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Summary

Using computer simulations, the finite sample performance of a number of classical and Bayesian
wavelet shrinkage estimators for Poisson counts is examined. For the purpose of comparison, a variety
of intensity functions, background intensity levels, sample sizes, primary resolution levels, wavelet filters
and performance criteria are employed. A demonstration is given of the use of some of the estimatorsto
analyseadata set arisingin high-energy astrophysics. Following the philosophy of reproducibleresear ch,
the MATLAB programs and real-life data example used in this study are made freely available.
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1 Introduction

Let N(0, t] be an inhomogeneous Poisson process on the intfrya] with intensity function
w(t) > 0 and suppose that we actually observe a discrete-time version of the process, a Poisson
counting process. That is, the observation intef9al | is divided inton equal subintervals and we
observey;,i =0, 1,...,n— 1, the number of events occurring in each subinterval. The observed
datay = (Yo, 1, ... » ¥n—1)’ can thus be expressedmasdependent Poisson random variables, i.e.,

yi ~ Poisson(yi), i=0,1,...,n—1, (1)

where the mean vectopr = (o, (41, .- - » n=1)" iS unknown. This model is called the Poisson
regression model in the literature and the aim here is to recover the underlying intensity function
w(t) from the datey without assuming any particular parametric structure for it.

Amongst the available nonparametric approaches in the literature to tackle the aforementioned
problem, the kernel smoothing method proposed by Diggle (1985) and Diggle & Marron (1988), the
penalized likelihood method proposed by O’Sullivan, Yandell & Raynor (1986), anB thglines
method proposed by Eilers & Marx (1996) have several theoretical merits and have been successfully
applied to real-life data sets. The first method constructs a boundary adjustment kernel smoother for
w(t) using a quartic kernel; the second method penalizes the negative logarithm of the likelihood of
the logarithm ofu (t) with a smoothness penalty based on the integral of the square of the second
derivative of the logarithm ofc(t); and the third method penalizes the regression of the logarithm
of (1) using a set oB-splines with a smoothness penalty based on a higher-order difference of the
coefficients of adjacerB-splines. Although the smoothing kernel-based method has been obtained
directly using the Poisson regression model (1), both spline-based methods have been proposed as
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general methodologies for nonparametric regression estimation in generalised linear models, Poisson
regression being a particular statistical model within this family of models. Moreover, asymptotic
results and finite-sample properties of the above methods have been studied under the assumption
that the underlying intensity functiqia(t) obeys a smooth behaviour.

Onthe other hand, wavelet methods have along history in the nonparametric estimation of spatially-
variable objects with applications to diverse disciplines including astronomy, biology, electronics,
engineering, medicine and physics. The potential of wavelets in the classical nonparametric regression
context, where the data are modelled as observations of a response function contaminated by additive
Gaussian noise, was convincingly demonstrated by Donoho, Johnstone, Kerkyacharian & Picard
(1995). Their work showed that a simple nonlinear estimator obtained by thresholding the empirical
wavelet coefficients is essentially optimal (in the minimax sense) over a broad range of function
classes. Furthermore the estimation procedure is computationally efficient, making it very appealing
in practice.

However the potential scope of wavelet methods is broader than just the classical nonparametric
regression setting. Inthe case where the data are Poisson counts, various techniques have been recently
proposed, including the use of a variance-stabilising transformation with a normal approximation
to facilitate wavelet shrinkage. Donoho (1993) and Hewicz & Nason (2001) are examples of
this approach, employing the Anscombe (1948) and the Fisz (1955) transformation respectively.
Alternatively, Kolaczyk (1997, 1999a) and Nowak & Baraniuk (1999) focused on adapting wavelet
shrinkage to the original Poisson counts, whilst Kolaczyk (1999b) and Timmermann & Nowak
(1999) developed another approach based on Bayesian inference.

Wavelet shrinkage techniques have also been proposed for using wavelets when the data are
coming from some general families of distributions, Poisson counts being a particular type of
data obtained within these families of distributions. Using ideas by Beraniénligen (1998),
Antoniadis & Sapatinas (2001) and Antoniadis, Besbeas & Sapatinas (2001) presented a wavelet
shrinkage methodology for natural exponential families with quadratic and cubic variance functions
respectively. These families encompass some very famous distributions including the Gaussian,
Poisson, gamma, binomial, negative binomial and inverse Gaussian. On the other hand, Sardy,
Antoniadis & Tseng (2004) considered &prpenalised likelihood method to develop a wavelet
shrinkage methodology for Gaussian, exponential, Poisson and Bernoulli distributions.

While there are merits to each of the above approaches, the most common types of data in
the nonparametric regression context are Gaussian and Poissonian. Surprisingly, and in contrast to
the Gaussian case (see Marron, Adak, Johnstone, Neumann & Patil, 1998; Antoniadis, Bigot &
Sapatinas, 2001), there is little coherence in the literature about the relative performance of the
different wavelet schemes for Poisson data. Furthermore this leaves a number of open questions
regarding their small sample properties, particularly relative to each other. The aim of this article is,
therefore, to compare most of the currently available wavelet shrinkage methods for estimating the
underlying intensity functiom(t) based on observations from the Poisson regression model (1). In
our comparison we have included the classical methods of Donoho (1993), Kolaczyk (1997, 1999a),
Antoniadis & Sapatinas (2001), Fziewicz & Nason (2001) and Sardy, Antoniadis & Tseng (2004),
and the Bayesian methods of Kolaczyk (1999b) and Timmermann & Nowak (1999). We proceed by
simulation and employ a variety of intensity functions, background intensity levels, sample sizes,
primary resolution levels, wavelet filters and performance criteria; insight about the performance of
these estimators is obtained from graphical outputs and numerical tables.

The rest of this article is organised as follows. In Section 2 we briefly review some general results
on wavelets, including the discrete wavelet transform. Sections 3 and 4 review respectively the
classical and Bayesian wavelet shrinkage methods for Poisson data that we employ in the simulation
study, which is described in Section 5. Section 6 presents simulation results and some discussions,
and Section 7 contains the main conclusions. Finally, in Section 8 and the Appendix we demonstrate,
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by application to an astronomical gamma-ray burst data set, how the_fgl) programs used for

the calculations of this article may be used in practice. Following the philosophy of reproducible
research (see Buckheit & Donoho, 1995), the programs and the gamma-ray data set can be found on
the World Wide Web atttp : //www.ucy.ac.cy/ ~ fanis/links/software.html.

2 Wavelet Background

In this section we provide some general material which is at the heart of the wavelet paradigm.
Further details on wavelet theory can be found in, for example, Daubechies (1992), Meyer (1992)
and Mallat (1999).

Awaveletis a function that, roughly speaking, looks like a localised wiggle. We define a collection
of wavelets—called a wavelet basis—by dilating and translating two basic functions, a ‘father’
wavelety and a ‘mother’ wavelefs. The waveletg andys are assumed to be compactly supported
and are called-regular if they have vanishing moments andcontinuous derivatives.

A wavelet basis has an associatedegular multiresolution analysis dR. For simplicity in
exposition, we shall focus exclusively on periodised wavelet bas@ ai letting

P =Y ¢t —1 and Yh®) =" Y-,
leZ leZ
where _ _ _ _
Pik(t) =291t —k) and Y1) =217y 2t k)

for j, k € Z, the set of integers. For any primary resolution lepygk 0, the colIection{qbﬁ’Ok, k=
0,1,...,20—1; wf’k, i >jo, k=0,1,...,2i—1}constitutes an orthonormal basidof([0, 1]).
The superscriptp” will be suppressed from the notation, for typographical convenience.

The idea underlying the wavelet approach is that a broad class of functions can be arbitrarily well
approximated by a wavelet series; i.e., for any functicn € L 2([0, 1])

2001 0o 211
gt = > ajudin® + Y Y Btk (D),
k=0

i=io k=0

where

1
aj0k=[ ggjk® dt, jo>0, k=0,1,...,20 1,
0

1
ﬁjk=fg<t)w;k<t>dt, i=0=0, k=0,1,...,20 —1.
0

The coefficientst;x andgjx are called respectively the scaling and wavelet coefficiengstof

The continuous formulation of the wavelet transform is however not very useful for the discretely
sampled functions that are common in practice. For these functions it is the wavelet analog of the
discrete Fourier transform that is applicable and this is referred to as the discrete wavelet transform
(DWT). In particular, given a vector of function valugs= (g(t,), ..., g(ty))" at equally spaced
pointst;, the discrete wavelet transform takes the form of an orthogonal maAttiat carrieg to
its discrete wavelet coefficients

d =Wg.

Here, the coefficients are stored asan1 vector consisting of both the discrete scaling coefficients,
Cj,k» and the discrete wavelet coefficientsx. These coefficients are only approximately their
continuous counterparts,,x andgjx. The precise relationship between them is discussed in any
standard reference; see, for example, AMwsgich, Bailey & Sapatinas (2000). By the orthogonality of
W, the transpose matrW/’ inverts the transform and returns the original input. This process is called
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reconstruction and the reconstruction algorithm is called the inverse discrete wavelet transform
(IDWT). A crucial point is that both the DWT and the IDWT are not implemented by matrix
multiplication, but by a sequence of filtering operations which produce an @der algorithm.

This algorithm requires = 27, for some positive integed, and we will implicitly assume this in

the sequel. See Mallat (1989) for further details.

3 Classical Wavelet Approachesfor Poisson Data

Consider now the Poisson regression model (1) and assume that the underlying intensity func-
tion wu(t) admits an orthonormal wavelet expansion with scaling and wavelet coefficgts
anddjx respectively. Let als@; and ajk be their empirical counterparts from the data vector
y = (Yo, Y1, ---, Y1), Wheren = 27, for some positive integei. The sparseness of the wavelet
expansion implies that most of the structure:ift) is concentrated in relatively few ‘largd’;,. We
would thus obtain a reasonable estimatg ¢ if we could extract the wavelet coefficients of largest
magnitude accurately (by modifying appropriately tﬂw,—e), even when we set the rest to zero. Note
that, in general, the scaling coefficiemtg, are not altered (they are estimateddy.) because the
primary resolution levej, represents ‘low-frequency’ terms that usually contain important compo-
nents of the intensity function.

In parallel to the classical nonparametric regression setting, a simple nonlinear wavelet esti-
mator of u(t) can be constructed by thresholding the empirical wavelet coefficiémtsWe can
allow for a broad class of thresholding schemes but common choices include hard thresholding
[6:(X) = X1jx=71] and soft thresholdings . (x) = sgn(x)(|x| — )] for a fixed threshold > 0,
wherel 4 is the indicator function ofA, sgn(x) is the signum function ok and(x) ;. = max(0, x).

Hard thresholdingis thus a ‘keep’ or ‘kill’ rule, while soft thresholding s a ‘shrink’ or ‘kill’ rule. In ei-
ther case, application of the appropriate inverse transform to the empirical coeff{€igpts . (d i)}
yields a denoised estimate of the underlying intensity funqticn.

From both practical and theoretical standpoints, the success of this approach is closely related
to the properties of the noise, assumed to be Gaussian, additive and stationary. The noise in (1)
shares none of these characteristics and, as a result, direct application of the methodology is clearly
inappropriate. The remainder of this section is devoted to the classical wavelet-based approaches
that have been proposed in the literature for estimating the underlying intensity fup¢tjdoased
on observations from the Poisson regression model (1). The methods we describe are due to Donoho
(1993), Kolaczyk (1997, 1999a), Antoniadis & Sapatinas (2001)zlnwyicz & Nason (2001) and
Sardy, Antoniadis & Tseng (2004), and they are used in the simulation study in Sections 5 and 6. We
refer to these articles for more details on these methods.

3.1 Wavelet Shrinkage of General Intensity Functions Using Transformations

A straightforward approach that was initially proposed by Donoho (1993) involves preprocessing
the data using a normalising and variance-stabilising transformation. Donoho (1993) employed the
Anscombe (1948) transformation, whilst recently Higwicz & Nason (2001) advocated the use of
the Fisz (1955) transformation. Following this preprocessing the usual wavelet methodology with a
global threshold can be applied as if the noise was actually Gaussian. Application of the inverse
transformation leads to an estimate of the underlying intensity fungtion The effectiveness of
the approach using either the Anscombe or the Fisz transformation, followed by one of the minimax
(Donoho & Johnstone, 1994; Bruce & Gao, 1996), universal (Donoho & Johnstone, 1994) or ‘leave-
out-half’ cross-validation (Nason, 1996) threshold, is evaluated in the simulation study in Sections 5
and 6. The computational complexity of this approach for the Anscombe or the Fisz transformation,
with either the minimax or the universal thresholdQgn). On the other hand, its computational



A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Coura$3

complexity with the ‘leave-out-half’ cross-validation thresholdQdgn?), although anO(nlogn)
algorithm is possible if hard thresholding is used (see Hurvich & Tsai, 1998).

Finally, making use of the translation invariant methodology of Coifman & Donoho (1995), we
have also implemented the translation invariant versions of these combinations. The result of this
process is to suppress many of the artifacts frequently found in standard wavelet shrinkage estimates
that are the result of pseudo-Gibbs phenomena, and to correct unfortunate misalignments between
features (of interest) in the intensity functiaiit) and features in the wavelet basis. The translation
invariant algorithm itself require®(nlog n) and O(n?) operations for the Anscombe and the Fisz
transformation respectively, and the effectiveness of this approach is also evaluated in the simulation
study in Sections 5 and 6.

To make the exposition fairly well self-contained, however, we briefly discuss below the idea be-
hind the minimax, universal and ‘leave-out-half’ cross-validation thresholds. Hereafter, we assume
that the original Poisson count data= (yo, ... , Yyn—1)’ from model (1) have been preprocessed,
using either the Anscombe or the Fisz transformation, implying that the resulting transformed vector
of observationg* = (yg, ... , y5_,)' follows a multivariate Gaussian distribution with meg(the
vector of underlying response function values) and variance equgal By a slight abuse of notation,
we again use the generitand d to denote the wavelet and empirical wavelet coefficients of the
underlying response functiay(t) and the transformed daya respectively.

The Minimax Threshold

An optimal threshold, derived to minimize the constant term in an upper bound of the risk involved
in estimating the underlying response functgh), was obtained by Donoho & Johnstone (1994).
The proposed minimax threshold, that depends on the sample, sizdefined as

wherer} is defined as the value efwhich achieves

. R (d)
An =Ipfsup { N+ Roeie(d) } ! @)
whereR, (d) = E((S,(é) — d)? and Ryt (d) is the ideal risk achieved with the help of an oracle.

Two oracles were considered by Donoho & Johnstone (1994): diagonal linear projection (DLP),
an oracle which tells us when to ‘keep’ or ‘kill' each empirical wavelet coefficient, and diagonal
linear shrinker (DLS), an oracle which tells you how much to shrink each wavelet coefficient. The
ideal risks for these oracles are given by

d2
d2+1°
Donoho & Johnstone (1994) computed the DLP minimax thresholds for the soft thresholding rule,

while the DLP minimax thresholds for the hard thresholding rule and the DLS minimax thresholds
for both soft and hard thresholding rules were obtained by Bruce & Gao (1996).

PLP (d) = min(d?, 1) and RPLS (d) =

racle racle

Table 1

Diagonal linear projection minimax thresholds
for hard and soft thresholding rules for various
sample sizes.

n 128 256 512 1024
Hard 2913 3.117 3.312 3.497
Soft 1.669 1.859 2.045 2.22¢
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Since the type of the oracle has little impact on the minimax thresholds, Table 1 only reports
the numerical values of the DLP minimax thresholds (for both hard and soft thresholding rules)
for the sample sizes that we will be using in the simulative study in Sections 5 and 6, and can be
used as a look-up table in any software. These values were computed using a grid search over
with incrementsA, = 0.0001. At each point, the supremum owverin (2) was computed using a
guasi-Newton optimisation with numerical derivatives (see, for example, Dennis & Mei, 1979).

The Universal Threshold

As an alternative to the use of minimax thresholds, Donoho & Johnstone (1994) suggested thresh-
olding each of empirical wavelet coefficierdsby using the universal threshold

™V = /2logn. 3)

This threshold is easy to remember and its implementation in software requires no costly development
of look-up tables. The universal threshold ensures, with high probability, that every sample in the
wavelet transform in which the underlying function is exactly zero will be estimated as zero. This

is so, because KXy, ..., X, are independent and identically distributed standard Gaussian random
variables, then
P {lm_ax [ Xi| < \/210gn} — 1, as n— oo.
<I<n

The rate at which the probability above tends to one is actually quite slow. Faster rates, achieved by
larger thresholds, are possible; however, they lead to oversmoothing with wavelet shrinkage.

The‘Leave-out-half’ Cross-Validation Threshold

One way to choose the threshold leve$ by minimising the mean integrated squared error between
a wavelet threshold estimat@g (t) and the true functiomg(t). In symbols, the threshold should
minimise

M(t) =E f (6:(1) — g®)” dt. (4)

In practice, the functiorgy(t) is unknown and so an estimate ®f is required. The approach to
cross-validation in wavelet regression was adopted by Nason (1996) who, in order to directly apply
the DWT, suggested breaking the original data set into two subsets of equal size: one containing
only the even-indexed data, and the other, the odd-indexed data. The odd-indexed data will be used
to ‘predict’ the even-indexed data, and vice-versa, leading to a ‘leave-out-half’ strategy.

To be more specific, given the transformed Gaussian yfate: (g, ... , ys_,)" obtained from
model (1) withn = 27, remove all the odd-indexegd from the set. This leaveX’ ! evenly indexed
y* which are re-indexed from = 1, ... ,2771. These re-indexed data are then used to construct a
function estimat@® by using a particular threshold parametavith either hard thresholding or soft
thresholding. To compare the function estimator with the left-out noisy data an interpolated version
of §F is formed

_ 1, N .
ar | =§(gEj+l+gEj), ji=1,...,n/2,

settingdy ,,,, = 07, becausg is assumed to be periodic. TB¢ is computed for the odd-indexed
points and the interpolant is, similarly, formed as

- . . :

The full estimate ofM given in (4) compares the interpolated wavelet estimators and the left out
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points
n/2

~ _ 2 _ 2
M(T)=Z[(gf~j —Yoi1)” + (G — v2i) ] ®)
j=1
It can be shown that one can almost always find a uniqgue minimum of (5)

Tmin = arg min M (7).
>0

This minimum value depends o2 data points (since both estimategyp £ andg® are based on
n/2 data points) and, therefore, a correction for the sample size is needed. Nason (1996) considered
the universal thresholdV given in (3) to supply a heuristic method for obtaining a cross-validated
threshold fom data points. By using this adjustment, the ‘leave-out-half’ cross-validation threshold

is defined as
1 2 —1/2
&V = (1 _ 8 ) Tmin-
logn

3.2 Wavelet Shrinkage of General Intensity Functions Using Modulation Estimators

A different approach with a wider scope of application was considered by Antoniadis & Sapatinas
(2001). In this approach, one can construct estimators of the underlying intensity fun¢tjdoy
diagonal linear shrinkages that are asymptotically minimax for a class of submode(s)faramely
the class of functions belonging to an ellipsoid of the Sobolev 8éssf smoothness index> 1/2.

These estimators take the forthWy, where H = diaqﬁ) is the diagonal matrix of order and
h:T={0,1,...,n—1} = [0, 1] (depends o = WYy) is chosen to minimize the estimated risk
of the linear estimatofl}l = H Wy over all functionsh in a classH c [0, 1]". Each functiorh in a
classH c [0, 11" is called a modulator and the resulting estime&gr: HWY is referred to as the
modulation estimator.

Let B, be a partition of the sef and define

H=1Y 1gc(B): celo, 1]Bn}, (6)

BeB,

wherelg is the indicator function oB. Extending the arguments in Beran &iinbgen (1998),
Antoniadis & Sapatinas (2001) put forth the modulation estimator

avalg@ — 32); . «

dp = Y lgd
A2
h BeB, avglgd )
of d = Wy, where avég) = n~' Y, _; g(t) for any functiong € R", &*(t) = Y| wiyi

(t € T), and the Wavelet—filtgr coefficientsy in &°(t) are associated with the DWT matrix.

By performing the IDWT ofd;., the resulting modulation estimator can be used to estimate the
underlying intensity functiomlgt). This approach require®(n) operations, whilst its translation
invariant version require®(n?) operations.

Various examples of modulator clasg€sn (6) can now be constructed. The optimal modulation
estimator is a multiple Stein estimator and results when the part#jdmas cardinality5,| = o(n)
(see, Beran & Mmbgen, 1998). One such choice is, for example, whgns a partition of T in
intervals of lengthlog.(log, n)], where[x] denotes the integer part af However, for practical
purposes, in the simulation study in Sections 5 and 6 we have f8kdo be a partition ofT in
intervals of length one, resulting in a pointwise modulation estimator (see Antoniadis & Sapatinas,
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2001) that is related to the estimator considered by Nowak & Baraniuk (1999).

3.3 Wavelet Shrinkage of General Intensity Functions Using d@Penalised Likelihood Method

Another approach with a wider scope of application was considered by Sardy, Antoniadis & Tseng
(2004). In this approach, one can construct estimators of the underlying intensity fun¢tjdoy
considering amh, -penalised likelihood method. In other words, the resulting estimator is obtained as
the solution of the following convex programming problem

J—12-1
min { —1(u:y) +4 Y Y ldjl with p=Wd and pe (000", )
pd j=jo k=0
where—I| (u; y) is the log-likelihood function ofx based on the observationgrom model (1) and
A > 0 is the smoothing parameter.

The above convex programming problem is a reminiscent of the Basis Pursuit estimator of Chen,
Donoho & Saunders (1999) obtained by an interior point method (based on non-orthonormal wavelet
bases) for Gaussian data. However, (7) is more complex in that it has inequality constraints, the
penalty only applies to the wavelet coefficient (j = jo,...,J — 1), and the log-likelihood
is not quadratic. Moreover, special care must also be taken to handle the case of zero Poisson
counts. Sardy, Antoniadis & Tseng (2004) solved the above convex programming problem (7) by
first deriving its dual problem and then developing a primal-dual log-barrier internal point method.
Furthermore, using results from inhomogeneous continuous-time Poisson processes, they proved
that the appropriate smoothing parametén (7) is actually level-dependent and equal to

i = Mg, )22 21ogn/vn,  j=jo,... I =1,

where

uelo0,1]

1
Mg 1) = max (02 [ 115" .

The above universal-type thresholds are then used to estimate the underlying intensity function
1(t). The constanM (4, ) depends both on the mother waveletand the knowledge oft

which represents the situation where the underlying intensity function is in the range of the scaling
functions (i.e., all fine-scale wavelet coefficients are zero). In practice, Sardy, Antoniadis & Tseng
(2004) suggested to estimatg, in the range of the scaling functions using the estimator proposed
by Donoho, Johnstone, Kerkyacharian & Picard (1995) for Poisson data, based on the variance-
stabilising transformation of Anscombe (1948).

As it was pointed out in Sardy, Antoniadis & Tseng (2004), the computational complexity of this
approach is difficult to access. The resulting estimator is based on an iterative algorithm solving
a set of non-linear equations by a Newton-type method, and for the Newton direction a system of
linear equations is solved by a variant of the conjugate gradient algorithm. Therefore, the method is
computationally intensive, but some hints of how to speed up the conjugate gradient algorithm are
given in Sardy, Antoniadis & Tseng (2004). The relative performance of this approach is evaluated
in the simulation study in Sections 5 and 6.

3.4 Wavelet Shrinkage of Burst-like Intensity Functions Using Haar Thresholds

An approach for burst-like Poisson processes has been described in Kolaczyk (1997). A burst-like
Poisson process is defined as the sum of a homogeneous ‘background’ Poisson process (with constant
intensity functionuw, > 0) and a second, inhomogeneous Poisson process (with intensity function
a(t) > 0) that tends to generate observations in bursts.
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The approach considered by Kolaczyk (1997) constructs estimators of the underlying intensity
functionu (t) using Haar wavelets and applying suitable level-dependent threshdiolthe resulting
empirical wavelet coefficiemé“< of the original Poisson counts, that are similarly mild in nature to
the universal threshold of Donoho & Johnstone (1994). More specifically, under the null hypothesis
Ho : w(t) = o (i.e, no burst being present), the resulting empirical wavelet coeffic'&qmat each
resolution level, are independent and identically distributed according to a symmetric distribution
about zero with variance, and we have that

A 2!
P dil <77 ) = [1 =2 P (w0 < vy)]
wherev; = 20Dy, andm; = 20-1/2¢;, By using an approximation for non-central chi-square
random variables due to Patnaik (1949) and appealing to the central limit theorem, Kolaczyk (1997)
was able to derive the following level-dependent thresholds

1) =202 {log(Zj)+\/log2(2i)+2uo log(2§)29-] } i=1jo...,J—1,

which are then used to estimate the underlying intensity fungtidn. The dependence of the
thresholds on the unknown true valueuaf has practical implications and we come back to this issue
in Section 6. For fixedyo, the method is implemented within the translation invariant framework
of Coifman & Donoho (1995) to eliminate the ‘staircase-like’ structure of non-translation invariant
Haar estimates. As a result, the computational complexity of the resulting appro@chlisg n).

The relative performance of this approach is evaluated in the simulation study in Sections 5 and 6.

3.5 Wavelet Shrinkage of Burst-like Intensity Functions Using Corrected Thresholds

Kolaczyk (1999a) attempted the generalisation of the Haar-based thresholds discussed in Sec-
tion 3.4 for burst-like Poisson processes to arbitrary wavelet bases. In particular, a new set of
level-dependent thresholds is sought calibrated so that

P( max ajk511>—> 1, as | — oo,
O<k<2i-1

at a rate similar to that obtained for the universal threshold of Donoho & Johnstone (1994) in the
Gaussian case. Using the Aldous’ Poisson Clumping Heuristic (see, Aldous, 1989), the following
approximation is obtained

. Pk > 19) .
f . ~ — Jij J = —
P <0<rkrlaé)i(_1 d]k < 1.'J> exp { 2 E(ij) s | Jos - v s J 1, (8)

whereE(Cy,) is the expected ‘clump size’, roughly the expected number of local exceedancgs of
conditional on there being at least a single exceedance, which inihlies 1.

Although a closed form expression f@r(&jk > 7;) in (8) exists when using Haar wavelets, this
is not generally true for other choices of wavelet bases. However, Kolaczyk (1999a) derived implicit
level-dependent thresholds that also depend on the background intengigy The idea behind this
method is a large deviation approximation, yielding an expression that serves to account for effects
of the first few cumulants of the Poisson distribution on the tails of the empirical wavelet coefficient
distributions. The resulting pair of thresholds (which accommodate the asymmetric nature of the
distribution ofd jk) were called the ‘corrected thresholds’ due to the fact that they are, essentially,
corrected versions of the usual Gaussian-based thresholds for arbitrary wavelet bases. They are given
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by

m max , 1/2 min min,  1/2 . .
rjax:bjalcz/ and T :bi KZ/, i =1lo.---,Jd—1, 9)
wherek, = 29 fol[wjk(x)]Q dx, and the proportionality constarig™, b‘jnin are defined as the
solution of particular equations. These thresholds are then used to estimate the underlying intensity
function . (t). However, the asymptotic approximations used by Kolaczyk (1999a) in dem\{ﬂ“fg
and r}mn in (9) result in the fact that they may not exist for small valuegcgf(since reasonable
solutions ofb{™™ andb‘j“"n may not exist). When they exist, the approach can be comput@drin
time.

The relative performance of this approach is evaluated in the simulation study in Sections 5 and
6, along with its translation invariant version which requi€@ log n) operations.

4 Bayesian Wavelet Approachesfor Poisson Data

The wavelet shrinkage problem of Section 2 has also been approached from a Bayesian point of
view. In this section we present two Bayesian estimators of the mean vacfand thus of the
intensity functionu(t) at the design points) that use a multiscale data analysis. In general, multiscale
analysis refersto the study of structure in signals or data at various spatial and/or temporal resolutions.
Perhaps the simplest technique is the Haar multiscale analysis defined according to

Cik=Yx, k=0,1,...,27 -1

Gk = €1k +Crimke, j=0,1,...,3—-1; k=0,1,...,21 —1.
The parameters;, are the (unnormalised) Haar empirical scaling coefficients. The relationship
between a ‘parent’ (e.g€jk) and a ‘child’ (e.g.,€j+1,2) is of fundamental interest in multiscale
analysis. This relationship is expressed by the conditional likeliho@d 12« | €jk, 1) which

happens to have a very simple form for the Poisson regression model (1). Defijirg pk and
Cjk = Cj+1,2k + Cj412ks1, fOr j =0,1,... ,J —landk=0,1,...2! — 1, we find that

A A . A ~ Cj+1.2k
P(Cj+1.2« | Cjk, ) = Bin (Cj+1.2k | Cik, J;k ) ,
]
where Binx | n, p) denotes the binomial distribution with parametarand p. The canonical
multiscale paramete®jx = cj+1,2k/Cjk can thus be viewed as splitting factors that govern the
multiscale refinement of the mean vectar The simplicity of the parent-child relationship is quite
exceptional here and, as a result, leads to the following factorisation of the likelihood function

J—121—1
p(y | ) = poo | Coo) [ | [T P12 | Eiics 510

j=0 k=0
This factorisation also greatly facilitates multiscale analysis and modelling. For example, estimates
of the multiscale parametefigx can be used to reconstruct an estimate of the underlying intensity
functionu.(t). From a Bayesian perspective, multiscale modelling requires (i) specification of a suit-
able prior model for the multiscale parameteyis and (ii) determination of the posterior distribution
resulting from the likelihood and prior. The remainder of this section is devoted to two types of prior
models that have been proposed in the literature for estimating the underlying intensity fur(€tion
based on observations from the Poisson regression model (1). The methods we describe are due to
Kolaczyk (1999b) and Timmermann & Nowak (1999), and they are used in the simulation study in
Sections 5 and 6. We refer to these articles for more details on these methods.
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4.1 Wavelet Shrinkage of General Intensity Functions Using Multiscale Model Estimators

Kolaczyk (1999b) introduced a class of Bayesian multiscale models (BMSMs) in which the prior
distribution of theji’s is a mixture of a point mass at 1/2 and a symmetric beta distribution, i.e.,

1
Oik | Yiks Bjk ~ ik 3 + (1 = ¥jk) Bik,

Yik | p; ~ Bernoulli(p)),
Bjk | a; ~ betaa;, a;).

Note that, at each scale= 0,1,...,J — 1, the hyperparametefs < p; < 1 anda; > 0 are
constant across all locatioks= 0, 1,...,21 —1.

If the parameter8j, are modelled independently of tle,, then a multiscale factorisation of the
posterior distribution is obtained. This factorisation allows inferences to be made on each multiscale
parameter individually, leading to a computationally efficient, recursive expression (across scales)
for the posterior mean. The final posterior mean estimate of the mean yedaralculated from
a translation invariant framework that eliminates the “staircase-like” structure of each individual
estimate. The entire estimation process may be calculat®driiog n) time by implementing it in
a computationally efficient manner.

For the functioning of the BMSM estimator, Kolaczyk (1999b) recommended the chjicesCy
andaj = lLforall j =0,1,...,J—1.Inaddition, he presented an expectation-maximisation (EM)
algorithm for computing an empirical Bayes estimate of the scale-dependent mixing pargmeters
We have also found these choices to work well but, for computational reasons, the simulation results
we present in Section 6 have been baseger= 0.90 (forall j =0,1,...,J — 1). This choice
was found to work reasonably well in preliminary experiments.

4.2 Wavelet Shrinkage of General Intensity Functions Using Multiscale Multiplicative Innovations
Model Estimators

The Bayesian multiscale multiplicative innovations model (BMMIM) of Timmermann & Nowak
(1999) moves beyond the BMSM of Kolaczyk (1999b) by specifying more general beta mixtures for
the multiscale parameters. Formally the mixture priors adopted by Timmermann & Nowak (1999)
have the form

R 0 A , j
p(@,k)_;p, TR =0,1,...,J—1; k=0,1,...,2I —1,
whereM is the number of componentB(«, 8) is the standard beta functioh,< p; < 1 denotes
thea priori probability of thei th component, an{ji"":l pi=1.

The mixture priors above are conjugate for the likelihood function, factorise the posterior distri-
bution of thedj’s and lead to a simple closed-form expression for the posterior mean of the mean
vector u. The computational complexity of its translation invariant version, which eliminates the
“staircase-like” structure of each individual estimateQié12). However, for largan, the complexity
of the translation invariant estimator may be reduce®¢a2 ’~ ) by initiating it at some primary
resolution levelj, > 0.

Timmermann & Nowak (1999) found that three components suffice for many applications and
suggested the choices = 1, s, = 100 ands; = 10000 with weightsp; = 0.001 and a moments-
based estimate fqu, (and henceps). However, we have found that these moment-based estimates
do not work particularly well and, therefore, the simulation results we presentin Section 6 have been
based omp, = 0.07 (and henceps = 0.929) for all j = jo, ..., J — 1. This choice was found to
work reasonably well in preliminary experiments.
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5 Description of the Simulation

To compare the performance of the classical and Bayesian wavelet shrinkage methods described
in Sections 3 and 4 we have designed a simulation study. Three factors of interest were identified
and included in the study: the intensity functiaiit), the background intensity level o, and the
sample sizen. Motivated by various applications, six different intensity functions were used. These
were the ‘Smooth’ (Beran & Dmbgen, 1998), ‘Angles’ (Marron, Adak, Johnstone, Neumann &
Patil, 1998), ‘Clipped Blocks’ (Frglewicz & Nason, 2001), ‘Bumps’ (Donoho & Johnstone, 1994),
‘Spikes’ (Cai, 1999) and ‘Bursts’ (Kolaczyk, 1997) functions, and they are plotted in Figure 1. We
refer to these papers for more information about these functions. The background intensity level
varied over 5, 20 and 50 counts per time point so as to gain some insight about the behaviour of
the procedures at ‘low’, ‘medium’ and ‘high’ background intensity levels. Finally, the sample size
varied over 256, 512 and 1024 observations in order to examine the behaviour in ‘small’, ‘medium’
and ‘large’ samples respectively.

Smooth Clipped Blocks
6 ‘ ‘ ‘ 6 : : ‘
4 4
2 ol
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Bumps Angles
6 6
4 4
2 2
0 : : Ok : ‘ : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Spikes Bursts
6 6
4 4
2 2
0 : A 0 : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1. The six intensity functions used in the simulation study sampled at our ‘medium’ sample=sizE2n

For each combination of the 3 factors, 100 realisations of Poisson counts were generated from
model (1) using the Poisson random number genepatogsrnd in MATLAB . The noisy versions of
the intensity functions were generated according to the formulatsysignal = ;1o x(1+signal).
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Figure 2 illustrates one realisation from each intensity function witk= 512 and wo = 20.

For each realisation we compared the performance of the estimators based on the Anscombe and
Fisz transformations, modulation moddlspenalised likelihood method, Haar wavelets, corrected
thresholds, Bayesian multiscale model, and Bayesian multiscale multiplicative innovations model.
Where applicable, we considered both soft and hard thresholding and one of the minimax, universal
or ‘leave-out-half’ cross-validation thresholds, and we examined three primary resolution levels
(jo = 4, 5 and 6). Based on their nice properties and wide applicability, we employed both the
Symmlet 8 (Daubechies, 1992, p. 198) and the Coiflet 3 (Daubechies, 1992, p. 258) wavelet filter.

Smooth + Poisson Noise Clipped Blocks + Poisson Noise
150 150
100 1001
50 501
0 : : : : 0 — : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Bumps + Poisson Noise Angles + Poisson Noise
150 ‘ ‘ ‘ 150 ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Spikes + Poisson Noise Bursts + Poisson Noise

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2. Noisy versions of the six intensity functions shown in Figure 1, giving a visual impression of our ‘medium
background intensity’ levaly = 20.

Although we have implemented them, we have not compared in the main simulation study the
translation invariant versions of the estimator based on the Fisz transformation and the modulation
approach since they requi@n?) operations. Note however that the translation invariant versions of
these estimators perform better than their non-translation invariant counterparts and may be preferred
in individual applications. Table 2 lists the estimation procedures used in the simulation study and
provides an easy-to-understand acronym for each procedure as a shorthand means of referring to it.
As shown in the table, 22 different estimators were actually compared in total. We have not included
the estimators based on the Fisz transformation noting that the results were as good as, or almost as
good as, with the results obtained using the estimators based on the Anscombe transformation.
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Table 2

Acronyms and details of the wavelet shrinkage estimation procedures used in the simulation study. The last
column, “Section”, refers to the sections of the text where these procedures have been described.

Name Thresholding Threshold Value Section
1 ANSCOMBE-MIN-H Hard Minimax 3.1
2 ANSCOMBE-MIN-S Soft Minimax 3.1
3 ANSCOMBE-UNI-H Hard Universal 3.1
4 ANSCOMBE-UNI-S Soft Universal 3.1
5 ANSCOMBE-CV-H Hard ‘Leave-Out-Half’ Cross-Validation 3.1
6 ANSCOMBE-CV-S Soft ‘Leave-Out-Half’ Cross-Validation 3.1
7 | ANSCOMBE-MIN-TI-H Hard Minimax 3.1
8 | ANSCOMBE-MIN-TI-S Soft Minimax 3.1
9 | ANSCOMBE-UNI-TI-H Hard Universal 3.1
10 | ANSCOMBE-UNI-TI-S Soft Universal 3.1
11 | ANSCOMBE-CV-TI-H Hard ‘Leave-Out-Half’ Cross-Validation 3.1
12 ANSCOMBE-CV-TI-S Soft ‘Leave-Out-Half’ Cross-Validation 3.1
13 MODULATION Multiple Stein Alike Shrinkages 3.2
14 11-PENALISED Penalised Likelihood-Based Shrinkages 3.3
15 HAAR-TI-H Hard Level-Dependent Thresholds 3.4
16 HAAR-TI-S Soft Level-Dependent Thresholds 3.4
17 CORRECTED-H Hard Pair of Level-Dependent Thresholds 3.5
18 CORRECTED-S Soft Pair of Level-Dependent Thresholds 3.5
19 CORRECTED-TI-H Hard Pair of Level-Dependent Thresholds 3.5
20 CORRECTED-TI-S Soft Pair of Level-Dependent Thresholds 35
21 BMSM-TI Multiscale Model 4.1
22 BMMIM-TI Multiscale Multiplicative Innovation Mode 4.2

In the simulations, the performance of an estimgiavas summarised by the following criteria

1. mean squared error (MSE), defined as the average over the 100 replicates of

LS, o,
ﬁ;(ll«l_u«l),

2. I;-norm (L1), defined as the average over the 100 replicates of

n
>l — il

i=1
3. root mean squared error (RMSE), defined as the square root of the MSE;

4. SB/MSE, defined as the ratio of squared bias to the MSE;
5. maximum deviation (MXDV), defined as the average over the 100 replicates of

max |uj — fil;
1<i<n

6. CPU time, defined as the average CPU over the 100 replicates.
The relative performance of the 22 estimators of Table 2 can be deduced from graphical outputs and

numerical tables. The whole set of results across all intensity functions, background intensity levels,
sample sizes, primary resolution levels, wavelet filters and performance criteria is very extensive.
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Here, for reasons of space, we report summary results for all intensity functions pertaining to
o = 20,n = 512, jo = 5 and Symmlet 8. Different combinations of wavelet filters and primary
resolution levels yielded basically the same results, although some methods seem to be quite sensitive
to the choice of the primary resolution level; we come back to this issue in Sections 6 and 7. For
n = 256 or n = 1024 we found respectively poorer/better individual performance of the estimators
but their relative performance was roughly the same. This behaviour was also obsemnedfa¥

or up = 50, where the signal-to-noise ratio is low/high respectively, although some methods tend
to oversmooth or attenuate the fine detail structure in the underlying intensity function especially in
situations involving very low level of counts. Moreover, some methods seem to be very sensitive to
the knowledge of the background intensity level; we come back to these issues in Sections 6 and 7.
In Section 8, we provide further details and a demonstration session in which various estimators are
considered for an astronomical gamma-ray burst data set.

6 Summary of Results

The results of the simulation study will now be presented, with the remainder of the section
devoted to the discussion of these results. Note that, for brevity, the estimation procedures will be
referred to by the acronyms introduced in Table 2.

6.1 Smooth and Angles Intensity Functions

The results for the ‘Smooth’ and ‘Angles’ intensity functions are reported first. For these functions,
where there is relatively little underlying structure, all estimators produced very good estimates with
the exception of HAAR-TI-H, CORRECTED-H and CORRECTED-TI-H estimators, despite their
using the true parameter valueof. The poor performance of these estimators may be due to the fact
that they are best suited for burst-like intensity functions. It is interesting to note however that this
group of estimators performed significantly better when using soft thresholding, in which case their
performance became comparable with that of several other estimators. Figures 3 and 4 illustrate the
relative performance of the estimators in terms of the six performance measures for the ‘Smooth’
and ‘Angles’ intensity functions respectively.

There is little to choose amongst the various Anscombe-based, MODULATIGRENALISED
and BMMIM-TI estimators (for ‘Smooth’), all of which outperformed the BMSM-TI estimator.
Similarly, there is little to choose amongst the various Anscombe-based and MODULATION esti-
mators (for ‘Angles’), all of which outperformed the BMSM-TI and BMMIM-TI estimators. The
performance of the BMSM-TI estimator (for both ‘Smooth’ and ‘Angles’) was found to improve
by selecting their hyperparameters adaptively, as recommended by their authors, at the expense of
increasing significantly the considerable computational cost. On the other hand, the performance of
the BMMIM-TI estimator (for ‘Angles’) was found to improve by decreasing the primary resolution
level, as found in preliminary experiments. It can be shown that in these cases the BMSM-TI and
BMMIM-TI estimators perform as well as their non-Bayesian counterparts. Of these two estimators,
BMMIM-TI performed best in terms of the measures, despite its tendency to produce estimates with
slightly reduced amplitudes (for ‘Angles’).

6.2 Clipped Blocks Intensity Function

In contrast to the ‘Smooth’ and ‘Angles’ intensity functions, a range of performance was ob-
served for the ‘Clipped Blocks’ intensity function. Figure 5 illustrates the relative performance of
the estimators in terms of the six performance measures. As observed in the figure, the BMSM-TI
estimator dominated its non-Bayesian counterparts in every aspect apart from CPU time. Although
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Figure 3. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Smooth’ intensity function when
1o = 20 and n= 512. The performance of each method is given in terms of the six measures of Section 5. The methods are

P. BESBEAS |. DE FEIS & T. SAPATINAS

MSE - Smooth L1 - Smooth
" | 1600t 1
B - 1400 | H E
I 1 + B
1200 | . E
T A +
T l 1000? ++++4++ 4+ T+ 9 T1T+ ]
E Q | ] P T+
+ 800 - 9 Ii-
"f? +d++al T o4+ BHHHEH$$E$HE+H éé
?#% %%i%%i % % %%; Goml““u L : bl
P B SR S S
123456 7 8 91011121314 1516 17 18 19 20 21 22 123456 7 8 910111213 14 15 16 17 18 19 20 21 22

RMSE - Smooth

SB/MSE - Smooth

123456 7 8 91011121314151617 1819 2021 22

MXDV - Smooth

123456 7 8 91011121314151617 18 19 2021 22

CPU - Smooth

74 ]

—CO—

— - —

— T A+

+
el
I

1.2

08

06

04

02

+
+ 4

+
i; i
L +

MW |

+ &
foos #les fatede ®

123 45 6 7 8 910111213 14151617 18 19 20 21 22

123 456 7 8 910111213 14151617 18 19 20 21 22

presented in the same order as in Table 2 and the results are based on 100 replications, Symmigt8sand |



A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Coura5

MSE - Angles L1 - Angles
T T T T 1800—‘HHHHHHH‘%HH‘—
351 1 |
. T + 1 1600 | +T 1
25k + + 1 1400} T a f
I
i s
20 b ] 1200 | T 1 ]
T H + + E +T1+¢*
15| g 1 ] mooééééééTv"végl 9+Té,
T RS EE Ly ool éééééél Q | él’
IS S | ! 1
| Q%%%‘%%% b m wf $UUHIT D
+++t+++
12345 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 12345 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22
RMSE - Angles SB/MSE - Angles
45 T T T ] T T '
0.6 1
4t i
35 1 05 1
3l ]
0.4 1
25 1
2l ] 03 1
15r 1 0.2 1
1| ]
0.1f 1
05 ]

123456 7 8 91011121314151617 1819 2021 22

123456 7 8 91011121314151617 18 19 2021 22

:::‘ B ‘—‘ ngles ‘ $ ‘ i _ ‘: 1.57‘ T ‘— ‘ngieé . +‘ -
AR 0 A
15,$‘f i S I g TQ | 05} + % il

10 é g 1

%%%%%%@ Lo Oﬁﬂi%%ﬁ 5%*2%

123 45 6 7 8 910111213 14151617 18 19 20 21 22

123 456 7 8 910111213 14151617 18 19 20 21 22

Figure 4. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Angles’ intensity function when
1o = 20 and n= 512. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmigt8sand |



226 P. BESBEAS |. DE FEIS & T. SAPATINAS
MSE - Clipped Blocks L1 - Clipped Blocks
90 T 3 3000 [ T é T 3
80 - 1 _
70} g + %] 1 2500} é i i s N ) i
60 f + I R E -l
50 - ii’ %] é] 1 zoooééé é* + # é éé%f |
_F s + ! - I Lol é] é + + :% | é
wol g+ + ] +7.8_ ] 18g
é é é + 4 1500 1 é I g
! YL ] 58 BT - g &
orp 4+ - Ti éz I'TH % 1 1 1 é i
20 %] %] T 1 # + 1 %? 1000 | % 1
w0} + %] ? P &
obw v o N 500k 4 4 .. e L E
123 456 7 8 910111213 14 15 16 17 18 19 20 21 22 123456 7 8 9 10111213 14 15 16 17 18 19 20 21 22
RMSE - Clipped Blocks SB/MSE - Clipped Blocks
sl CTT T T T | oof T _ 1
08t J
i | 07t 1
°r 1 0.6 1
57 | 05f 1
ar 1 04} 1
sr ) 03} E
2f 1 0.2} 1
ir 1 01} E

55

50

45 r

40

35

30

25
20
15

10

Figure 5. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Clipped Blocks’ intensity function
whenuy = 20 and n= 512. The performance of each method is given in terms of the six measures of Section 5. The methods

123456 7 8 91011121314151617 1819202122

MXDV - Clipped Blocks

123 456 7 8 91011121314151617 1819202122

CPU - Clipped Blocks

o+ f$ )
3,8
l

+—
+

—— T — 4 4+
— 4+

e
S

— I =+
i s =
— LI —+
e i S

15

05

(=}

Fiss 4¥47

+

+

% |

PRI

O AHH-

L

L

:

5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22

123 456 7 8 910111213 14151617 18 19 20 21 22

are presented in the same order as in Table 2 and the results are based on 100 replications, Symmig&85and j



A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Coura7

the BMMIM-TI estimator does not perform as well as the BMSM-TI estimator, its performance
improves significantly by increasing the primary resolution level; it can be shown that in this case
the BMMIM-TI estimator also performs better than its non-Bayesian counterparts. For the hyper-
parameter values we used, the BMSM-TI estimator fared better than the BMMIM-TI estimator but
was not as computationally efficient. The computational advantage of the BMMIM-TI estimator is
due to the five-scale wavelet transform we employed, although in practice we could usefalle
transforms for improved performance (but see the discussion in Timmermann & Nowak, 1999).

Of the classical estimators, HAAR-TI-H and HAAR-TI-S performed best whilst MODULATION
performed worst. The non-translation invariant Anscombe-based estimators outperformed, in almost
all cases, thé;-PENALISED estimator but, as expected, did not perform as well as their trans-
lation invariant counterparts. It is interesting to note however that {HeENALISED estimator
performs better than the ANSCOMBE-UNI-S and ANSCOMBE-UNI-TI-S estimators, but the gain
in performance is not enough to justify its cost.

6.3 Bumps Intensity Function

A range of performance was also observed for the ‘Bumps’ intensity function. Figure 6 illustrates
the relative performance of the estimators in terms of the six performance measures. As observed in
the figure, the HAAR-TI-H and CORRECTED-TI-H estimators performed best, followed closely by
the BMSM-TI estimator. The generally good performance of the various translation invariant Haar
and Corrected threshold estimators is not entirely surprising since the ‘Bumps’ intensity function
displays the burst-like behaviour for which these estimators were specifically designed. Note how-
ever that the performance of this group of estimators was based on the true background intensity
level uo and would therefore deteriorate in practice, whergis unknown. By way of contrast,
the performance of the BMSM-TI estimator has the potential of improving in practice by using
data-adaptive hyperparameters. The same is also true for the BMMIM-TI estimator by increasing
the primary resolution level.

Amongst the Anscombe-based estimators, the type of thresholding scheme (hard, soft) and the
choice of threshold value (minimax, universal, cross-validation) play an important role. Of the six
pairs of thresholding scheme and threshold value, the pairs (soft, cross-validation) and (hard, mini-
max) performed best whilst the pair (soft, universal) performed worst. As expected, the translation
invariant estimators offered improvements in performance and practically eliminated most of these
differences. As for the ‘Clipped Blocks’ intensity function, thePENALISED estimator performs
better than ANSCOMBE-UNI-S and ANSCOMBE-UNI-TI-S estimators, but the gain in perfor-
mance is not enough to justify its cost. Finally, the MODULATION estimator performed worst and
trailed all of its competitors in terms of all the measures apart from CPU time.

6.4 Spikes and Bursts Intensity Functions

For the ‘Spikes’ and ‘Bursts’ intensity functions, the estimators can be broadly categorised ac-
cording to their performance as ‘good’, ‘not so good’ or ‘bad’. Thus the ‘bad’ estimators are the
MODULATION and I,-PENALISED, the ‘not so good’ estimators are ANSCOMBE-UNI-S and
ANSCOMBE-UNI-TI-S, and all the remaining estimators are ‘good’ estimators. It is interesting
to note that the ANSCOMBE-UNI-TI-S estimator performed worse than the ANSCOMBE-UNI-S
estimator for the ‘Spikes’ intensity function and the worst estimatord w&ENALISED, while the
worst estimator for ‘Bursts’ was MODULATION. However, the MODULATION estimator performs
better than the -PENALISED estimator in terms of CPU time, for both intensity functions. Figures 7
and 8 illustrate this and the relative performance of the remaining estimators in terms of the six
performance measures for the ‘Spikes’ and ‘Burst’ intensity functions respectively.
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Figure 7. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Spikes’ intensity function when
1o = 20 and n= 512. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmigt8sand |
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Figure 8. Relative performance of the 22 methods in Table 2 for the estimation of the ‘Bursts’ intensity function when
1o = 20 and n= 512. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmigt8sand |
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Ofthe better estimators, the ANSCOMBE-MIN-TI-H, ANSCOMBE-UNI-TI-Hand ANSCOMBE-
CV-TI-H estimators were almost identical and slightly outperformed their competitors. The trans-
lation invariant Haar and the various corrected threshold estimators performed more or less equally
well in terms of the performance measures but the HAAR-TI-H and CORRECTED-TI-H estimators
yielded noticeably better estimates visually. As before, the performance of these estimators was
based on the true value of the background intensity Iemglwhich would be usually unknown
in practice. Since estimation @f, can be difficult in these intensity functions (and in some of
the previous intensity functions), we have conducted a smaller study to examine the effact of
on their performance. We have found that deviations from the true value, afan substantially
deteriorate the performance of the estimators, depending on the sign and magnitude of the deviation,
the smoothness of the underlying intensity function, and the type of thresholding. The performance
sensitivity of the translation invariant Haar and the various corrected threshold estimators on the true
parameter value gi, constitute a serious practical limitation on the use of these estimators.

The BMSM-TI estimator, on the other hand, can be readily applied in practice. Furthermore, apart
from its favourable MSE performance, it produced estimates which did not contain the spurious
fine-scale effects that were often present in the other estimates; its estimates, however, tended to
have slightly lower peaks and higher troughs. The same behaviour is also observed to some extent
for the BMMIM-TI estimator by increasing the primary resolution level, especially for the ‘Bursts’
function.

7 Overall Conclusions

We compared the finite sample performance of a number of classical and Bayesian wavelet shrink-
age estimators for Poisson counts. Amongst the classical approaches, the methods of Donoho (1993),
Kolaczyk (1997, 1999a), Antoniadis & Sapatinas (2001),Afeywicz & Nason (2001) and Sardy,
Antoniadis & Tseng (2004) were considered. We also considered recent Bayesian approaches devel-
oped by Kolaczyk (1999b) and Timmermann & Nowak (1999). The output of our simulation study
is an illustration of the no-free lunch principle; the results show that there is no single estimator that
is superior to others in all cases.

When the underlying intensity function is relatively homogeneous, most estimators perform com-
parably and there is little to choose amongst them. As expected, the translation invariant version of the
Anscombe-based estimators usually performs better than their non-translation versions. Moreover,
since the universal threshold is larger than the minimax threshold obtained from a soft thresholding
rule and since soft thresholding produces more biased estimates than hard thresholding, the resulting
estimates obtained from soft thresholding with universal threshold are more biased (more coefficients
are thresholded) than the ones obtained from soft thresholding with minimax threshold. On the other
hand, since the universal threshold is smaller than the minimax threshold with a hard thresholding
rule, the resulting estimates obtained from hard thresholding with minimax threshold are less biased
(fewer coefficients are thresholded) than the ones obtained from hard thresholding with universal
threshold. The same behaviour is also observed to a lesser degree for the Fisz-based estimators. The
very good performance of the modulation estimator is explained by its linearity; linear estimators
are appropriate for homogeneous intensity functions. The performancd gf plemalised likelihood
estimator is very good even though it has been proposed for inhomogeneous intensity functions.
On the other hand, despite their using the true parameter value of the background intensity level,
the poor performance of the Haar-based and the corrected-based estimators is justified by the fact
that these estimators have been proposed for burst-like intensity functions. Also, as expected, the
translation invariant version of the corrected-based estimators usually performs better than their non-
translation versions. However, the knowledge of the background intensity level for both Haar-based
and corrected-based estimators constitutes a serious practical limitation on the use of these esti-



232 P. BESBEAS |. DE FEIS & T. SAPATINAS

mators. Moreover, the asymptotic approximations used in obtaining the corrected-based estimators
resultin the fact that these estimators may not exist for small values of the background intensity level,
resulting again in a serious limitation on the use of these estimators in practical applications. Finally
the Bayesian estimators consistently perform well, although the Bayesian multiscale multiplicative
innovations model estimator is sensitive to the choice of the primary resolution level.

When the underlying intensity function is inhomogeneous, a range of performance is observed.
Again, as expected, the translation invariant version of Anscombe-based estimators usually per-
forms better than their non-translation versions. Although these latter estimators show relatively
good performance, they tend to oversmooth or attenuate the fine detail structure in the underly-
ing intensity function especially in situations involving very low level of counts, as a result of the
variance-stabilizing transformation. The same behaviour is also observed to a lesser degree for the
Fisz-based estimators. The bad performance of the modulation estimator is explained by its linearity;
linear estimators are usually inappropriate forinhomogeneous intensity functions. In spite of the fact
that it has been proposed for inhomogeneous intensity functionis,-henalised likelihood estima-
tor does not perform as well as in the case of homogeneous functions. However, its performance
for such functions is improved by considering a cross-validation criterion instead of the optimal
universal threshold considered in the simulation study, at the expense of increasing significantly
the considerable computational cost. The better performance of the Haar-based estimators over the
corrected-based estimates can be explained by the fact that in the former case the resulting em-
pirical wavelet coefficients are independent at each resolution level, which is not the case for the
corrected-based estimators. Also, as expected, the translation invariant version of corrected-based
estimators usually performs better than their non-translation versions. However, the very good per-
formance of both Haar-based and corrected-based estimators depends heavily on the knowledge of
the background intensity level; this is a serious practical limitation on the use of these estimators,
especially in situations where a good knowledge of the background intensity level is not available.
Again, the asymptotic approximations used in obtaining the corrected-based estimators result in the
fact that these estimators may not exist for small values of the background intensity level, resulting
again in a serious limitation on the use of these estimators in practical applications. Finally, as in the
homogeneous case, the Bayesian multiscale model estimator consistently performs well, while the
Bayesian multiscale multiplicative innovations model estimator is again sensitive to the choice of
the primary resolution level, with better performance obtained using higher resolution levels.

In conclusion, the Anscombe-based, the Fisz-based, the modulation angrealised likelihood
estimators can be safely used for homogeneous intensity functions, but the transformation-based es-
timators are usually inappropriate for very low level of counts. The modulation estimator is usually
inappropriate for inhomogeneous intensity functions whild fapenalised likelihood estimator can
be mostly applied with the use of cross-validation threshold, especially when the computational cost
is not a serious problem. On the other hand, the Haar-based thresholds should be preferred over the
corrected-based thresholds for inhomogeneous intensity functions and are mostly appropriate for
burst-like intensity functions; however, both should be used with caution, especially in cases where a
good knowledge of the background intensity level is not available. Furthermore, the corrected-based
estimators do not usually exist for low level of counts. On the other hand, the Bayesian estimators
seem to perform well for both homogeneous and inhomogeneous intensity functions, although the
Bayesian multiscale multiplicative innovations model is sensitive to the choice of the primary resolu-
tion level; better performances were obtained using low and high resolution levels for homogeneous
and inhomogeneous intensity functions respectively.

Overall, although there is no single estimator that is superior to others in all cases, the Bayesian
estimators consistently perform well and it is therefore safe to recommend their application in
estimating various intensity functions obtained in diverse scientific fields.
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8 Anillustrative example

The calculations for this article were carried out using an implementationan.As, a high-
level programming language written by The MathWorks, Inc. In accordance with the principle of
reproducible research (see Buckheit & Donoho, 1995), ther(B) programs used in this study,
including those we did not include in the simulations (i.e., the Fisz-based estimators and the trans-
lation invariant version of the modulation estimator), can be found on the World Wide Web at
http: //www.ucy.ac.cy/ ~ fanis/links/software.html. All these programs make extensive
use of Version 8 of the WavelLab package developed by Buckheit, Chen, Donoho, Johnstone &
Scargle (1995). WavelLab is a library ofdvLAB routines for wavelet analysis and is available free
of charge over the Internet attp : //www — stat.stanford.edu/ ~ wavelab. In addition, the
I,-penalised likelihood estimator makes also use of the Wavelet toolboxofAd .

Also available at our web site are some data sets related to the astronomical gamma-ray burst
intensities. These data were detected by the Burst and Transient Source Experiment (BATSE) instru-
ments on board NASA's Compton Gamma Ray Observatory (see Met@hn1992, for details).

These instruments record the arrival times of the high-energy photons in which the burst is composed
according to four energy channels (at 25-58 keV, 58-115 keV, 115-320 ke\tamh keV). In

practice itis common to aggregate over all energies and to collect the arrival times into bins, yielding
a sequence of counts. However, of additional interest to astronomers is sometimes an analysis of the
data by energy channel. In the Appendix, we providesMB session which analyses the BATSE
trigger 551 data at the third channel (115-320 keV). As this session is intended as a demonstration
of the way our programs may be used in practice, we do not provide a serious analysis of these data.
For serious analyses of BATSE data, see Megjaal. (1992) and Norrit al. (1996).

The BATSE trigger 551 data we analyse were recorded over approximately 0.94 seconds and
collected into 1024 adjacent, equally-spaced bins. The resulting sequence of counts is plotted in
Figure 9. As pulses occurred exclusively in the first half of the data (0.47 s), only this half is plotted
S0 as to enlarge the relevant area. Also plotted in Figure 9 are estimates of the underlying inten-
sity profile provided by the ANSCOMBE-MIN-TI-H, HAAR-TI-H and BMSM-TI estimators. The
HAAR-TI-H estimate uses the mean of the last 60% observations as an estimate of the background
intensity level, while the BMSM-TI estimate is based on data-adaptive hyperparameters.

As observed in the figure, the ANSCOMBE-MIN-TI-H estimator has an unacceptably rounded
appearance. The estimate produced by the BMSM-TI estimator appears more plausible, but the
HAAR-TI-H estimator has effectively removed the noise from the data while retaining the perceived
sharp structure of the pulses.
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Figure 9. Gamma-ray burst (BATSE trigger 551, energy channel 3; i024) and estimates of its intensity function using
three wavelet shrinkage estimators: ANSCOMBE-MIN-TI-H, HAAR-TI-H (with the mean of the last 60% observations as an
estimate ofy) and BMSM-TI (with data-adaptive hyperparameters). Only the first half of the data (0.47 s), which contains
the pulses, is shown so as to enlarge the relevant area.



A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Cour35

References

Abramovich, F., Bailey, T.C. & Sapatinas, T. (2000). Wavelet analysis and its statistical applicatienStatistician49,
1-29.

Aldous, D. (1989)Probability Approximations via the Poisson Clumping Heurishew York: Springer-Verlag.

Anscombe, F.J. (1948). The transformation of Poisson, binomial and negative binomididetatrikg 35, 246—254.

Antoniadis, A. & Sapatinas, T. (2001). Wavelet shrinkage for natural exponential families with quadratic variance functions.
Biometrikg 88, 805—820.

Antoniadis, A., Besbeas, P. & Sapatinas, T. (2001). Wavelet shrinkage for natural exponential families with cubic variance
functions.Sankhg, Series A63, 309-327.

Antoniadis, A., Bigot, J. & Sapatinas, T. (2001). Wavelet estimators in nonparametric regression: a comparative simulation
study.J. Statist. Softwares(6), 1-83.

Beran, R. & Oimbgen, L. (1998). Modulation of estimators and confidence Aets. Statist.26, 1826—-1856.

Bruce, A.G. & Gao, H.-Y. (1996). Understanding WaveShrink: variance and bias estinBigonetrikg 83, 727-745.

Buckheit, J.B. & Donoho, D.L. (1995). WaveLab and Reproducible Researtfavelets and StatisticEds. A. Antoniadis
and G. Oppenheim. Lect. Notes Stati403, 55-81, New York: Springer-Verlag.

Buckheit, J.B., Chen, S., Donoho, D.L., Johnstone, |.M. & Scargle, J. (1995). About WaveLab. Technical Report, Department
of Statistics, Stanford University, USA.

Cai, T.T. (1999). Adaptivevavelet estimation: a block thresholding and oracle inequality appréaeh Statist.27, 898—924.

Chen, S.S., Donoho, D.L. & Saunders, M.A. (1999). Atomic decompositions by basis p@i#M. J. Sci. Comput20,
33-61.

Coifman, R.R. & Donoho, D.L. (1995). Translation-invariant de-noisingMavelets and Statistic&ds. A. Antoniadis and
G. Oppenheim. Lect. Notes StatistQ3, 125-150, New York: Springer-Verlag.

Daubechies, I. (1992)en Lectures on WaveletBhiladelphia: SIAM.

Dennis, J.E. & Mei, H.H.W. (1979). Two new unconstrained optimization algorithms which use function and gradient values.
J. Optimiz. Theory Appl28, 453-483.

Diggle, P. (1985). A kernel method for smoothing point process dgipl. Statist. 34, 138—-147.

Diggle, P. & Marron, J.S. (1988). Equivalence of smoothing parameter selectors in density and intensity estimfatien.
Statist. Ass.83, 793-800.

Donoho, D.L. (1993). Non-lineawavelet methods for recovery of signals, densities and spectra from indirect and noisy
data. InProceedings of Symposia in Applied Mathematics: Different Perspectives on WaVelets, 173-205. Ed.
|. Daubechies. San Antonio: American Mathematical Society.

Donoho, D.L. & Johnstone, .M. (1994). Ideal spatial adaptationvhyelet shrinkageBiometrikg 81, 425-455.

Donoho, D.L., Johnstone, |.M., Kerkyacharian, G. & Picard, D. (1995). Wavelet shrinkage: asymptopia? (with disclission).
R. Statist. Soc., Series 87, 301-337.

Eilers, P.H.C. & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties (with discusSitatist. Sci. 11,
89-121.

Fisz, M. (1955). The limiting distribution of a function of two independent random variables and its statistical application.
Colloquium Mathematicun8, 138-146.

Fryzlewicz, P. & Nason, G.P. (2001). Poisson intensity estimation usienglets and the Fisz transformation. Technical
Report,01/10. Department of Mathematics, University of Bristol, United Kingdom.

Hurvich, C.M. & Tsai, C.-L. (1998). A crossvalidatory AIC for hawdvelet thresholding in spatially adaptive function
estimation Biometrika 85, 701-710.

Kolaczyk, E.D. (1997). Non-parametric estimation of Gamma-Ray burst intensities usingvelaglets Astrophys. J.483,
340-349.

Kolaczyk, E.D. (1999a). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thi&sititds.
Sinicg 9, 119-135.

Kolaczyk, E.D. (1999b). Bayesian multiscale models for Poisson procekgaser. Statist. As94, 920-933.

Mallat, S.G. (1989). A theory for multiresolution signal decomposition:vthgelet representatiofEEE Trans. Pattn. Anal.
Mach. Intell, 11, 674-693.

Mallat, S.G. (1999)A Wavelet Tour of Signal Processirznd Edition, San Diego: Academic Press.

Marron, J.S., Adak, S., Johnstone, I.M., Neumann, M.H. & Patil, P. (1998). Exact risk analy&iseiét regressiod. Comp.
Graph. Statist.7, 278-309.

Meegan, C.A., Fishman, G.J., Wilson, R.B., Paciesas, W.S., Pendleton, G.N., Horack, J.M., Brock, M.N. & Kouveliotou, C.
(1992). The Spatial Distribution of Gamma Ray Bursts Observed by BARa&fure 355, 143-145.

Meyer, Y. (1992) Wavelets and Operatar€ambridge: Cambridge University Press.

Nason, G.P. (1996). Wavelet shrinkage using cross-validalidR. Statist. Soc., Series B3, 463-479.

Norris, J.P., Nemiroff, R.J., Bonnell, J.T., Scargle, J.D., Kouveliotou, C., Paciesas, W.S., Meegan, C.A. & Fishman, G.J.
(1996). Attributes of Pulses in Long Bright Gamma-Ray Burattrophys. J.459, 393-412.

Nowak, R.D. & Baraniuk, R.G. (1999). Wavelet domain filtering for photon imaging syst&f& Trans. Image Proc8,
666—-678.

O’Sullivan, F., Yandell, B.S. & Raynor, W.J. (1986). Automatic smoothing of regression functions in generalized linear
models.J. Amer. Statist. As81, 96-103.

Patnaik, P.B. (1949). The non-centygl-and F-distributions and their applicatiorBiometrikg 36, 202-232.

Sardy, S., Antoniadis, A. & Tseng, P. (2004). Automatic smoothing walelets for a wide class of distributions.Comp.
Graph. Statist.13, (to appear).



236 P. BESBEAS |. DE FEIS & T. SAPATINAS

Timmermann, K.E. & Nowak, R.D. (1999). Multiscale modeling and estimation of Poisson processes with applications to
photon-limited imaginglEEE Trans. Inf. Theor45, 846-862.

Résumeée

Nous étudions l'aide de simulations néniques, le comportemeré taille dechantillon fini d’un certain nombre
d'estimateurs de I'intengitde comptages Poissonniens, femdur des prédures de seuillage, classiques et bayesiennes, des
coefficients d'ondelettes. A cet effet nous employons une large gamme de fonctions cgintlenbituit de fond, de tailles
d’échantillons, deéasolution primaire de@tomposition et de famille d’ondelettes et degreit de performance vesi Les
méthodes sont illustes sur un exempleéel issus d'astrophysique. Selon les principes d'une recherche reproductible les
procedures MTLAB et les exemples tréis sont gracieusement disponibles.

Appendix

This appendix provides aMLAB session which analyses the BATSE trigger 551 data, as described
in Section 8. MTLAB is an easy-to-understand language but a few comments about the code below
are in order.

1. Comments begin with the percent symbs) (

2. The commandoadfile.mat retrieves the variables from the MAT-file ‘file.mat’.

3. The commandinspace(a, b, n) generatea equally spaced points betweemndb.

4. The commandist(y, x) returns the distribution of among bins with centres specified by

%retrieve BATSE trigger 551 data
load burst551.mat
photon_times=burst3; %arrivals at the third channel

%collect arrival times into 1024 bins
num_hins=1024;
t_min=min(photon_times);
t_max=max(photon_times);
t_range=t_max-t_min;
dt_bin=t_range/num_bins;
mid_first=t_min+dt_bin/2;
mid_last=t_max-dt_hin/2;
data_bins=linspace(mid_first,mid_last,num_bins);
poissig=hist(photon_times,data_bins);
x=data_bins’;

%intensity function estimates

%translation invariant version of Anscombe-based estimate

%with hard minimax threshold

jO=6; %primary resolution level
h=MakeONFilter(Symmlet’,8); vavelet filter choice
anscombeMin_TIl_H=recanscombeTI(poissig,'MinMax’,’Hard’,jO,h);

%translation invariant version of Haar estimate with hard threshold
j0=4; %primary resolution level

%Estimate of background intensity level
muO=ceil(mean(poissig(floor(2/5*num_bins)+1:num_bins)));
haar_TI_H=rechaarTI(poissig,mu0,’Hard’,j0);

%translation invariant version of Bayesian Multiscale model estimate
pqind=2; %data-adaptive hyperparameters
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BMSMShrink_TI=BMSMShrink(poissig,pgind);

%plot data and reconstructions
xsec=x/10"6; %change time scale to seconds
n2=num_bins/2; %concentrate on first half

subplot(4,1,1)

plot(xsec,poissig)

axis([0 xsec(n2) 0 50])

title('BATSE trigger 551 - energy channel 3',’FontSize’,8)

subplot(4,1,2) plot(xsec,anscombeMin_TI_H)
axis([0 xsec(n2) 0 50])
titteCANSCOMBE-MIN-TI-H’,’FontSize’,8)

subplot(4,1,3) plot(xsec,haar_TI_H)
axis([0 xsec(n2) 0 50])
titteC(HAAR-TI-H’,’FontSize’,8)

subplot(4,1,4)
plot(xsec,BMSMShrink_TI)
axis([0 xsec(n2) 0 50])
titte(BMSM-TI',’FontSize’,8)
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