Contents

Dedication v
Preface xiii

1 Time Series Following Generalized Linear Models 1
1.1 Partial Likelihood 2
1.2 Generalized Linear Models and Time Series 4
1.3 Partial Likelihood Inference 10
1.3.1 Estimation of the Dispersion Parameter 14
1.3.2 Iterative Reweighted Least Squares 14
1.4 Asymptotic Theory 16
1.4.1 Uniqueness and Existence 17
1.4.2 Large Sample Properties 17
1.5 Testing Hypotheses 20
1.6 Diagnostics 23
1.6.1 Deviance 24
1.6.2 Model Selection Criteria 25
1.6.3 Residuals 25
1.7 Quasi-Partial Likelihood 28
1.7.1 Generalized Estimating Equations 31
1.8 Real Data Examples 33

vii
CONTENTS

1.8.1 A Note on Computation
1.8.2 A Note on Model Building
1.8.3 Analysis of Mortality Count Data
1.8.4 Application to Evapotranspiration
1.9 Problems and Complements

2 Regression Models for Binary Time Series
2.1 Link Functions for Binary Time Series
2.1.1 The Logistic Regression Model
2.1.2 Probit and Other Links
2.2 Partial Likelihood Estimation
2.3 Inference for Logistic Regression
2.3.1 Asymptotic Relative Efficiency
2.4 Goodness of Fit
2.4.1 Deviance
2.4.2 Goodness of Fit Based on Response Classification
2.5 Real Data Examples
2.5.1 Rainfall Prediction
2.5.2 Modeling Successive Eruptions
2.5.3 Stock Price Prediction
2.5.4 Modeling Sleep Data
2.6 Problems and Complements

3 Regression Models for Categorical Time Series
3.1 Modeling
3.2 Link Functions for Categorical Time Series
3.2.1 Models for Nominal Time Series
3.2.2 Models for Ordinal Time Series
3.3 Partial Likelihood Estimation
3.3.1 Inference for m=3
3.3.2 Inference for m>3
3.3.3 Large Sample Theory
3.3.4 Inference for the Multinomial Logit Model
3.3.5 Testing Hypotheses
3.4 Goodness of Fit
3.4.1 Goodness of Fit Based on Response Classification

CONTENTS

3.4.2 Power Divergence Family of Goodness of Fit Tests 112
3.4.3 A Family of Goodness of Fit Tests 113
3.4.4 Further Diagnostic Tools 115
3.5 Examples 116
3.5.1 Explanatory Analysis of DNA Sequence Data 116
3.5.2 Soccer Forecasting 119
3.5.3 Sleep Data Revisited 121
3.6 Additional Topics 125
3.6.1 Alternative Modeling 125
3.6.2 Spectral Analysis 125
3.6.3 Longitudinal Data 125
3.7 Problems and Complements 126
Appendix: Asymptotic Theory 130

4 Regression Models for Count Time Series 139
4.1 Modeling 140
4.2 Models for Time Series of Counts 142
4.2.1 The Poisson Model 142
4.2.2 The Doubly Truncated Poisson Model 148
4.2.3 The Zeger–Qaqish Model 153
4.3 Inference 154
4.3.1 Partial Likelihood Estimation for the Poisson Model 154
4.3.2 Asymptotic Theory 156
4.3.3 Prediction Intervals 157
4.3.4 Inference for the Zeger–Qaqish Model 157
4.3.5 Hypothesis Testing 158
4.4 Goodness of Fit 159
4.4.1 Deviance 159
4.4.2 Residuals 159
4.5 Data Examples 159
4.5.1 Monthly Count of Rainy Days 160
4.5.2 Tourist Arrival Data 163
4.6 Problems and Complements 168

5 Other Models and Alternative Approaches 175
5.1 Integer Autoregressive and Moving Average Models 175
5.1.1 Branching Processes with Immigration 175
6.4.2 MCMC Inference for State Space Models 233
6.4.3 Sequential Monte Carlo Sampling Methods 237
6.4.4 Likelihood Inference 240
6.4.5 Longitudinal Data 241
6.5 Kalman Filtering in Space-Time Data 241
6.6 Problems and Complements 241

7 Prediction and Interpolation 249
7.1 Introduction 249
7.1.1 Elements of Stationary Random Fields 251
7.1.2 Ordinary Kriging 252
7.2 Bayesian Spatial Prediction 258
7.2.1 An Auxiliary Gaussian Process 258
7.2.2 The Likelihood 260
7.2.3 Prior and Posterior of Model Parameters 262
7.2.4 Prediction of Z_0 263
7.2.5 Numerical Algorithm for the Case $k = 1$ 264
7.2.6 Normalizing Transformations 265
7.2.7 Software for BTG Implementation 265
7.3 Applications of BTG 267
7.3.1 Spatial Rainfall Prediction 267
7.3.2 Comparison with Kriging 274
7.3.3 Time Series Prediction 274
7.3.4 Seasonal Time Series 278
7.4 Problems and Complements 282

Appendix: Elements of Stationary Processes 285

References 297

Index 327