Simple Computing in S-Plus

Mathematical computing is an integral part of any data analysis and therefore S-Plus has several capabilities for carrying out different kinds of computations. This section of these notes introduces the reader to several useful facts about mathematical computing in S-Plus.

Arithmetic Operations and Elementary Functions

Basic arithmetic operations can be carried out by using the well known operators
$+,-, *, /$.
> 7+3
[1] 10
> $15-19$
[1] -4
> $4 * 67$
[1] 268
> 56/9
[1] 6.222222
The operator - is useful for exponentiation and root extraction.
> 2~6
[1] 64
> 2^(1/3)
[1] 1.259921
Some other important functions are \%/\% (integer divide operator), \%\% (modulo operator), abs() (absolute value function), floor() (greatest integer function), and ceiling() (next integer function).
> $27 \% / \% 3.4$
[1] 7
> $27 \% \% 3.4$
[1] 3.2
> $7 * 3.4+3.2$
[1] 27

```
> abs(-10.56)
[1] 10.56
> floor(5.6)
[1] 5
> ceiling(5.6)
[1] 6
```

Here is how you can use these commands when operating in vectors and matrices.

```
> x <- c(1,4,7)
> y <- c(2,4,6,4,6,10)
> A <- matrix(c(2,3,4,5,6,7,1,2,3), nrow=3)
>A
    [,1] [,2] [,3]
[1,] 2 5 1
[2,] 3 6 2
[3,] 4 7 3
> B <- rbind(c(0,0,1), c(2,4,5), c(1,4,2))
>B
```



```
[2,] 2 4 5
[3,] 1
>A*B
    [,1] [,2] [,3]
[1,] 0
[2,] 6 24 10
[3,] 4 28 6
> x+y
[1] }
> A/y
    [,1] [,2] [,3]
[1,] 1.0000000 1.25 0.5
[2,] 0.7500000}1.00\quad0.
[3,] 0.6666667}0.70\quad0.
Warning messages:
    Length of longer object is not a multiple
    of the length of the shorter object in: A/y
> A%*%B #matrix multiplication
            [,1] [,2] [,3]
[1,] 11 24 29
[2,] 14 32 37
[3,] 17 40 45
> z <- c(2,3,1)
> z%*%x #vector dot product
        [,1]
[1,] 21
```

Most calculations on vectors or matrices are carried out element by element provided that the matrices have the same dimension. Foe vectors, if the one vector is shorter than the other, then the shorter vector is repeated cyclically to match the length of the longer vector. Mathematical operations on combination of vector and matrices have usually unexpected results.

Some well known built in functions in S-plus are sqrt, sin, cos, tan, asin, acos, atan, exp, log, log10, gamma, lgamma. They act element by element to their arguments.

```
> log(x)
[1] 0.000000 1.386294 1.945910
> log(x, base=2) #logaritm to base 2
[1] 0.000000 2.000000 2.807355
>cos(A)
    [,1] [,2] [,3]
[1,] -0.4161468 0.2836622 0.5403023
[2,] -0.9899925 0.9601703 -0.4161468
[3,] -0.6536436 0.7539023 -0.9899925
> atan(A)
    [,1] [,2] [,3]
[1,] 1.107149 1.373401 0.7853982
[2,] 1.249046 1.405648 1.1071487
[3,] 1.325818 1.428899 1.2490458
> exp(y)
```


Vector and Matrix Computations

The following function refers to the computation of a vector norm:

$$
|\mathbf{x}|=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}
$$

```
> vecnorm(x) # Eucliden norm
[1] 8.124038
> vecnorm(x, p=1)
[1] 12
> vecnorm(x, p=Inf)
[1] 7
```

Here are some useful functions for matrix manipulations.

```
> t(A) # transpose of a matrix
        [,1] [,2] [,3]
[1,] 2 3 4
[2,] 5 6 7
```

```
[3,] 1 2 3
> diag(A) # extract the diagonal
[1] 2 6 3
> sum(diag(A)) # trace of a matrix
[1] 11
> X <- diag(c(1,2,3,4)) # create a diagonal matrix
> X
    [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0
[3,] 0
[4,] 0
> I <- diag(4) # create an identity matrix
> I
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0
[3,] 0
[4,] 0
> eigen(A) # compute eigenvalues and eigenvectors of a matrix
$values:
[1] 1.072015e+001 2.798467e-001 -1.887379e-015
\$vectors:
\begin{tabular}{|c|c|c|c|}
\hline & [,1] & [,2] & [,3] \\
\hline [1, & -0.4902022 & -2.332769 & -0.7817656 \\
\hline [2, & -0.6806916 & 0.239993 & 0.1954414 \\
\hline [3, & -0.8711809 & 2.812755 & 0.5863242 \\
\hline > p & d (eigen(A) & \$values) & \# determinant \\
\hline \multicolumn{4}{|l|}{[1] -5.662137e-015} \\
\hline
\end{tabular}
```

You can also use the functions kronecker (for a Kronecker product of two matrices), qr (for the QR decomposition), svd (for the singular value decomposition) and chol (for the Choleski decomposition).

Linear Systems of Equations

To solve a system of equations, like $A \mathrm{x}=\mathrm{y}$ it is convenient to define the matrix A and then use the solve function to get the solution, provided that there exists. For example, consider

$$
\begin{aligned}
2 x+3 y & =13 \\
x-2 y & =-4
\end{aligned}
$$

Then

$$
>A<-\operatorname{rbind}(c(2,3), c(1,-2))
$$

```
> A
    [,1] [,2]
[1,] 2 3
[2,] 1 -2
> solve(A, c(13,-4))
[1] 2 3
> solve(A) # getting the inverse
            [,1] [,2]
[1,] 0.2857143 0.4285714
[2,] 0.1428571 -0.2857143
> solve(rbind(c(1,2), c(2,4))) # getting the inverse of a singular matrix
Error in solve.qr(a): apparently singular matrix
```

More functions related to matrix computations can be found in the library matrix which can be called with library (matrix).

Random Numbers

There are many functions available for random number generation and probability calculations including outcomes related to the most common distributions. Each of these functions has a name beginning with on of the following four one-letter codes indicating the type of function.
r : Random number generator.
p: Probability function $(F(x)=P[X \leq x])$.
d: Density function $(f(x))$.
q: Quantile function ($F^{-1}(x)$).
The following table lists the most important distributions in S-plus.

beta	Beta Distribution
binom	Binomial Distribution
chisq	Chi-square Distribution
gamma	Gamma Disribution
lnorm	Lognormal Distribution
norm	Normal Distribution
pois	Poisson Distribution
t	t Distribution
unif	Uniform Distribution

Here are some examples of how you can use these functions

```
> x
```

[1] 147
K. Fokianos LMU-Lecture 4 Fall 2002

```
> pnorm(x)
[1] 0.8413447 0.9999683 1.0000000
> pnorm(x, mean=2, sd=2)
[1] 0.3085375 0.8413447 0.9937903
> dnorm(x)
[1] 2.419707e-001 1.338302e-004 9.134720e-012
> qchisq(c(0.90,0.95,0.99), 2)
[1] 4.605170 5.991465 9.210340
> runif(30, -10, 10)
    [1] 9.213183280 8.749200171 -9.117961340 5.292370273 4.117153846 0.071010422
    [7] 8.572964445 6.805462409 0.942033436 -0.243897894 -2.020305358 -4.729607552
[13] 8.518492579 -1.429708684 9.201227576 -4.033246860 1.544312881-0.227093771
[19] -6.805263087 -6.349458788 -5.736339493 -4.680284206 4.654475767 2.877361933
[25] 7.949797967 -0.003705453 1.538872020 8.116273358 -9.711499065 4.931
```


Some Other Useful Functions

There are several other useful functions that can be used for computing but we will not examine all of them in detail. Notably, we mention the function integrate which can be used to compute the integral of a real valued function over a given interval, the function diff which returns the nth difference of lag k for a set of data and the function fft which gives the fast Fourier transform of a data set.

Here is an example of the stepfun which computes a left-continuous step function from (x, y) points.

```
> x <- seq(1,10, length=8)
y <- x^{2}
> stepfun(x,y)
$x:
[1] \(1.000000 \quad 2.285714 \quad 2.285714 \quad 3.571429 \quad 3.571429 \quad 4.857143 \quad 4.857143 \quad 6.142857\)
[9] 6.142857 7.428571 7.428571 8.714286 8.714286 10.000000 10.000000
$y:
\begin{tabular}{lrrrrrrrr} 
[1] & 1.00000 & 1.00000 & 5.22449 & 5.22449 & 12.75510 & 12.75510 & 23.59184 & 23.59184
\end{tabular}
[9] 37.73469 37.73469 55.18367 55.18367 75.93878 75.93878 100.00000
> plot(stepfun(x,y), type="l")
```


Figure 1: Output of the stepfun function.

