-Naggar, M. H.[17] 
considered continuous variation of elastic soil properties with radial distance from the pile and derived solutions 
for the plane-strain axisymmetric oscillation mode. 

Following Michaelides, O. et al.[10], the following simplified expression is adopted in this study: 
     

E(r)/ E∞ = 1 − {A d /2r}3/4 (1) 
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where E(r) = soil Young’s modulus at distance r from the axis of symmetry and E∞ = soil Young’s modulus 

at infinity. A is a “load intensity factor” or, equivalently, a “radial inhomogeneity factor”, encompassing the 
combined effects of soil plasticity, inertia, and interface action. In the parametric studies the values A = 0.1, 0.5 
and 0.8 were used, corresponding to soil moduli at the pile-soil interface equal to approximately 80, 40 and 15 
percent of the far-field modulus, respectively. 

Four different profiles are utilized, as shown in Figure 2:  
a) A homogeneous soil profile characterized by a constant soil modulus Es  

 
Es (r,z) = Es (2) 

Homogeneous (H)

Radially
inhomogeneous (R)

Vertically and Radially
 inhomogeneous (LR)
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Figure 2. Soil profiles considered. In all profiles the soil stiffness under the pile tip is constant with depth. 

b) A soil profile whose modulus increases proportionally with depth, z, up to a depth of one pile 
length (z = L)  and remains constant for z > L 

 
Es(r, z) = EsL z /L (3) 
   

c) A soil profile whose elastic modulus is constant with depth, but varies with radial distance 
from the pile, starting from a near-field value Es and increasing to a limiting far-field value 
Es∞. The rate of modulus change with radial distance is given by eqs. (1) and (4). As in the 
case of the linear profile, soil modulus is constant underneath the pile tip, equal to Es∞. 

 
 Es(r, z) = Es∞ [1 − {A d /2r}3/4 ] (4) 
 

d) A doubly inhomogeneous soil profile in which soil modulus varies linearly with depth, up to 
the depth of the pile tip (z = L), and with radial distance from the pile according to eq. (4). 
This is essentially a combination of the two previous cases and is characterized by a soil 
modulus EsL∞ taken at a depth of one pile length and infinite radial distance from the pile. 
Underneath the tip, soil has constant Young’s modulus equal to EsL∞. 

 
 Es(r, z) = EsL∞ [1 − {A d /2r}3/4 ]  (5) 
 
The following dimensionless parameters are adopted in the simulations: a) pile slenderness ratio (L /d); b) 

pile-to-soil stiffness contrast (Ep /Es). For a vertically inhomogeneous profile, the value of soil modulus at the 
pile tip EsL is used for Es. For the radially inhomogeneous profile, the far-field modulus Es∞ is used. For the 
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doubly inhomogeneous profile, the normalization is performed using the far-field value EsL∞ c) Pile-soil mass 
density contrast (ρp /ρs); d) material damping ratio β. Hysteretic damping βs = 0.05 and βp = 0.01 are considered 
in all analyses for the soil and the pile, respectively. 

4 RESULTS 

4.1 Dynamic pile-head stiffness 

In the herein-reported analyses, pile-head stiffness is represented by a complex number K  composed of a 
real and an imaginary part. Two alternative forms are used to this end: 

  
 K z = Re (K z) + Im (K z) = K z + i ω Cz = K z (1+2iβ) (5)  
 
in which Kz denotes the real part of the complex stiffness, ω is the oscillation frequency, Cz the pile-head 

damping and β an equivalent frequency-independent damping ratio. The above equation corresponds to the 
vertical oscillation mode. Analogous expressions can be written for the other modes. For details the reader is 
referred to Gazetas, G.[18] or Mylonakis, G. et al.[19]. In Figure 3 the real and imaginary part of dynamic pile 
stiffness are plotted against dimensionless frequency a0 (= ω d/ Vs). Note that all soil profiles have the same 
properties at the far field. It is evident how radial inhomogeneity affects static and dynamic stiffness and 
damping − especially at high frequencies. 

4.2 Stiffness equivalent soil profiles 

To better understand the effect of soil inhomogeneity on radiation damping and pile displacement, the 
concept of stiffness-equivalent soil profiles is introduced. By this notion, two soil profiles may have different 
elastic properties at the far field, but provide common static pile-head stiffness. This concept is introduced to 
shed light on certain aspects of dynamic pile response, as influenced by soil inhomogeneity. In the following 
graphs, soil profiles having same static pile-head stiffness are referred to as stiffness-equivalent. 

4.3 Effect of radial inhomogeneity on damping 

Energy dissipation in an unbounded medium arises from two main sources: Material damping which 
describes energy consumed mainly through hysteretic action in the soil (such as friction between soil particles) 
and radiation damping which stands for energy radiated to infinity, as waves are emitted from the foundation 
and  propagate in the unbounded medium. The latter effect has no counterpart in media of finite size. 

From Eq. (5), the damping ratio apparent at the pile head can be cast in the following form: 
  

 β β β z
(radiation) (hysteresis)

 z

Im ( )
 = =  + 

2 Re ( )
K
K

 (6) 

 
In Figure 4, pile-head damping is examined with reference to four stiffness-equivalent soil profiles. 

Dimensionless frequency a0 is normalized with the shear wave velocity of the stiffness-equivalent homogeneous 
profile. The role of inhomogeneity in reducing radiation damping becomes evident in this plot. Note that 
increased inhomogeneity is associated with an increase in cut-off frequency. This yields substantial differences 
in radiation damping at low frequencies as compared to a homogeneous halfspace. Figure 4 shows that radiation 
damping is typically much less than damping estimated considering a homogeneous unbounded layer. This has 
important implications in design, since an actual profile is never perfectly homogeneous.  
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a0 = ω d / Vsa0 = ω d / Vs
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Figure 3. Normalized vertical dynamic stiffness of a floating single pile in a radially inhomogeneous halfspace; 
L / D = 40, Ep / Es = 1000. 

4.4 Equivalent Winkler springs along the pile shaft 

It is of interest to investigate how soil stiffness and damping vary along the pile shaft. As mentioned earlier, 
a simple method for modelling the dynamic response of a pile is by replacing the soil by equivalent Winkler 
springs and solving the corresponding one-dimensional beam or rod on a dynamic elastic foundation problem. 
The associated Winkler modulus can be expressed as function of the near-pile elastic modulus of the soil 
material at the same depth 

  
 k(z) = δ(z) Es(z) (7) 
 
where δ(z) is a dimensionless parameter. 
Using K-PAX to determine the soil reactions and corresponding displacements at the pile-soil interface, the 

corresponding springs are calculated as force per unit pile length over displacement. Soil reaction is estimated 
by evaluating the normal stresses at the soil pile interface and integrating them over the pile surface. In Figure 5, 
normalized pile displacements, soil reactions and normalized Winkler moduli are plotted versus depth, for 
laterally-loaded fixed-head piles in four stiffness-equivalent profiles. The following are worthy of note: 
 

a0 = ω d / Vs

β z
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Figure 4. Damping ratio of a pile in four soil profiles. All piles have equal static stiffness; L / D = 20 
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Figure 5. Deflected shape, soil reaction and normalized Winkler modulus for laterally loaded fixed-head piles of 

equal swaying stiffness in four different soil profiles. 

Comparing homogeneous (H) and linear profile (L), it is evident that pile displacement dies out much faster 
with depth in the linear profile. In radially inhomogeneous (R, LR) profiles, displacements attenuate faster than 
in the corresponding radially homogeneous (H and L) cases. These trends are anticipated because the more 
inhomogeneous a soil layer (e.g., L, LR), the smaller its modulus becomes at the surface. Accordingly, to match 
the static stiffness of a homogeneous layer (H), soil modulus has to increase very fast with depth resulting in 
faster attenuation of pile displacement with depth. The trend is more or less the same for fixed and free-head 
piles. 

Soil reaction in a homogeneous halfspace (H) attains its peak at a shallower elevation compared to a linear 
soil profile (L). This is reasonable, since the linear profile has very small Young’s modulus at the surface, thus 
making it unable to produce significant reaction to pile movement. 

On the other hand, it is observed that the homogeneous profile (H) has similar soil reactions as the radially 
inhomogeneous (R) profile, and the linear (L) profile similar reactions as the linear-radial (LR) profile. This is 
counter-intuitive, since one might have anticipated different reactions for same displacements in inhomogeneous 
soil. 

Plotting the variation of Winkler modulus with depth, it can be seen, for the case of fixed head piles and 
(LR) soil, that normalized Winkler modulus δ (= k / Es ) becomes infinite at a certain depth. This implies that 
soil reaction is finite at regions of small pile displacement. It is also apparent that beyond that depth δ takes 
negative values. It is seen, however, that this depth is higher than the active pile length (≈ 10 to 15 pile 
diameters) and thus has negligible influence on the response. 

The difference between dynamic and static p-y curves is that now, in addition to force and displacement, 
excitation frequency is involved. In Figure 6, the real parts of deflection, soil reaction and δ(z) are plotted for a 
single excitation frequency and four different stiffness-equivalent profiles. Both fixed and free-head piles are 
considered. It can be seen that, unlike Figure 5, which applies to the static case, displacements now seem to be 
smaller for the radially inhomogeneous profiles. Soil reactions continue to be very close to each other and 
Winkler modulus does not become infinite at the points of zero displacement. Soil reactions are practically 
unaffected by frequency (ao = 0.25) 
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Figure 6. Dynamic deflected shape, soil reaction and normalized Winkler modulus for laterally loaded fixed-
head piles of equal swaying stiffness in four different soil profiles; a0 = 0.25 

5 MAIN CONCLUSIONS 

It was shown that radiation damping in stiffness-equivalent soil profiles is significantly reduced with 
increased levels of inhomogeneity in the soil. This implies that using a homogeneous profile in a dynamic 
analysis will result to lower response due to high radiation damping. This reduction may exceed 100% - 
particularly at high frequencies. 

It was also demonstrated that for stiffness-equivalent soil profiles, attenuation of pile displacement with 
depth varies depending on the characteristics of the profile, starting from the same value at the pile-head. In 
addition, soil reaction along the pile shaft is independent of radial inhomogeneity for statically-equivalent 
profiles. The above results are valid for both axially- and laterally-loaded piles. 
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Abstract. The dispersion of longitudinal and shear elastic waves propagating in dry sand cylindrical specimens 
is studied by experimental, analytical and numerical methods. Wave propagation in the specimen is studied 
experimentally with the aid of a triaxial cell system equipped with pairs of piezoelectric ceramic elements for the 
generation and reception of longitudinal and shear waves. Two different models taking into account the 
microstructural properties of dry sand, a gradient elastic and an elastic porous model, are also employed to 
study wave dispersion analytically. The same problem is also studied by the boundary element method in the 
frequency domain in conjunction with the iterative effective medium approximation on the assumption that dry 
sand is a porous medium with equally sized spherical pores. The results of all methods are critically compared 
and discussed. 
 
1 INTRODUCTION 

Wave propagation in granular materials, such as sands, sandstones, grains, ceramics, porous bones and 
pressed powders is an important field of study in geotechnical engineering, geophysics, bioengineering and 
material science and engineering. Wave propagation studies in these materials aim at the understanding of their 
internal microstructure, determining their mechanical properties and establishing accurate and efficient methods 
for the evaluation of their response to dynamic loading.  

Among the many published works on elastic wave propagation in granular media, one can mention 
experimental studies[1-5], analytical studies[6-13] and numerical studies[14-17]. To the authors’ best knowledge, with 
the exception of references[4, 15] where there is a comparison between experimental and analytical results, no 
comparisons between the results of the above three kinds of methods have been reported in the recent literature.  

The present work represents a moderate effort towards a comparison of experimental, analytical and 
numerical methods as applied to the study of wave propagation in granular media. More specifically, this work 
studies dispersion of longitudinal (P) and shear (S) waves in dry sand assuming small-amplitude harmonic 
waves. Experimental dispersion curves are obtained with the aid of a triaxial cell system with pairs of 
piezoelectric transducers for the generation and reception of waves at the bottom and top, respectively, of a 
cylindrical dry sand specimen pre-pressured uniformly. The dispersion curves of the specimen are also obtained 
on the basis of two different microstructural elasticity theories: the linear elasticity with pores (voids) due to 
Cowin and Nunziato[7] and the linear dipolar gradient elasticity due to Mindlin[18]. Finally, dispersion is also 
studied by a numerical method that combines the iterative effective medium approximation technique[14, 15] used 
for the elastic porous medium of the sand specimen with the frequency domain boundary element method used 
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for the wave scattering analysis. All the methods are in agreement for the cases of high frequencies for which 
there are essentially no dispersional waves. However, for the cases of low frequencies there is disagreement 
between the methods, which is clearly pointed out. 

2 EXPERIMENTAL METHOD 

The phase velocities of longitudinal (P) and shear (S) waves propagating in dry sand cylindrical specimens 
have been measured with the aid of a triaxial cell test device instrumented with pairs of piezoelectric elements. 
These elements (three types of them) are placed at the specimen end plates and serve to generate and receive P 
and S waves. The experimental technique for measuring wave velocities is shown schematically in Fig. 1. A 
single sine voltage is generated by a function genarator, then is amplified and finally is conducted towards an 
oscilloscope and towards the selected piezoelectric transducer placed at the lower specimen end plate. The 
electrical impulse causes a deformation of the piezoelectric element and thus the emission of a wave. 
Conversely, the wave arrival at the upper specimen end plate has as a result the generation of an eclectric output 
to the corresponding receiver. Finally, the received signal after amplification is transferred to a computer for 
post-processing purposes. The wave velocity is then calculated as the quotient of the travel length (length of the 
specimen) and travel time (time difference between the start of the transmitted signal and the first arrival of the 
received signal). Since every generated sine signal is associated with a specific frequency, every measured wave 
velocity becomes a function of frequency, thereby creating a phase velocity versus frequency relation, i.e., a 
dispersion curve. 

 

 
 

Figure 1. Scheme of the test device 
 
In the present work, cylindrical triaxial specimens 10cm in diameter and 5cm in height were used. The small 

specimen height was chosen in order to reduce the influence of material damping and the reflections of the 
waves at the specimen boundaries. A medium coarse dry sand with mean diameter 0.55mmd =  and maximum 
and minimum void ratios max 0.874e =  and min 0.577e = , respectively, was used. The specimens were prepared by 
pluviating dry sand out of a funnel through air into half cylinder moulds. Having placed the specimen top cap, 
sealed the membrane and applied a vacuum of 50 kPa to the grain skeleton, the half-cylinder moulds were 
removed. The geometry of the specimen was measured and the plexiglass cylinder of the pressure cell was 
mounted. The vacuum in the grain skeleton was gradually replaced by the pressure in the cell keeping the 
effective isotropic stress 1 3 =50σ σ= kPa, where the indices 1 and 3 stand for the axial and the radial component, 
respectively. 

The experimental measurements were performed on sand specimens having three different void ratio values 
(e = 0.797, 0.667, 0.571) under four effective isotropic stress values ( )1 3 50,100,200,400 kPaσ σ= =  in order to 
study the influence of the relative density of the soil as well as the surrounding pressure on the wave propagation 
velocities. The frequencies of the transmitted waves were varied from 5 kHz up to 200 kHz in steps of 5 kHz. 

 

3 ANALYTICAL METHODS 

According to the theory of linear elastic materials with voids due to Cowin and Nunziato[7], the void volume 
in elastic porous materials changes with the deformation. Thus, the governing equations of motion for such 
materials has the form  

 
 ( ) ii,ji,jjj,i uuu ρφβµλµ =+++  (1) 
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 φδρβφξφγφα κκ =−−− ,ii, u  (2) 
 

where iu  is the displacement vector, φ  the change in void volume fraction, ρ  the mass density, λ  and µ  the 
Lamè constants, , , ,α β γ ξ  and δ  material constants, indicial notation holds, commas indicate spatial 
differentiation and overdots differentiation with respect to time t . Assuming harmonic waves of the form  
 

 ( ) ( )[ ] ,edut,xu txmV/i
iii

ii ωω +−= ( ) ( )[ ]txmV/i
i

iiet,x ωωφφ +−=  (3) 
 
where id  and im are unit vectors indicating the directions of displacement and propagation, respectively, V  the 
phase velocity, ω  the circular frequency and u  and φ  amplitudes, one can prove that, while shear waves 
propagate with ρµ /cV ss ==  (no dispersion), longitudinal waves propagate with a velocity 

pV , which 
depends on frequency 2 fω π= , where f is the frequency in Hz. This 

pV  versus f dispersion relation for the 
special case of 0==γξ  takes the form  
 

 ( ) ( ){ }22 2 2 2/ 2 / 2 / / 2pV fα δ λ µ α δ λ µ β π δ ρ⎡ ⎤ ⎡ ⎤= + + ± − + +⎣ ⎦ ⎣ ⎦
 (4) 

 
According to the dipolar gradient theory of elasticity due to Mindlin[18], as simplified in [13, 4, 16], one can 

have the governing equation of motion of an elastic body with microstructure in the form  
 

 ( ) ( )( ) κκκκ
ρρµλµµλµ ,

2
i,ji,jjj,i

2
ji,jjj,i uhuuuguu −=+++++  (5) 

 
where g  and h  are the gradient coefficients of volumetric strain energy and velocity, respectively. 

Assuming harmonic waves of the form  
 

 φ= ∇ +∇×u A   

 ( / )pi c te ω ωφ ⎡ ⎤− ⋅ +⎣ ⎦∇ = m xm  (6) 

 [ ]( / )si c te ω ω− ⋅ +∇× = m xA d   

 
where ( ) ρµλ /2c2

p +=  and ρµ /cs =  stand for the longitudinal and shear wave velocities of classical wave 
propagation, one can prove that both longitudinal and shear waves are here dispersive and the 

s,pV  versus 

πω 2/f =  relation takes the form  
 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+−−= 222

s,p
222222

s,p
2222

s,p
22

s,p
22

s,p fgc16fh4cfh4c/fgc8V ππππ  (7) 

 

4 NUMERICAL METHOD 

The numerical method used here to study wave dispersion in dry sand is based on the iterative effective 
medium approximation [14, 15] applied with the aid of an advanced frequency domain boundary element method 
for axisymmetric problems [19].  

An elastic wave propagating in a soil medium, which is strongly inhomogeneous, can be considered as the 
sum of a mean wave and a number of fluctuating waves. The mean wave exists in a homogeneous effective 
medium with equivalent properties, while the fluctuating waves are the result of the multiple scattering of the 
mean wave by the randomly distributed material variations with respect to those of the effective medium. Under 
this consideration, the average of fluctuating fields should be vanishing at any direction within the effective 
medium. This self-consistent condition, for the case of a material consisting of grains and voids (dry sand) can 
take the simplified form [14, 15]  
 

 ( ) ( ) ( )1 2, 1 , = 0ng n g
∧ ∧ ∧⎛ ⎞ ⎛ ⎞+ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Ù
k k k k  (8) 

 

where n represents the volume fraction of the sand grains and ( )1 ( , )g
∧ ∧

k k  and ( )2 ( , )g
∧ ∧

k k  are the forward 
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scattering amplitudes taken by the solution of the two single wave scattering problems illustrated in Fig. 2. 
 

(a) 

Effective medium

Problem I

S

Sand
Ωk̂

(b) 

Effective medium

Problem II

S

Void
k̂

 
 

Figure 2: Single wave scattering problems of a mean wave propagating in the effective medium; a) the 
scatterer is the sand grain (problem I) and b) the scatterer is a void inclusion with identical to the sand grain 

geometrical properties (problem II). 
 

In the present work, the self-consistent condition (8) is satisfied numerically by following an iterative 
procedure. This iterative effective medium approximation (IEMA) procedure can be summarized as follows: 
Consider a soil medium consisting of identical spherical sand grains with density, shear and Young’s moduli, 

µρ ,  and E, respectively in a volume fraction equal to n. A harmonic elastic wave either longitudinal (P) or shear 
(S) is propagated through the soil. Due to the inhomogeneity, multiple scattering occurs which makes the mean 
wave both dispersive and attenuated. Thus, its complex wavenumber ( )ωeff

dk  can be written as  
 

 ( ) ( ) ( )ωα
ω

ωω eff
deff

d

eff
d i

V
k +=  (9) 

 
where ( )ωeff

dV  and ( )ωα eff
d  are the frequency dependent phase velocity and attenuation coefficient, respectively, 

of the mean plane wave, while the subscript d denotes either longitudinal ( )Pd ≡  or shear ( )Sd ≡  waves. Next, 
the soil medium is replaced by an elastic homogeneous and isotropic medium with effective shear and Young 
moduli effµ  and effE , respectively, given by the simple mixture rule 
 

 µµ neff =  and EnE eff =  (10) 
 

At the first step of the IEMA method, the effective density is assumed to be  
 

 ( ) ρρ n1step
eff =  (11) 

 
Then, the real effective wave number 

1( )eff
d stepk  is straightforwardly evaluated through (9), using the material 

properties (10) and (11). At the second step of the IEMA, by utilizing the material properties obtained from the 
first step, the two single wave scattering problems, illustrated in Fig. 1, are solved. The solution of the scattering 
problems is accomplished numerically by means of an advanced 3-D axisymmetric boundary element code [19]. 
Combining relation (8) with a dispersion relation due to Foldy [20], one can arrive at the new effective wave 
number of the mean wave, given by  
 

 ( ) ( )
2 2

1
32 1

3 ,eff eff
d d dstep step

nk k g
r

∧ ∧⎛ ⎞⎡ ⎤ ⎡ ⎤= + ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠
k k  (12) 

 
 

where r  is the radius of the sand grain. The new, complex now, density 
2( )eff

stepρ  is evaluated from the 
2( )eff

d stepk  
and relations (10). Then the second step is repeated with the material properties (10) and the new density 

2( )eff
stepρ  until the self consistent condition (8) is satisfied. Finally, from the relation (9), the frequency 

dependent effective phase velocity ( )ωeff
dV  and the attenuation coefficient ( )ωα eff

d
, are computed.  

5 COMPARISON OF RESULTS 

Due to space limitations only a few results are presented herein. They correspond to the case of dry sand with 
E=338 MPa, G=137 MPa, 3=1580kg/mgρ  for the grain matter and volume fraction of grains =0.6gV  or void 
ratio e = 0.667. Thus, one has 3948kg/mg gVρ ρ= = . Figures 3 and 4 show the dispersion curves for P and S 
waves, respectively, as obtained by the four methods considered in this work, i.e., the experimental, the two 
analytical and the numerical method. The analytical method of porous elasticity [7] was used with material 
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coefficient ratios 7 2/ 24×10 N/mα δ =  and 2 26 4 2/ 92×10 N/m sβ δ = , while that one of gradient elasticity[18] with 
material constants -555×10 mg =  and /1.034 mh g=  as well as -516.5×10 mg =  and g/1.030mh = . 

One can observe that for both types of waves (P and S) all the methods are in agreement for high frequencies 
for which no dispersion is essentially observed. However, for low frequencies, there is disagreement between the 
methods. Here the experimental method again indicates zero dispersion, while the analytical method of gradient 
elasticity [18] indicates an almost zero dispersion, which however, shows a slight increase for high frequencies. 
On the other hand, the analytical method of porous elasticity [7] and the numerical method IEMA/BEM indicate a 
rapid increase of phase velocity with decreasing values of frequency in the low frequency range. More 
specifically, the analytical method approaches infinite values of velocity for frequencies approaching zero, while 
the numerical method does the same for finite values of frequency ( )80 KHzf ≤ . The similar behavior of the last 
two methods can be attributed to the fact that both model dry sand as a porous elastic solid. The gradient 
elasticity method [18] has a different behavior because it incorporates microstructural effects in a continuum 
setting. However, it approaches experimental results better than the other methods, eventhough exhibits almost 
zero dispersion contrary to expectations in view of its internal microstructure. However, a slight dispersion 
increase for high frequencies is noticeable, especially for S waves. Experimental results show zero dispersion. 
However, measurements near very small frequencies ( )5kHzf ≤  cannot be considered as reliable, leaving a 
question whether or not there is really dispersion in that range. 
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Figure 3. Dispersion curves for P waves 
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Figure 4. Dispersion curves for S waves 
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6 CONCLUSIONS 

On the basis of the preceding analysis and discussion the following conclusions can be stated: 
1) Experimental results exhibit zero dispersion for all frequencies, eventhough measurements for very low 

frequencies cannot be considered as very reliable. 
2) The analytical method of dipolar gradient elasticity due to Mindlin [18] shows results very close to the 

experimental results, eventhough the values of velocities are always above the experimental ones. 
3) The analytical method of porous elasticity due to Cowin and Nunziato [7] and the numerical method of 

IEMA/BEM [14, 15] agree with the experimental results only for high frequencies and exhibit values of 
velocity approaching infinity for low frequencies. 

4) It is apparent that more in depth investigations are needed in order to more clearly understand the 
dynamic behavior of dry sand and assess the performance of the various analytical and numerical 
models in connection not only with wave dispersion, but in addition, with wave attenuation and the 
solution of wave propagation boundary value problems in dry sand. 
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Abstract. The dependence of the mechanical properties of rock-like materials on the specimens size is presented 
together with a statistical analysis of the parameters governing the phenomenon. The phenomenon, known as 
size effect, is studied for the case of the porous stone of Cefallonia, a natural building stone considered as a 
candidate substitute of the porous stone of Kenchreae, the material used by ancient Greeks for the erection of 
the Asklepieion of Epidauros. Uniaxial compression tests were carried out using both cubic and cylindrical 
specimens of various sizes and the basic mechanical properties were determined by appropriate analysis of the 
test data. The results exhibited clearly the dependence of the mechanical properties on the dimensions of the 
specimens and also indicated that the dependence is not the same for the cylindrical and the cubic specimens. A 
statistical analysis of the data followed using appropriate dummy variables for the factors describing the 
specimens. Interesting conclusions, concerning the mutual dependence of the mechanical properties of the 
material, were drawn from the correlations between the variables. Finally it was found that the most 
appropriate distribution for describing the experimental data is the Lognormal rather than the Normal one. 
 
1 INTRODUCTION 
Restoring and conserving an ancient monument is a complicated multidisciplinary scientific task. A series of 
problems are to be considered and solved before decisions are made. These problems vary from elementary 
ones, such as the strength and deformability of the materials, to rather complex ones, such as the preservation of 
the structural system, the determination of the minimum interventions, their reversibility and of course their 
durability. Archaeologists, architects and civil engineers collaborate in order to meet the final target, the 
extension of life of the monument. The decisions are usually a compromise between various, and often 
contradictory, points of view. 
      The structural stability of the monument is, of course, the most important among the problems of the experts 
working for the restoration; however it is outweighed in public perception by the aesthetics of the surface of the 
stone. The later is particularly acute in the case of temples made of limestone, since this material has softer and 
harder areas weathering differently. The problem is exacerbated in case large fragments of structural elements, 
or whole elements of the structure, are missing and have to be replaced. The ideal solution is to have access to 
the source of the authentic material. Unfortunately this is the exception rather than the rule. In most cases there 
are no known functioning quarries of the desired material or the areas of the ancient quarries have been built 
over. In such a case a new stone has to be chosen as a substitution material. The substitution stone and the 
authentic one should react similarly to environmental influences, mechanical loading and natural wear and 
weathering. 
      This paper focuses on the behaviour of the porous stone of Cefallonia, a stone considered as a candidate sub-
stitute for the Kenchreae porous stone, used by ancient Greeks for building the Epidaurean Asklepieion, the 
most celebrated healing centre of the ancient world. The authority and radiance of Asklepios, as the most 
important healer god of antiquity, brought to the sanctuary financial prosperity, which in the 4th and the 3rd 
centuries BC enabled the implementation of an ambitious building program aimed at housing the worship in 
monumental buildings. The extensive remains of the site have been brought to light during excavations 
conducted on behalf of the Archaeological Society at Athens since the late nineteenth century to the present day. 
The responsibility for the site preservation lies since 1984 with the “Committee for the Preservation of the 
Epidauros Monuments”. 
      The study of the Cefallonia porous stone is associated with the restoration of three monuments of the Askle-
pieion, namely the circular building of Tholos (the healing god’s assumed subterranean dwelling place), the 
Avaton or Enkoimeterion (a large stoa used for the incubation and cure of the sick) and the Propylon of the 
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Gymnasium (a building complex used for the sacred meals). All three follow the same construction principles 
regarding the choice of material. Their foundations are built of the locally available weak calcareous 
conglomerate, known as foundation porous stone. The main part of their upper structure is built of the 
Kenchreae porous stone. Other stones have been used depending on the particular design and functional 
requirements of each monument; for example local hard limestone, both red and grey, as well as white marble 
were used where sculptures are involved. 

2 THE SIZE EFFECT  
The fact that the nominal strength of structures changes by scaling their size is long ago well known in the 
engineering community under the term “size-effect”. Indeed the dependence of the strength of ropes with 
constant cross sectional area on their length was studied by Leonardo da Vinci who concluded that “if two ropes 
have the same thickness the longest is the weaker” [1]. However, it was only at the beginning of the twentieth 
century that the first quantitative results concerning the dependence of the nominal strength of glass fibers on 
their diameter were published by Griffith [2]. In fact this dependence is caused by the dimensional inhomo-
geneity between the stress σ ([F][L]-2) and the stress intensity factor KI ([F][L]-3/2), which leads to a -1/2 constant 
slope of the dependence of the nominal strength versus the structural size in a bilogarithmic diagram [3].  

From this point on and for almost half a century the size effect was attributed to the statistical nature of the 
distribution of flaws within a structure and it was described by the “weakest-link” concept introduced by Fisher 
and Tippett [4] and developed by Weibull [5]. A non-statistical approach did not appear during this period and it 
was only at the beginning of 1970’s when Walsh [6] published results for the fracture of concrete that could not 
be described by the purely statistical approach of the size fact. This discrepancy, and similar ones observed ex-
perimentally for other materials, placed serious limitations on the use of the statistical approach. The main point 
of scepticism was the fact that the power law form of the Weibull theory for the nominal strength implies the ab-
sence of any characteristic length. Such a conclusion is unacceptable for the materials characterized as quasi-
brittle which exhibit a finite fracture process zone. Thus the development of new theories for the description of 
the size-effect was motivated. Today two basic approaches are identified, beyond the classical statistical theory: 
the deterministic energetic theory [7]; and the theory of crack fractality [8]. 

The first one, introduced by Bažant is based on the observation that the failure of quasibrittle materials is 
characterized by both energy and stress quantities, i.e. the fracture energy, Gf, and the tensile strength, ft. Dimen-
sional analysis indicates that such a material possess a characteristic length, lo, depending on the size of the fra-
cture process zone [7]. The theory has been applied in a variety of problems (structures with pre-existing 
notches, structures failing at crack initiation right after the Fracture Process Zone has formed) and types of 
structures (with positive geometry having no notches and pre-existing large cracks or with positive geometry 
with initial notches) [9,10]. Following Bažant [10] the nominal strength for structures with preexisting notches, 
σN, is given as: 
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In this equation B is a dimensionless parameter depending on the geometry, D is the characteristic size of the 
specimen, Do is a geometry dependent parameter, E is the modulus of elasticity, αo is the initial crack length, 2cf 
is the length of the fracture process zone and g(αo) the dimensionless energy release rate according to the LEFM.  

The second theory, introduced by Carpinteri [8], relates the size effect to the fractal nature of crack surfaces. 
According to this approach the scaling law of the nominal tensile strength reads as [11]: 
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The dimensionless term (l0/D) in the above equation is controlled by the characteristic length of the material, l0, 
and represents the variable influence of disorder on the mechanical behavior.  

Both theories were introduced for tensile loading of structures with preexisting cracks or notches, for which 
the failure is caused by the localization of the strain, which in turn results in a finite size fracture process zone. 
However, it is believed today that the strain localization is the cause of failure also for structures under uniaxial 
compression, the difference being that the damage zone is of larger extent. For the case of concrete structures 
under uniaxial compression Kim and Yi [12] proposed a modification of Bažant’s law for the dependence of the 
compressive strength, fo, on the dimensions of the specimen, assuming a ratio of height-to-diameter equal to 2: 
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In this equation da stands for the maximum aggregate size, B, m, λ1 are constants, fc΄ is the compressive strength 
of the standard cylinder, d is the diameter of the specimen and α is the crack band length. 

Understanding the size effect is of paramount importance for the engineering community since the vast 
majority of laboratory tests (~85%) are carried out using specimens with characteristic dimension of the order of 
10 cm to 40 cm [9]. These results are then extrapolated in order for conclusions to be drawn for structures with 
dimensions of much larger size, of the order of a few meters (Fig.1). Taking into account the unavoidable 
scattering of the experimental results for quasi brittle materials, it becomes obvious that for the design of large 
structures to be safe both reliable experimental results as well as a sound theoretical interpretation of the size 
effect are necessary. Unfortunately up to now, and despite intensive scientific research, definite conclusions con-
cerning the laws governing the transition region from the size of the specimens used in the laboratory to the size 
of the real structures have not been reached and as a result the design codes are still based on empirical or semi-
empirical formulas obtained from curve fitting to the experimental results [9]. 

Figure 1: Number of laboratory tests versus the characteristic dimension of the specimens. 
 
For obvious reasons the phenomenon has been studied extensively, both theoretically and experimentally, for 

the case of concrete, since it is the material most widely used in modern structures. The experimental data avail-
able for other structural materials and natural building stones are rather limited. In this direction data concerning 
the size effect for a widely used natural building stone, the porous stone of Cefallonia, are presented in the fol-
lowing paragraphs, together with some additional data for marble, in an effort to establish the dependence of 
some mechanical constants and parameters on the size of the specimens used in the experiments.  

3 THE MATERIAL 
The Cefallonia porous stone is a relatively soft stone from the island of Cefallonia, in the Ionian sea, with clearly 
layered structure. It is characterized by high porosity (~ 38%) and nets of internal pores and surface vents (Fig. 
2a). It contains about 55% CaO and 0.3% MgO. Its bulk density is equal to about 1.47 g/cm3, its absolute 
density is 2.38 g/cm3 and the void ratio is 0.61. The texture is relatively massive and its color is usually whitish-
beige. 

  

                      (a)                     (b)                        (c) 
Figure 2: A close view of the surface of the material just after it was quarried (a), and typical cylindrical and 

cubic specimens after being tested (b), (c). 

4 EXPERIMENTAL PROCEDURE AND RESULTS                                                                                                               
Long series of uniaxial compression tests were executed with cubic (Code: KCCu0DN) and cylindrical (Code: 
KCCy0DN) specimens of three different sizes (small, medium and large). For the characterization of the spe-
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cimens the symbols used were K for Cefallonia, C for compression, Cu for cubes and Cy for cylinders, L for the 
lubrication conditions of the end platens (0 for dry and 1 for lubricated conditions), D for the dimension (S for 
small, M for medium and L for large specimens) and N for the number of the specimen (01, 02,...). The tests 
were carried out with the aid of a very stiff hydraulic Amsler loading frame of capacity 1 MN, equipped with an 
electronic data acquisition and storage system. The stiffness of the frame was considered infinite since the 
maximum load recorded did not exceed 1/5 of the capacity of the frame. This is very important in case the post-
peak behaviour of the material is to be studied. The load was applied statically and perpendicular to the material 
layers.  

Special care was taken during the preparation of the specimens to ensure that the bases of the specimens 
were parallel to each other and perpendicular to the load direction. In addition a special semi-spherical head 
interposed between the loading plate and the moving piston ensured further the coaxiality between the load and 
the axis of the specimen. For the measurement of axial displacements three LVDT’s (Linear Voltage Displace-
ment Transducers) of sensitivity equal to 10-6 m were used, placed at 120o to each other in order to check the 
symmetry of the loading. The detected rotation of the end platens was negligible for the vast majority of tests.  

Characteristic axial stress - axial strain curves are plotted in Fig. 3. It can be seen that for the majority of the 
experiments, after an almost linearly elastic portion a rather abrupt drop of the stress level was observed. Then 
the stress increased again exceeding, in some cases, even the level of the initial peak value. From this point on, 
the stress-strain curves become almost horizontal or slightly inclined with a very small negative slope up to the 
final disintegration of the specimen. By appropriate analysis of the raw experimental data the basic mechanical 
properties of the material were determined. The quantities calculated are the peak stress, σpeak, the peak strain, 
εpeak, the modulus of elasticity, E, the stress drop after the peak load, δσ, the elastic strain energy density 
absorbed by the material up to the peak load or the first visible crack (Eel) and the respective energy absorbed 
after the peak load (Epl). The mean values of these properties are summarized in Table 1 for all classes of tests. 

                           (a)                                                     (b) 
Figure 3: Axial stress versus axial strain for characteristic tests: 

(a) Small cubes (KCCu0S1-6) and (b) Small cylinders (KCCy0S1-6). 
 
 

Specimens
’ Class 

σpeak 
(MPa) 

εpeak 
(-) 

E 
(MPa) 

δσ 
(MPa) 

Eel 
(MPa) 

Epl 
(MPa) 

KCCu0SN 14.668 0.0046 3738.29 3.052 0.032 0.370 
KCCu0MN 27.858 0.0061 8199.77 4.152 0.067 0.478 
KCCu0LN 24.716 0.0061 9270.9 1.746 0.053 0.367 
KCCy0SN 24.966 0.0150 3278.71 0.810 0.214 0.949 
KCCy0MN 24.942 0.0050 7303.48 2.290 0.054 0.334 
KCCy0LN 19.619 0.0036 8534.62 10.60 0.028 0.126 

        

Table 1: Mean values of the mechanical properties of the porous stone of Cefallonia. 
 

In order to study the size effect the mean values of the above determined mechanical properties were plotted 
versus the size of the specimen. A comparative presentation of the results between cubic and cylindrical speci-
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mens is shown in Figure 4 for the peak stress and the elastic strain energy density. The results clearly exhibited 
the dependence of these mechanical properties on the dimensions of the specimens as well as on the shape of the 
specimens. The most striking conclusion, however, is that the dependence is of different nature for the case of 
cylinders (monotonic dependence) in comparison with that for cubic specimens (non-monotonic dependence). It 
is obvious that neither of the above mentioned theoretical approaches, i.e. the energetic-deterministic and the 
fractal one can describe both types of the size effect characterizing the specific material (at least in their present 
form), suggesting that the phenomenon should be studied further, both theoretically and experimentally. The 
dependence of the other mechanical properties on the size of the specimen is of similar nature. 

 (a)                                                                                (b) 
Figure 4: The dependence of (a) the peak stress and (b) the elastic strain energy density  

on the size of the specimens. 
 

5 STATISTICAL ANALYSIS 
The statistical analysis of the experimental data was conducted with the aid of the statistical program MINITAB. 
Graphical tests were carried out for all dependent variables (peak stress, peak strain, modulus of elasticity, drop 
in stress, elastic and inelastic energy) in order to detect the distribution best fitting the experimental data. The 
sample values were plotted versus the expected values of the hypothetical distribution (Weibull, Normal, Ex-
ponential, Gumbel, Lognormal, Logistic, Log-logistic), as seen in the probability plots shown in Figures 5 and 6. 
It was concluded from this analysis that the most appropriate distribution for the description of the present set of 
experimental data is the Log-normal distribution, since all plots for this distribution formed an almost straight 
line for all variables. Consequently, all values were transformed logarithmically in order to apply the standard 
statistical procedures that assume the Normal distribution. 

             (a)                                                                         (b)  
 

Figure 5: Probability plot for the Log-normal distribution for  
 (a) The peak stress and (b) The modulus of elasticity. 
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 (a)                                                                    (b) 
 

Figure 6: Probability plot for the Log-normal distribution for (a) The elastic energy and (b) The drop in 
stress. 

 
As a second step the correlation coefficients between every pair of variables were estimated as:  
 

( )( )

( ) ( )2 2

i i
i

xy

i i
i i

x x y y
r

x x y y

− −
=

− −

∑

∑ ∑
 

 
High correlations were detected between specific mechanical properties for most classes of specimen, even 
though the number of specimens in each class was rather small. A summary of these conclusions is presented in 
Table 2. Descriptive statistics (mean ±  standard deviation on the logarithmic scale) are summarized in Table 3. 

 
Specimen class n Significant correlations 

KCCu0SN 7 σpeak- δσ: 0.86;   σpeak- εpeak: -0.81;  εpeak- δσ: -0.73;  Ε- δσ: 0.71 
KCCu0MN 3 None 
KCCu0LN 5 εpeak-Eel: 0.92;    εpeak-E: -0.85 
KCCy0SN 6 None  
KCCy0MN 5 E-Epl: 0.87 
KCCy0LN 5 σpeak- δσ: 0.97;  εpeak-δς: 0.90;  σpeak- εpeak: 0.94;  Ε- δσ: 0.91; σpeak-E:  0.92;   

εpeak-E: 0.88;   Eel- δς: 0.88;  Eel- σpeak: 0.95; εpeak-Eel:  0.99;  Eel-E: 0.86 
 
   Table 2: Significant correlations (P≤0.05) between the mechanical properties for each class of specimens. 
 

 
Table 3: Descriptive statistics of the tests. 

As a final step regression analysis was carried out in order to examine to what extent the mechanical pro-
perties of the specific stone are influenced by the shape and size of the specimens. It was assumed that the 

Specimen 
class 

ln(σpeak) 
(MPa) 

ln(εpeak) 
(-) 

lnE 
(MPa) 

ln(δσ) 
(MPa) 

ln(Eel) 
(MPa) 

ln(Epl) 
(MPa) 

KCCu0SN 2.67± 0.18 5.39± 0.19 8.20± 0.27 0.81± 0.94 3.46± 0.14 1.00± 0.15 
KCCu0M

N 
3.29± 0.36 5.11± 0.14 8.96± 0.42 0.95± 1.49 2.71± 0.16 0.75± 0.18 

KCCu0LN 3.19± 0.21 5.19± 0.50 9.04± 0.50 0.38± 0.66 3.01± 0.47 1.00± 0.11 
KCCy0SN 3.20± 0.17 4.31± 0.51 7.99± 0.50 0.73± 1.33 1.68± 1.57 0.09± 0.31 
KCCy0M

N 
3.20± 0.18 5.35± 0.34 8.86± 0.31 0.49± 0.95 2.98± 0.38 1.14± 0.31 

KCCy0LN 2.91± 0.43 5.64± 0.22 8.98± 0.41 2.03± 0.96 3.67± 0.59 2.15± 0.46 
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values of each property (dependent variable Y) are affected by two factors, A and B, which interact mutually. 
Factor A is related to the specimen’s shape and has two levels (cubes and cylinders). Factor B is related to the 
specimen’s size and has three levels (small, medium and large). Appropriate dummy variables (X1, Z1, Z2, W1, 
W2) were introduced for the factors describing the specimens defined as follows:           

                         

For factor A:  
⎩
⎨
⎧

=
cubes,1

cylinders,0
X1  

For factor B: ( )
⎪
⎩

⎪
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⎧
=

specimenseargl)0,0(
specimensmedium)0,1(
specimenssmall)1,0(

zz 2,1  

 
For the interaction between the factors, AB:  W1= X1 Z1 and W2= X1 Z2  
The linear model fitted to the data had finally the form: 

 
ε+δ+δ+γ+γ+β+β= 22112211110 WWZZXY  

 
Interesting conclusions were drawn from this analysis concerning the statistical significance of the depen-

dence of each mechanical property on the size and shape of the specimens. In particular, in most of the analyses 
one or more of the interaction terms is significant, showing dependence on size-shape combinations rather than 
on size and on shape independently. A summary of the regression results is shown in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Summary of the results of regression analyses:  Estimated regression coefficients for each factor with 
standard errors in parentheses.  Statistically significant (P≤0.05) coefficients are in italics. 

 
6 DISCUSSION AND CONCLUSIONS 
The mechanical behavior and failure of the Cefallonia porous stone as well as the dependence of its mechanical 
constants on the size and the shape of the specimens were studied. The most striking conclusion of the study is 
that the size effect for this material appears to be irregular, at least for some of the parameters studied.  

Indeed, both the compressive strength (expressed in terms of the peak stress recorded just before the first 
stress drop or the formation of the first visible crack on the lateral surface of the specimen) of this material as 
well as the strain energy density absorbed up to the peak load depend on the size of the specimens according to a 
non-monotonic law in the case of cubic specimens. Such behaviour is in accordance with the predictions of the 
fractal theory of size effect [11]. Similar non-monotonic behaviour for the compressive strength has been also 
observed by Vardoulakis and Kourkoulis [13] for specimens made of Dionysos marble, the material used for the 
restoration of the Parthenon Temple (Fig.7a), by Kourkoulis, Ninis and Bakolas [14] for specimens made of 
conchyliates shell stone, the material used for the erection of the Zeus Temple at Olympia and by Thuro et al. 
[15] for a number of commercial building stones (Fig. 7b).  

On the other hand, for the cylindrical specimens the size effect appears to be monotonic in accordance with 
the predictions of the energetic-statistical theory [7] for the nominal strength at failure for specimens of different 

Factors  σpeak 
(MPa) 

E 
(MPa) 

Eel 
(MPa) 

εpeak 
(-) 

Epl 
(MPa) 

δσ 
(MPa) 

Constant  2.91 
(0.12) 

8.98 
(0.18) 

-3.67 
(0.19) 

-5.64 
(0.16) 

-2.15 
(0.13) 

2.03 
(0.45) 

Size X1 0.28 
(0.16) 

0.06 
(0.26) 

0.66 
(0.27) 

0.45 
(0.22) 

1.14 
(0.18) 

-1.65 
(0.63) 

Z1 0.30 
(0.16) 

-0.12 
(0.26) 

0.69 
(0.27) 

0.29 
(0.23) 

1.01 
(0.18) 

-1.54 
(0.63) 

Shape 

Z2 0.29 
(0.16) 

-0.99 
(0.24) 

1.99 
(0.26) 

1.32 
(0.22) 

2.05 
(0.17) 

-2.77 
(0.67) 

W1 -0.20 
(0.240 

0.04 
(0.39) 

-0.38 
(0.42) 

-0.20 
(0.35) 

-0.76 
(0.27) 

2.11 
(1.05) 

Interaction 

W2 -0.81 
(0.22) 

0.15 
(0.34) 

-2.43 
(0.36) 

-1.52 
(0.30) 

-2.05 
(0.24) 

3.19 
(0.89) 

R2 (%) 49.6 58.6 75.4 65.0 85.8 45.2 
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height/diameter ratio. It should be mentioned, however, that the sample of the present series of tests was rather 
limited. Additional tests are required with specimens of different dimensions cut from the same material (and the 

same block) in order for safer conclusions to be drawn and for a clearer understanding of the size effect.  
                                                

The statistical analysis revealed a number of very interesting conclusions for the size effect which can be 
summarized as follows: a) The Log-normal distribution rather than the Normal should be used for describing the 
distributions of the relevant variables, b) Various significant correlations were found for the different 
mechanical properties for each specimen class, c) All the mechanical properties were found to depend 
statistically significantly on both the size and shape of the specimens except that the modulus of elasticity did 
not depend on shape. 
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Abstract. We study the dynamics of a system of coupled linear oscillators with a multi-DOF end attachment 
with essential (nonlinearizable) stiffness nonlinearities. We show numerically that the multi-DOF attachment 
with damping can passively absorb broadband energy from the linear system in a one-way, irreversible fashion, 
acting in essence as nonlinear energy sink (NES). Strong passive targeted energy transfer from the linear to the 
nonlinear subsystem is possible, over wide frequency and energy ranges. We numerically demonstrate that the 
topological structure of the periodic orbits in the frequency – energy plane of the underlying hamiltonian system 
greatly influences the strength of targeted energy transfer in the damped system, and governs to a great extent 
the overall transient damped dynamics. This work may be regarded as a contribution towards proving the 
efficacy the utilizing essentially nonlinear attachments as passive broadband boundary controllers. 
 
 
1 INTRODUCTION 

We study the dynamics of a two-degree-of-freedom (DOF) linear system coupled to a multi-DOF essentially 
nonlinear attachment. Interesting energy exchange phenomena can occur in this type of coupled oscillators, 
including numerous coexisting branches of subharmonic periodic solutions, and one-way, irreversible transfer of 
energy from the linear oscillator to the nonlinear attachment, termed targeted nonlinear energy pumping. Such 
energy exchanges are often associated with transient or sustained resonance captures [1,2], whereby the 
nonlinearizable, nonlinear attachment engages in transient resonance with the linear oscillator, before the 
dynamics ‘escape’ to a different regime of the motion. In cases where the nonlinear attachment acts as passive 
recipient of vibration energy from the linear oscillator, it essentially acts as nonlinear energy sink (NES). 

In this work we show that multi-DOF NESs are capable of passively absorbing broadband energy from the 
primary linear systems to which they are attached. Moreover, this targeted energy transfer is more profound 
compared to analogous transfers in single-DOF NESs. Alternative configurations of single-DOF NESs were 
considered in previous works [3,4], whereas alternative mechanisms of targeted energy transfer were studied by 
other authors [5-8].  

2 NUMERICAL EVIDENCE OF PASSIVE ENERGY TRANSFER 

The system considered is depicted in Figure 1. It consists of a two-degree-of-freedom (DOF) linear primary 
oscillator connected through a weak linear stiffness of constant ε  (which is the small parameter of the problem, 
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0 1< ε << ) to a three-DOF nonlinear attachment possessing essential stiffness nonlinearities. Each mass of the 
primary system is normalized to unity, and the stiffnesses of the nonlinear attachment obey cubic laws with 
constants 1 2C and C , and have no linear terms; thus they are essentially nonlinear (nonlinearizable); each mass 
of the nonlinear attachment is equal to µ , and both linear and nonlinear subsystems possess linear viscous 
dampers with small constants ελ . Assuming that impulsive excitations 1 2F (t) and F (t)  are applied to the 
primary system no direct forcing excites the nonlinear attachment, the equations of motion are, 

( )
( )

( )

2
1 0 1 2 1 1

2
2 0 2 1 1 2 2

3
1 1 1 2 1 2 1 2

3 3
2 1 2 1 2 2 3 2 1 3

3
3 2 3 2 3 2

u ( )u u u F (t)

u ( )u u v u F (t)

v C (v v ) (v u ) v v 0

v C (v v ) C (v v ) 2v v v 0

v C (v v ) v v 0

+ ω +α −α + ελ =

+ ω +α + ε −α − ε + ελ =

µ + − + ε − + ελ − =

µ + − + − + ελ − − =

µ + − + ελ − =

                              (1) 

In the limit 0ε →  the system decomposes into two uncoupled oscillators: a two-DOF linear primary system 

with natural frequencies 2
1 0 2ω = ω + α  2 0 1and ω = ω < ω , corresponding to out-of-phase and in-phase linear 

modes, respectively; and a three-DOF essentially nonlinear oscillator with a rigid body mode, and two flexible 
nonlinear normal modes – NNMs. 

The aim of this work is to study the dynamics of this system, and to show that it is possible to achieve 
passive and irreversible targeted energy transfer (energy pumping) from the directly forced primary system to 
the nonlinear attachment; in that context, the nonlinear attachment will act as nonlinear energy sink (NES). This 
work differs from previous works on targeted energy transfer in two basic aspects: first, it considers the 
possibility of multi-frequency targeted energy transfer from multiple modes of the primary system to multiple 
(nonlinear) modes of the NES; in addition, it shows that complex transitions in the damped dynamics can be 
related to the topological structure of the periodic orbits of the corresponding undamped system. 

The study of the damped dynamics is performed initially through direct numerical simulations of the 
equations of motion and post processing of the transient results. An extensive series of numerical simulations 
was performed over different regions of the parameter space of the system, in order to establish the system 
parameters for which optimal passive energy transfer from the primary system to the NES occurs. Moreover, by 
varying the linear coupling stiffness α of the primary system we studied the influence of the closeness of the 
natural frequencies 1 2andω ω  of the two linear (‘uncoupled’) modes of the primary system on this targeted 
energy transfer. The numerical simulations were carried out by assigning different sets of initial conditions of 
the primary system, and always considering the NES to be initially at rest. To assess the degree of passive 
targeted energy transfer to the NES, the following energy measure was numerically computed, 

( ) ( )
t

2 2
1 2 2 3

in 0

E(t) v ( ) v ( ) v ( ) v ( ) d
E
ελ ⎡ ⎤= τ − τ + τ − τ τ⎣ ⎦∫                                              (2) 

where inE  is the input energy provided to the system by the initial conditions. This nondimensional energy 
measure represents the instantaneous portion of input energy dissipated by the NES up to time instant t. Clearly, 
for transient excitation of the passive system (1) this instantaneous energy measure is expected to reach a 
definite asymptotic limit: 

NES t 1E lim E(t)>>=                                                                     (3) 
This asymptotic energy measure represents the portion of input energy eventually dissipated by the NES. In 

what follows, we use the asymptotic evaluation (3) as a measure of the efficiency of targeted energy transfer 
from the primary system to the NES. 

The numerical simulations indicated that, for small values of the perturbation parameter ε , enhanced passive 
targeted energy transfer from the primary system to the NES could be achieved for small values of the mass 
parameter µ  and nonlinear characteristic 2C  of the NES, with all other parameters being quantities of O(1). 
This combination of system parameters led to large relative internal displacements in the NES, which, in turn, 
produced large values of the dissipated energy measures (2) and (3). Accordingly, in the following numerical 
simulations the system parameters were assigned the values: 

2 2
1 2 00.2, 1.0, C 4.0, C 0.05, 0.01, 0.08, 1.0ε = α = = = ελ = µ → ε µ = ω =  

The results presented in this work demonstrate the potential of system (1) to passively channel energy from 
the directly excited primary system to the nonlinear attachment, in a one-way, irreversible fashion. 

In the following numerical simulations three types of impulsive forcing conditions - IFCs (or, equivalently, 
initial conditions) for the primary system are considered: 

I1: Single impulse forcing, 1F (t) Y (t)= δ  (or, equivalently, 1u (0) Y= ), and all other initial 
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conditions zero. 

I2: In-phase impulsive forcing, 1 2F (t) F (t) Y (t)= = δ  and all other initial conditions zero. 
I3: Out-of-phase impulsive forcing, 1 2F (t) F (t) Y (t)= − = δ  and all other initial conditions zero. 

In Figures 2-4 we depict the energy measure NESE  as function of the magnitude of the impulse Y and the 
linear coupling stiffness of the primary system α, for the above types of IFCs. The following conclusions are 
drawn from these results. 

In all cases, a significant portion (reaching as high as 86% for IFC I1; 92% for IFC I2; and 90% for IFC I3) 
of the input energy gets passively absorbed and dissipated by the NES. This significant passive targeted energy 
transfer occurs in spite of the fact that the (directly forced) primary linear system and the NES have identical 
dashpots. Moreover, the energy transfer is broadband. 

Whereas the portion of energy eventually dissipated at the NES, NESE , depends on the level of energy input 
and the closeness of the natural frequencies of the primary system, this dependence is less pronounced compared 
to single-DOF NES. This is concluded by comparing the plots of Figures 2-4 with results reported in earlier 
works where grounded single-DOF NESs were considered [4]. The enhanced targeted energy transfer achieved 
through the use of multi-DOF NESs is concluded from the comparative plots of Figure 5, where the energy 
measure NESE  is depicted for a system with 0.2α = , and IFCs I1 and I3. The system with single-DOF NES 
whose response is depicted in that plot is identical to that of Figure 1, but with the multi-NES replaced by a 
single mass 3εµ  grounded by means of a cubic stiffness nonlinearity with characteristic 3Cv , C 1.0= , and a 
weak viscous damper ελ . We note the significant improvement of targeted energy transfer achieved by using 
the multi-DOF NES, and the less pronounced dependence on the magnitude of the input impulse Y in that case. 

Particularly notable is the capacity of the multi-DOF NES to absorb a significant portion of the input energy 
even at low values of the applied impulse. Such low-energy targeted energy transfer is markedly different from 
the performance of single-DOF NESs, which, as reported in previous works [4,8], is ‘activated’ only when the 
magnitude of input energy exceeds a certain critical threshold; for the case of multi-DOF NES such a critical 
energy threshold can only be detected in the energy plot for 4α =  of Figure 4, i.e., only in the case when the 
primary system possesses well separated natural frequencies and is excited through out-of-phase initial 
conditions. In all other cases (Figures 2-4) no such critical input energy threshold is identified, for the multi-
DOF NES. This interesting feature of the dynamics will be reconsidered in more detail in a later section. 

Of particular interest is the plot of NESE  in Figure 4 corresponding to 1α =  (corresponding to natural 
frequencies of the uncoupled primary system 1 1.7321ω = , 2 1.0 rad / secω = ) and out-of-phase impulse 
excitations. For small impulse magnitudes, the portion of energy dissipated at the NES develops a local 
minimum before reaching higher values. To get some insight into the dynamics of targeted energy transfer in 
that region, in Figures 6 and 7 we depict the numerical Cauchy wavelet transforms (WTs) of the internal relative 
NES displacements [ ] [ ]2 1 3 2v (t) v (t) and v (t) v (t)− −  at points labeled A and B in Figure 4; point A is a case 
where no rigorous energy transfer to the NES, in contrast to point B where nearly 90% of the input energy gets 
absorbed and dissipated by the NES. The WT can be viewed as a basis for functional representation but is at the 
same time a relevant technique for time-frequency analysis. In contrast to the Fast Fourier Transform (FFT) 
which assumes signal stationarity, the WT involves a windowing technique with variable-sized regions. Small 
time intervals are considered for high frequency components whereas the size of the interval is increased for 
lower frequency components, thereby giving better time and frequency resolutions than the FFT. The plots 
shown represent the amplitude of the WT as a function of frequency (vertical axis) and time (horizontal axis). 
Heavy shaded areas correspond to regions where the amplitude of the WT is high whereas lightly shaded regions 
correspond to low amplitudes. Such plots enable one to deduce the temporal evolutions of the dominant 
frequency components of the signals analyzed. Comparing the two responses of Figures 6 (point A) and 7 (point 
B), it is clear that the enhanced energy transfer in the later case is due mainly to the large-amplitude transient 
relative response [ ]3 2v (t) v (t)− ; judging from the corresponding WT, this time series consists of a ‘fast’ 
oscillation with frequency close to 1ω , modulated by a large-amplitude ‘slow’ modulation. Moreover, this 
modulated response is not sustained over all times; rather, it takes place only at the initial phase of the motion, 
and escapes this regime of the motion at approximately t 50= . Similar behavior is observed for the time series 
of the other relative response, [ ]2 1v (t) v (t)− , in Figure 7. It is well established [4,13,14] that this represents a 
transient resonance capture (TRC) of the NES dynamics on a resonance manifold near the out-of-phase linear 
mode of the uncoupled primary system, which results in enhanced and irreversible energy transfer from the 
primary system to the NES. Comparing to the responses of Figure 6 (where less significant energy transfer 
occurs), we note that the transient responses are dominated by sustained frequency components, indicating 
excitation of nonlinear modes, rather than occurrence of TRCs; the frequencies of some of the nonlinear modes 
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that are excited differ from the linearized natural frequencies 1 2andω ω , indicating the presence in the response 
of essentially nonlinear modes with no linear analogs. 

3 DAMPED TRANSITIONS IN THE FREQUENCY – ENERGY PLANE 

We wish to study in more detail the damped transitions associated with the peculiar behavior of the targeted 
energy transfer plot for 1.0α =  and impulsive forcing conditions I3 (depicted in Figure 4). More specifically, it 
was numerically found that when the linear system is excited by a pair of anti-phase impulses of magnitude Y, 
strong targeted energy transfer to the NES occurs at low values of the impulse (as much as 90% for Y=0.1); for 
increasing magnitude of the impulse the eventual energy transfer to the NES first decreases (reaching nearly 
50% for Y=1.0), before increasing again to high levels (up to nearly 90% for Y=1.5). Further increase of Y 
decreases the portion of input energy that is eventually dissipated at the NES. The damped transitions leading to 
this peculiar behavior of the energy transfer capacity of the NES are depicted and analyzed in Figures 8-10. We 
will superimpose the wavelet transforms of the NES relative displacements to the frequency energy plot of the 
periodic orbits of the underlying hamiltonian system with no damping (these were computed in [15]). 

In Figure 8 the damped response of the system is depicted for impulsive forcing conditions I3 and Y=0.1 
(i.e., impulses 1 2F (t) F (t) Y (t)= − = δ  and zero ICs). In this case both internal NES displacements 1 2[v (t) v (t)]−  
and 2 3[v (t) v (t)]−  follow regular backbone branches. The relative displacement 1 2[v (t) v (t)]−  has a dominant 
frequency component that approaches a linearized natural frequency with decreasing energy; by contrast, 

2 3[v (t) v (t)]−  has two strong harmonic components that approach two other linearized natural frequencies for 
decreasing energy, indicating multi-frequency transfer of energy simultaneously from two modes of the linear 
limiting system (5). Moreover, the same backbone branches are tracked by the response throughout the motion, 
and strong energy transfer occurs right from the early stage of the response. This explains the strong eventual 
energy transfer to the NES (~90%) that occurs for this low impulse excitation. 

By increasing the magnitude of the impulse to Y=1.0 the overall energy transfer from the linear to the 
nonlinear subsystem significantly decreases. The damped response in this case is depicted in Figure 9, were 
some major qualitative differences are observed compared to the previous simulation. Judging from the partition 
of the instantaneous energy among the linear and nonlinear subsystems, it is concluded that in the energy 
transfer is significantly delayed, which explains the weak eventual energy transfer to the NES (~50%). This 
delay is explained when one studies the wavelet transforms of the NES responses in the frequency – energy plot 
of Figure 9a. At the initial stage of the motion there occurs strong resonance capture of the damped motion by 
the out-of-phase mode of the linear subsystem; this results in a motion mainly localized to the (directly excited) 
linear subsystem, with a small portion of energy ‘spreading out’ to the NES. As energy decreases due to 
damping dissipation, the damped motion ‘escapes’ from out-of-phase resonance capture, and follows regular 
backbone branches; this results in strong energy transfer develops (as in the simulations of Figure 8), which, 
however, is delayed at a stage where the overall level of energy of the system is already small. Hence, no 
significant overall targeted energy transfer from the linear subsystem to the NES occurs in this case. 

Increasing the magnitude of the impulse to Y=1.5 enables the system to escape from the strong initial out-of-
phase resonance capture, leading to resumed strong targeted energy transfer. This is depicted in Figure 10, 
showing that the NES relative responses possess multiple strong frequency components, indicating that strong 
targeted energy transfer occurs at multiple frequencies. Note in this case the early strong energy transfer from 
the linear subsystem to the NES that results in an eventual targeted energy transfer of nearly 90%. 

4 CONCLUDING REMARKS 

The dynamical system considered in this work possesses complicated dynamics due to its degenerate 
structure. The system has strong passive targeted energy transfer capacity, leading, in some cases, to as much as 
90% of input energy in the linear subsystem being irreversibly transferred to, and dissipated at the nonlinear 
attachment; then the attachment acts in essence as nonlinear energy sink. The capacity of the attachment to 
irreversibly absorb broadband vibration energy was demonstrated numerically in this work, but it can also be 
analytically studied by reduction and local slow/fast partition of the damped dynamics. It was shown that multi-
DOF essentially nonlinear attachments may be more efficient energy absorbers than single-DOF ones, since they 
are capable of absorbing energy simultaneously from multiple modes of the linear subsystem, and over wider 
frequency and energy ranges. Passive targeted energy transfer can be related to transient resonance captures 
(TRCs) in the damped dynamics, whereby orbits of the system in phase space are captured transiently in 
neighborhoods of resonance manifolds. 
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Figure 1. Primary (linear) system 
with multi-degree-of-freedom 
(MDOF) nonlinear attachment 

Figure 2. Portion of energy eventually 
dissipated at the nes for varying values of single 
impulse Y (impulsive forcing condition I1), and 

coupling stiffness α of the primary system 
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Figure 5. Energy measures NESE  for primary systems with single- and multi-DOF NESs, and impulsive forcing 
conditions, (a) I1, and (b) I3 

 
 

 
Figure 6. Internal NES relative displacements for out-of-phase impulses (I3) with Y 1=  and 1α =  (point A in 

figure 4): (a) time series,  
     (b) Cauchy wavelet transforms 

 

A 

B 

Figure 3. Portion of energy eventually 
dissipated at the nes for varying values 
of single impulse Y (impulsive forcing 
condition I2), and coupling stiffness α 

of the primary system 

Figure 4. Portion of energy eventually 
dissipated at the nes for varying values of 

single impulse Y (impulsive forcing 
condition I3), and coupling stiffness α of the 

primary system; the letters A and B at the 
plot for 1α =  refer to the results depicted in 

figures 6 and 7. 

(a) (b) 
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Figure 7: Internal NES relative displacements for out-of-phase implulses (I3) with Y 1.5=  and 1α =  (point B in 

figure 4): (a) time series, (b) Cauchy wavelet transforms 
 
 
 

 
 
 
 
 
 
 

Figure 8: Damped responses for out-of-phase impulses Y=0.1 (impulsive forcing condition I3); (a) 
Cauchy wavelet transforms superimposed to the frequency – energy plot of the periodic orbits of the 

underlying hamiltonian system [9], (b) partition of instantaneous energy of the system. 
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Figure 9: (a) Cauchy wavelet transforms superimposed to the frequency – energy plot of the 

periodic orbits of the underlying hamiltonian system [9], (b) Damped responses for out-of-phase 
impulses Y=1.0 (impulsive forcing condition I3partition of instantaneous energy of the system, 
(c) Damped responses for out-of-phase impulses Y=1.5 (impulsive forcing condition I3partition 

of instantaneous energy of the system 
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Abstract. We focus attention on finite deformation micropolar plasticity theories developed previously, which 
deal with a second-order non-symmetric micropolar strain tensor and a second-order curvature tensor. The aim 
of the paper is to investigate the classical limiting plasticity models, which may be approached by these theories. 
The differences compared with a standard classical plasticity model consists in the constitutive equations 
governing kinematic hardening. With reference to torsional loading, this causes different responses essentially 
only in the so-called second-order effects. 
 
 
1 INTRODUCTION 

Micropolar models indicate the property that the Cauchy stress tensor is no longer symmetric and that so-
called couple stress tensors are present, which are thermodynamically conjugate to curvature tensors (see e.g. 
Mindlin[1], Eringen[2], de Borst[3], Steinmann[4]). Latter are expressed in terms of the spatial gradient of a 
micropolar rotation tensor, which is invoked to capture the effect of the underlying substructure of the overall 
material body. Phenomenological and crystal plasticity micropolar models have been proposed and investigated 
among others by Lippmann[5], Diopolder et al. [6] and Forest[7]. Generally, such models may be employed to 
capture size effects in the material response or to study strain softening material response and related 
localization phenomena in the framework of rate-independent plasticity (see e.g. Grammenoudis & 
Tsakmakis[8,9,10], de Borst & Mühlhaus[11], Mühlhaus & Vardoulakis[12], Steinmann & Willam[13]). 

The present paper is concerned with the micropolar plasticity theory developed in Grammenoudis & 
Tsakmakis[8,9,10]. This constitutive theory is formulated for finite deformations and incorporates nonlinear 
isotropic and nonlinear kinematic hardening. A limiting classical plasticity model, i.e. a resulting particular 
model with symmetric Cauchy stress tensor and vanishing couple stress tensors, is established in Grammenoudis 
& Tsakmakis[14,15]. The characteristic feature of the limiting classical model, compared with standard classical 
plasticity models, is the law for kinematic hardening. In fact, the back stress tensor is non-symmetric, even in the 
case of isotropic specific free energy functions, and the evolution equation governing kinematic hardening 
involves objective time derivatives of mixed Oldroyd type. With reference to torsional loading, this causes 
different responses essentially only in the so-called second-order effects. 

2 THE MICROPOLAR PLASTICITY MODELS 

Micropolar theories use as independent kinematical variables the deformation gradient tensor F  and the so-
called micropolar rotation tensor R . For formulating plasticity models, Steinmann[4] postulated the 
multiplicative decompositions of F  and R  into elastic and plastic parts, respectively: 

 
., pepe RRRFFF ==      (1) 

 
(For classical plasticity, the multiplicative decomposition of F  goes back to Lee (see e.g.[16])) Geometrically, 

pF  and pR  introduce a so-called plastic intermediate configuration. Based on Equations (1), a 

thermodynamically consistent theory for micropolar plasticity, exhibiting isotropic and kinematic hardening 
effects, has been proposed in Grammenoudis & Tsakmakis[8,9,10]. Using the notation introduced in 
Grammenoudis & Tsakmakis[8,9], the most relevant constitutive relations of that theory, relative to the plastic 
intermediate configuration, are given as follows. 
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Kinematics: 
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Kinematic hardening: 
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In these relations, the specific free energy is supposed to be an isotropic tensor function of its arguments and 
plastic incompressibility is assumed to apply, so that 1det =pF  or 0ˆ =ptrL . While Equations (2) represent 

polar decompositions, this is not the case for Equations (3). It is important to notice that the second-order tensors 

ppee VUVUVU ,,,,,  do not represent symmetric tensors generally. The micropolar strains pe εεε ˆ,ˆ,ˆ  and the 

so-called curvatures pe KKK ˆ,ˆ,ˆ  are second-order tensors, which are generally non-symmetric. T  and cT  are 

the Cauchy stress tensor and the Eulerian couple stress tensor, respectively. These stresses enter into the balance 
laws of momentum and moment of momentum, not considered here. P̂  and cP̂  denote so-called Mandel stress 
and couple stress tensors, respectively. The yield function in Equation (10) represents a counterpart for finite 
deformations of a yield function for small deformations proposed by de Borst[3]. Equations governing isotropic 
hardening are summarized in (16)-(19). Such forms of isotropic hardening rules are intensively investigated for 
classical plasticity by Chaboche[17]. It is pointed out that this isotropic hardening model captures effects of 
micropolar strains and curvatures in a unified manner. Of course, one may regard isotropic hardening rules 
which are additively decomposed into two parts, accounting for micropolar strains and curvatures, respectively. 
However, such possibilities will not effect the goals of the paper essentially. Kinematic hardening is modeled by 
Equations (20)-(24), with ξ̂  and cξ̂  being back-stress and back-couple stress tensors of Mandel type, 
respectively. The evolution equations (23), (24) correspond to the well-known Armstrong-Frederick kinematic 
hardening rule in classical plasticity. Finally, the quantities 21210

)()(
4321 ,,,,,,,,,,, cc

isis bbbbRh γβαααα  are 
material parameters, which have to be chosen appropriately. 

3 THE LIMITING CLASSICAL MODEL (LCM) 

Grammenoudis & Tsakmakis[14,15] worked out the conditions, under which the micropolar constitutive theory 
of Section 2 approaches to a classical limit, i.e. a plasticity theory with symmetric Cauchy stress tensor and 
vanishing couple stress tensors. It turned out, according to the assumptions made, that ee RR =  and 

pp WΩ ˆˆ = . The resulting limiting classical model may be summarized, relative to the plastic intermediate 

configuration, as follows. 
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The isotropic hardening rule is identical to that one in Section 2 and is no further discussed here. The 

peculiarity of this model consists in the kinematic hardening rule. The back-stress tensor and the associated 

internal strain Ŷ  are always non-symmetric. Additionally, a mixed Oldroyd objective time derivative 
◊

Ŷ  is 
involved in the evolution equation (34), which is usually not the case for standard classical plasticity models. 

In the following we shall investigate typical properties of the limiting classical model with reference to 
torsional loading. For this end, it is convenient to compare predicted responses with that ones obtained for 
standard classical plasticity models. Such a classical model is presented in the next section. 

4 A STANDARD CLASSICAL MODEL (SCM) 

Standard classical plasticity models for finite deformations are characterized by a symmetric internal strain 
tensor Ŷ  responsible for kinematic hardening effects. For the case of isotropic specific free energy function, we 

deal with here, the conjugate internal stress tensor 
Y
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is given as an isotropic function of Ŷ . This implies that the back-stress tensor ξ̂  will always be symmetric, 

whenever ξ̂  is represented as an isotropic function of Ŷ  and Ẑ . The latter is the case when ξ̂  is postulated to 
obey the mathematical structure of a Mandel stress tensor (cf. Tsakmakis & Willuweit[18]). 

Some standard classical models exhibiting non-linear kinematic hardening rules of Armstrong-Frederick type 
have been intensively discussed by Tsakmakis et al. (see e.g.[18,19,20]). All constitutive equations are identical to 
those in Section 3, except of the kinematic hardening rule. As a typical example, and for reasons of comparison, 
we refer to the kinematic hardening rule proposed in[18,20]. 
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5 TORSIONAL LOADING 

We shall discuss the properties of the limiting classical model, compared with the standard classical model 
presented in Section 4, by concentrating ourselves on torsional loading of a circular cylinder with fixed ends. 
Small elastic deformations are assumed to apply, with Youngs modulus E=200000MPa and Poisson ratio 

3,0=ν . Since the equations governing isotropic hardening are identical for both models, we focus attention on 
kinematic hardening only, the yield stress being k=const.=200 MPa. The remaining material parameters read as 
follows. 
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Classical Limiting Model: 

1
21 )(00125,0 −== MPabb , 

MPaccc 10000,0 321 === . 
 
Standard Classical Model: 

1)(0025,0 −= MPab , 

MPacc 20000,0 21 == . 
For uniaxial homogeneous tension-compression loading, the predicted responses according to both models 

are displayed in Figure 1. It can be recognized that there exist quantitative differences only. However, the amout 
of the differences is so small that the predicted behaviors may be regarded to be identical for such loadings. 

 
 

 
 

Figure 1. Uniaxial tension compression loadings of a bar in zz-direction. (l: length of the bar at time t, l0: length 
of the bar at time t=0, : CLM, : SCM) 

 
The two models have been implemented into the UMAT subroutine of the finite element code ABAQUS, as 

described in[20]. For torsional loading, the finite element discretization consists of 75 8-node axisymmetric 
elements (ABAQUS type CGAX8) and 266 nodes. The outer radius 0r  and the length l of the cylinder are 
chosen to be equal to 0,85mm. All radial distributions of stress components except of the axial stress component 

zzT  are essentially identical. Consequently, we concentrate ourselves on the predicted zzTr − -responses 

)0( 0rr ≤≤  displayed in Figures 2-4, which represent so-called second-order effects. In these figures, 

00 rΘ=γ  is the global shear of the cylinder (shear at the outer radius), where Θ  is the twist per unit length. It 
can be seen that at the beginning of the loading process (see Figure 2) there exist only quantitative differences of 
small amount between the predicted responses according to both models. However, with increasing load, the 
quantitative differences become larger and convert to significant qualitative differences. Thus, at sufficient large 
amount of shear the maxima of the graphs are at 0=r  for LCM and at 0rr =  for SCM. It is worth remarking 

that as the shear load increases, the minimum of the zzTr − -graphs according to SCM approaches the point 
0=r . Moreover, at the neighborhood of the minimum the stress distributions for SCM indicate large amounts 

of gradients. 
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LCM      SCM 

 
 

Figure 2. Radial distribution of the axial stress component Tzz. ( : 00142,00 =γ ,  

 : 0022,00 =γ , : 0033,00 =γ , : 005,00 =γ ) 

 
 

LCM      SCM 

 
 

Figure 3. Radial distribution of the axial stress component Tzz. ( : 0076,00 =γ , : 011,00 =γ , 

: 0172,00 =γ , : 021,00 =γ ) 

 



P. Grammenoudis, and Ch. Tsakmakis. 
 

 
LCM      SCM 

 
 

Figure 4. Radial distribution of the axial stress component Tzz. ( : 04,00 =γ , : 1,00 =γ , 

: 2,00 =γ ) 

 

6 CONCLUSIONS 

The limiting classical model is characterized by a kinematic hardening law, which is expressed in terms of 
non-symmetric internal strain and stress tensors. In particular, a mixed Oldroyd time derivative is involved. As 
mentioned above, standard classical models deal with symmetric internal strain tensors responsible for kinematic 
hardening. For such models evolution equations involving both, the upper und the lower Oldroyd time 
derivatives, in connection with back-stress tensors of Mandel type, have already been investigated (see 
e.g.[18,19]). It has been recognized, that the main differences occur in the predicted second-order effects. 
Therefore, it is natural to except that for different kinematic hardening models, including the limiting classical 
model considered, the most important differences in predicted responses will be present in second-order effects. 
Indeed, the investigations here confirm this supposition. To complete the investigation of kinematic hardening 
rules on the basis of Oldroyd time derivatives, it remains still to discuss the other mixed Oldroyd time 
derivative. Also, it is of interest to find the corresponding micropolar plasticity model. However, the answer of 
such questions is beyond of the scope of the present paper and will be tackled in future work. 
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