
Simulation

This part of the notes is complementary to the previous chapter where we saw how
to deal with simple programming. Now the programming concepts in S-Plus will
be employed to derive some simple simulation results.

The Weak Law of Large Numbers

It is well known that if X1, . . . , Xn are independent and identically distributed ran-
dom variables with finite expectation µ, then the weak law of large numbers states
that

X̄ =
1
n

n∑

i=1

Xi → µ,

in probability, as n → ∞. In particular if X1, . . . , Xn are binary random variables
with P (Xi = 1) = p, then

X̄ =
1
n

n∑

i=1

Xi → p,

in probability, as n →∞. We will illustrate this results empirically by employing the
following simple functions:

uniforms <- runif(500) #generate 500 random variables
from uniform in (0,1).

tosses <- as.numeric(I(uniforms > 0.5)) # if a uniform is greater than 0.5
set 1, otherwise 0. Equivalent to
tossing a coin with probability
of success 0.5.

relfreq <- cumsum(tosses)/(1:500) # Take the relative frequency
cumsum is cumulative sum

plot(relfreq) # plot relative frequencies
abline(0.5,0) # Convergence
title(main="Illustration of the Weak Law of Large Numbers")

The results is illustrated in Figure 1 which clearly shows convergence towards 1/2.
A more instructive example is given by the following

1

K. Fokianos LMU-Lecture 7 Fall 2002

Index

re
lfr

eq

0 100 200 300 400 500

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Illustration of the Weak Law of Large Numbers

Figure 1: The Weal Law of Large Numbers for Binary Random Variables

par(mfrow=c(2,2))
for(rep in 1:4){
uniforms <- runif(500)
tosses <- as.numeric(uniforms > 0.5)
relfreq <- cumsum(tosses)/(1:500)
plot(relfreq)
abline(0.5,0)}

which will display a two by two plot of random sequences converging to 0.5.
Let us see what happens when the expectation of the random variables is in-

finite. A well known example of such a random variable is given by the Cauchy
distribution

f(x) =
1

π(1 + x2)
, x ∈ R,

whose expectation does not exist. The following functions together with Figure 2
demonstrate that the sequence of averages does not converge.

cauchys <- rcauchy(500)
xbar <- cumsum(cauchys)/(1:500)

for(rep in 1:4){
cauchys <- rcauchy(500)
xbar <- cumsum(cauchys)/(1:500)
plot(xbar)
abline(0,0)}

2

K. Fokianos LMU-Lecture 7 Fall 2002

Index

xb
ar

0 100 200 300 400 500

0.
0

1.
0

2.
0

Index

xb
ar

0 100 200 300 400 500

0
10

20
30

40

Index

xb
ar

0 100 200 300 400 500

-1
0

1
2

Index

xb
ar

0 100 200 300 400 500

0
5

10
15

Figure 2: Sequence of Averages from Cauchy

The Central Limit Theorem

Suppose that X1, . . . , Xn are random variables with mean µ and variance σ2 which
is assumed to be finite. Then the central limit theorem states that

√
n(X̄ − µ) ⇒ N(0, σ2),

in distribution, as n → ∞. Here the symbol N stands for the normal distribution.
We will confirm empirically this result by simulation. Suppose that X1, . . . , X100 are
independent and identically distributed Poisson random variables with parameter
λ = 1. Then µ = σ2 = 1 and therefore the central limit theorem states that

E(X̄) = 1

and
Var(X̄) = 1/100 = 0.01.

The following functions generates samples from the asymptotic distribution of the
mean:

poisson.clt <- function(k,n, parameter) #function of k=number of sample,
#n=sample size, parameter=lambda of
#Poisson

{
samples.mean <- rep(NA, k) #initialize the vector of means
for (i in 1:k){ #Do k times generation of sample size n

from Poisson with lambda=parameter
samples.mean[i] <- mean(rpois(n, lambda=parameter))

3

K. Fokianos LMU-Lecture 7 Fall 2002

}
return(samples.mean) #return the results

}

Here are the results when running this function:

> test.pois <- poisson.clt(200,100,1) #generate 200 means from 100 Poisson random
#variables with lambda=1.

> summary(test.pois) #report minimum, Q1, median, mean, Q3
#and maximum. The mean and median are 1.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.69 0.93 1 1.001 1.072 1.31

> var(test.pois) #The variance is close to 0.01
[1] 0.009584601
> par(mfrow=c(1,2)) #plot a histogram and a boxplot
> hist(test.pois) # of the results.
> boxplot(test.pois)

The numeric results together with Figure 3 illustrate empirically the central limit
theorem.

0.8 1.0 1.2

0
10

20
30

test.pois

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Figure 3: Central Limit Theorem for Poisson

It should be noted that the function poisson.clt is not the most efficient way
of programming but it presents the general idea behind the calculations. For effi-
cient use of loops in terms of memory and CPU time the function lapply is more
suitable.

4

K. Fokianos LMU-Lecture 7 Fall 2002

Monte Carlo Integration

Assume that X is a random variable with probability density function f(x) and
consider the problem of estimating an expectation of its function given that the
latter exists. Specifically let δ be defined by the following

δ =
∫

c(x)f(x)dx = Ef [c(X)] ,

and assume that it exists and it is finite. There are several methods for evaluating
δ–perhaps the most popular among statisticians are those which based on Monte
Carlo integration. Accordingly, if X1, . . . , Xn is a random sample from f(x), then
the weak law of large numbers implies that the following estimator

δ̂ =
1
n

n∑

i=1

c(Xi)

approaches δ with high probability as n tends to infinity.
Here is how S-plus can be used to evaluate such integrals. Suppose that X is

a Beta random variable with probability density function

f(x) =
1

B(α, β)
xα−1(1− x)β−1

for x ∈ (0, 1) and suppose that we wish to evaluate the following two integrals:

δ1 =
∫ 0.4

0.2

f(x)dx =
∫

I[0.2, 0.4]f(x)dx,

where I is the indicator function, and

δ2 =
∫

sin(x)e−xf(x)dx

where we will assume that f stands for the Beta density with parameters 2.5 and
5. Then the following function is returning the desired results in matrix form.

estim.beta <- function(k) #k is the number of simulations
{
delta1 <- rep(NA, k) #initialize delta1
delta2 <- rep(NA, k) #initialize delta2
for (i in 1:k) #Do k runs
{
x <- rbeta(500, shape1=2.5, shape2=5) #generate 500 observations

#from Beta with parameters 2.5 and 5.
delta1[i] <- mean(as.numeric(I(0.2 <x < 0.4))) #compute delta1 and
delta2[i] <- mean(sin(x)*exp(-x)) #delta2
}
return(cbind(delta1,delta2)) #return the results in matrix form
}

5

K. Fokianos LMU-Lecture 7 Fall 2002

When we run the function we obtain

> delta.estim <- estim.beta(500) #Do 500 simulations
> apply(delta.estim,2,mean) #Get the means of each column
delta1 delta2
0.23072 0.2172346

> apply(delta.estim,2,var) #Get the variance of each column
delta1 delta2
0.0003627351 9.412981e-006

> sqrt(apply(delta.estim,2,var)) #Get the Monte Carlo standard error
delta1 delta2
0.01904561 0.003068058

Hence we see that δ1 is estimated as 0.03086395 with a standard error of 0.0027
while δ2 is estimated by 0.08337394 with a standard error of 0.0025.

Although there are several standard methods to generate pseudorandom out-
comes for many distribution occasionally such a task can be quite demanding due
to the functional form of the probability density function. Hence some other tech-
niques might be used instead and one of the most popular simulation based meth-
ods is the so called importance sampling whose implementation is outlined below:

• Generate Z1, . . . , Zn i.i.d. data from a probability distribution function g(z)
whose support, say A, includes the support of f(.).

• Upon noticing that

δ =
∫

c(z)
f(z)
g(z)

g(z)dz

=
∫

c(z)w(z)g(z)dz = Eg [c(Z)w(Z)] ,

with w = f/g, form the following estimator

δ̃ =
1
n

n∑

i=1

c(Zi)w(Zi).

Apparently δ̃ mimics the estimator δ̂ given by in the sense that expectation with
respect to X following f is replaced by the corresponding expectation with respect
to Z following g. It will be instructive to think how to use S-Plus to compute δ̃ for
the example given above when g is the uniform density.

6

