
Simple Computing in S-Plus

Mathematical computing is an integral part of any data analysis and therefore
S-Plus has several capabilities for carrying out different kinds of computations.
This section of these notes introduces the reader to several useful facts about math-
ematical computing in S-Plus.

Arithmetic Operations and Elementary Functions

Basic arithmetic operations can be carried out by using the well known operators
+, -, *, /.

> 7+3
[1] 10
> 15-19
[1] -4
> 4*67
[1] 268
> 56/9
[1] 6.222222

The operator ^ is useful for exponentiation and root extraction.

> 2^6
[1] 64
> 2^(1/3)
[1] 1.259921

Some other important functions are %/% (integer divide operator), %% (modulo op-
erator), abs() (absolute value function), floor() (greatest integer function), and
ceiling() (next integer function).

> 27%/%3.4
[1] 7
> 27%%3.4
[1] 3.2
> 7*3.4+3.2
[1] 27

1

K. Fokianos LMU-Lecture 4 Fall 2002

> abs(-10.56)
[1] 10.56
> floor(5.6)
[1] 5
> ceiling(5.6)
[1] 6

Here is how you can use these commands when operating in vectors and matrices.

> x <- c(1,4,7)
> y <- c(2,4,6,4,6,10)
> A <- matrix(c(2,3,4,5,6,7,1,2,3), nrow=3)
> A

[,1] [,2] [,3]
[1,] 2 5 1
[2,] 3 6 2
[3,] 4 7 3
> B <- rbind(c(0,0,1), c(2,4,5), c(1,4,2))
> B

[,1] [,2] [,3]
[1,] 0 0 1
[2,] 2 4 5
[3,] 1 4 2
> A*B

[,1] [,2] [,3]
[1,] 0 0 1
[2,] 6 24 10
[3,] 4 28 6
> x+y
[1] 3 8 13 5 10 17
> A/y

[,1] [,2] [,3]
[1,] 1.0000000 1.25 0.5
[2,] 0.7500000 1.00 0.5
[3,] 0.6666667 0.70 0.5
Warning messages:

Length of longer object is not a multiple
of the length of the shorter object in: A/y

> A%*%B #matrix multiplication
[,1] [,2] [,3]

[1,] 11 24 29
[2,] 14 32 37
[3,] 17 40 45
> z <- c(2,3,1)
> z%*%x #vector dot product

[,1]
[1,] 21

2

K. Fokianos LMU-Lecture 4 Fall 2002

Most calculations on vectors or matrices are carried out element by element pro-
vided that the matrices have the same dimension. Foe vectors, if the one vector is
shorter than the other, then the shorter vector is repeated cyclically to match the
length of the longer vector. Mathematical operations on combination of vector and
matrices have usually unexpected results.

Some well known built in functions in S-plus are sqrt, sin, cos, tan, asin,
acos, atan, exp, log, log10, gamma, lgamma. They act element by element to their
arguments.

> log(x)
[1] 0.000000 1.386294 1.945910
> log(x, base=2) #logaritm to base 2
[1] 0.000000 2.000000 2.807355
> cos(A)

[,1] [,2] [,3]
[1,] -0.4161468 0.2836622 0.5403023
[2,] -0.9899925 0.9601703 -0.4161468
[3,] -0.6536436 0.7539023 -0.9899925
> atan(A)

[,1] [,2] [,3]
[1,] 1.107149 1.373401 0.7853982
[2,] 1.249046 1.405648 1.1071487
[3,] 1.325818 1.428899 1.2490458
> exp(y)
[1] 7.389056 54.598150 403.428793 54.598150 403.428793 22026.465795

Vector and Matrix Computations

The following function refers to the computation of a vector norm:

|x| =
(

n∑

i=1

xp
i

)1/p

> vecnorm(x) # Eucliden norm
[1] 8.124038
> vecnorm(x, p=1)
[1] 12
> vecnorm(x, p=Inf)
[1] 7

Here are some useful functions for matrix manipulations.

> t(A) # transpose of a matrix
[,1] [,2] [,3]

[1,] 2 3 4
[2,] 5 6 7

3

K. Fokianos LMU-Lecture 4 Fall 2002

[3,] 1 2 3
> diag(A) # extract the diagonal
[1] 2 6 3
> sum(diag(A)) # trace of a matrix
[1] 11
> X <- diag(c(1,2,3,4)) # create a diagonal matrix
> X

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
[4,] 0 0 0 4
> I <- diag(4) # create an identity matrix
> I

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> eigen(A) # compute eigenvalues and eigenvectors of a matrix
$values:
[1] 1.072015e+001 2.798467e-001 -1.887379e-015

$vectors:
[,1] [,2] [,3]

[1,] -0.4902022 -2.332769 -0.7817656
[2,] -0.6806916 0.239993 0.1954414
[3,] -0.8711809 2.812755 0.5863242
> prod(eigen(A)$values) # determinant
[1] -5.662137e-015

You can also use the functions kronecker (for a Kronecker product of two ma-
trices), qr (for the QR decomposition), svd (for the singular value decomposition)
and chol (for the Choleski decomposition).

Linear Systems of Equations

To solve a system of equations, like Ax = y it is convenient to define the matrix
A and then use the solve function to get the solution, provided that there exists.
For example, consider

2x + 3y = 13
x− 2y = −4

Then

> A <- rbind(c(2,3), c(1,-2))

4

K. Fokianos LMU-Lecture 4 Fall 2002

> A
[,1] [,2]

[1,] 2 3
[2,] 1 -2
> solve(A, c(13,-4))
[1] 2 3
> solve(A) # getting the inverse

[,1] [,2]
[1,] 0.2857143 0.4285714
[2,] 0.1428571 -0.2857143
> solve(rbind(c(1,2), c(2,4))) # getting the inverse of a singular matrix
Error in solve.qr(a): apparently singular matrix

More functions related to matrix computations can be found in the library matrix which
can be called with library(matrix).

Random Numbers

There are many functions available for random number generation and probability
calculations including outcomes related to the most common distributions. Each of
these functions has a name beginning with on of the following four one-letter codes
indicating the type of function.

r: Random number generator.

p: Probability function (F (x) = P [X ≤ x]).

d: Density function (f(x)).

q: Quantile function (F−1(x)).

The following table lists the most important distributions in S-plus.

beta Beta Distribution
binom Binomial Distribution
chisq Chi–square Distribution
gamma Gamma Disribution
lnorm Lognormal Distribution
norm Normal Distribution
pois Poisson Distribution
t t Distribution
unif Uniform Distribution

Here are some examples of how you can use these functions

> x
[1] 1 4 7

5

K. Fokianos LMU-Lecture 4 Fall 2002

> pnorm(x)
[1] 0.8413447 0.9999683 1.0000000
> pnorm(x, mean=2, sd=2)
[1] 0.3085375 0.8413447 0.9937903
> dnorm(x)
[1] 2.419707e-001 1.338302e-004 9.134720e-012
> qchisq(c(0.90,0.95,0.99), 2)
[1] 4.605170 5.991465 9.210340
> runif(30, -10, 10)
[1] 9.213183280 8.749200171 -9.117961340 5.292370273 4.117153846 0.071010422
[7] 8.572964445 6.805462409 0.942033436 -0.243897894 -2.020305358 -4.729607552

[13] 8.518492579 -1.429708684 9.201227576 -4.033246860 1.544312881 -0.227093771
[19] -6.805263087 -6.349458788 -5.736339493 -4.680284206 4.654475767 2.877361933
[25] 7.949797967 -0.003705453 1.538872020 8.116273358 -9.711499065 4.931

Some Other Useful Functions

There are several other useful functions that can be used for computing but we
will not examine all of them in detail. Notably, we mention the function integrate
which can be used to compute the integral of a real valued function over a given
interval, the function diff which returns the nth difference of lag k for a set of
data and the function fft which gives the fast Fourier transform of a data set.

Here is an example of the stepfun which computes a left-continuous step func-
tion from (x,y) points.

> x <- seq(1,10, length=8)
> y <- x^{2}
> stepfun(x,y)
$x:
[1] 1.000000 2.285714 2.285714 3.571429 3.571429 4.857143 4.857143 6.142857
[9] 6.142857 7.428571 7.428571 8.714286 8.714286 10.000000 10.000000

$y:
[1] 1.00000 1.00000 5.22449 5.22449 12.75510 12.75510 23.59184 23.59184
[9] 37.73469 37.73469 55.18367 55.18367 75.93878 75.93878 100.00000

> plot(stepfun(x,y), type="l")

6

K. Fokianos LMU-Lecture 4 Fall 2002

stepfun(x, y)$x

st
ep

fu
n(

x,
 y

)$
y

2 4 6 8 10

0
20

40
60

80
10

0

Figure 1: Output of the stepfun function.

7

