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Summary

Using computer simulations, the finite sample performance of a number of classical and Bayesian
wavelet shrinkage estimators for Poisson counts is examined. For the purpose of comparison, a variety
of intensity functions, background intensity levels, sample sizes, primary resolution levels, wavelet filters
and performance criteria are employed. A demonstration is given of the use of some of the estimators to
analyse a data set arising in high-energy astrophysics. Following the philosophy of reproducible research,
the MATLAB programs and real-life data example used in this study are made freely available.
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1 Introduction

Let N��� t� be an inhomogeneous Poisson process on the interval��� �� with intensity function
��t� � � and suppose that we actually observe a discrete-time version of the process, a Poisson
counting process. That is, the observation interval��� �� is divided inton equal subintervals and we
observeyi , i � �� �� � � � � n� �, the number of events occurring in each subinterval. The observed
data� � �y�� y�� � � � � yn���

� can thus be expressed asn independent Poisson random variables, i.e.,

yi � ������	��i �� i � �� �� � � � � n� �� (1)

where the mean vectorµ � ���� ��� � � � � �n���
� is unknown. This model is called the Poisson

regression model in the literature and the aim here is to recover the underlying intensity function
��t� from the data� without assuming any particular parametric structure for it.

Amongst the available nonparametric approaches in the literature to tackle the aforementioned
problem, the kernel smoothing method proposed by Diggle (1985) and Diggle & Marron (1988), the
penalized likelihood method proposed by O’Sullivan, Yandell & Raynor (1986), and theP-splines
method proposed by Eilers & Marx (1996) have several theoretical merits and have been successfully
applied to real-life data sets. The first method constructs a boundary adjustment kernel smoother for
��t� using a quartic kernel; the second method penalizes the negative logarithm of the likelihood of
the logarithm of��t� with a smoothness penalty based on the integral of the square of the second
derivative of the logarithm of��t�; and the third method penalizes the regression of the logarithm
of ��t� using a set ofB-splines with a smoothness penalty based on a higher-order difference of the
coefficients of adjacentB-splines. Although the smoothing kernel-based method has been obtained
directly using the Poisson regression model (1), both spline-based methods have been proposed as
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general methodologies for nonparametric regression estimation in generalised linear models, Poisson
regression being a particular statistical model within this family of models. Moreover, asymptotic
results and finite-sample properties of the above methods have been studied under the assumption
that the underlying intensity function��t� obeys a smooth behaviour.

On the other hand, wavelet methods have a long history in the nonparametric estimation of spatially-
variable objects with applications to diverse disciplines including astronomy, biology, electronics,
engineering, medicine and physics. The potential of wavelets in the classical nonparametric regression
context, where the data are modelled as observations of a response function contaminated by additive
Gaussian noise, was convincingly demonstrated by Donoho, Johnstone, Kerkyacharian & Picard
(1995). Their work showed that a simple nonlinear estimator obtained by thresholding the empirical
wavelet coefficients is essentially optimal (in the minimax sense) over a broad range of function
classes. Furthermore the estimation procedure is computationally efficient, making it very appealing
in practice.

However the potential scope of wavelet methods is broader than just the classical nonparametric
regression setting. In the case where the data are Poisson counts, various techniques have been recently
proposed, including the use of a variance-stabilising transformation with a normal approximation
to facilitate wavelet shrinkage. Donoho (1993) and Fryźlewicz & Nason (2001) are examples of
this approach, employing the Anscombe (1948) and the Fisz (1955) transformation respectively.
Alternatively, Kolaczyk (1997, 1999a) and Nowak & Baraniuk (1999) focused on adapting wavelet
shrinkage to the original Poisson counts, whilst Kolaczyk (1999b) and Timmermann & Nowak
(1999) developed another approach based on Bayesian inference.

Wavelet shrinkage techniques have also been proposed for using wavelets when the data are
coming from some general families of distributions, Poisson counts being a particular type of
data obtained within these families of distributions. Using ideas by Beran & Dümbgen (1998),
Antoniadis & Sapatinas (2001) and Antoniadis, Besbeas & Sapatinas (2001) presented a wavelet
shrinkage methodology for natural exponential families with quadratic and cubic variance functions
respectively. These families encompass some very famous distributions including the Gaussian,
Poisson, gamma, binomial, negative binomial and inverse Gaussian. On the other hand, Sardy,
Antoniadis & Tseng (2004) considered anl �-penalised likelihood method to develop a wavelet
shrinkage methodology for Gaussian, exponential, Poisson and Bernoulli distributions.

While there are merits to each of the above approaches, the most common types of data in
the nonparametric regression context are Gaussian and Poissonian. Surprisingly, and in contrast to
the Gaussian case (see Marron, Adak, Johnstone, Neumann & Patil, 1998; Antoniadis, Bigot &
Sapatinas, 2001), there is little coherence in the literature about the relative performance of the
different wavelet schemes for Poisson data. Furthermore this leaves a number of open questions
regarding their small sample properties, particularly relative to each other. The aim of this article is,
therefore, to compare most of the currently available wavelet shrinkage methods for estimating the
underlying intensity function��t� based on observations from the Poisson regression model (1). In
our comparison we have included the classical methods of Donoho (1993), Kolaczyk (1997, 1999a),
Antoniadis & Sapatinas (2001), Fryźlewicz & Nason (2001) and Sardy, Antoniadis & Tseng (2004),
and the Bayesian methods of Kolaczyk (1999b) and Timmermann & Nowak (1999). We proceed by
simulation and employ a variety of intensity functions, background intensity levels, sample sizes,
primary resolution levels, wavelet filters and performance criteria; insight about the performance of
these estimators is obtained from graphical outputs and numerical tables.

The rest of this article is organised as follows. In Section 2 we briefly review some general results
on wavelets, including the discrete wavelet transform. Sections 3 and 4 review respectively the
classical and Bayesian wavelet shrinkage methods for Poisson data that we employ in the simulation
study, which is described in Section 5. Section 6 presents simulation results and some discussions,
and Section 7 contains the main conclusions. Finally, in Section 8 and the Appendix we demonstrate,
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by application to an astronomical gamma-ray burst data set, how the (MATLAB ) programs used for
the calculations of this article may be used in practice. Following the philosophy of reproducible
research (see Buckheit & Donoho, 1995), the programs and the gamma-ray data set can be found on
the World Wide Web athttp 
 ��www�ucy�ac�cy�� fanis�links�software�html.

2 Wavelet Background

In this section we provide some general material which is at the heart of the wavelet paradigm.
Further details on wavelet theory can be found in, for example, Daubechies (1992), Meyer (1992)
and Mallat (1999).

A wavelet is a function that, roughly speaking, looks like a localised wiggle. We define a collection
of wavelets—called a wavelet basis—by dilating and translating two basic functions, a ‘father’
wavelet� and a ‘mother’ wavelet	 . The wavelets� and	 are assumed to be compactly supported
and are calledr -regular if they haver vanishing moments andr continuous derivatives.

A wavelet basis has an associatedr -regular multiresolution analysis onR. For simplicity in
exposition, we shall focus exclusively on periodised wavelet bases on��� ��, letting

�
�

jk�t� �
�
l�Z

� jk�t � l � �	� 	
�

jk�t� �
�
l�Z

	 jk�t � l ��

where
� jk�t� � 
 j ����
 j t � k� �	� 	 jk�t� � 
 j ��	�
 j t � k�

for j � k � Z, the set of integers. For any primary resolution levelj � � �, the collection���
j�k
� k �

�� �� � � � � 
 j���� 	�

jk� j � j�� k � �� �� � � � � 
 j��� constitutes an orthonormalbasis ofL ����� ���.
The superscript “�” will be suppressed from the notation, for typographical convenience.

The idea underlying the wavelet approach is that a broad class of functions can be arbitrarily well
approximated by a wavelet series; i.e., for any functiong�t� � L ����� ���

g�t� �
� j����
k��


 j�k� j�k�t�	
��

j� j�

� j���
k��

� jk	 jk�t��

where


 j�k �
� �

�

g�t�� j�k�t� dt� j� � �� k � �� �� � � � � 
 j� � ��

� jk �
� �

�

g�t�	 jk�t� dt� j � j� � �� k � �� �� � � � � 
 j � ��

The coefficients
 j�k and� jk are called respectively the scaling and wavelet coefficients ofg�t�.
The continuous formulation of the wavelet transform is however not very useful for the discretely

sampled functions that are common in practice. For these functions it is the wavelet analog of the
discrete Fourier transform that is applicable and this is referred to as the discrete wavelet transform
(DWT). In particular, given a vector of function values� � �g�t ��� � � � � g�tn��� at equally spaced
pointsti , the discrete wavelet transform takes the form of an orthogonal matrixW that carries� to
its discrete wavelet coefficients

� � W��

Here, the coefficients are stored as ann
� vector consisting of both the discrete scaling coefficients,
cj�k, and the discrete wavelet coefficients,d jk. These coefficients are only approximately their
continuous counterparts,
 j�k and� jk. The precise relationship between them is discussed in any
standard reference; see, for example, Abramovich, Bailey & Sapatinas (2000). By the orthogonality of
W, the transpose matrixW� inverts the transform and returns the original input. This process is called
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reconstruction and the reconstruction algorithm is called the inverse discrete wavelet transform
(IDWT). A crucial point is that both the DWT and the IDWT are not implemented by matrix
multiplication, but by a sequence of filtering operations which produce an orderO�n� algorithm.
This algorithm requiresn � 
 J , for some positive integerJ, and we will implicitly assume this in
the sequel. See Mallat (1989) for further details.

3 Classical Wavelet Approaches for Poisson Data

Consider now the Poisson regression model (1) and assume that the underlying intensity func-
tion ��t� admits an orthonormal wavelet expansion with scaling and wavelet coefficientsc j�k

and djk respectively. Let also�cj�k and �djk be their empirical counterparts from the data vector
� � �y�� y�� � � � � yn���

�, wheren � 
J , for some positive integerJ. The sparseness of the wavelet
expansion implies that most of the structure in��t� is concentrated in relatively few ‘large’d jk. We
would thus obtain a reasonable estimate of��t� if we could extract the wavelet coefficients of largest
magnitude accurately (by modifying appropriately the�djk), even when we set the rest to zero. Note
that, in general, the scaling coefficientsc j�k are not altered (they are estimated by�c j�k) because the
primary resolution levelj � represents ‘low-frequency’ terms that usually contain important compo-
nents of the intensity function.

In parallel to the classical nonparametric regression setting, a simple nonlinear wavelet esti-
mator of��t� can be constructed by thresholding the empirical wavelet coefficients�djk . We can
allow for a broad class of thresholding schemes but common choices include hard thresholding
�Æ� �x� � x���x��� �� and soft thresholding�Æ� �x� � sgn�x���x� � ��	� for a fixed threshold� � �,
where�A is the indicator function ofA, sgn�x� is the signum function ofx and�x�	 � ������ x�.
Hard thresholding is thus a ‘keep’ or ‘kill’ rule, while soft thresholding is a ‘shrink’ or ‘kill’ rule. In ei-
ther case, application of the appropriate inverse transform to the empirical coefficients� �c j�k� Æ� �

�djk��
yields a denoised estimate of the underlying intensity function��t�.

From both practical and theoretical standpoints, the success of this approach is closely related
to the properties of the noise, assumed to be Gaussian, additive and stationary. The noise in (1)
shares none of these characteristics and, as a result, direct application of the methodology is clearly
inappropriate. The remainder of this section is devoted to the classical wavelet-based approaches
that have been proposed in the literature for estimating the underlying intensity function��t� based
on observations from the Poisson regression model (1). The methods we describe are due to Donoho
(1993), Kolaczyk (1997, 1999a), Antoniadis & Sapatinas (2001), Fryźlewicz & Nason (2001) and
Sardy, Antoniadis & Tseng (2004), and they are used in the simulation study in Sections 5 and 6. We
refer to these articles for more details on these methods.

3.1 Wavelet Shrinkage of General Intensity Functions Using Transformations

A straightforward approach that was initially proposed by Donoho (1993) involves preprocessing
the data using a normalising and variance-stabilising transformation. Donoho (1993) employed the
Anscombe (1948) transformation, whilst recently Fryźlewicz & Nason (2001) advocated the use of
the Fisz (1955) transformation. Following this preprocessing the usual wavelet methodology with a
global threshold� can be applied as if the noise was actually Gaussian. Application of the inverse
transformation leads to an estimate of the underlying intensity function��t�. The effectiveness of
the approach using either the Anscombe or the Fisz transformation, followed by one of the minimax
(Donoho & Johnstone, 1994; Bruce & Gao, 1996), universal (Donoho & Johnstone, 1994) or ‘leave-
out-half’ cross-validation (Nason, 1996) threshold, is evaluated in the simulation study in Sections 5
and 6. The computational complexity of this approach for the Anscombe or the Fisz transformation,
with either the minimax or the universal threshold, isO�n�. On the other hand, its computational
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complexity with the ‘leave-out-half’ cross-validation threshold isO�n ��, although anO�n ��� n�
algorithm is possible if hard thresholding is used (see Hurvich & Tsai, 1998).

Finally, making use of the translation invariant methodology of Coifman & Donoho (1995), we
have also implemented the translation invariant versions of these combinations. The result of this
process is to suppress many of the artifacts frequently found in standard wavelet shrinkage estimates
that are the result of pseudo-Gibbs phenomena, and to correct unfortunate misalignments between
features (of interest) in the intensity function��t� and features in the wavelet basis. The translation
invariant algorithm itself requiresO�n ��� n� andO�n�� operations for the Anscombe and the Fisz
transformation respectively, and the effectiveness of this approach is also evaluated in the simulation
study in Sections 5 and 6.

To make the exposition fairly well self-contained, however, we briefly discuss below the idea be-
hind the minimax, universal and ‘leave-out-half’ cross-validation thresholds. Hereafter, we assume
that the original Poisson count data� � �y�� � � � � yn���

� from model (1) have been preprocessed,
using either the Anscombe or the Fisz transformation, implying that the resulting transformed vector
of observations�� � �y�

�� � � � � y�
n���

� follows a multivariate Gaussian distribution with mean� (the
vector of underlying response function values) and variance equal toI n. By a slight abuse of notation,
we again use the genericd and �d to denote the wavelet and empirical wavelet coefficients of the
underlying response functiong�t� and the transformed data� � respectively.

The Minimax Threshold

An optimal threshold, derived to minimize the constant term in an upper bound of the risk involved
in estimating the underlying response functiong�t�, was obtained by Donoho & Johnstone (1994).
The proposed minimax threshold, that depends on the sample sizen, is defined as

�� � � �n �

where� �
n is defined as the value of� which achieves


�
n � �	�

�
���

d

�
R� �d�

n�� 	 R���	
��d�

�
� (2)

whereR� �d� � E�Æ� � �d�� d�� andR���	
��d� is the ideal risk achieved with the help of an oracle.
Two oracles were considered by Donoho & Johnstone (1994): diagonal linear projection (DLP),

an oracle which tells us when to ‘keep’ or ‘kill’ each empirical wavelet coefficient, and diagonal
linear shrinker (DLS), an oracle which tells you how much to shrink each wavelet coefficient. The
ideal risks for these oracles are given by

R�
�
���	
��d� � ��	�d�� �� �	� R�
�

���	
��d� �
d�

d� 	 � �

Donoho & Johnstone (1994) computed the DLP minimax thresholds for the soft thresholding rule,
while the DLP minimax thresholds for the hard thresholding rule and the DLS minimax thresholds
for both soft and hard thresholding rules were obtained by Bruce & Gao (1996).

Table 1

Diagonal linear projection minimax thresholds
for hard and soft thresholding rules for various
sample sizes.

n 128 256 512 1024

Hard 2.913 3.117 3.312 3.497

Soft 1.669 1.859 2.045 2.226
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Since the type of the oracle has little impact on the minimax thresholds, Table 1 only reports
the numerical values of the DLP minimax thresholds (for both hard and soft thresholding rules)
for the sample sizes that we will be using in the simulative study in Sections 5 and 6, and can be
used as a look-up table in any software. These values were computed using a grid search over�

with increments�� � ������. At each point, the supremum overd in (2) was computed using a
quasi-Newton optimisation with numerical derivatives (see, for example, Dennis & Mei, 1979).

The Universal Threshold

As an alternative to the use of minimax thresholds, Donoho & Johnstone (1994) suggested thresh-
olding each of empirical wavelet coefficients�d by using the universal threshold

�� �
�

 ���n� (3)

This threshold is easy to remember and its implementation in software requires no costly development
of look-up tables. The universal threshold ensures, with high probability, that every sample in the
wavelet transform in which the underlying function is exactly zero will be estimated as zero. This
is so, because ifX�� � � � � Xn are independent and identically distributed standard Gaussian random
variables, then

P

�
���
�
i
n

�Xi � 

�

 ���n

�
� �� �� n ���

The rate at which the probability above tends to one is actually quite slow. Faster rates, achieved by
larger thresholds, are possible; however, they lead to oversmoothing with wavelet shrinkage.

The ‘Leave-out-half’ Cross-Validation Threshold

One way to choose the threshold level� is by minimising the mean integrated squared error between
a wavelet threshold estimator�g� �t� and the true functiong�t�. In symbols, the threshold� should
minimise

M�� � � E

� � �g� �t�� g�t�
��

dt� (4)

In practice, the functiong�t� is unknown and so an estimate ofM is required. The approach to
cross-validation in wavelet regression was adopted by Nason (1996) who, in order to directly apply
the DWT, suggested breaking the original data set into two subsets of equal size: one containing
only the even-indexed data, and the other, the odd-indexed data. The odd-indexed data will be used
to ‘predict’ the even-indexed data, and vice-versa, leading to a ‘leave-out-half’ strategy.

To be more specific, given the transformed Gaussian data� � � �y�
�� � � � � y�

n���
� obtained from

model (1) withn � 
J , remove all the odd-indexedy�
i from the set. This leaves
J�� evenly indexed

y�
i which are re-indexed fromj � �� � � � � 
 J��. These re-indexed data are then used to construct a

function estimate�g�
� by using a particular threshold parameter� with either hard thresholding or soft

thresholding. To compare the function estimator with the left-out noisy data an interpolated version
of �g�

� is formed

�g�
�� j �

�




� �g�
�� j	� 	 �g�

�� j

�
� j � �� � � � � n�
�

setting�g�
��n��	� � �g�

��� becauseg is assumed to be periodic. The�g�
� is computed for the odd-indexed

points and the interpolant is, similarly, formed as

�g�
�� j �

�




� �g�
�� j	� 	 �g�

�� j

�
� j � �� � � � � n�
�

The full estimate ofM given in (4) compares the interpolated wavelet estimators and the left out
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points

�M�� � �
n���
j��

�� �g�
�� j � y� j	�

�� 	 � �g�
�� j � y� j

��	
� (5)

It can be shown that one can almost always find a unique minimum of (5)

���� � �����	
���

�M�� ��

This minimum value depends onn�
 data points (since both estimates ofg, �g �
� and �g�

� are based on
n�
 data points) and, therefore, a correction for the sample size is needed. Nason (1996) considered
the universal threshold� � given in (3) to supply a heuristic method for obtaining a cross-validated
threshold forn data points. By using this adjustment, the ‘leave-out-half’ cross-validation threshold
is defined as

��� �


�� ��� 


���n

�����
�����

3.2 Wavelet Shrinkage of General Intensity Functions Using Modulation Estimators

A different approach with a wider scope of application was considered by Antoniadis & Sapatinas
(2001). In this approach, one can construct estimators of the underlying intensity function��t� by
diagonal linear shrinkages that are asymptotically minimax for a class of submodels for��t�, namely
the class of functions belonging to an ellipsoid of the Sobolev classW s

� of smoothness indexs � ��
.
These estimators take the form�HW�, where �H � diag� ��� is the diagonal matrix of ordern and
�� 
 T � ��� �� � � � � n� �� � ��� �� (depends on�� � W�) is chosen to minimize the estimated risk
of the linear estimator��� � H W� over all functions� in a classH � ��� ��T . Each function� in a
classH � ��� ��T is called a modulator and the resulting estimator�� ��

� �HW� is referred to as the
modulation estimator.

LetBn be a partition of the setT and define

H �
��

B�Bn

�Bc�B� 
 c � ��� ��Bn



� (6)

where�B is the indicator function ofB. Extending the arguments in Beran & Dümbgen (1998),
Antoniadis & Sapatinas (2001) put forth the modulation estimator

�� ��
�
�
B�Bn

ave��B� ��� � �σ�
��	

ave��B ����
�B ��

of � � Wµ, where ave��� � n��
�

t�T g�t� for any function� � R
n, �σ�

�t� � �n��
l�� �

�
tl yl

(t � T ), and the wavelet-filter coefficients� tl in �σ�
�t� are associated with the DWT matrixW.

By performing the IDWT of �� ��
, the resulting modulation estimator can be used to estimate the

underlying intensity function��t�. This approach requiresO�n� operations, whilst its translation
invariant version requiresO�n�� operations.

Various examples of modulator classesH in (6) can now be constructed. The optimal modulation
estimator is a multiple Stein estimator and results when the partitionBn has cardinality�Bn� � o�n�
(see, Beran & D̈umbgen, 1998). One such choice is, for example, whenB n is a partition ofT in
intervals of length����e����e n��, where�x� denotes the integer part ofx. However, for practical
purposes, in the simulation study in Sections 5 and 6 we have takenB n to be a partition ofT in
intervals of length one, resulting in a pointwise modulation estimator (see Antoniadis & Sapatinas,
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2001) that is related to the estimator considered by Nowak & Baraniuk (1999).

3.3 Wavelet Shrinkage of General Intensity Functions Using an l�-Penalised Likelihood Method

Another approach with a wider scope of application was considered by Sardy, Antoniadis & Tseng
(2004). In this approach, one can construct estimators of the underlying intensity function��t� by
considering anl �-penalised likelihood method. In other words, the resulting estimator is obtained as
the solution of the following convex programming problem

��	
µ��

�
�l �µ� ��	 �

J���
j� j�

� j���
k��

�djk� ���� µ � W�� �	� µ � �����n



� (7)

where�l �µ� �� is the log-likelihood function ofµ based on the observations� from model (1) and
� � � is the smoothing parameter.

The above convex programming problem is a reminiscent of the Basis Pursuit estimator of Chen,
Donoho & Saunders (1999) obtained by an interior point method (based on non-orthonormal wavelet
bases) for Gaussian data. However, (7) is more complex in that it has inequality constraints, thel �-
penalty only applies to the wavelet coefficientsd jk � j � j�� � � � � J � �), and the log-likelihood
is not quadratic. Moreover, special care must also be taken to handle the case of zero Poisson
counts. Sardy, Antoniadis & Tseng (2004) solved the above convex programming problem (7) by
first deriving its dual problem and then developing a primal-dual log-barrier internal point method.
Furthermore, using results from inhomogeneous continuous-time Poisson processes, they proved
that the appropriate smoothing parameter� in (7) is actually level-dependent and equal to

� j � M���� 	�

j ��
�

 ���n�

�
n� j � j�� � � � � J � ��

where

M���� 	� 
� ���
u������

�	��u��
� �

�

���
� �t� dt�

The above universal-type thresholds are then used to estimate the underlying intensity function
��t�. The constantM���� 	� depends both on the mother wavelet	 and the knowledge of� �

which represents the situation where the underlying intensity function is in the range of the scaling
functions (i.e., all fine-scale wavelet coefficients are zero). In practice, Sardy, Antoniadis & Tseng
(2004) suggested to estimate�� in the range of the scaling functions using the estimator proposed
by Donoho, Johnstone, Kerkyacharian & Picard (1995) for Poisson data, based on the variance-
stabilising transformation of Anscombe (1948).

As it was pointed out in Sardy, Antoniadis & Tseng (2004), the computational complexity of this
approach is difficult to access. The resulting estimator is based on an iterative algorithm solving
a set of non-linear equations by a Newton-type method, and for the Newton direction a system of
linear equations is solved by a variant of the conjugate gradient algorithm. Therefore, the method is
computationally intensive, but some hints of how to speed up the conjugate gradient algorithm are
given in Sardy, Antoniadis & Tseng (2004). The relative performance of this approach is evaluated
in the simulation study in Sections 5 and 6.

3.4 Wavelet Shrinkage of Burst-like Intensity Functions Using Haar Thresholds

An approach for burst-like Poisson processes has been described in Kolaczyk (1997). A burst-like
Poisson process is defined as the sum of a homogeneous ‘background’Poisson process (with constant
intensity function�� � �) and a second, inhomogeneous Poisson process (with intensity function
���t� � �) that tends to generate observations in bursts.
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The approach considered by Kolaczyk (1997) constructs estimators of the underlying intensity
function��t�using Haar wavelets and applyingsuitable level-dependent thresholds� j to the resulting
empirical wavelet coefficients�djk of the original Poisson counts, that are similarly mild in nature to
the universal threshold of Donoho & Johnstone (1994). More specifically, under the null hypothesis
H� 
 ��t� � �� (i.e, no burst being present), the resulting empirical wavelet coefficients�djk , at each
resolution level, are independent and identically distributed according to a symmetric distribution
about zero with variance��, and we have that

P
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 � j
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�
�� 
 P

�
��
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�� j � � � j

�	� j

�

where� j � 
�J� j ��� andmj � 
�J� j ���� j . By using an approximation for non-central chi-square
random variables due to Patnaik (1949) and appealing to the central limit theorem, Kolaczyk (1997)
was able to derive the following level-dependent thresholds

� j � 
��J� j ���

�
����
 j �	

�
�����
 j �	 
�� ����
 j �
J� j

�
� j � j�� � � � � J � ��

which are then used to estimate the underlying intensity function��t�. The dependence of the
thresholds on the unknown true value of� � has practical implications and we come back to this issue
in Section 6. For fixed��, the method is implemented within the translation invariant framework
of Coifman & Donoho (1995) to eliminate the ‘staircase-like’ structure of non-translation invariant
Haar estimates. As a result, the computational complexity of the resulting approach isO�n ��� n�.
The relative performance of this approach is evaluated in the simulation study in Sections 5 and 6.

3.5 Wavelet Shrinkage of Burst-like Intensity Functions Using Corrected Thresholds

Kolaczyk (1999a) attempted the generalisation of the Haar-based thresholds discussed in Sec-
tion 3.4 for burst-like Poisson processes to arbitrary wavelet bases. In particular, a new set of
level-dependent thresholds� j is sought calibrated so that

P
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at a rate similar to that obtained for the universal threshold of Donoho & Johnstone (1994) in the
Gaussian case. Using the Aldous’ Poisson Clumping Heuristic (see, Aldous, 1989), the following
approximation is obtained
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 j P� �djk � � j �
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� j � j�� � � � � J � �� (8)

whereE�C� j � is the expected ‘clump size’, roughly the expected number of local exceedances of� j

conditional on there being at least a single exceedance, which impliesC � j � �.
Although a closed form expression forP� �djk � � j � in (8) exists when using Haar wavelets, this

is not generally true for other choices of wavelet bases. However, Kolaczyk (1999a) derived implicit
level-dependent thresholds� j that also depend on the background intensity� �. The idea behind this
method is a large deviation approximation, yielding an expression that serves to account for effects
of the first few cumulants of the Poisson distribution on the tails of the empirical wavelet coefficient
distributions. The resulting pair of thresholds (which accommodate the asymmetric nature of the
distribution of �djk) were called the ‘corrected thresholds’ due to the fact that they are, essentially,
corrected versions of the usual Gaussian-based thresholds for arbitrary wavelet bases. They are given
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by

����j � b���j �
���

� �	� ����j � b���j �
���

� � j � j�� � � � � J � �� (9)

where�� � 
J��

� �

�
�	 jk�x��� dx, and the proportionality constantsb���

j , b���j are defined as the
solution of particular equations. These thresholds are then used to estimate the underlying intensity
function��t�. However, the asymptotic approximations used by Kolaczyk (1999a) in deriving� ���

j

and����j in (9) result in the fact that they may not exist for small values of� � (since reasonable
solutions ofb���

j andb���
j may not exist). When they exist, the approach can be computed inO�n�

time.
The relative performance of this approach is evaluated in the simulation study in Sections 5 and

6, along with its translation invariant version which requiresO�n ��� n� operations.

4 Bayesian Wavelet Approaches for Poisson Data

The wavelet shrinkage problem of Section 2 has also been approached from a Bayesian point of
view. In this section we present two Bayesian estimators of the mean vectorµ (and thus of the
intensity function��t� at the design points) that use a multiscale data analysis. In general, multiscale
analysis refers to the study of structure in signals or data at various spatial and/or temporal resolutions.
Perhaps the simplest technique is the Haar multiscale analysis defined according to

�cJk � yk� k � �� �� � � � � 
J � �
�cjk � �cj	���k 	 �cj	���k	�� j � �� �� � � � � J � �� k � �� �� � � � � 
 j � ��

The parameters�c jk are the (unnormalised) Haar empirical scaling coefficients. The relationship
between a ‘parent’ (e.g.,�c jk) and a ‘child’ (e.g.,�c j	���k) is of fundamental interest in multiscale
analysis. This relationship is expressed by the conditional likelihoodp� �c j	���k � �cjk� µ� which
happens to have a very simple form for the Poisson regression model (1). Definingc Jk � �k and
cjk � cj	���k 	 cj	���k	�, for j � �� �� � � � � J � � andk � �� �� � � � 
 j � �, we find that

p� �cj	���k � �cjk� µ� � Bin



�cj	���k � �cjk�

cj	���k

cjk

�
�

where Bin�x � n� p� denotes the binomial distribution with parametersn and p. The canonical
multiscale parameters� jk � cj	���k�cjk can thus be viewed as splitting factors that govern the
multiscale refinement of the mean vectorµ. The simplicity of the parent-child relationship is quite
exceptional here and, as a result, leads to the following factorisation of the likelihood function

p�� � µ� � p� �c�� � c���
J���
j��

� j���
k��

p� �cj	���k � �cjk� � jk��

This factorisation also greatly facilitates multiscale analysis and modelling. For example, estimates
of the multiscale parameters� jk can be used to reconstruct an estimate of the underlying intensity
function��t�. From a Bayesian perspective, multiscale modelling requires (i) specification of a suit-
able prior model for the multiscale parameters� jk, and (ii) determination of the posterior distribution
resulting from the likelihood and prior. The remainder of this section is devoted to two types of prior
models that have been proposed in the literature for estimating the underlying intensity function��t�
based on observations from the Poisson regression model (1). The methods we describe are due to
Kolaczyk (1999b) and Timmermann & Nowak (1999), and they are used in the simulation study in
Sections 5 and 6. We refer to these articles for more details on these methods.
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4.1 Wavelet Shrinkage of General Intensity Functions Using Multiscale Model Estimators

Kolaczyk (1999b) introduced a class of Bayesian multiscale models (BMSMs) in which the prior
distribution of the� jk ’s is a mixture of a point mass at 1/2 and a symmetric beta distribution, i.e.,

� jk � � jk� Bjk � � jk
�



	 ��� � jk� Bjk�

� jk � pj � Bernoulli�pj ��

Bjk � aj � beta�aj � aj ��

Note that, at each scalej � �� �� � � � � J � �, the hyperparameters� 
 p j 
 � andaj � � are
constant across all locationsk � �� �� � � � � 
 j � �.

If the parameters� jk are modelled independently of the�c jk, then a multiscale factorisation of the
posterior distribution is obtained. This factorisation allows inferences to be made on each multiscale
parameter individually, leading to a computationally efficient, recursive expression (across scales)
for the posterior mean. The final posterior mean estimate of the mean vectorµ is calculated from
a translation invariant framework that eliminates the “staircase-like” structure of each individual
estimate. The entire estimation process may be calculated inO�n ��� n� time by implementing it in
a computationally efficient manner.

For the functioning of the BMSM estimator, Kolaczyk (1999b) recommended the choicesc �� � �c��
andaj � � for all j � �� �� � � � � J� �. In addition, he presented an expectation-maximisation (EM)
algorithm for computing an empirical Bayes estimate of the scale-dependent mixing parametersp j .
We have also found these choices to work well but, for computational reasons, the simulation results
we present in Section 6 have been based onp j � ���� (for all j � �� �� � � � � J � �). This choice
was found to work reasonably well in preliminary experiments.

4.2 Wavelet Shrinkage of General Intensity Functions Using Multiscale Multiplicative Innovations
Model Estimators

The Bayesian multiscale multiplicative innovations model (BMMIM) of Timmermann & Nowak
(1999) moves beyond the BMSM of Kolaczyk (1999b) by specifying more general beta mixtures for
the multiscale parameters. Formally the mixture priors adopted by Timmermann & Nowak (1999)
have the form

p�� jk� �
M�

i��

pj
�� jk��� � jk��si��

B�si � si �
� j � �� �� � � � � J � �� k � �� �� � � � � 
 j � ��

whereM is the number of components,B�
� �� is the standard beta function,� 
 pi 
 � denotes
thea priori probability of thei th component, and

�M
i�� pi � �.

The mixture priors above are conjugate for the likelihood function, factorise the posterior distri-
bution of the� jk ’s and lead to a simple closed-form expression for the posterior mean of the mean
vector µ. The computational complexity of its translation invariant version, which eliminates the
“staircase-like” structure of each individual estimate, isO�n��. However, for largen, the complexity
of the translation invariant estimator may be reduced toO�n
 J� j�� by initiating it at some primary
resolution levelj� � �.

Timmermann & Nowak (1999) found that three components suffice for many applications and
suggested the choicess� � �, s� � ��� ands� � ����� with weightsp� � ����� and a moments-
based estimate forp� (and hencep�). However, we have found that these moment-based estimates
do not work particularly well and, therefore, the simulation results we present in Section 6 have been
based onp� � ���� (and hencep� � ���
�) for all j � j�� � � � � J � �. This choice was found to
work reasonably well in preliminary experiments.
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5 Description of the Simulation

To compare the performance of the classical and Bayesian wavelet shrinkage methods described
in Sections 3 and 4 we have designed a simulation study. Three factors of interest were identified
and included in the study: the intensity function��t�, the background intensity level� �, and the
sample sizen. Motivated by various applications, six different intensity functions were used. These
were the ‘Smooth’ (Beran & D̈umbgen, 1998), ‘Angles’ (Marron, Adak, Johnstone, Neumann &
Patil, 1998), ‘Clipped Blocks’ (Frýzlewicz & Nason, 2001), ‘Bumps’ (Donoho & Johnstone, 1994),
‘Spikes’ (Cai, 1999) and ‘Bursts’ (Kolaczyk, 1997) functions, and they are plotted in Figure 1. We
refer to these papers for more information about these functions. The background intensity level
varied over 5, 20 and 50 counts per time point so as to gain some insight about the behaviour of
the procedures at ‘low’, ‘medium’ and ‘high’ background intensity levels. Finally, the sample size
varied over 256, 512 and 1024 observations in order to examine the behaviour in ‘small’, ‘medium’
and ‘large’ samples respectively.
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Figure 1. The six intensity functions used in the simulation study sampled at our ‘medium’ sample size n� ���.

For each combination of the 3 factors, 100 realisations of Poisson counts were generated from
model (1) using the Poisson random number generatorpoissrnd in MATLAB . The noisy versions of
the intensity functions were generated according to the formula:noisysignal� � � 
��	signal).
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Figure 2 illustrates one realisation from each intensity function withn � ��
 and � � � 
�.
For each realisation we compared the performance of the estimators based on the Anscombe and
Fisz transformations, modulation models,l �-penalised likelihood method, Haar wavelets, corrected
thresholds, Bayesian multiscale model, and Bayesian multiscale multiplicative innovations model.
Where applicable, we considered both soft and hard thresholding and one of the minimax, universal
or ‘leave-out-half’ cross-validation thresholds, and we examined three primary resolution levels
( j� � �, 5 and 6). Based on their nice properties and wide applicability, we employed both the
Symmlet 8 (Daubechies, 1992, p. 198) and the Coiflet 3 (Daubechies, 1992, p. 258) wavelet filter.
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Figure 2. Noisy versions of the six intensity functions shown in Figure 1, giving a visual impression of our ‘medium
background intensity’ level�� � ��.

Although we have implemented them, we have not compared in the main simulation study the
translation invariant versions of the estimator based on the Fisz transformation and the modulation
approach since they requireO�n�� operations. Note however that the translation invariant versions of
these estimators perform better than their non-translation invariant counterparts and may be preferred
in individual applications. Table 2 lists the estimation procedures used in the simulation study and
provides an easy-to-understand acronym for each procedure as a shorthand means of referring to it.
As shown in the table, 22 different estimators were actually compared in total. We have not included
the estimators based on the Fisz transformation noting that the results were as good as, or almost as
good as, with the results obtained using the estimators based on the Anscombe transformation.
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Table 2

Acronyms and details of the wavelet shrinkage estimation procedures used in the simulation study. The last
column, “Section”, refers to the sections of the text where these procedures have been described.

Name Thresholding Threshold Value Section

1 ANSCOMBE-MIN-H Hard Minimax 3.1

2 ANSCOMBE-MIN-S Soft Minimax 3.1

3 ANSCOMBE-UNI-H Hard Universal 3.1

4 ANSCOMBE-UNI-S Soft Universal 3.1

5 ANSCOMBE-CV-H Hard ‘Leave-Out-Half’ Cross-Validation 3.1

6 ANSCOMBE-CV-S Soft ‘Leave-Out-Half’ Cross-Validation 3.1

7 ANSCOMBE-MIN-TI-H Hard Minimax 3.1

8 ANSCOMBE-MIN-TI-S Soft Minimax 3.1

9 ANSCOMBE-UNI-TI-H Hard Universal 3.1

10 ANSCOMBE-UNI-TI-S Soft Universal 3.1

11 ANSCOMBE-CV-TI-H Hard ‘Leave-Out-Half’ Cross-Validation 3.1

12 ANSCOMBE-CV-TI-S Soft ‘Leave-Out-Half’ Cross-Validation 3.1

13 MODULATION Multiple Stein Alike Shrinkages 3.2

14 l�-PENALISED Penalised Likelihood-Based Shrinkages 3.3

15 HAAR-TI-H Hard Level-Dependent Thresholds 3.4

16 HAAR-TI-S Soft Level-Dependent Thresholds 3.4

17 CORRECTED-H Hard Pair of Level-Dependent Thresholds 3.5

18 CORRECTED-S Soft Pair of Level-Dependent Thresholds 3.5

19 CORRECTED-TI-H Hard Pair of Level-Dependent Thresholds 3.5

20 CORRECTED-TI-S Soft Pair of Level-Dependent Thresholds 3.5

21 BMSM-TI Multiscale Model 4.1

22 BMMIM-TI Multiscale Multiplicative Innovation Model 4.2

In the simulations, the performance of an estimator�µ was summarised by the following criteria

1. mean squared error (MSE), defined as the average over the 100 replicates of

�

n

n�
i��

��i � ��i �
��

2. l�-norm (L1), defined as the average over the 100 replicates of
n�

i��

��i � ��i ��

3. root mean squared error (RMSE), defined as the square root of the MSE;
4. SB/MSE, defined as the ratio of squared bias to the MSE;
5. maximum deviation (MXDV), defined as the average over the 100 replicates of

���
�
i
n

��i � ��i ��

6. CPU time, defined as the average CPU over the 100 replicates.

The relative performanceof the 22 estimators of Table 2 can be deduced from graphical outputs and
numerical tables. The whole set of results across all intensity functions, background intensity levels,
sample sizes, primary resolution levels, wavelet filters and performance criteria is very extensive.
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Here, for reasons of space, we report summary results for all intensity functions pertaining to
�� � 
�, n � ��
, j� � � and Symmlet 8. Different combinations of wavelet filters and primary
resolution levels yielded basically the same results, although some methods seem to be quite sensitive
to the choice of the primary resolution level; we come back to this issue in Sections 6 and 7. For
n � 
�� or n � ��
� we found respectively poorer/better individual performance of the estimators
but their relative performance was roughly the same. This behaviour was also observed for� � � �
or �� � ��, where the signal-to-noise ratio is low/high respectively, although some methods tend
to oversmooth or attenuate the fine detail structure in the underlying intensity function especially in
situations involving very low level of counts. Moreover, some methods seem to be very sensitive to
the knowledge of the background intensity level; we come back to these issues in Sections 6 and 7.
In Section 8, we provide further details and a demonstration session in which various estimators are
considered for an astronomical gamma-ray burst data set.

6 Summary of Results

The results of the simulation study will now be presented, with the remainder of the section
devoted to the discussion of these results. Note that, for brevity, the estimation procedures will be
referred to by the acronyms introduced in Table 2.

6.1 Smooth and Angles Intensity Functions

The results for the ‘Smooth’ and ‘Angles’ intensity functions are reported first. For these functions,
where there is relatively little underlying structure, all estimators produced very good estimates with
the exception of HAAR-TI-H, CORRECTED-H and CORRECTED-TI-H estimators, despite their
using the true parameter value of��. The poor performance of these estimators may be due to the fact
that they are best suited for burst-like intensity functions. It is interesting to note however that this
group of estimators performed significantly better when using soft thresholding, in which case their
performance became comparable with that of several other estimators. Figures 3 and 4 illustrate the
relative performance of the estimators in terms of the six performance measures for the ‘Smooth’
and ‘Angles’ intensity functions respectively.

There is little to choose amongst the various Anscombe-based, MODULATION,l �-PENALISED
and BMMIM-TI estimators (for ‘Smooth’), all of which outperformed the BMSM-TI estimator.
Similarly, there is little to choose amongst the various Anscombe-based and MODULATION esti-
mators (for ‘Angles’), all of which outperformed the BMSM-TI and BMMIM-TI estimators. The
performance of the BMSM-TI estimator (for both ‘Smooth’ and ‘Angles’) was found to improve
by selecting their hyperparameters adaptively, as recommended by their authors, at the expense of
increasing significantly the considerable computational cost. On the other hand, the performance of
the BMMIM-TI estimator (for ‘Angles’) was found to improve by decreasing the primary resolution
level, as found in preliminary experiments. It can be shown that in these cases the BMSM-TI and
BMMIM-TI estimators perform as well as their non-Bayesian counterparts. Of these two estimators,
BMMIM-TI performed best in terms of the measures, despite its tendency to produce estimates with
slightly reduced amplitudes (for ‘Angles’).

6.2 Clipped Blocks Intensity Function

In contrast to the ‘Smooth’ and ‘Angles’ intensity functions, a range of performance was ob-
served for the ‘Clipped Blocks’ intensity function. Figure 5 illustrates the relative performance of
the estimators in terms of the six performance measures. As observed in the figure, the BMSM-TI
estimator dominated its non-Bayesian counterparts in every aspect apart from CPU time. Although
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Figure 3. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Smooth’ intensity function when
�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.
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Figure 4. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Angles’ intensity function when
�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.
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Figure 5. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Clipped Blocks’ intensity function
when�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods
are presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.
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the BMMIM-TI estimator does not perform as well as the BMSM-TI estimator, its performance
improves significantly by increasing the primary resolution level; it can be shown that in this case
the BMMIM-TI estimator also performs better than its non-Bayesian counterparts. For the hyper-
parameter values we used, the BMSM-TI estimator fared better than the BMMIM-TI estimator but
was not as computationally efficient. The computational advantage of the BMMIM-TI estimator is
due to the five-scale wavelet transform we employed, although in practice we could use fullJ-scale
transforms for improved performance (but see the discussion in Timmermann & Nowak, 1999).

Of the classical estimators, HAAR-TI-H and HAAR-TI-S performed best whilst MODULATION
performed worst. The non-translation invariant Anscombe-based estimators outperformed, in almost
all cases, thel�-PENALISED estimator but, as expected, did not perform as well as their trans-
lation invariant counterparts. It is interesting to note however that thel �-PENALISED estimator
performs better than the ANSCOMBE-UNI-S and ANSCOMBE-UNI-TI-S estimators, but the gain
in performance is not enough to justify its cost.

6.3 Bumps Intensity Function

A range of performance was also observed for the ‘Bumps’ intensity function. Figure 6 illustrates
the relative performance of the estimators in terms of the six performance measures. As observed in
the figure, the HAAR-TI-H and CORRECTED-TI-H estimators performed best, followed closely by
the BMSM-TI estimator. The generally good performance of the various translation invariant Haar
and Corrected threshold estimators is not entirely surprising since the ‘Bumps’ intensity function
displays the burst-like behaviour for which these estimators were specifically designed. Note how-
ever that the performance of this group of estimators was based on the true background intensity
level �� and would therefore deteriorate in practice, where� � is unknown. By way of contrast,
the performance of the BMSM-TI estimator has the potential of improving in practice by using
data-adaptive hyperparameters. The same is also true for the BMMIM-TI estimator by increasing
the primary resolution level.

Amongst the Anscombe-based estimators, the type of thresholding scheme (hard, soft) and the
choice of threshold value (minimax, universal, cross-validation) play an important role. Of the six
pairs of thresholding scheme and threshold value, the pairs (soft, cross-validation) and (hard, mini-
max) performed best whilst the pair (soft, universal) performed worst. As expected, the translation
invariant estimators offered improvements in performance and practically eliminated most of these
differences. As for the ‘Clipped Blocks’ intensity function, thel �-PENALISED estimator performs
better than ANSCOMBE-UNI-S and ANSCOMBE-UNI-TI-S estimators, but the gain in perfor-
mance is not enough to justify its cost. Finally, the MODULATION estimator performed worst and
trailed all of its competitors in terms of all the measures apart from CPU time.

6.4 Spikes and Bursts Intensity Functions

For the ‘Spikes’ and ‘Bursts’ intensity functions, the estimators can be broadly categorised ac-
cording to their performance as ‘good’, ‘not so good’ or ‘bad’. Thus the ‘bad’ estimators are the
MODULATION and l �-PENALISED, the ‘not so good’ estimators are ANSCOMBE-UNI-S and
ANSCOMBE-UNI-TI-S, and all the remaining estimators are ‘good’ estimators. It is interesting
to note that the ANSCOMBE-UNI-TI-S estimator performed worse than the ANSCOMBE-UNI-S
estimator for the ‘Spikes’ intensity function and the worst estimators wasl �-PENALISED, while the
worst estimator for ‘Bursts’ was MODULATION. However, the MODULATION estimator performs
better than thel �-PENALISED estimator in terms of CPU time, for both intensity functions. Figures 7
and 8 illustrate this and the relative performance of the remaining estimators in terms of the six
performance measures for the ‘Spikes’ and ‘Burst’ intensity functions respectively.
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Figure 6. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Bumps’ intensity function when
�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.
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Figure 7. Relative performance of the 22 methods of Table 2 for the estimation of the ‘Spikes’ intensity function when
�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.



230 P. BESBEAS, I. DE FEIS & T. SAPATINAS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2

4

6

8

10

12

14

16

18

20

22
MSE − Bursts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

500

600

700

800

900

1000

1100

1200

1300

1400

L1 − Bursts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.5

1

1.5

2

2.5

3

3.5

4
RMSE − Bursts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SB/MSE − Bursts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5

10

15

20

25

30

35

40

MXDV − Bursts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CPU − Bursts

Figure 8. Relative performance of the 22 methods in Table 2 for the estimation of the ‘Bursts’ intensity function when
�� � �� and n� ���. The performance of each method is given in terms of the six measures of Section 5. The methods are
presented in the same order as in Table 2 and the results are based on 100 replications, Symmlet 8 and j� � �.
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Of the better estimators, the ANSCOMBE-MIN-TI-H, ANSCOMBE-UNI-TI-H and ANSCOMBE-
CV-TI-H estimators were almost identical and slightly outperformed their competitors. The trans-
lation invariant Haar and the various corrected threshold estimators performed more or less equally
well in terms of the performance measures but the HAAR-TI-H and CORRECTED-TI-H estimators
yielded noticeably better estimates visually. As before, the performance of these estimators was
based on the true value of the background intensity level� �, which would be usually unknown
in practice. Since estimation of�� can be difficult in these intensity functions (and in some of
the previous intensity functions), we have conducted a smaller study to examine the effect of� �

on their performance. We have found that deviations from the true value of� � can substantially
deteriorate the performance of the estimators, depending on the sign and magnitude of the deviation,
the smoothness of the underlying intensity function, and the type of thresholding. The performance
sensitivity of the translation invariant Haar and the various corrected threshold estimators on the true
parameter value of�� constitute a serious practical limitation on the use of these estimators.

The BMSM-TI estimator, on the other hand, can be readily applied in practice. Furthermore, apart
from its favourable MSE performance, it produced estimates which did not contain the spurious
fine-scale effects that were often present in the other estimates; its estimates, however, tended to
have slightly lower peaks and higher troughs. The same behaviour is also observed to some extent
for the BMMIM-TI estimator by increasing the primary resolution level, especially for the ‘Bursts’
function.

7 Overall Conclusions

We compared the finite sample performance of a number of classical and Bayesian wavelet shrink-
age estimators for Poisson counts. Amongst the classical approaches, the methods of Donoho (1993),
Kolaczyk (1997, 1999a), Antoniadis & Sapatinas (2001), Fryźlewicz & Nason (2001) and Sardy,
Antoniadis & Tseng (2004) were considered. We also considered recent Bayesian approaches devel-
oped by Kolaczyk (1999b) and Timmermann & Nowak (1999). The output of our simulation study
is an illustration of the no-free lunch principle; the results show that there is no single estimator that
is superior to others in all cases.

When the underlying intensity function is relatively homogeneous, most estimators perform com-
parably and there is little to choose amongst them. As expected, the translation invariant version of the
Anscombe-based estimators usually performs better than their non-translation versions. Moreover,
since the universal threshold is larger than the minimax threshold obtained from a soft thresholding
rule and since soft thresholding produces more biased estimates than hard thresholding, the resulting
estimates obtained from soft thresholding with universal threshold are more biased (more coefficients
are thresholded) than the ones obtained from soft thresholding with minimax threshold. On the other
hand, since the universal threshold is smaller than the minimax threshold with a hard thresholding
rule, the resulting estimates obtained from hard thresholding with minimax threshold are less biased
(fewer coefficients are thresholded) than the ones obtained from hard thresholding with universal
threshold. The same behaviour is also observed to a lesser degree for the Fisz-based estimators. The
very good performance of the modulation estimator is explained by its linearity; linear estimators
are appropriate for homogeneous intensity functions. The performance of thel �-penalised likelihood
estimator is very good even though it has been proposed for inhomogeneous intensity functions.
On the other hand, despite their using the true parameter value of the background intensity level,
the poor performance of the Haar-based and the corrected-based estimators is justified by the fact
that these estimators have been proposed for burst-like intensity functions. Also, as expected, the
translation invariant version of the corrected-based estimators usually performs better than their non-
translation versions. However, the knowledge of the background intensity level for both Haar-based
and corrected-based estimators constitutes a serious practical limitation on the use of these esti-
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mators. Moreover, the asymptotic approximations used in obtaining the corrected-based estimators
result in the fact that these estimators may not exist for small values of the background intensity level,
resulting again in a serious limitation on the use of these estimators in practical applications. Finally
the Bayesian estimators consistently perform well, although the Bayesian multiscale multiplicative
innovations model estimator is sensitive to the choice of the primary resolution level.

When the underlying intensity function is inhomogeneous, a range of performance is observed.
Again, as expected, the translation invariant version of Anscombe-based estimators usually per-
forms better than their non-translation versions. Although these latter estimators show relatively
good performance, they tend to oversmooth or attenuate the fine detail structure in the underly-
ing intensity function especially in situations involving very low level of counts, as a result of the
variance-stabilizing transformation. The same behaviour is also observed to a lesser degree for the
Fisz-based estimators. The bad performance of the modulation estimator is explained by its linearity;
linear estimators are usually inappropriate for inhomogeneous intensity functions. In spite of the fact
that it has been proposed for inhomogeneous intensity functions, thel �-penalised likelihood estima-
tor does not perform as well as in the case of homogeneous functions. However, its performance
for such functions is improved by considering a cross-validation criterion instead of the optimal
universal threshold considered in the simulation study, at the expense of increasing significantly
the considerable computational cost. The better performance of the Haar-based estimators over the
corrected-based estimates can be explained by the fact that in the former case the resulting em-
pirical wavelet coefficients are independent at each resolution level, which is not the case for the
corrected-based estimators. Also, as expected, the translation invariant version of corrected-based
estimators usually performs better than their non-translation versions. However, the very good per-
formance of both Haar-based and corrected-based estimators depends heavily on the knowledge of
the background intensity level; this is a serious practical limitation on the use of these estimators,
especially in situations where a good knowledge of the background intensity level is not available.
Again, the asymptotic approximations used in obtaining the corrected-based estimators result in the
fact that these estimators may not exist for small values of the background intensity level, resulting
again in a serious limitation on the use of these estimators in practical applications. Finally, as in the
homogeneous case, the Bayesian multiscale model estimator consistently performs well, while the
Bayesian multiscale multiplicative innovations model estimator is again sensitive to the choice of
the primary resolution level, with better performance obtained using higher resolution levels.

In conclusion, the Anscombe-based, the Fisz-based, the modulation and thel �-penalised likelihood
estimators can be safely used for homogeneous intensity functions, but the transformation-based es-
timators are usually inappropriate for very low level of counts. The modulation estimator is usually
inappropriate for inhomogeneous intensity functions while thel �-penalised likelihood estimator can
be mostly applied with the use of cross-validation threshold, especially when the computational cost
is not a serious problem. On the other hand, the Haar-based thresholds should be preferred over the
corrected-based thresholds for inhomogeneous intensity functions and are mostly appropriate for
burst-like intensity functions; however, both should be used with caution, especially in cases where a
good knowledge of the background intensity level is not available. Furthermore, the corrected-based
estimators do not usually exist for low level of counts. On the other hand, the Bayesian estimators
seem to perform well for both homogeneous and inhomogeneous intensity functions, although the
Bayesian multiscale multiplicative innovations model is sensitive to the choice of the primary resolu-
tion level; better performances were obtained using low and high resolution levels for homogeneous
and inhomogeneous intensity functions respectively.

Overall, although there is no single estimator that is superior to others in all cases, the Bayesian
estimators consistently perform well and it is therefore safe to recommend their application in
estimating various intensity functions obtained in diverse scientific fields.
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8 An illustrative example

The calculations for this article were carried out using an implementation in MATLAB , a high-
level programming language written by The MathWorks, Inc. In accordance with the principle of
reproducible research (see Buckheit & Donoho, 1995), the (MATLAB ) programs used in this study,
including those we did not include in the simulations (i.e., the Fisz-based estimators and the trans-
lation invariant version of the modulation estimator), can be found on the World Wide Web at
http 
 ��www�ucy�ac�cy�� fanis�links�software�html. All these programs make extensive
use of Version 8 of the WaveLab package developed by Buckheit, Chen, Donoho, Johnstone &
Scargle (1995). WaveLab is a library of MATLAB routines for wavelet analysis and is available free
of charge over the Internet athttp 
 ��www� stat�stanford�edu�� wavelab. In addition, the
l�-penalised likelihood estimator makes also use of the Wavelet toolbox of MATLAB .

Also available at our web site are some data sets related to the astronomical gamma-ray burst
intensities. These data were detected by the Burst and Transient Source Experiment (BATSE) instru-
ments on board NASA’s Compton Gamma Ray Observatory (see Meeganet al., 1992, for details).
These instruments record the arrival times of the high-energy photons in which the burst is composed
according to four energy channels (at 25-58 keV, 58-115 keV, 115-320 keV and� �
� keV). In
practice it is common to aggregate over all energies and to collect the arrival times into bins, yielding
a sequence of counts. However, of additional interest to astronomers is sometimes an analysis of the
data by energy channel. In the Appendix, we provide a MATLAB session which analyses the BATSE
trigger 551 data at the third channel (115-320 keV). As this session is intended as a demonstration
of the way our programs may be used in practice, we do not provide a serious analysis of these data.
For serious analyses of BATSE data, see Meganet al. (1992) and Norriset al. (1996).

The BATSE trigger 551 data we analyse were recorded over approximately 0.94 seconds and
collected into 1024 adjacent, equally-spaced bins. The resulting sequence of counts is plotted in
Figure 9. As pulses occurred exclusively in the first half of the data (0.47 s), only this half is plotted
so as to enlarge the relevant area. Also plotted in Figure 9 are estimates of the underlying inten-
sity profile provided by the ANSCOMBE-MIN-TI-H, HAAR-TI-H and BMSM-TI estimators. The
HAAR-TI-H estimate uses the mean of the last 60% observations as an estimate of the background
intensity level, while the BMSM-TI estimate is based on data-adaptive hyperparameters.

As observed in the figure, the ANSCOMBE-MIN-TI-H estimator has an unacceptably rounded
appearance. The estimate produced by the BMSM-TI estimator appears more plausible, but the
HAAR-TI-H estimator has effectively removed the noise from the data while retaining the perceived
sharp structure of the pulses.
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Figure 9. Gamma-ray burst (BATSE trigger 551, energy channel 3, n� ����) and estimates of its intensity function using
three wavelet shrinkage estimators: ANSCOMBE-MIN-TI-H, HAAR-TI-H (with the mean of the last 60% observations as an
estimate of��) and BMSM-TI (with data-adaptive hyperparameters). Only the first half of the data (0.47 s), which contains
the pulses, is shown so as to enlarge the relevant area.
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Résumé

Nous étudions l’aide de simulations numériques, le comportement̀a taille d’́echantillon fini d’un certain nombre
d’estimateurs de l’intensité de comptages Poissonniens, fondés sur des procédures de seuillage, classiques et bayesiennes, des
coefficients d’ondelettes. A cet effet nous employons une large gamme de fonctions d’intensité, de bruit de fond, de tailles
d’échantillons, de résolution primaire de décomposition et de famille d’ondelettes et des critères de performance variés. Les
méthodes sont illustrées sur un exemple réel issus d’astrophysique. Selon les principes d’une recherche reproductible les
proćedures MATLAB et les exemples traités sont gracieusement disponibles.

Appendix

This appendix provides a MATLAB session which analyses the BATSE trigger 551 data, as described
in Section 8. MATLAB is an easy-to-understand language but a few comments about the code below
are in order.

1. Comments begin with the percent symbol ( ).
2. The commandloadfile�mat retrieves the variables from the MAT-file ‘file.mat’.
3. The commandlinspace�a� b� n� generatesn equally spaced points betweena andb.
4. The commandhist�y� x� returns the distribution ofy among bins with centres specified byx.

%retrieve BATSE trigger 551 data
load burst551.mat
photon_times=burst3; %arrivals at the third channel

%collect arrival times into 1024 bins
num_bins=1024;
t_min=min(photon_times);
t_max=max(photon_times);
t_range=t_max-t_min;
dt_bin=t_range/num_bins;
mid_first=t_min+dt_bin/2;
mid_last=t_max-dt_bin/2;
data_bins=linspace(mid_first,mid_last,num_bins);
poissig=hist(photon_times,data_bins);
x=data_bins’;

%intensity function estimates

%translation invariant version of Anscombe-based estimate
%with hard minimax threshold
j0=6; %primary resolution level
h=MakeONFilter(’Symmlet’,8); %wavelet filter choice
anscombeMin_TI_H=recanscombeTI(poissig,’MinMax’,’Hard’,j0,h);

%translation invariant version of Haar estimate with hard threshold
j0=4; %primary resolution level
%Estimate of background intensity level
mu0=ceil(mean(poissig(floor(2/5*num_bins)+1:num_bins)));
haar_TI_H=rechaarTI(poissig,mu0,’Hard’,j0);

%translation invariant version of Bayesian Multiscale model estimate
pqind=2; %data-adaptive hyperparameters
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BMSMShrink_TI=BMSMShrink(poissig,pqind);

%plot data and reconstructions
xsec=x/10ˆ6; %change time scale to seconds
n2=num_bins/2; %concentrate on first half

subplot(4,1,1)
plot(xsec,poissig)
axis([0 xsec(n2) 0 50])
title(’BATSE trigger 551 - energy channel 3’,’FontSize’,8)

subplot(4,1,2) plot(xsec,anscombeMin_TI_H)
axis([0 xsec(n2) 0 50])
title(’ANSCOMBE-MIN-TI-H’,’FontSize’,8)

subplot(4,1,3) plot(xsec,haar_TI_H)
axis([0 xsec(n2) 0 50])
title(’HAAR-TI-H’,’FontSize’,8)

subplot(4,1,4)
plot(xsec,BMSMShrink_TI)
axis([0 xsec(n2) 0 50])
title(’BMSM-TI’,’FontSize’,8)
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