
Regression Analysis

Regression analysis is one of the most important topics in Statistical theory. In
the sequel this widely known methodology will be used with S-Plus by means of
formulae for models.

Models in S-Plus

A formula is an S-PLUS expression that specifies the form of a model in terms of
the variables involved. For example, to specify that Y is a linear combination of two
predictors X1 and X2, you use the following formula:

> Y ~ X1 + X2

The tilde character separates the response variable from the explanatory variables.
So in essence we fit the model

Y = β0 + β1 ∗X1 + β2 ∗X2.

A formula always implicitly includes an intercept term (β0) in the above formula).
You can, however, remove the intercept term by specifying the model with −1 as
an explicit predictor:

> Y ~ -1 + X1 + X2

Similarly, you can explicitly include an intercept with a + 1.
When you specify categorical variables (factors, ordered factors, or categories)

as predictors in the formulas, the modelling functions fit a coefficient for each level
of the variable. For example, to model salary as a linear model of age (continu-
ous) and gender (factor) you specify it as follows:

> salary ~ age + gender

However, a different parameter is fitted for each of the two levels of gender. This is
equivalent to fitting two dummy variables, one for males and one for females. Thus,
you need not create and specify dummy variables in the model.

Here are the main expressions:

• Y X: Y is modeled as X
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• X1+X2: Include both X1 and X2 in the model

• X1-X2: Include all of X1 except what is in X2 in the model

• X1:X2; The interaction between X1 and X2

• X1*X2 full model X1 + X2 + X1 : X2

The next sections put these applies these concepts to a multiple linear regres-
sion model.

A Multiple Regression Model

The data set consists of a sample of black cherry trees. These were cut down
measurements made on the diameter (in inches) height (in feet) and volume (in
cubic feet). The purpose of collecting these data was to provide a way of predicting
the volume of timber in trees from their height and diameter measurements, using
a regression model.

Diameter Height Volume
8.3 70 10.3
8.6 65 10.3
8.8 63 10.2

10.5 72 16.4
10.7 81 18.8
10.8 83 19.7

Table 1: The first six observations from the data set

Here the dependent variable is continuous and the initial model considered is
the usual linear regression one, having the general form

y = β0 + β1x1 + . . . + βpxp + ε

where y is the response variable, x1, . . . , xp a set of explanatory variables, and ε a
residual term. We estimate β’s by least squares assuming that the residual term is
normally distributed with mean 0 and constant variance σ2. For n observations on
the response and explanatory variables the model may be written concisely as

E(y) = Xβ

A formal analysis in S-Plus uses the function lm() as outlined below:

trees.fit <- lm(Volume~ Diameter+Height, trees)
> trees.fit
Call: lm(formula = Volume ~ Diameter + Height, data = trees)
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Coefficients:
(Intercept) Diameter Height
-57.98766 4.708161 0.3392512

Degrees of freedom: 31 total; 28 residual Residual standard error:
3.881832
> trees.res <- residuals(trees.fit) #obtain the residuals
> trees.prd <- predict(trees.fit) #obtain the predicted values

These results suggest that the regression coefficients for both Diameter and Height
are significantly different from zero, and that about 95% of the variance ( the value
given by R2) in volume can attributed to two explanatory variables.

The next stage in the analysis should be an examination of the residuals from
the model, that is the differences between the observed and fitted (predicted) val-
ues of the response. The most useful plots are the following:

1. A plot of the residuals against explanatory variable in the model. The pres-
ence of a curvilinear relationship, for example, may suggest a higher order
term, perhaps a quadratic should be added to the model (Figure 1).

2. A plot of the residuals against predicted values of the response variable. If
the variance of the response appears to increase with predicted value, a
transformation of the response may be in order (Figure 2).

3. A normal probability plot of the residuals. After all systematic variation has
been removed from the data, the residuals should look like a sample from
the normal distribution. That is a plot of the ordered residuals against the
expected order statistics from a normal distribution (Figure 3).

We are going to work with the standardized residuals which are defined by

ri =
yi − ŷi

s
√

1− hii

where hii are the diagonal elements of the matrix:

H = X(X
′
X)−1X.

> s <- summary(trees.fit)$sigma #obtain an estimator of sigma
> h <- lm.influence(trees.fit)$hat #obtain the diagonal elements of H
> trees.res <- trees.res/(s*sqrt(1-h)) # redefine the residuals so that

# they are standardized.

> par(mfrow=c(2,1)) # obtain the plots of regressors vs
# standardized residuals

> plot(trees[,"Diameter"], trees.res, xlab="Diameter", ylab="Std. Residuals")
> abline(h=0, lty=2)
> title("Std. Residuals versus Diameter")
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> plot(trees[,"Height"], trees.res, xlab="Height", ylab="Std. Residuals")
> abline(h=0, lty=2)
> title("Std. Residuals versus Height")
> par(mfrow=c(1,1)) #plots of residuals vs predicted values
> plot(trees.prd, trees.res, xlab="Predicted Volume",

ylab="Std. Residuals")
> abline(h=0,lty=2)
> title("Std. Residuals vs Fitted Values")
> qqnorm(trees.res,ylab="Std. Residuals") #qqnorm of the residuals
> qqline(trees.res)
> title("Normal Plot of Std. Residuals")
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Figure 1: Standardized residuals plotted against values of explanatory variables
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Figure 2: Standardized residuals plotted against fitted values of response variables.
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Figure 3: Normal plot of standardized residuals.
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The plots involving Diameter and the fitted values both show some evidence that
a quadratic term may be needed in the model. The interpretation of the normal
probability plot is often unclear, particularly with small samples. Examination of the
plot indicates that the residuals show little departure from normality.

The hat matrix, H, is also helpful in identifying strange or peculiar data points,
those having unusually large potential effect on the regression. Such points are
indicated by relatively high values in the appropriate position in the diagonal of H.
The maximum value of any diagonal element is 1. Technically these points are
referred as having high leverage (Figure 4).

> h <- lm.influence(trees.fit)$hat
> h
[1] 0.11582883 0.14720958 0.17686186 0.05919131
[5] 0.12066468 0.15575111 0.11480262 0.05148096
[9] 0.09200658 0.04797237 0.07382512 0.04809206

[13] 0.04809206 0.07275901 0.03764563 0.03566543
[17] 0.13130916 0.14346152 0.06665975 0.21123665
[21] 0.03580935 0.04541796 0.04994875 0.11142518
[25] 0.06930648 0.08841762 0.09603041 0.10641665
[29] 0.10982638 0.10982638 0.22705852
> plot(1:31,h, type="n", xlab="l", ylab="Diagonal of Hat Matrix")
> abline(h=mean(h))
> segments(1:31, h, 1:31, mean(h))
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Figure 4: Leverage plot.

Here there seem to be no obvious problem points which might be unduly affecting
the estimation process. The leverage values are relatively low.
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Returning now to the evidence from the residual plots, a new model involving a
quadratic term in Diameter might now be considered.

> trees1.fit <- lm(Volume~Diameter+I(Diameter*Diameter)+Height, trees)
> trees1.fit
Call:
lm(formula = Volume ~ Diameter + I(Diameter * Diameter) + Height, data = trees)

Coefficients:
(Intercept) Diameter I(Diameter * Diameter) Height
-9.920406 -2.885079 0.2686224 0.3763873

Degrees of freedom: 31 total; 27 residual
Residual standard error: 2.624753
> summary(trees1.fit)

Call: lm(formula = Volume ~ Diameter + I(Diameter * Diameter) + Height, data = trees)
Residuals:

Min 1Q Median 3Q Max
-4.293 -1.669 -0.1018 1.785 4.349

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -9.9204 10.0791 -0.9843 0.3337
Diameter -2.8851 1.3099 -2.2026 0.0363

I(Diameter * Diameter) 0.2686 0.0459 5.8517 0.0000
Height 0.3764 0.0882 4.2659 0.0002

Residual standard error: 2.625 on 27 degrees of freedom
Multiple R-Squared: 0.9771
F-statistic: 383.2 on 3 and 27 degrees of freedom, the p-value is 0

Correlation of Coefficients:
(Intercept) Diameter I(Diameter * Diameter)

Diameter -0.7924
I(Diameter * Diameter) 0.8150 -0.9907

Height -0.4816 -0.1419 0.0719

The new residual plots are not shown but they can be obtained as before. It
turns out that the plot involving diameter has now lost the structure it had previously
and the other plots look satisfactory.

Although the results indicate that the regression coefficients of both height and
diameter are significantly different from zero, it is often useful to explore a number of
models in an attempt to find the simplest and adequately describe the data. Essen-
tially, this involves adding or deleting terms from an existing model and assessing
the effect of the change.
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For example, for the models which involves diameter and height we get by delet-
ing one variable at a time:

> attach(trees)
> trees.drop1 <- drop1(trees.fit) #dropping terms sequentially
> trees.drop1
Single term deletions

Model:
Volume ~ Diameter + Height

Df Sum of Sq RSS Cp
<none> 421.921 512.333

Diameter 1 4782.974 5204.895 5265.169
Height 1 102.381 524.303 584.577

Sums of squares due to the deleted terms and residuals sums of squares for the re-
duced model are given. Here their value indicate the great importance of diameter
in the model. The opposite approach starts from a model and adds on terms.

> trees0.fit <- lm(Volume~1) #model with constant term
> trees.add1 <- add1(trees0.fit,~ Height+Diameter) #add sequentially terms
> trees.add1
Single term additions

Model:
Volume ~ 1

Df Sum of Sq RSS Cp
<none> 8106.084 8646.489
Height 1 2901.189 5204.895 6285.706

Diameter 1 7581.781 524.303 1605.114

The results are shown above. The terms are the same as before, but now corre-
spond to adding particular variables. As a final note the function predict() can
be used to obtain predicted values for a model.
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