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Abstract

Wavelet analysis has been found to be a powerful tool for the nonparametric estimation of

spatially-variable objects. We discuss in detail wavelet methods in nonparametric regression,

where the data are modelled as observations of a signal contaminated with additive Gaussian

noise, and provide an extensive review of the vast literature of wavelet shrinkage and wavelet

thresholding estimators developed to denoise such data. These estimators arise from a

wide range of classical and empirical Bayes methods treating individual or blocks of wavelet

coefficients either globally or in a level-dependent fashion. We compare various estimators

in an extensive simulation study on a variety of sample sizes, test functions, signal-to-noise

ratios and wavelet filters. Because there is no single criterion that can adequately summarise

the behaviour of an estimator, we use various criteria to measure performance in finite

sample situations. Insight into the performance of these estimators is obtained from graphical

outputs and numerical tables. In order to provide some hints of how these estimators should

be used to analyse real-life data sets, a detailed practical step-by-step illustration of a wavelet

denoising analysis on electrical consumption is provided. Matlab codes are provided so that

all figures and tables in this paper can be reproduced.

Some key words: EM algorithm; Empirical Bayes; Monte Carlo experiments;

Nonparametric regression; Smoothing Methods; Shrinkage; Thresholding;

Wavelets.
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1 INTRODUCTION

Nonparametric regression has been a fundamental tool in data analysis over the past two

decades and is still an expanding area of ongoing research. The goal is to recover an unknown

function, say g, based on sampled data that are contaminated with additive Gaussian noise. Only

very general assumptions about g are made such as that it belongs to a certain class of smooth

functions. Nonparametric regression (or denoising) techniques provide a very effective and simple

way of finding structure in data sets without the imposition of a parametric regression model

(as in linear or polynomial regression for example). However, nonparametric and parametric

regression models should not be viewed as mutually exclusive competitors. In many cases, a

nonparametric regression estimate will suggest a simple parametric model, while in other cases

it will be clear that the underlying regression function is too complicated and no reasonable

parametric model would be adequate.

During the 1980s and 1990s, the literature was inundated by hundreds (and perhaps

thousands) of papers regarding various linear (on a fixed spatial scale) estimators to the

nonparametric regression problem. Some of the more popular are those based on kernel

functions, smoothing splines and orthogonal series. Each of these approaches has its own

particular strengths and weaknesses. We refer, for example, to the monographs of Härdle

(1990), Green & Silverman (1994), Wand & Jones (1995), Fan & Gijbels (1996) and Eubank

(1999) for extensive bibliographies. For linear smoothers, asymptotic results are easily obtained.

Usually, if g is sufficiently smooth (for example if g belongs to a Sobolev space of regularity s),

then the mean integrated squared error (which is usually considered to measure asymptotic

performance) converges to zero at a rate n−r as the sample size n increases. This is known as

the optimal asymptotic rate and for all reasonable linear smoothers, r is the same (for example,

r = 2s/(2s + 1) for the Sobolev case).

Unfortunately, the asymptotics are not particularly helpful to practitioners faced with finite

data sets when deciding what type of smoother to use. As a public service, Breiman & Peters

(1992) designed a useful simulation study comparing some popular linear smoothing methods

found in the literature on a variety of sample sizes, regression functions and signal-to-noise ratios

using a number of different criterion to measure performance. As expected, they found that no

linear smoother uniformly dominates in all aspects. However, valuable conclusions were drawn

from these simulations about the small sample behaviour of the various linear smoothers and

their computational complexity.

The fixed spatial scale estimators mentioned above assume that g belongs to some given set

of functions {gθ; θ ∈ Θ} where Θ is an infinite dimensional parameter set. It turns out that the
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prior knowledge of the family {gθ; θ ∈ Θ} influences both the construction of the estimators and

their performances. Roughly speaking, the larger the family the larger the risk, revealing a major

drawback of the preceding estimators. The problem of spatially adaptive estimation concerns

whether one can, without prior knowledge of the family {gθ; θ ∈ Θ}, built estimators that

achieve the optimal asymptotic rates on some privileged subsets of the parameter set Θ. Over

the last decade, various nonlinear (spatially adaptive) estimators in nonparametric regression

have been proposed. The most popular are variable-bandwidth kernel methods, classification and

regression trees, and adaptive regression splines. Although some of these methods achieve the

optimal asymptotic rates, they can be computationally intensive and they are usually designed

to denoise regular functions.

During the 1990s, the nonparametric regression literature was dominated by (nonlinear)

wavelet shrinkage and wavelet thresholding estimators. These estimators are a new subset of an

old class of nonparametric regression estimators, namely orthogonal series methods. Moreover,

these estimators are easily implemented through fast algorithms so they are very appealing

in practical situations. Donoho & Johnstone (1994) and Donoho, Johnstone, Kerkyacharian &

Picard (1995) have introduced nonlinear wavelet estimators in nonparametric regression through

thresholding which typically amounts to term-by-term assessment of estimates of coefficients in

the empirical wavelet expansion of the unknown function g. If an estimate of a coefficient is

sufficiently large in absolute value – that is, if it exceeds a predetermined threshold – then the

corresponding term in the empirical wavelet expansion is retained (or shrunk toward to zero by

an amount equal to the threshold); otherwise it is omitted.

In particular, these papers study nonparametric regression from a minimax viewpoint, using

some important function classes not previously considered in statistics when linear smoothers

were studied (and have also provided new viewpoints for understanding other nonparametric

smoothers as well). These function classes model the notion of different amounts of smoothness

in different locations more effectively than the usual smooth classes. In other words, these

function classes contain function spaces like the Hölder and Sobolev spaces of regular functions,

as well as spaces of irregular functions such as those of ‘bounded variation’. These considerations

are not simply esoteric, but are of statistical importance, since these classes of functions typically

arise in practical applications such as the processing of speech, electrocardiogram or seismic

signals. (Mathematically, all these function spaces can be formalized in terms of the so-

called Besov or Triebel spaces; see, for example, Meyer (1992), Wojtaszczyk (1997), Donoho

& Johnstone (1998) and Härdle, Kerkyacharian, Picard & Tsybakov (1998).) Although these

contributions describe performance in terms of convergence rates that are achieved over large

function classes, concise accounts of mean squared error for single functions also exist and have
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been discussed in detail by Hall & Patil (1996a, 1996b).

To date, the study of these methods has been mostly asymptotic in character. In particular, it

has been shown that nonlinear wavelet thresholding estimators are asymptotically near optimal

or optimal while traditional linear estimators are suboptimal for estimation over particular

classes of the Besov or Triebel spaces (see, for example, Delyon & Juditsky, 1996; Donoho &

Johnstone, 1998; Abramovich, Benjamini, Donoho & Johnstone, 2000). As with any asymptotic

result, there remain doubts as to how well the asymptotics describe small sample behaviour. In

other words, how large the sample size should be before the asymptotic theory applies is a very

important question. To shed some light on this question, Marron, Adak, Johnstone, Newmann

& Patil (1998) applied the tool of exact risk analysis to understand the small sample behaviour of

the two wavelet thresholding estimators introduced by Donoho & Johnstone (1994), namely the

minimax and universal wavelet estimators, and thus to check directly the conclusions suggested

by asymptotics. Also, their analysis provide insight as to why the viewpoints and conclusions

of Donoho-Johnstone (convergence rates achieved uniformly over large function classes) differ

from those of Hall-Patil (convergence rates achieved for single functions). Bruce & Gao (1996),

Gao & Bruce (1997), Gao (1998) and Antoniadis & Fan (2001) have also developed analytical

tools to understand the finite sample behaviour of minimax wavelet estimators based on various

thresholding rules.

Since the seminal papers by Donoho & Johnstone (1994) and Donoho, Johnstone,

Kerkyacharian & Picard (1995), various alternative data-adaptive wavelet thresholding

estimators have been developed. For example, Donoho & Johnstone (1995) proposed the

SureShrink estimator based on minimizing Stein’s unbiased risk estimate; Weyrich & Warhola

(1995a, 1995b), Nason (1996) and Jansen, Malfait & Bultheel (1997) have considered estimators

based on cross-validation approaches to choosing the thresholding parameter; while Abramovich

& Benjamini (1995, 1996) and Ogden & Parzen (1996a, 1996b) considered thresholding as

a multiple hypotheses testing procedure. Hall, Penev, Kerkyacharian & Picard (1997), Hall,

Kerkyacharian & Picard (1998, 1999), Cai (1999), Efromovich (1999, 2000) and Cai & Silverman

(2001) suggested further modifications of the basic thresholding by considering wavelet block

thresholding estimators meaning that the wavelet coefficients are thresholded in blocks rather

than term-by-term. Some of these alternative wavelet thresholding estimators possess near

optimal asymptotic properties. Moreover, it has been shown that wavelet block thresholding

estimators have excellent mean squared error performances relative to wavelet term-by-term

thresholding estimators in finite sample situations.

Various Bayesian approaches for nonlinear wavelet thresholding and nonlinear wavelet

shrinkage estimators have also recently been proposed. To fix terminology, a shrinkage rule
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shrinks wavelet coefficients to zero, whilst a thresholding rule in addition sets actually to zero

all coefficients below a certain level (as in the classical approach). These estimators have been

shown to be effective and it is argued that they are less ad-hoc than the classical proposals

discussed above. In the Bayesian approach a prior distribution is imposed on the wavelet

coefficients. The prior model is designed to capture the sparseness of wavelet expansions

common to most applications. Then the function is estimated by applying a suitable Bayesian

rule to the resulting posterior distribution of the wavelet coefficients. Different choices of loss

function lead to different Bayesian rules and hence to different nonlinear wavelet shrinkage

and wavelet thresholding rules. Such wavelet estimators have been discussed, for example, by

Chipman, Kolaczyk & McCulloch (1997), Abramovich, Sapatinas & Silverman (1998), Clyde,

Parmigiani & Vidakovic (1998), Crouse, Nowak & Baraniuk (1998), Johnstone & Silverman

(1998), Vidakovic (1998a), Clyde & George (1999, 2000), Vannucci & Corradi (1999), Huang &

Cressie (2000), Huang and Lu (2000), Vidakovic & Ruggeri (2001) and Angelini, De Canditiis &

Leblanc (2003). Moreover, it has been shown that Bayesian wavelet shrinkage and thresholding

estimators outperform the classical wavelet term-by-term thresholding estimators in terms of

mean squared error in finite sample situations. Recently, Abramovich, Besbeas & Sapatinas

(2002) have considered Bayesian wavelet block shrinkage and block thresholding estimators, and

have shown that they outperform existing classical block thresholding estimators in terms of

mean squared error in finite sample situations.

Extensive reviews and descriptions of the various classical and Bayesian wavelet shrinkage

and wavelet thresholding estimators are given in the books by Ogden (1997), Vidakovic (1999)

and Percival and Walden (2000), in the papers appeared in the edited volume by Müller &

Vidakovic (1999), and in the review papers by Antoniadis (1997), Vidakovic (1998b) and

Abramovich, Bailey and Sapatinas (2000). It is evident that, although a number of wavelet

estimators has been compared to get insight as to which ones are to be preferred against

the others, a more detailed study involving recent classical and Bayesian wavelet methods is

required in the development towards high-performance wavelet estimators. Furthermore, with

the increased applicability of these estimators in nonparametric regression, their finite sample

properties become even more important.

Therefore, as a public service, similar to one given by Breiman & Peters (2000) for linear

smoothers, in this paper we design an extensive simulation study to compare most of the above

mentioned wavelet estimators on a variety of sample sizes, test functions, signal-to-noise ratios

and wavelet filters. Because there is no single criterion that can adequately summarise the

behaviour of an estimator, various criteria (including the traditional mean squared error) are

used to measure performance. Insight into the performance of these estimators in finite sample
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situations is obtained from graphical outputs and numerical tables.

In particular, from the classical wavelet thresholding estimators we consider: minimax

estimators, the universal estimator, SureShrink estimators, a translation invariant estimator (a

variant of the universal estimator), the two-fold cross-validation estimator, multiple hypotheses

testing estimators, a nonoverlapping block estimator and an overlapping block estimator. A

linear wavelet estimator (extending spline smoothing estimation methods) is also considered.

From the Bayesian wavelet shrinkage and wavelet thresholding estimators we consider:

posterior mean estimators, posterior median estimators, a hypothesis testing estimator, a

deterministic/stochastic decomposition estimator, a nonparametric mixed-effect estimator and

nonoverlapping block estimators. The elicitation of the hyperparameters of the above estimators

are resolved in detail by employing empirical Bayes methods that attempt to determine the

hyperparameters of the prior distributions from the data being analysed.

The plan of this paper is as follows. Section 2 recalls some known results about wavelet

series and the discrete wavelet transform. Section 3 briefly discusses the nonlinear wavelet

approach to nonparametric regression. In Section 4 the different classical and empirical

Bayes wavelet estimators used in the simulation study are presented. The description of

the actual simulation study is given in Section 5. Section 6 summarises and discusses the

results of the simulations. The overall conclusions of our simulation comparison is presented

in Section 7. Section 8 explains in some detail which files the user should download and how

to start running them. In order to provide some hints of how the functions should be used to

analyse real-life data sets, a detailed practical step-by-step illustration of a wavelet denoising

analysis on electrical consumption is provided. Finally, following the principle of reproducible

research as advocated by Buckheit & Donoho (1995), Matlab routines and a description of

software implementing these routines (so that all figures and tables in this paper can be

reproduced) are available at http://www-lmc.imag.fr/SMS/software/GaussianWaveDen.html

or http://www.ucy.ac.cy/∼fanis/links/software.html .

2 Wavelet Series and the Discrete Wavelet Transform

In this section we give a brief overview of some relevant material on the wavelet series expansion

and a fast wavelet transform that we need later.

2.1 The wavelet series expansion

The term wavelets is used to refer to a set of orthonormal basis functions generated by dilation

and translation of a compactly supported scaling function (or father wavelet), φ, and a mother
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wavelet, ψ, associated with an r-regular multiresolution analysis of L2(R). A variety of different

wavelet families now exist that combine compact support with various degrees of smoothness and

numbers of vanishing moments (see Daubechies (1992)), and these are now the most intensively

used wavelet families in practical applications in statistics. Hence, many types of functions

encountered in practice can be sparsely (i.e. parsimoniously) and uniquely represented in terms

of a wavelet series. Wavelet bases are therefore not only useful by virtue of their special structure,

but they may also be (and have been!) applied in a wide variety of contexts.

For simplicity in exposition, we shall assume that we are working with periodised wavelet

bases on [0, 1] (see, for example, Mallat (1999), Section 7.5.1), letting

φp
jk(t) =

∑

l∈Z
φjk(t− l) and ψp

jk(t) =
∑

l∈Z
ψjk(t− l), for t ∈ [0, 1],

where

φjk(t) = 2j/2φ(2jt− k) and ψjk(t) = 2j/2ψ(2jt− k).

For any given primary resolution level j0 ≥ 0, the collection

{φp
j0k, k = 0, 1, . . . , 2j0 − 1; ψp

jk, j ≥ j0 ≥ 0, k = 0, 1, . . . , 2j − 1}

is then an orthonormal basis of L2([0, 1]). The superscript “p” will be suppressed from the

notation for convenience.

Despite the poor behaviour of periodic wavelets near the boundaries (they create high

amplitude wavelet coefficients in the neighborhood of the boundaries when the analysed function

is not periodic) they are commonly used because the numerical implementation is particularly

simple. Also, as Johnstone (1994) has pointed out, this computational simplification affects only

a fixed number of wavelet coefficients at each resolution level and does not affect the qualitative

phenomena that we wish to present. The idea underlying such an approach is to express any

function g ∈ L2([0, 1]) in the form

g(t) =
2j0−1∑

k=0

αj0kφj0k(t) +
∞∑

j=j0

2j−1∑

k=0

βjkψjk(t), j0 ≥ 0, t ∈ [0, 1],

where

αj0k = 〈g, φj0k〉 =
∫ 1

0
g(t)φj0k(t) dt, j0 ≥ 0, k = 0, 1, . . . , 2j0 − 1

and

βjk = 〈g, ψjk〉 =
∫ 1

0
g(t)ψjk(t) dt, j ≥ j0 ≥ 0, k = 0, 1, . . . , 2j − 1.

For detailed expositions of the mathematical aspects of wavelets we refer to, for example,

Daubechies (1992), Meyer (1992), Wojtaszczyk (1997) and Mallat (1999).
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2.2 The discrete wavelet transform

In statistical settings we are more usually concerned with discretely sampled, rather than

continuous, functions. It is then the wavelet analogy to the discrete Fourier transform which

is of primary interest and this is referred to as the discrete wavelet transform (DWT). Given a

vector of function values g = (g(t1), ..., g(tn))′ at equally spaced points ti, the discrete wavelet

transform of g is given by

d = Wg,

where d is an n×1 vector comprising both discrete scaling coefficients, cj0k, and discrete wavelet

coefficients, djk, and W is an orthogonal n× n matrix associated with the orthonormal wavelet

basis chosen. The cj0k and djk are related to their continuous counterparts αj0k and βjk (with

an approximation error of order n−1) via the relationships

cj0k ≈
√

n αj0k and djk ≈
√

n βjk.

The factor
√

n arises because of the difference between the continuous and discrete

orthonormality conditions. This root factor is unfortunate but both the definition of the DWT

and the wavelet coefficients are now fixed by convention, hence the different notation used to

distinguish between the discrete wavelet coefficients and their continuous counterpart. Note

that, because of orthogonality of W , the inverse DWT (IDWT) is simply given by

g = W
′
d,

where W
′
denotes the transpose of W .

If n = 2J for some positive integer J , the DWT and IDWT may be performed through a

computationally fast algorithm developed by Mallat (1989) that requires only order n operations.

In this case, for a given j0 and under periodic boundary conditions, the DWT of g results in an

n-dimensional vector d comprising both discrete scaling coefficients cj0k, k = 0, ..., 2j0 − 1 and

discrete wavelet coefficients djk, j = j0, ..., J − 1; k = 0, ..., 2j − 1.

We do not provide technical details here of the order n DWT algorithm mentioned above.

Essentially the algorithm is a fast hierarchical scheme for deriving the required inner products

which at each step involves the action of low and high pass filters, followed by a decimation

(selection of every even member of a sequence). The IDWT may be similarly obtained in terms

of related filtering operations. For excellent accounts of the DWT and IDWT in terms of filter

operators we refer to Nason & Silverman (1995), Strang & Nguyen (1996), or Burrus, Gonipath

& Guo (1998).
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3 The wavelet approach to nonparametric regression

Consider the standard univariate nonparametric regression setting

yi = g(ti) + σ εi, i = 1, . . . , n, (1)

where εi are independent N(0, 1) random variables and the noise level σ may, or may not, be

known. The goal is to recover the underlying function g from the observations y = (y1, . . . , yn)′

without assuming any particular parametric structure on its form.

In what follows we assume, without loss of generality, that the sample points ti are within

the unit interval [0, 1]. For simplicity, we also assume that the sample points are equally spaced,

i.e. ti = i/n, and that the sample size n is a power of two: n = 2J for some positive integer

J . These assumptions allow us to perform both the DWT and the IWDT using Mallat’s (1989)

fast algorithm.

Remark 3.1 It should be noted that for non-equispaced or random designs, or sample sizes

which are not a power of two, or data contaminated with correlated noise, modifications are

needed to the standard wavelet-based estimation procedures that will be discussing in Section 4.

We refer, for example, to Deylon & Juditsky (1995), Neumann & Spokoiny (1995), Wang

(1996), Hall & Turlach (1997), Johnstone & Silverman (1997), Antoniadis, Grégoire & Vial

(1997), Antoniadis & Pham (1998), Cai & Brown (1998, 1999), Kovac & Silverman (2000),

von Sachs & MacGibbon (2000), Nason (2002) and Angelini, De Canditiis & Leblanc (2003).

In our simulation comparison in Section 5, we have not included these latter methods but

rather concentrated on the standard nonparametric regression setting. Although a more general

comparison will be valuable it is, however, outside the scope of this paper.

One of the basic approaches to nonparametric regression is to consider the unknown function

g expanded as a generalised Fourier series and then to estimate the generalised Fourier coefficients

from the data. The original nonparametric problem is thus transformed to a parametric one,

although the potential number of parameters is infinite. An appropriate choice of basis for the

expansion is therefore a key point in relation to the efficiency of such an approach. A ‘good’

basis should be parsimonious in the sense that a large set of possible response functions can be

approximated well by only few terms of the generalized Fourier expansion employed. As already

discussed, wavelet series allow a parsimonious expansion for a wide variety of functions, including

inhomogeneous cases. It is therefore natural to consider applying the generalized Fourier series

approach using a wavelet series.

10



Due to the orthogonality of the matrix W , the DWT of white noise is also an array of

independent N(0, 1) random variables, so from (1) it follows that

ĉj0k = cj0k + σ εjk, k = 0, 1, . . . , 2j0 − 1, (2)

d̂jk = djk + σ εjk, j = j0, . . . , J − 1, k = 0, . . . , 2j − 1, (3)

where ĉj0k and d̂jk are respectively the empirical scaling and the empirical wavelet coefficients

of the noisy data y, and εjk are independent N(0, 1) random variables. The sparseness of

the wavelet expansion makes it reasonable to assume that essentially only a few ‘large’ djk

contain information about the underlying function g, while ‘small’ djk can be attributed to the

noise which uniformly contaminates all wavelet coefficients. If we can decide which are the

‘significant’ large wavelet coefficients, then we can retain them and set all others equal to zero,

thus obtaining an approximate wavelet representation of the underlying function g. It is also

advisable to keep the scaling coefficients cj0k, the coefficients on the lower coarse levels, intact

because they represent ‘low-frequency’ terms that usually contain important components about

the underlying function g.

Finally, we mention that the primary resolution level j0 that we have used throughout our

simulations was chosen to be j0 = [log2(log(n))] + 1, following the asymptotic considerations

given in Chapter 10 of Härdle, Kerkyacharian, Picard & Tsybakov (1998).

3.1 The classical approach to wavelet thresholding

A wavelet based linear approach, extending simply spline smoothing estimation methods as

described by Wahba (1990), is the one suggested by Antoniadis (1996) and independently

by Amato & Vuza (1997). Of non-threshold type, this method is appropriate for estimating

relatively regular functions. Assuming that the smoothness index s of the function g to be

recovered is known, the resulting estimator is obtained by estimating the scaling coefficients cj0k

by their empirical counterparts ĉj0k and by estimating the wavelet coefficients djk via a linear

shrinkage

d̃jk =
d̂jk

1 + λ22js
,

where λ > 0 is a smoothing parameter. The parameter λ is chosen by cross-validation in Amato

& Vuza (1997), while the choice of λ in Antoniadis (1996) is based on risk minimization and

depends on a preliminary consistent estimator of the noise level σ. The above linear wavelet

method is not designed to handle spatially inhomogeneous functions with low regularity. For

such functions one usually relies upon nonlinear wavelet (thresholding or shrinkage) methods.

Donoho & Johnstone (1994, 1995, 1998) and Donoho, Johnstone, Kerkyacharian & Picard

(1995) proposed a nonlinear wavelet estimator of g based on reconstruction by keeping the
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empirical scaling coefficients ĉj0k in (2) intact and from a more judicious selection of the empirical

wavelet coefficients d̂jk in (3). They suggested the extraction of the significant wavelet coefficients

by thresholding in which wavelet coefficients are set to zero if their absolute value is below a

certain threshold level, λ ≥ 0, whose choice we discuss in more detail in Section 4.1. Under this

scheme we obtain thresholded wavelet coefficients using either the hard or soft thresholding rule

given respectively by

δH
λ (d̂jk) =

{
0 if |d̂jk| ≤ λ

d̂jk if |d̂jk| > λ
(4)

and

δS
λ(d̂jk) =





0 if |d̂jk| ≤ λ

d̂jk − λ if d̂jk > λ

d̂jk + λ if d̂jk < −λ.

(5)

Thresholding allows the data itself to decide which wavelet coefficients are significant; hard

thresholding (a discontinuous function) is a ‘keep’ or ‘kill’ rule, while soft thresholding (a

continuous function) is a ‘shrink’ or ‘kill’ rule.

Bruce & Gao (1996) and Marron, Adak, Johnstone, Newmann & Patil (1998) have shown

that simple threshold values with hard thresholding results in larger variance in the function

estimate, while the same threshold values with soft thresholding shift the estimated coefficients

by an amount of λ even when |d̂jk| stand way out of noise level, creating unnecessary bias when

the true coefficients are large. Also, due to its discontinuity, hard thresholding can be unstable,

that is, sensitive to small changes in the data.

To remedy the drawbacks of both hard and soft thresholding rules, Gao & Bruce (1997) and

considered the firm threshold thresholding

δF
λ1,λ2

(d̂jk) =





0 if |d̂jk| ≤ λ1

sign(d̂jk)
λ2(|d̂jk|−λ1)

λ2−λ1
if λ1 < |d̂jk| ≤ λ2

d̂jk if |d̂jk| > λ2

(6)

which is a “keep” or “shrink” or “kill” rule (a continuous function).

The resulting wavelet thresholding estimators offer, in small samples, advantages over

both hard thresholding (generally smaller mean squared error and less sensitivity to small

perturbations in the data) and soft thresholding (generally smaller bias and overall mean squared

error) rules. For values of |d̂jk| near the lower threshold λ1, δF
λ1,λ2

(d̂jk) behaves like δS
λ1

(d̂jk).

For values of |d̂jk| above the upper threshold λ2, δF
λ1,λ2

(d̂jk) behaves like δH
λ2

(d̂jk). Note that the

hard thresholding and soft thresholding rules are limiting cases of (6) with λ1 = λ2 and λ2 = ∞
respectively.
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Note that firm thresholding has a drawback in that it requires two threshold values (one for

‘keep’ or ‘shrink’ and another for ‘shrink’ or ‘kill’), thus making the estimation procedure for

the threshold values more computationally expensive. To overcome this drawback, Gao (1998)

considered the nonnegative garrote thresholding

δG
λ (d̂jk) =





0 if |d̂jk| ≤ λ

d̂jk − λ2

d̂jk
if |d̂jk| > λ

(7)

which is a “shrink” or “kill” rule (a continuous function). The resulting wavelet thresholding

estimators offer, in small samples, advantages over both hard thresholding and soft thresholding

rules that is comparable to the firm thresholding rule, while the latter requires two threshold

values.

In the same spirit to that in Gao (1998), Antoniadis & Fan (2001) suggested the SCAD

thresholding rule

δSCAD
λ (d̂jk) =





sign(d̂jk) max (0, |d̂jk| − λ) if |d̂jk| ≤ 2λ
(α−1)d̂jk−aλsign(d̂jk)

α−2 if 2λ < |d̂jk| ≤ αλ

d̂jk if |d̂jk| > αλ

(8)

which is also a “keep” or “shrink” or “kill” rule (a piecewise linear function). It does not

over penalize large values of |d̂jk| and hence does not create excessive bias when the wavelet

coefficients are large. Antoniadis & Fan (2001) have recommended to use the value of α = 3.7

based on a Bayesian argument.

Remark 3.2 In our simulation comparison in Section 5, we have only considered hard, soft

and SCAD thresholding rules since the firm and the nonnegative garrote thresholding rules have

been extensively studied by Gao & Bruce (1997) and Gao (1998) – see also Vidakovic (1999) for

a discussion on other types of thresholding rules. Moreover, hard and soft thresholding rules are

the most commonly used (if not the only ones!) among the various classical wavelet thresholding

estimators considered in practice that we will be discussing in Section 4.1.

The thresholded wavelet coefficients obtained by applying any of the thresholding rules δλ,

given in (4)–(7), are used to obtain a selective reconstruction of the response function g. The

resulting estimate can be written as

ĝλ(t) =
2j0−1∑

k=0

ĉj0k√
n

φj0k(t) +
J−1∑

j=j0

2j−1∑

k=0

δλ(d̂jk)√
n

ψjk(t). (9)

Often, we are interested in estimating the unknown response function at the observed data-

points. In this case the vector ĝλ of the corresponding estimates can be derived by simply
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performing the IDWT of {ĉj0k, δλ(d̂jk)} and the resulting three-step selective reconstruction

estimation procedure can be summarized by the following diagram

y DWT−→
{

ĉj0k, d̂jk

}
thresholding−→

{
ĉj0k, δλ(d̂jk)

}
IDWT−→ ĝλ. (10)

As mentioned in Section 2.2, for the equally spaced design and sample size n = 2J assumed

throughout this section, both DWT and IDWT in (10) can be performed by a fast algorithm of

order n, and so the whole process is computationally very efficient.

3.2 The Bayesian approach to wavelet shrinkage and thresholding

Recall from (2) that the empirical scaling coefficients {ĉj0k : k = 0, . . . , 2j0 − 1} conditionally on

cj0k and σ2 are independently distributed as

ĉj0k | cj0k, σ
2 ∼ N(cj0k, σ

2). (11)

Similarly, from (3), the empirical wavelet coefficients {d̂jk : j = j0, . . . , J − 1; k = 0, . . . , 2j − 1}
conditionally on djk and σ2 are independently distributed as

d̂jk | djk, σ
2 ∼ N(djk, σ

2). (12)

In the Bayesian approach a prior model is imposed on the function’s wavelet coefficients,

designed to capture the sparseness of the wavelet expansion common to most applications. It is

assumed that in the prior model the wavelet coefficients djk are mutually independent random

variables (and independent of the empirical wavelet coefficients d̂jk). A popular prior model

for each wavelet coefficient djk is a scale mixture of two distributions, one mixture component

corresponding to negligible coefficients, the other to significant coefficients. Usually, a scale

mixture of two normal distributions or a mixture of one normal distribution and a point mass

at zero is considered. Such mixtures have been recently applied to stochastic search variable

selection problems (see, for example, George & McCullogh (1993)). The mixture component

with larger variance represents the significant coefficients, while the mixture component with

smaller variance represents the negligible ones. The limiting case of a mixture of one normal

distribution and a point mass at zero corresponds to the case where the smaller variance is

actually set to zero.

An important distinction between the use of a scale mixture of two normal distributions

(considered by Chipman, Kolaczyk & McCulloch (1997)) and a scale mixture of a normal

distribution and a point mass at zero (considered by Clyde, Parmigiani & Vidakovic (1998) and

Abramovich, Sapatinas & Silverman (1998)) in the Bayesian wavelet approach to nonparametric

regression is the type of shrinkage obtained. In the former case, no wavelet coefficient estimate
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based on the posterior analysis will be exactly equal to zero. However, in the latter case, with a

proper choice of a Bayes rule, it is possible to get wavelet coefficient estimates that are exactly

zero, resulting in a bonafide thresholding rule. We consider here the mixture model of one

normal distribution and a point mass at zero in detail. (Other choices of prior models will also

be discussed in Section 4.3.)

Following the discussion given above, a hierarchical model that expresses the belief that some

of the wavelet coefficients {djk : j = j0, . . . , J − 1; k = 0, . . . , 2j − 1} are zero is obtained by

djk | γjk ∼ N(0, γjkτ
2
j ) (13)

γjk ∼ Bernoulli(πj), (14)

where djk | γjk are mutually independent random variables. The binary random variables

γjk determine whether the wavelet coefficients are nonzero (γjk = 1), arising from N(0, τ2
j )

distributions, or zero (γjk = 0), arising from point masses at zero. In the next stage

of the hierarchy, it is assumed that the γjk have independent Bernoulli distributions with

P (γjk = 1) = 1− P (γjk = 0) = πj for some fixed hyperparameter 0 ≤ πj ≤ 1. The probability

πj gives the proportion of nonzero wavelet coefficients at resolution level j while the variance

τ2
j is a measure of their magnitudes. The same prior parameters πj and τ2

j for all coefficients at

a given resolution level j are used, resulting in level-dependent wavelet threshold and shrinkage

estimators.

Recall from Section 3.1 that is advisable to keep the coefficients on the lower coarse levels

intact because they represent ‘low-frequency’ terms that usually contain important components

of the function g. Thus, to complete the prior specification of g, the scaling coefficients

{cj0k : k = 0, . . . , 2j0 − 1} are assumed to be mutual independent random variables (and

independent of the empirical scaling coefficients ĉj0k) and vague priors are placed on them

cj0k ∼ N(0, ε), ε →∞. (15)

Once the data are observed, the empirical wavelet coefficients d̂jk and empirical scaling

coefficients ĉj0k are determined, and we seek the posterior distributions on the wavelet coefficients

djk and scaling coefficients cj0k. Using (12), (13) and (14), the djk are a posteriori conditionally

independent

djk | γjk, d̂jk, σ
2 ∼ N

(
γjk

τ2
j

σ2 + τ2
j

d̂jk, γjk

σ2τ2
j

σ2 + τ2
j

)
. (16)

In order to incorporate model uncertainty about which of the wavelet coefficients djk are zero,

we now average over all possible γjk. Using (16), the marginal posterior distribution of djk
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conditionally on σ2, is then given by

djk | d̂jk, σ
2 ∼ p(γjk = 1 | d̂jk, σ

2) N

(
τ2
j

σ2 + τ2
j

d̂jk,
σ2τ2

j

σ2 + τ2
j

)

+(1− p(γjk = 1 | d̂jk, σ
2)) δ(0), (17)

where δ(0) is a point mass at zero. It is not difficult to see the posterior probabilities that

wavelet coefficients djk are nonzero can be expressed as

p(γjk = 1 | d̂jk, σ
2) =

1

1 + Ojk(d̂jk, σ2)
, (18)

where the posterior odds ratios Ojk(d̂jk, σ
2) that γjk = 0 versus γjk = 1 are given by

Ojk(d̂jk, σ
2) =

1− πj

πj

(σ2 + τ2
j )1/2

σ
exp

(
− τ2

j d̂2
jk

2σ2(σ2 + τ2
j )

)
. (19)

Based on some Bayes rules (BR), as we shall discuss in Section 4.3, expressions (16) and (17)

can be used to obtain wavelet threshold and shrinkage estimates BR(djk | d̂jk, σ
2), of the wavelet

coefficients djk. Also, using (11) and (15), the cj0k are a posteriori conditionally independent

cj0k | ĉj0k, σ
2 ∼ N(ĉj0k, σ

2) (20)

and therefore, using (20), cj0k are estimated by ĉj0k.

The posterior-based wavelet threshold and wavelet shrinkage coefficients are used to obtain

a selective reconstruction of the response function. The resulting estimate can be written as

ĝBR(t) =
2j0−1∑

k=0

ĉj0k√
n

φj0k(t) +
J−1∑

j=j0

2j−1∑

k=0

BR(djk | d̂jk, σ
2)√

n
ψjk(t). (21)

Finally, the vector ĝBR of the corresponding estimates of the unknown response function g

at the observed data-points can be derived by simply performing the IDWT of {ĉj0k, BR(djk |
d̂jk, σ

2)} and the resulting four-step selective reconstruction estimation procedure can be

summarized by the following diagram

y DWT−→
{

ĉj0k, d̂jk

}
Priors−→ {cj0k, djk} Posterior estimates−→

{
ĉj0k, BR(djk | d̂jk, σ

2)
}

IDWT−→ ĝBR. (22)

As mentioned in Section 2.2, for the equally spaced design and sample size n = 2J assumed

throughout this section, both DWT and IDWT in (22) can be performed by a fast algorithm of

order n, and so the whole process is computationally very efficient.

16



4 Description of the Wavelet Estimators

In this section, we give a brief description of the various classical and empirical Bayes wavelet

shrinkage and thresholding estimators that we will be using in our simulation study given in

Section 5.

4.1 Classical Methods: Term-by-Term Thresholding

Given the basic framework of function estimation using wavelet thresholding as discussed in

Section 3.1, there are a variety of methods to choose the threshold level λ in (9) or (10) for any

given situation. These can be grouped into two categories: global thresholds and level-dependent

thresholds. The former means that we choose a single value of λ to be applied globally to all

empirical wavelet coefficients {d̂jk : j = j0, . . . , J−1; k = 0, 1, . . . , 2j−1} while the latter means

that a possibly different threshold value λj is chosen for each resolution level j = j0, . . . , J − 1.

In what follows, we consider both global and level-dependent thresholds. These thresholds

all require an estimate of the noise level σ. The usual standard deviation of the data values

is clearly not a good estimator, unless the underlying response function g is reasonably flat.

Donoho & Johnstone (1994) considered estimating σ in the wavelet domain and suggested a

robust estimate that is based only on the empirical wavelet coefficients at the finest resolution

level. The reason for considering only the finest level is that corresponding empirical wavelet

coefficients tend to consist mostly of noise. Since there is some signal present even at this level,

Donoho & Johnstone (1994) proposed a robust estimate of the noise level σ (based on the median

absolute deviation) given by

σ̂ =
median({|d̂J−1,k| : k = 0, 1, . . . , 2J−1 − 1})

0.6745
. (23)

The estimator (23) has become very popular in practice and it is used in subsequent sections

unless stated otherwise.

4.1.1 The Minimax Threshold

An optimal threshold, derived to minimize the constant term in an upper bound of the risk

involved in estimating a function, was obtained by Donoho & Johnstone (1994). The proposed

minimax threshold, that depends on the sample size n, is defined as

λM = σ̂λ?
n, (24)

where λ?
n is defined as the value of λ which achieves

Λ?
n := inf

λ
sup

d

{
Rλ(d)

n−1 + Roracle(d)

}
, (25)

17



where Rλ(d) = E(δλ(d̂)− d)2 and Roracle(d) is the ideal risk achieved with the help of an oracle.

Two oracles were considered by Donoho & Johnstone (1994): diagonal linear projection

(DLP), an oracle which tell us when to “keep” or “kill” each empirical wavelet coefficient, and

diagonal linear shrinker (DLS), an oracle which tells you how much to shrink each wavelet

coefficient. The ideal risks for these oracles are given by

RDLP
oracle(d) := min(d2, 1) and RDLS

oracle(d) :=
d2

d2 + 1
.

Donoho and Johnstone (1994) computed the DLP minimax thresholds for the soft thresholding

rule (5), while the DLP minimax thresholds for the hard thresholding rule (4) and the DLS

minimax thresholds for both soft and hard thresholding rules were obtained by Bruce &

Gao (1996). DLP minimax thresholds for the SCAD thresholding rule (8) were obtained by

Antoniadis & Fan (2001). Numerical values for the sample sizes that we will be using in our

simulative study in Section 5 are given in Table 1.

n 128 256 512 1024

HARD 2.913 3.117 3.312 3.497

SOFT 1.669 1.859 2.045 2.226

SCAD 1.691 1.881 2.061 2.241

Table 1: Diagonal linear projection minimax thresholds for HARD, SOFT and SCAD thresholding

rules for various sample sizes.

Since the type of oracle used has little impact on the minimax thresholds, Table 1 only

reports the DLP minimax thresholds and can be used as a look-up table in any software. These

values were computed using a grid search over λ with increments ∆λ = 0.0001. At each point,

the supremum over d in (24) was computed using a quasi-Newton optimisation with numerical

derivatives (see, for example, Dennis & Mei, 1979).

Remark 4.1 Although not considered in our simulation study in Section 5, we note that DLP

minimax thresholds for the firm thresholding rule (6) and the nonnegative garrote thresholding

rule (7) were considered by Gao & Bruce (1997) and Gao (1998) respectively. Numerical values

for selected sample sizes can be found, for example, in Table 2 in Gao (1998).

4.1.2 The Universal Threshold

As an alternative to the use of minimax thresholds, Donoho & Johnstone (1994) suggested

thresholding of empirical wavelet coefficients {d̂jk : j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1} by
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using the universal threshold

λU = σ̂
√

2 log n. (26)

This threshold is easy to remember and its implementation in software requires no costly

development of look-up tables. The universal threshold ensures, with high probability, that

every sample in the wavelet transform in which the underlying function is exactly zero will be

estimated as zero. This is so, because if X1, . . . , Xn are independent and identically distributed

N(0, 1) random variables, then

P

{
max
1≤i≤n

|Xi| >
√

2 log n

}
∼ 1√

π log n
, as n →∞.

The rate at which the probability above tends to one is however quite slow.

Remark 4.2 In fact, it can be shown that

P

{
max
1≤i≤n

|Xi| >
√

c log n

}
∼

√
2

nc/2−1
√

cπ log n
, as n →∞. (27)

Although not considered in our simulation study in Section 5, we mention that one can define

other universal thresholds such that (27) converges to zero faster (ie, to suppress noise more

thoroughly). For example, λU
1 =

√
4 log n makes the above convergence rate 1/n

√
2π log n and

λU
2 =

√
6 log n makes the above convergence rate 1/n2

√
3π log n. Such thresholds have been

used for applications involving indirect noisy measurements (usually called inverse problems); in

particular the latter universal threshold has been used by Abramovich & Silverman (1998) for

the estimation of a function’s derivative as a practical important example of an inverse problem.

4.1.3 The Translation Invariant Threshold

It has been noted from scientists (and other users) that wavelet thresholding with either the

minimax threshold (24) or the universal threshold (26) suffers from artifacts of various kinds. In

other words, in the vicinity of discontinuities, these wavelet thresholding estimators can exhibit

pseudo-Gibbs phenomena, alternating undershoot and overshoot of a specific target level. While

these phenomena are less pronounced than in the case of Fourier-based estimates (in which Gibbs

phenomena are global, rather than local, and of large amplitude), it seems reasonable to try to

improve the resulting wavelet-based estimation procedures.

Coifman & Donoho (1995) proposed the use of the translation invariant wavelet thresholding

scheme which helps to suppress these artifacts. The idea is to correct unfortunate mis-alignments

between features in the function of interest and features in the basis. When the function of

interest contains several discontinuities, the approach of Coifman & Donoho (1995) is to apply
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a range of shifts in the function, and average over the several results so obtained. Given data

y = (y1, . . . , yn)′ from model (1), the translation invariant wavelet thresholding estimator is

defined as

ĝTI =
1
n

n∑

k=i

(WSk)′δλ(WSky), (28)

where W is the order n orthogonal matrix associated with the DWT, Sk is the shift matrix
(

Ok×(n−k) Ik×k

I(n−k)×(n−k) O(n−k)×k

)
,

δλ is either the hard thresholding rule (4) or the soft thresholding rule (5), Ik×k is the identity

matrix with k rows, and Or1×r2 is an r1 × r2 matrix of zeroes.

Alternatively, the translation invariant thresholding is via the nondecimated discrete wavelet

transform (NDWT) (or stationary or maximal overlap transform) – see, for example, Nason &

Silverman (1995) or Percival & Walden (2000). By denoting WTI to be the matrix associated

with the NDWT (which actually maps a vector of length n = 2J into a vector of length (J +1)n),

then (28) is equivalent to

ĝTI = WTI
G δλ(WTIy), (29)

where WTI
G =

(
(WTI)′WTI

)−1 (WTI)′ is the generalised inverse of WTI.

Remark 4.3 Coifman & Donoho (1995) applied the above procedure by using the threshold

λ = σ̂
√

2 loge((n log2(n)). Although lower threshold levels could be used in conjunction with

translation invariant thresholding, Coifman & Donoho (1995) pointed out that such lower

thresholds result in a very large number of noise spikes, apparently much larger than in the non-

invariant case. Therefore, in our simulation study in Section 5, we only consider translation

invariant thresholding in conjunction with the above threshold and with both hard thresholding

(4) and soft thresholding (5).

4.1.4 Thresholding as a Multiple Hypotheses Testing Problem

The idea of wavelet thresholding can be viewed as a multiple hypotheses testing. For each

wavelet coefficient d̂jk ∼ N(djk, σ̂
2), test the following hypothesis

H0 : djk = 0 versus H1 : djk 6= 0.

If H0 is rejected, the coefficient d̂jk is retained in the model; otherwise it is discarded.

Classical approaches to multiple hypotheses testing in this case face serious problems because

of the large numbers of hypotheses being tested simultaneously. In other words, if the error is
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controlled at an individual level, the chance of keeping erroneously a coefficient is extremely

high; if the simultaneous error is controlled, the chance of keeping a coefficient is extremely low.

Abramovich & Benjamini (1995,1996) proposed a way to control such dissipation of power based

on the false discovery rate (FDR) method of Benjamini & Hochberg (1995).

Let R be the number of empirical wavelet coefficients that are not dropped by the

thresholding procedure for a given sample (thus, they are kept in the model). Of these R

coefficients, S are correctly kept in the model and V = R − S are erroneously kept in the

model. The error in such a procedure is expressed in terms of the random variable Q = V/R

– the proportion of the empirical wavelet coefficients kept in the model that should have been

dropped. (Naturally, it is defined that Q = 0 when R = 0 since no error of this type can be made

when no coefficient is kept.) The FDR of empirical wavelet coefficients can now be defined as the

Expectation of Q, reflecting the expected proportion of erroneously kept coefficients among the

ones kept in the model. Following the method of Benjamini & Hochberg (1995), Abramovich &

Benjamini (1995,1996) proposed maximizing the number of empirical wavelet coefficients kept

in the model subject to condition EQ < α, for some prespecified level α, yielding the following

procedure

1. Take j0 = 0. For each of the n − 1 empirical wavelet coefficients {d̂jk : j =

0, 1, . . . , J−1; k = 0, 1, . . . , 2j−1} calculate the corresponding 2-sided p-value, pjk, (testing

H0 : djk = 0),

pjk = 2

(
1− Φ

(
|d̂jk|
σ̂

))
,

where Φ is the cumulative distribution function of a standard normal random variable.

2. Order the pjk according to their size, p(1) ≤ p(2) ≤ . . . ≤ p(n−1) (i.e., each p(i) corresponds

to some coefficient djk).

3. Find k = max (i : p(i) < (i/m)α). For this k, calculate

λFDR = σ̂Φ−1
(
1− p(k)

2

)
. (30)

4. Apply the hard thresholding rule (4) or soft thresholding rule (5) to all empirical wavelet

coefficients (ignoring the coefficients at the coarsest levels) {d̂jk : j = j0, . . . , J − 1; k =

0, 1, . . . , 2j − 1} with the threshold value (30) (using the traditional levels for significance

testing, i.e., α = 0.01 or α = 0.05).

Remark 4.4 We note that the universal threshold (26) can be viewed as a critical value of a

similar test to the ones considered above. The level for this test is

α = P (|d̂jk| > σ
√

2 log n | H0) ≈ (n
√

π log n)−1,
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which is also equal to its power against the alternative H1 : djk = d (6= 0). Thus, as mentioned

by Abramovich & Benjamini (1995), the approach of Donoho & Johnstone (1994) based on the

universal threshold (26) is equivalent to the ‘panic’ procedure of controlling the probability of

even one erroneous inclusion of a wavelet coefficient at the level (n
√

π log n)−1, but the level at

which the error is controlled approaches zero as n tends to infinity.

4.1.5 Thresholding Using Cross-Validation

One way to choose the threshold level λ is by minimising the mean integrated squared error

(MISE) between a wavelet threshold estimator ĝλ and the true function g. In symbols, the

threshold λ should minimise

M(λ) = E
∫

(ĝλ(x)− g(x))2 dx. (31)

In practice, the function g is unknown and so an estimate of M is required.

Cross-validation is widely used as an automatic procedure to choose the smoothing parameter

in many statistical settings – see, for example, Green & Silverman (1994) or Eubank (1999). The

classical cross-validation method is performed by systematically expelling a data point from the

construction of an estimate, predicting what the removed value would be and, then, comparing

the prediction with the value of the expelled point.

Cross-validation is usually numerically intensive unless there are some updating formulae that

allow to calculate the ‘leaving-out-one’ predictions on the basis of the ‘full’ predictions only. In

this respect very helpful is the ‘leaving-out-one’ Lemma 4.2.1 of Wahba (1990), which shows that

such updating may be done when the so-called ‘compatibility condition’ holds. Although this

condition is easy to derive for projection-type estimators, it fails to hold for nonlinear shrinkage

or thresholding rules. One way to proceed is to pretend that this condition ‘almost’ holds. This

approach to cross-validation in wavelet regression was adopted by Nason (1994, 1995, 1996).

In order to directly apply the DWT, the latter author suggested breaking the original data

set into 2 subsets of equal size: one containing only the even-indexed data, and the other, the

odd-indexed data. The odd-indexed data will be used to ‘predict’ the even-indexed data, and

vice-versa, leading to a ‘leave-out-half’ strategy.

To be more specific, given data y = (y1, . . . , yn)′ from model (1) with n = 2J , remove all

the odd-indexed yi from the set. This leaves 2J−1 evenly indexed yi which are reindexed from

j = 1, . . . , 2J−1. These reindexed data are then used to construct a function estimate ĝE
λ by

using a particular threshold parameter λ with either hard thresholding (4) or soft thresholding

(5). To compare the function estimator with the left-out noisy data an interpolated version of
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ĝE
λ is formed

ḡE
λ,j =

1
2
(ĝE

λ,j+1 + ĝE
λ,j), j = 1, . . . , n/2,

setting ĝE
λ,n/2+1 = ĝE

λ,1 because g is assumed to be periodic. The ḡO
λ is computed for the odd-

indexed points and the interpolant is, similarly, formed as

ḡO
λ,j =

1
2
(ĝO

λ,j+1 + ĝO
λ,j), j = 1, . . . , n/2.

The full estimate for the MISE given in (31) compares the interpolated wavelet estimators and

the left out points

M̂(λ) =
n/2∑

j=1

[
(ḡE

λ,j − y2j+1)2 + (ḡO
λ,j − y2j)2

]
. (32)

It has been showed by Nason (1994) that one can almost always find a unique minimum of (32)

λmin = arg min
λ≥0

M̂(λ).

This minimum value depends on n/2 data points (since both estimates of g, ĝE
λ and ḡO

λ are

based on n/2 data points) and, therefore, a correction for the sample size is needed. Nason

(1994, 1995) considered the universal threshold λU given in (26) to supply a heuristic method

for obtaining a cross-validated threshold for n data points. By using this adjustment, the leave-

out-half cross-validation threshold is defined as

λCV =
(

1− log 2
log n

)−1/2

λmin. (33)

Remark 4.5 Nason (1996) also developed a leave-one-out cross-validation method that works

for any number of data points, removing the above algorithm’s restriction of n = 2J data points.

However, since we are only considered the case of n = 2J in this paper, this latter algorithm is

not considered in our simulation study in Section 5.

We also pinpoint that Weyrich & Warhola (1995a, 1995b) and Jansen, Malfait & Bultheel

(1997), by mimicking the classical cross-validation, applied the method of generalized cross-

validation to choose the threshold level λ. The criterion they used is

GCV (λ) =
1
n

‖w −wλ‖2

‖n0
n ‖2

,

where wλ is the vector of thresholded normalised coefficients and n0/n is the fraction of

coefficients replaced by zero by this particular threshold value. They show that the minimizer

of this function is an asymptotically optimal threshold in the mean-squared error sense. This

alternative threshold, however, is not considered in our simulation study in Section 5.
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4.1.6 The SureShrink Threshold

Donoho & Johnstone (1995) introduced a scheme that uses the empirical wavelet coefficients

at each resolution level j to choose a threshold value λj with which to threshold the empirical

wavelet coefficients. The idea is to employ Stein’s unbiased risk criterion (see Stein (1981)) to

get an unbiased estimate of the l2-risk.

Consider the following equivalent problem to (1) or, equivalently, to (2)–(3). Suppose

X1, . . . , Xs are independent N(µi, 1), i = 1, . . . , s, random variables. The problem is to estimate

the mean vector µ = (µ1, . . . , µs)′ with minimum l2-risk. A result of Stein (1981) states that the

l2-loss can be estimated unbiasedly for any estimator µ that can be written as µ̂(X) = X+g(X),

where the function g = (g1, . . . , gs)′ : Rs → Rs is weakly differentiable. In other words, we have

that

Eµ||µ̂(X)− µ||2 = s + Eµ{||g(X)||2 + 25 ·g(X)}, (34)

where

5 · g ≡
s∑

i=1

∂gi

∂xi
.

Using the soft thresholding rule (5), we easily see that

||g(X)||2 =
s∑

i=1

[min (|Xi|, λ)]2 and 5 ·g(X) = −
s∑

i=1

1[−λ,λ](Xi),

where 1A(x) is the usual indicator function for any set A. Then, the following quantity

SURE(λ;X) = s− 2 ·#{i : |Xi| ≤ λ}+ [min (|Xi|, λ)]2,

where #B denotes the cardinality of any set B, is an unbiased estimate of the l2-risk, i.e.,

Eµ||µ̂λ(X)− µ||2 = EµSURE(λ;X).

The threshold level λ is then set so as to minimise the estimate of the l2-risk for a given data

X1, . . . , Xs, i.e.,

λ = arg min
0≤λ≤λ?

SURE(λ;X), (35)

where λ? =
√

2 log s. By considering d̂jk/σ̂ = Xi, s = 2j and applying (35) at any level

j = j0, . . . , J − 1, the SureShrink threshold is finally given by

λS
j = arg min

0≤λ≤λU
SURE

(
λ;

d̂jk

σ̂

)
, j = j0, ..., J − 1; k = 0, ..., 2j − 1, (36)

where, in this case, λU is given in (26) with n = 2j .
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The SureShrink threshold (36) has a serious drawback in situations of extreme sparsity of

the wavelet coefficients. In such cases, as noted by Donoho & Johnstone (1995), “... the noise

contributed to the SURE profile by the many coordinates at which the signal is zero swamps

the information contributed to the SURE profile by the few coordinates where the signal is

nonzero”. To avoid this drawback, Donoho & Johnstone (1995) considered a hybrid scheme

of the SureShrink threshold by the following heuristic idea: if the set of empirical wavelet

coefficients is judged to be sparsely represented, then the hybrid scheme defaults to the level-

wise universal threshold λU
j = σ̂

√
2 log (2j); otherwise the SURE criterion is used to select

a threshold value. In mathematical terms, the hybrid scheme of the SureShrink threshold is

expressed, for j = j0, ..., J − 1, as

λHS
j =

{
λU

j if
∑2j−1

k=0 d̂2
jk ≤ σ̂22j/2(2j/2 + j3/2)

λS
j otherwise.

(37)

Remark 4.6 The SureShrink threshold (36) and the hybrid SureShrink threshold (37) could also

be obtained for the hard thresholding rule (4). However, the latter threshold is not continuous

and does not have a bounded weak derivative, meaning that a more complicated SURE formula

would be required to implement the idea on a particular data set. Also, it is possible to derive

SureShrink-type thresholds for other thresholding rules, for example, as the ones given in (4)–

(7). However, the simplicity of the SURE formula is again lost – see, for example, Gao (1998)

for a SureShrink-type threshold for the nonnegative garrote threshold (7).

4.1.7 Thresholding as a Recursive Hypothesis Testing Problem

The multiple hypotheses testing approach to thresholding discussed in Section 4.1.4 produces

a global threshold λ. On the other hand, Ogden & Parzen (1996a) developed a hypothesis

testing procedure that produces level-dependent thresholds λj , as does the SureShrink methods

discussed in Section 4.1.6. Rather than seeking to include as many wavelet coefficients as possible

(subject to constraint) as in Abramovich & Benjamini (1995, 1996), the procedure of Ogden &

Parzen (1996a) includes a wavelet coefficient only when there is strong evidence that is needed

in the reconstruction.

Consider the following equivalent problem to (1) or, equivalently, to (2)–(3). Let X1, . . . , Xs

be independent N(µs, 1), i = 1, . . . , s, random variables that represent the empirical wavelet

coefficients at any level j = j0, . . . , J − 1 with s = 2j . Let Is represent a non-empty subset of

indices {1, . . . , s}. Then the multiple hypotheses testing problem could be expressed as

H0 : µi = 0, i ∈ Is versus H1 : µi 6= 0 for all i ∈ Is; µi = 0 for all i 6∈ Is. (38)
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The approach of Ogden & Parzen (1996a) to test the set of hypotheses given in (38) is as

follows. If the cardinality of the set Is is not known, the standard likelihood ratio test for the

above hypotheses would be based on the test statistic
∑s

i=1 X2
i ∼ χ2

s when H0 is true. (Note

that this is also the test statistic that would be used if it were known that Is = {1, . . . , s}.)
However, this is not the most appropriate test statistics, since it is usually assumed that very

few of the µi’s are non-zero, resulting in poor power of detection when Is contains only a few

coefficients (since the noise of the zero wavelet coefficients will tend to overwhelm the signal of

the nonzero wavelet coefficients).

If the cardinality of the set Is is known, say equal to m, then the standard likelihood ratio

test statistic would be the sum of squares of the m largest Xi’s. However, in practice, m is

unknown, so Ogden & Parzen (1996a) suggested a recursive testing procedure for Is containing

only one element each time. Hence, the appropriate test statistics is the largest of the squared

Xi’s. The α-critical point of this distribution is shown to be equal to

xα
s =

{
Φ−1

[
(1− α)1/s + 1

2

]}2

, (39)

where Φ is the cumulative distribution function of a standard normal random variable. The

recursive method then for choosing a threshold λj at each level j = j0, . . . , J − 1 consists of the

following steps

1. Compare the largest X2
i with the critical point xα

s given in (39).

2. If the X2
i is larger, this indicates that there still significant signal among the wavelet

coefficients. Remove the Xi with the largest absolute value from consideration, set s to

s− 1, and return to Step 1.

3. If X2
i < xα

s , then there is no strong evidence of strong signal among the (remaining)

wavelet coefficients. The threshold λj for the current level j is set equal to the largest

remaining Xi in absolute value.

By following the above algorithm, at each level j, we are throwing out ‘large’ wavelet

coefficients from the data set until everything left (the set of ‘small’ wavelet coefficients) is not

distinguishable from pure noise. By setting the threshold λj equal to the maximum absolute

value of the ‘small’ wavelet coefficients, we are ensuring that they will all be shrunk to zero, and

that each ‘large’ wavelet coefficient will be included in the reconstruction, but shrunk toward

zero by the same amount. In other words, this procedure has a natural interpretation as a soft

thresholding rule (5) with level-dependent thresholds λj .
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In determining the thresholds λj , the user has some control over the amount of smoothness

that is done via the choice of α involved in (39). In general, choosing a relatively small value

of α will make it very difficult for a wavelet coefficient to be judged ‘significant’ resulting in a

smoother estimate. On the other hand, choosing a relatively large value of α makes it easier for

a wavelet coefficient to be included in the reconstruction, resulting in a less smooth estimate.

The recommended value is α = 0.05.

Remark 4.7 Although it is not considered in our simulation study in Section 5, we mention that

Ogden & Parzen (1996b) also developed a recursive hypothesis testing procedure to chose level-

dependent thresholds λj that take into account not only the relative magnitudes of the wavelet

coefficients (as in Abramovich & Benjamini (1995, 1996) and Ogden & Parzen (1996a)), but

also the relative position of large wavelet coefficients. Their approach adapts standard change-

point methods to test the set of hypotheses given in (38) based on omnibus tests that can be used

to test the null hypothesis of equal means versus a very wide variety of possible alternatives.

However, as mentioned by Ogden (1997), this approach suffers somewhat from a lack of power

in detecting ‘large’ wavelet coefficients.

4.2 Classical Methods: Block Thresholding

The wavelet thresholding procedure described in Section 3.1 achieves adaptivity through term-

by-term thresholding of the empirical wavelet coefficients. There, each individual empirical

wavelet coefficient is compared with a predetermined threshold; a coefficient is retained if its

magnitude in absolute value is above the threshold and is discarded otherwise. This approach

achieves a degree of trade-off between variance and bias contribution to mean squared error.

However, this trade-off is not optimal; it removes too many terms from the empirical wavelet

expansion, with the result the estimator is too biased and has a sub-optimal L2-risk convergence

rate (and also in other metrics Lp, 1 ≤ p ≤ ∞).

One way to increase estimation precision is by utilising information about neighboring

empirical wavelet coefficients. In other words, empirical wavelet coefficients could be thresholded

in blocks (or groups) rather than individually. As, a result, the amount of information available

from the data for estimating the “average” empirical wavelet coefficient within a block, and

making a decision about retaining or discarding it, would be an order of magnitude larger than

the case of a term-by-term threshold rule. This would allow threshold decisions to be made

more accurately and permit convergence rates to be improved. In what follows we consider both

nonoverlapping and overlapping block thresholding estimators.
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4.2.1 A Nonoverlapping Block Thresholding Estimator

A nonoveralpping block thresholding estimator was proposed by Cai (1999) via the approach of

ideal adaptation with the help of an oracle.

At each resolution level j = j0, . . . , J − 1, the empirical wavelet coefficients d̂jk are grouped

into nonoverlapping blocks of length L. In each case, the first few empirical wavelet coefficients

might be re-used to fill the last block (which is called the Augmented case) or the last few

remaining empirical wavelet coefficients might not be used in the inference (which is called the

Truncated case), should L not divide 2j exactly.

Let (jb) denote the set of indices of the coefficients in the bth block at level j, that is,

(jb) = {(j, k) : (b− 1)L + 1 ≤ k ≤ bL},

and let S2
(jb) denote the L2-energy of the noisy signal in the block (jb). Within each block (jb),

estimate the wavelet coefficients djk simultaneously via a James-Stein thresholding rule

d̃
(jb)
jk = max

(
0,

S2
(jb) − λLσ2

S2
(jb)

)
d̂jk. (40)

Then, an estimate of the unknown function g is obtained by applying the IDWT to the vector

consisting of both empirical scaling coefficients ĉj0k (k = 0, 1, . . . , 2j0 − 1) and thresholded

empirical wavelet coefficients d̃
(jb)
jk (j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1).

Cai (1999) suggested using L = log n and setting λ = 4.50524 which is the solution of the

equation λ − log λ − 3 = 0. This particular threshold was chosen so that the corresponding

wavelet thresholding estimator is (near) optimal in function estimation problems. The resulting

block thresholding estimator was called BlockJS.

Remark 4.8 Hall, Penev, Kerkyacharian & Picard (1997) and Hall, Kerkyacharian & Picard

(1998, 1999) considered wavelet block thresholding estimators by first obtaining a near unbiased

estimate of the L2-energy of the true coefficients within a block and then keeping or killing all the

empirical wavelet coefficients within the block based on the magnitude of the estimate. Although

it would be interesting to numerically compare their estimators, they require the selection of

smoothing parameters – block length and threshold level – and it seems that no specific criterion

is provided for choosing these parameters in finite sample situations.

4.2.2 An Overlapping Block Thresholding Estimator

Cai & Silverman (2001) considered an overlapping block thresholding estimator by modifying

the nonoverlapping block thresholding estimator of Cai (1999). The effect is that the treatment
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of empirical wavelet coefficients in the middle of each block depends on the data in the whole

block.

At each resolution level j = j0, . . . , J − 1, group the empirical wavelet coefficients d̂jk into

nonoverlapping blocks (jb) of length L0. Extend each block by an amount L1 = max (1, [L0/2])

in each direction to form overlapping larger blocks (jB) of length L = L0 + 2L1.

Let S2
(jB) denote the L2-energy of the noisy signal in the larger block (jB). Within each block

(jb), estimate the wavelet coefficients simultaneously via the following James-Stein thresholding

rule

d̆
(jb)
jk = max

(
0,

S2
(jB) − λLσ̂2

S2
(jB)

)
d̂jk. (41)

Then, an estimate of the unknown function g is obtained by applying the IDWT to the vector

consisting of both empirical scaling coefficients ĉj0k (k = 0, 1, . . . , 2j0 − 1) and thresholded

empirical wavelet coefficients d̆
(jb)
jk (j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1).

Cai & Silverman (2001) suggested using either L0 = [log n/2] and taking λ = 4.50524 (which

results in the NeighBlock estimator) or L0 = L1 = 1 (i.e., L = 3) and taking λ = 2
3 log n

(which results in the NeighCoeff estimator). NeighBlock uses neighbouring coefficients outside

the block of current interest in fixing the threshold, whilst NeighCoeff chooses a threshold for

each coefficient by reference not only to that coefficient but also to its neighbours.

Remark 4.9 The above thresholding rule (41) is different to the one given in (40) since the

empirical wavelet coefficients d̂jk are thresholded with reference to the coefficients in the larger

block (jB). One can envision (jB) as a sliding window which moves L0 positions each time and,

for each window, only half of the coefficients in the center of the window are estimated.

4.3 Bayesian Methods: Term-By-Term Shrinkage and Thresholding

The basic Bayesian framework of function estimation as discussed in Section 3.2 can now be

used to obtain wavelet shrinkage and threshold estimates. Obviously, using expressions (17),

(18) and(19), different losses will lead to different Bayesian rules and, therefore, to different

wavelet shrinkage and threshold estimates for the unknown function g.

The problem of eliciting the hyperparameters of the prior distributions is obviously dependent

on the parametric forms chosen for the prior distributions. If the hyperparameters have

meaningful interpretations or if a connection can be drawn between the hyperparameters and

some quantities that are easier to specify, criteria for choosing the form of the prior distributions

can be obtained. Alternatively, one can employ empirical Bayes methods that attempt to

determine the hyperparameters of the prior distributions from the data being analysed. These

latter methods will be discussed in subsequent sections.
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4.3.1 Shrinkage estimates based on L2-losses

Clyde & George (1999, 2000) obtained wavelet shrinkage estimates by considering level-

dependent posterior mean estimates. Using (17), (18) and(19), it is easily seen that L2-based

Bayes rules BR(djk | d̂jk, σ
2) correspond to marginal posterior means of wavelet coefficients djk

conditionally on σ2, given by

E(djk | d̂jk, σ
2) =

1

1 + Ojk(d̂jk, σ2)

τ2
j

σ2 + τ2
j

d̂jk. (42)

Expression (42) corresponds to a level-dependent shrinkage rule. It shrinks the empirical wavelet

coefficients d̂jk by a nonlinear factor of (1 + τ2
j )/((1 + Ojk(d̂jk, σ

2))(σ2 + τ2
j )).

Estimates of the hyperparameters πj , τ2
j and σ2 can now be obtained by using empirical

Bayes methods which are based on using marginal maximum likelihood estimates of the

hyperparameters. Marginalizing over wavelet coefficients djk and model uncertainty γjk, and

conditioning on πj , τ2
j and σ2, the empirical wavelet coefficients d̂jk are independently distributed

as a mixture of two normal distributions. Define d̂j = (d̂jk : k = 0, 1, . . . , 2j − 1) for

j = j0, . . . , J − 1. At each level j, the marginal log-likelihood for πj , τ2
j and σ2 is therefore, up

to a constant,

L(πj , τ
2
j , σ2 | d̂j) =

2j−1∑

k=0

log

{
πj(σ2 + τ2

j )−1/2 exp

(
− d̂2

jk

2(σ2 + τ2
j )

)
+ (1− πj)σ−1 exp

(
− d̂2

jk

2σ2

)}
.

(43)

Because the empirical Bayes estimates of πj , τ2
j and σ2 based on (43) are generally not

available in closed forms, approximations of the marginal maximum likelihood are used which

could be maximized quickly.

Maximum likelihood estimation of πj and τ2
j using the EM algorithm

By estimating the noise level σ with the robust estimate (23), we now discuss an approach to

obtain the maximum likelihood estimates of πj and τ2
j using the EM algorithm. This approach

uses a complete data (or ‘augmented’) likelihood and applies the EM algorithm as developed in

exponential family problems.

Rather than using the marginal log-likelihood (43) at each level j, consider now the log-

likelihood given the latent or ‘missing’ vector γj = (γjk : k = 0, 1, . . . , 2j − 1). This complete

data log-likelihood takes the form, up to an additive constant,

L(πj , τ
2
j | d̂j , γj) =

[
log

(
πj

1− πj

)
− 1

2
log(σ̂2 + τ2

j )
] 2j−1∑

k=0

γjk

+ 2j log(1− πj) +
τ2
j

2(σ̂2 + τ2
j )

2j−1∑

k=0

γjk

d̂2
jk

σ̂2
(44)
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which belongs to a regular exponential family of the form [a1(ζ1)]T b1(X) + c1(ζ1) + d1(X),

where ζ1 = (πj , τ
2
j ), a1(ζ1) is the vector of natural parameters, X = (dj , γj) and b1(X) =

(
∑

k γjk,
∑

k γjkd̂
2
jk/σ̂2)T is the vector of sufficient statistics.

We can now apply the EM algorithm developed for exponential family problems (see

Dempster, Laird & Rubin (1977)) that is particularly simple to implement. Hence, using (44),

we have that

• E-step: It consists of computing the expectations of the sufficient statistics with respect

to the distribution of γj given d̂j , πj and τ2
j

b̂
(i)
1 (X) = E

(
b1(X) | d̂j , π

(i)
j , (τ2

j )(i)
)

=




2j−1∑

k=0

η
(i)
jk (d̂jk, σ̂

2),
2j−1∑

k=0

η
(i)
jk (d̂jk, σ̂

2)
d̂2

jk

σ̂2




T

,

where

η
(i)
jk (d̂jk, σ̂

2) =
1

1 + O
(i)
jk (d̂jk, σ̂2)

are the posterior expectations of γjk, and O
(i)
jk (d̂jk, σ

2) are the posterior odds ratios that

γjk = 0 versus γjk = 1 given by (19) evaluated using σ̂2 and the current estimates π
(i)
j and

(τ2
j )(i).

• M-step: It consists of maximizing [a1(ζ1)]T b̂
(i)
1 (X) + c1(ζ1), resulting in the solution

π
(i+1)
j =

∑2j−1
k=0 η

(i)
jk (d̂jk, σ̂

2)

2j
(45)

(τ2
j )(i+1) = max


0,

∑2j−1
k=0 η(i)(d̂jk, σ̂

2) d̂2
jk∑2j−1

k=0 η(i)(d̂jk, σ̂2)
− σ̂2


 . (46)

Because the complete data log-likelihood (44) belongs to a regular exponential family, if the

parameter estimates are in the interior of the parameter space, standard exponential family

theory ensures that the solutions for πj and τ2
j are the unique global solutions, conditional on

the values of the latent vector γj . The E-step and M-step above are repeated until the estimates

converge, and yield a stationary point of the marginal log-likelihood (43).

As in the case of direct maximization of the marginal log-likelihood (43) using the Gauss-

Seidel algorithm (or other algorithms) applied to (43), the EM algorithm applied to the complete

data log-likelihood (44) may converge to a local mode. Also, the direct maximization methods

may result in faster convergence, because the convergence rate of the EM algorithm is linear
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(see Dempster, Laird & Rubin (1977)). However, the iterative solutions (45), (46) using the

EM algorithm are in closed form and provide some insight into the problem and connections to

the conditional maximum likelihood estimates that we will discuss below. Moreover, the M-step

estimate (45) of πj has a natural interpretation: is the posterior expected fraction of nonzero

wavelet coefficients.

Maximum likelihood estimation of σ, πj and τ2
j using the EM algorithm

Instead of using the robust estimate (23) of σ, Clyde & George (2000) observed that the complete

data log-likelihood (44) at each level j can be combined to construct the complete data log-

likelihood based on all levels for estimating σ2 using the EM algorithm. By setting d̂ = (d̂jk :

j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1), γ = (γjk : j = j0, . . . , J − 1; k = 0, 1, . . . , 2j − 1),

π = (πj : j = j0, . . . , J − 1) and τ 2 = (τ2
j : j = j0, . . . , J − 1), it is not difficult to see that this

complete data log-likelihood based on all levels j takes the form, up to a constant,

L(π, τ 2, σ2 | d̂,γ) =
1
2

log
(

1
σ2

) J−1∑

j=j0

2j−1∑

k=0

(1− γjk)− 1
2σ2

J−1∑

j=j0

2j−1∑

k=0

(1− γjk)d̂2
jk

+
1
2

J−1∑

j=j0


log

(
1

σ2 + τ2
j

)
2j−1∑

k=0

γjk − 1
σ2 + τ2

j

2j−1∑

k=0

γjkd̂
2
jk




+
J−1∑

j=j0


2j log(1− πj) + log

(
πj

1− πj

) 2j−1∑

k=0

γjk


 (47)

which still belongs to a regular exponential family of the form [a2(ζ2)]T b2(X) + c2(ζ2) + d2(X),

where ζ2 = (π, τ 2, σ2), a2(ζ2) is the vector of natural parameters, X = (d, γ) and b2(X) is the

(2(J − j0) + 1)× 1 vector of sufficient statistics with components (
∑2j−1

k=0 γjk,
∑2j−1

k=0 γjkd̂
2
jk) for

j = j0, . . . , J − 1 and
∑J−1

j=j0

∑2j−1
k=0 (1− γjk)d̂2

jk.

Applying again the EM algorithm developed for exponential family problems, we have

• E-step: It consists of computing the expectations of the sufficient statistics with respect

to the distribution of γ given d̂, π, τ 2 and σ2

b̂
(i)
2 (X) = E

(
b2(X) | d̂, π(i), (τ 2)(i)

)

which has components




2j−1∑

k=0

η
(i)
jk (d̂jk, σ

2),
2j−1∑

k=0

η
(i)
jk (d̂jk, σ

2) d̂2
jk




T

, for j = j0, . . . , J − 1,
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and
J−1∑

j=j0

2j−1∑

k=0

(1− η
(i)
jk (d̂jk, σ

2)) d̂2
jk.

The quantities

η
(i)
jk (d̂jk, σ

2) =
1

1 + O
(i)
jk (d̂jk, σ2)

are the posterior expectations of γjk, where O
(i)
jk (d̂jk, σ

2) are the posterior odds ratios that

γjk = 0 versus γjk = 1 given by (19) evaluated using the current estimates π
(i)
j , (τ2

j )(i) and

(σ2)(i).

• M-step: It consists of maximizing [a2(ζ2)]T b̂
(i)
2 (X) + c2(ζ2),resulting in the solution

π
(i+1)
j =

∑2j−1
k=0 η

(i)
jk (d̂jk, σ

2)

2j
(48)

(τ2
j )(i+1) = max


0,

∑2j−1
k=0 η

(i)
jk (d̂jk, σ

2) d̂2
jk∑2j−1

k=0 η
(i)
jk (d̂jk, σ2)

− (σ2)(i+1)


 . (49)

(σ2)(i+1) =

∑J−1
j=j0

∑2j−1
k=0 (1− η

(i)
jk (d̂jk, σ

2)) d̂2
jk

2(J−j0) −∑J−1
j=j0

∑2j−1
k=0 η

(i)
jk (d̂jk, σ2)

. (50)

As before, because the complete data log-likelihood (47) belongs to a regular exponential

family, if the parameter estimates are in the interior of the parameter space, standard exponential

family theory ensures that the solutions for πj , τ2
j and σ2 are the unique global solutions,

conditional on the values of the latent vector γ. The E-step and M-step above are repeated

until the estimates converge, and yield a stationary point of the marginal log-likelihood (43).

The M-step estimates (48) and (50) of πj and σ2, respectively, have natural interpretations: (48)

is the posterior expected fraction of nonzero wavelet coefficients, while (50) is the ratio of the

posterior expected error sum of squares to the posterior expected degrees of freedom.

Remark 4.10 Rather than maximizing the marginal log-likelihood L given by (43) (with σ

estimated by the robust estimate (23)) directly, Clyde & George (2000) also used the conditional

maximum likelihood approach of George & Foster (2000) which can be maximized very quickly

in practice. This method takes the ‘augmented’ log-likelihood (44) and evaluates it at the mode

for γjk, rather than using the posterior mean, as in the EM algorithm discussed above.

However, this latter algorithm is not considered in our simulation study in Section 5. This

is so because the conditional maximum likelihood estimators have the same form as the EM

maximum likelihood estimators (45) and (46), and are exactly the same when the posterior

distribution of γjk is degenerate at one or zero. The difference between the EM maximum
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likelihood and the conditional maximum likelihood estimates will be the most extreme when

the posterior mean of γjk is 0.5 and when τ2
j is small. However, while the EM maximum

likelihood estimates of πj and τ2
j appear to be asymptotically consistent (as 2j → ∞), this is

not necessarily the case with the conditional maximum likelihood estimates (see, Johnstone &

Silverman, 1998). On the other hand, because the conditional maximum likelihood estimators are

very rapidly computable, they can be used as starting values for the EM algorithms for computing

the maximum likelihood estimates of πj and τ2
j .

4.3.2 Thresholding estimates based on L1-losses

Abramovich, Sapatinas & Silverman (1998) obtained wavelet thresholding estimates by

considering level-dependent posterior median estimates. Using (17), (18) and(19), it is easily

seen that L1-based Bayes rules BR(djk | d̂jk, σ
2) correspond to marginal posterior medians of

wavelet coefficients djk conditionally on σ2, given by

Median(djk | d̂jk, σ
2) = sign(d̂jk) max(0, ζjk), (51)

where

ζjk =
τ2
j

σ2 + τ2
j

|d̂jk| − στj√
σ2 + τ2

j

Φ−1

(
1 + min(Ojk(d̂jk, σ

2), 1)
2

)

and Φ is the cumulative distribution function of a standard normal random variable. The

quantity ζjk is negative for all d̂jk in some implicitly defined interval [−λj , λj ], and hence

Median(djk | d̂jk, σ
2) = 0

whenever |d̂jk| falls below the threshold λj . Expression (51) corresponds to a bonafide

thresholding rule (a level-dependent ‘kill’ or ‘shrink’ thresholding rule) with thresholds λj . Note

that, unlike the soft thresholding rule (5), extent of shrinkage in (51) depends on |d̂jk|: large

|d̂jk| are shrunk less. For large d̂jk the thresholding rule is asymptotic to linear shrinkage by a

factor of τ2
j /(σ2 + τ2

j ), since the value of Φ−1 above becomes negligible as |d̂jk| → ∞.

One can now use the iterative EM solutions (48), (49) and (50) of Clyde & George (2000) to

get maximum likelihood estimates of πj , τ2
j and σ2. Alternatively, by estimating the noise level

σ with the robust estimate (23), one can use the iterative EM solutions (45), (46) of Clyde &

George (1999) to get maximum likelihood estimates of πj and τ2
j .

As discussed in Section 4.3.1, the latter approach uses a complete data (or ‘augmented’)

likelihood and applies the EM algorithm as developed in exponential family problems. Johnstone

& Silverman (1998) suggested another approach that uses an EM algorithm based on a derivation

that introduces an entropy function to create a modified likelihood, where the global maxima
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of this modified likelihood are the global maximum likelihood estimates of the marginal log-

likelihood (43). We now present this alternative method to obtain the maximum likelihood

estimates of πj and τ2
j .

Maximum likelihood estimation of πj and τ2
j using the EM algorithm – an alternative

derivation

Consider the following binary entropy function

H(ξ) = −ξ log ξ − (1− ξ) log(1− ξ) (52)

which has conjugate

log(1 + e−x) = sup
0≤ξ≤1

(H(ξ)− ξx), (53)

the maximum being attained at ξ = 1/(1+ ex). At each level j, the marginal log-likelihood (43)

can therefore be rewritten as, up to a constant,

L(πj , τ
2
j | d̂j) = 2j log(1− πj) +

2j−1∑

k=0

log[1 + exp{−h(d̂jk, πj , τ
2
j , σ̂2)}], (54)

where

h(d̂jk, πj , τ
2
j , σ̂2) = log

(
1− πj

πj

)
+ log

(
(σ̂2 + τ2

j )1/2

σ̂

)
− τ2

j

2σ̂2(σ̂2 + τ2
j )

d̂2
jk.

By defining

L?(πj , τ
2
j ; ξ0, ξ1, . . . ξ2j−1) =

2j−1∑

k=0

[H(ξk)− ξkh(d̂jk, πj , τ
2
j , σ̂2)] + 2j log(1− πj), (55)

it then follows from (53) that if we maximize (55) over all its arguments, we get the maximum

of the original marginal log-likelihood (43).

For fixed πj and τ2
j , the function (55) is clearly a sum of concave functions of the individual

ξk (k = 0, 1, . . . , 2j − 1). The unique maxima of each of these concave functions are given by

solving, over ξk ∈ [0, 1], the equation

d

dξk
H(ξk) = h(d̂jk, πj , τ

2
j , σ̂2),

which after some manipulation lead to

ξ̂k =
1

1 + Ojk(d̂jk, σ̂2)
, (56)

where Ojk(d̂jk, σ̂
2) are the posterior odds ratios that γjk = 0 versus γjk = 1 given by (19) with

σ2 replaced by σ̂2.
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We can now find the global maximum of (55) over πj ∈ [0, 1] and τ2
j ∈ [0,∞) by fixing ξ̂k

(k = 0, 1, . . . , 2j − 1). In this case, the function (55) can be rewritten as a sum of two functions

Q1 and Q2. The first function, which does not involve πj and τ2
j , is given by

Q1 = log σ̂2
2j−1∑

k=0

ξ̂k −
2j−1∑

k=0

ξ̂k log ξ̂k −
2j−1∑

k=0

[(1− ξ̂k) log(1− ξ̂k)],

while the second function, which involves πj and τ2
j , is given by

Q2 =
1
2


 τ2

j

σ̂2(σ̂2 + τ2
j )

2j−1∑

k=0

ξ̂kd̂
2
jk − log(σ̂2 + τ2

j )
2j−1∑

k=0

ξ̂k




+2j log(1− πj) + log
(

πj

1− πj

) 2j−1∑

k=0

ξ̂k. (57)

The last two terms of expression (57) correspond to a concave function of πj with maximum

given by

π̂j =
∑2j−1

k=0 ξ̂k

2j
. (58)

The first term of expression (57) is not a concave function though. However, we have

∂

∂τ2
j

L?(πj , τ
2
j ; ξ̂0, ξ̂1, . . . , ξ̂2j−1) =

1
2(σ̂2 + τ2

j )2




2j−1∑

k=0

ξ̂kd̂
2
jk − (σ̂2 + τ2

j )
2j−1∑

k=0

ξ̂k


 , (59)

the product of a strictly positive quantity and a linearly decreasing function of τ2
j . It follows

then from (59) that the global maximum of (55) over τ2
j ∈ [0,∞) is given by

τ̂2
j = max


0,

∑2j−1
k=0 ξ̂k d̂2

jk∑2j−1
k=0 ξ̂k

− σ̂2


 . (60)

By optimizing alternately over the ξ̂k and over (πj , τ
2
j ), we finally see the connection with

the EM algorithm. The ξ̂k, as given by (56), are the posterior expected values of γjk given d̂jk

and the current values of πj and τ2
j . The function Q2, as given by (57), is just the expected

complete data log-likelihood for (πj , τ
2
j ) given d̂jk and the previous iterate’s estimates of (πj , τ

2
j ),

as obtained in (56) (compare with (44)). Thus, the estimates (58) and (60) are just the ones

obtained by (45) and (46), respectively.

Remark 4.11 Although it is not considered in our simulation study in Section 5, we mention

that Abramovich, Sapatinas & Silverman (1998) have studied a particular form for the

hyperparameters πj and τ2
j of the prior model (13), (14), and estimated σ by the robust estimate
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(23). These hyperparameters depend on additional hyperparameters through the following

structure

τ2
j = C12−αj and πj = min (1, C22−βj), j = j0, . . . , J − 1,

where α, β, C1 and C2 are non-negative constants.

Some interpretation of these constants were given by Abramovich, Sapatinas & Silverman

(1998) to explain how they might be derived. Part of the novelty of the approached was the

idea that by simulating observations from different Besov spaces, one can elicit the correct space

from which to choose the prior. In particular, the parameters α and β and the Besov space

parameters were connected, so that if a particular Besov space was chosen to represent prior

beliefs, α and β could be numerically derived. A weakness of this approach is that while α and β

has nice interpretations, the parameters C1 and C2 do not have good intrinsic interpretability,

and so elicitation of these parameters would be very difficult. One recommendation was to choose

the parameters C1 and C2 by arguments related to the method of moments and, for practical

applications, to choose α = 1 and β = 0.5 that found to work well for standard test cases.

4.3.3 Thresholding estimates using a Bayesian hypothesis testing approach

Similar in spirit to the multiple hypotheses testing procedures discussed in Sections 4.1.4 and

4.1.7, a Bayesian method for obtaining a bonafide wavelet thresholding estimator was considered

by Vidakovic (1998).

For each wavelet coefficient d̂jk | djk, σ
2 ∼ N(djk, σ

2), this method involves testing the

following hypothesis

H0 : djk = 0 versus H1 : djk 6= 0

according to the Bayesian framework that requires a prior distribution that has a point mass

component. Otherwise, the testing is impossible because any continuous prior density will

give the prior (and hence the posterior) probability of zero to the precise hypothesis – see, for

example, Berger (1985). If the hypothesis H0 is rejected, then djk is estimated by d̂jk. In each

level j = j0, . . . , J − 1, the prior distribution could therefore be taken as

djk ∼ πjξ(djk) + (1− πj)δ(0), k = 0, 1, . . . , 2j − 1, (61)

where, as before, δ(0) is a point mass at zero and ξ describes the behaviour of djk when djk is

nonzero (i.e. when H0 is false), which occurs with probability πj .

Considering the above setting to the prior mixture model of one normal distribution and a

point mass at zero (discussed in detail in Section 3.2), and applying the usual Bayes methods for

hypothesis testing, Abramovich & Sapatinas (1999) obtained the following wavelet thresholding
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estimator (which is called the Bayes factor thresholding rule since the posterior odds ratio is

obtained by multiplying the Bayes factor with the prior odds ratio)

d̃jk = d̂jkχ(ηjk < 1) with ηjk =
P (H0 | d̂jk)

P (H1 | d̂jk)
, (62)

where χ is the usual indicator function and ηjk is the posterior odds ratio that is given by

(19). It essentially mimics the hard thresholding rule (4), since a wavelet coefficient d̂jk will be

thresholded if the corresponding posterior odds ratio ηjk > 1 and will be kept as it is otherwise.

The wavelet thresholding estimate (62) is then incorporated into expressions (21) or (22) in

order to get an estimate of the unknown response function g.

To apply the wavelet thresholding rule (62), the parameters πj , τ2
j and σ2 should be chosen

appropriately. One, as before, could use the robust estimate (23) of σ and the iterative EM

solutions (45) and (46) of Clyde & George (1999) to get maximum likelihood estimates of πj

and τ2
j (or, equally, the estimates (58) and (60) obtained by Johnstone & Silverman, 1998).

Alternatively, the iterative EM solutions (48), (49) and (50) of Clyde & George (2000) to get

maximum likelihood estimates of πj , τ2
j and σ2 could be adopted.

Remark 4.12 To compare the Bayesian thresholding rules (51) and (62), note that the latter

rule is always a ‘keep’ or ‘kill’ thresholding, whilst the former rule is a ‘shrink’ or ‘kill’

thresholding, where extend of shrinkage depends on the absolute values of the wavelet coefficients.

In addition, (62) thresholds d̂jk if the corresponding ηjk ≥ 1. One can verify that (51) will ‘kill’

those d̂jk, whose

ηjk ≥ 1− 2Φ


− τj |d̂jk|

σ
√

σ2 + τ2
j




and, hence, it will threshold more coefficients.

4.3.4 Alternative shrinkage estimates based on L2-losses

Vidakovic & Ruggeri (2001) obtained wavelet shrinkage estimates by putting a distribution on

σ2 and considering a prior distribution for the wavelet coefficients djk that is similar in spirit to

the prior mixture model (13), (14).

For each wavelet coefficient d̂jk | djk, σ
2 ∼ N(djk, σ

2), a standard way of integrating out σ2

is to choose the prior distribution of σ2 to be exponential, σ2 ∼ E(µ), where µ > 0. It is well

known now that the exponential distribution is the entropy maximiser among all distributions

supported on (0,∞) with a fixed first moment. Thus, given the moment, the exponential prior

choice on σ2 is most uninformative.
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The marginal distribution is then the double exponential, d̂jk | djk ∼ DE(djk, 1/
√

2µ) with

probability density function given by

f(d̂jk | djk) =
√

2µ

2
exp (−

√
2µ |d̂jk − djk|)

which follows from the fact that the double exponential distribution is a scale mixture of normals.

Vidakovic & Ruggeri (2001) observed that by using the prior distribution djk ∼ DE(0, ν), the

marginal distribution (predictive distribution) of d̂jk is given by

f(d̂jk) =
µν exp (−|d̂jk|/ν)−

√
µ/2 exp (−√2µ |d̂jk|)

2µν2 − 1
(63)

and the corresponding posterior means of wavelet coefficients djk are given by

E(djk | d̂jk) =
ν(ν2 − 1/(2µ))d̂jk exp (−|d̂jk|/ν) + ν2(exp (−|d̂jk|

√
2µ)− exp (−|d̂jk|/ν))/µ

(ν2 − 1/(2µ))(ν exp (−|d̂jk|/ν)− (1/
√

2µ) exp (−|d̂jk|
√

2µ))
.

(64)

However, it can be seen that expression (64) is close to a linear shrinkage rule known to be

under-performing in wavelet-based methods.

To obtain Bayesian shrinkage rules with a more desirable shape, Vidakovic & Ruggeri (2001)

considered the ε-contaminated priors

djk ∼ εjDE(0, ν) + (1− εj)δ(0) (65)

which is similar in spirit to the prior mixture model (13), (14). Under the above prior mixture

model, the marginal distribution (predictive distribution) of d̂jk is given by

f (ε)(d̂jk) = εjf(d̂jk) + (1− εj)DE(0, 1/
√

2µ) (66)

and the corresponding L2-based Bayes rules BR(djk | d̂jk, σ
2) correspond to posterior means of

wavelet coefficients djk are given by

E(ε)(djk | d̂jk) =
εjf(d̂jk)E(djk | d̂jk)

εjf(d̂jk) + (1− εj)DE(0, 1/
√

2µ)
, (67)

where f(d̂jk) and E(djk | d̂jk) are given by (63) and (64) respectively. The shrinkage rule (67) is

now ‘close’ to a thresholding rule – it heavily shrinks small empirical wavelet coefficients while

the large ones are shrunk slightly.

Expression (67) is called by Vidakovic & Ruggeri (2001) the Bayesian adaptive

multiresolution smoother (BAMS). In order to apply it in practice, they proposed an empirical

(moment matching) specification of the parameters µ, ν and εj that works well for standard test

cases and emphasized that the nature of the data may call for different parameter values. They

suggest the following choices:
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µ: Since µ is the reciprocal of the mean for the prior on σ2, σ is first estimated by a robust

Tukey’s σ̂ = |Q1 − Q3|/C, where Q1 and Q3 are the first and third quartile of the finest

level J − 1 of the wavelet decomposition, and C ∈ [1.3, 1.5]. Then, µ is estimated by

µ̂ = 1/σ̂, which according to the Strong Law of large Numbers should be close to µ.

εj : Since 1− εj is the weight of the point mass at zero in the prior distribution (65), it should

be closed to one at the finest level of the wavelet decomposition and zero at the coarsest

levels. A good estimator of εj is then given by a hyperbolic decay ε̂j = 1/(j − j0 + 1)1.5

for all j = j0, . . . , J − 1.

ν: Since ν is the scale of the ‘spread part’ (which is a double exponential having variance 2ν2)

in the prior distribution (65) and because of the independence between the noise and the

signal parts, we have the σ2
s = 2ε2jν

2 + 1/µ, where σ2
s is the variance of the sample data.

Taking 2ε2j ≈ 1 as a mid-point of range of εj , ν is estimated by ν̂ =
√

max (0, σ2
s − 1/µ).

Remark 4.13 Although it is not considered in our simulation study in Section 5, we mention

that Vidakovic (1998) proposed wavelet shrinkage estimates by considering a symmetric prior

distribution on djk (i.e., f(djk) = f(−djk)). Although, the choice of normal distribution

is not recommended for robustness reasons, Vidakovic (1998) suggested the prior distribution

djk ∼ tn(0, ν), a t distribution with mean zero, scaling parameter ν and n degrees of freedom.

Empirical specification of the parameters µ and ν and n that works well for standard test cases

was also suggested. The corresponding L2-based shrinkage rules also shrink small empirical

wavelet coefficients heavily and large only slightly. However, close expressions are not available

and Monte Carlo methods, for example, could be used to approximate the integrals involved.

4.3.5 Shrinkage estimates based on Deterministic/Stochastic Decompositions

All the Bayesian approaches described previously to obtain wavelet shrinkage and wavelet

thresholding estimates, assumed a prior for each wavelet coefficient djk with zero mean. Huang

& Cressie (2000) proposed a Bayesian approach that does not put such a ‘strong’ assumption

on the prior mean but rather they estimated it and plugged it into the wavelet shrinkage

formulae. Moreover, they assumed that the underlying signal is composed of a piecewise-smooth

deterministic part plus a zero mean stochastic part.

Consider the vector of empirical scaling coefficients ĉj0 = (ĉj0,0, ĉj0,1, . . . , ĉj0,2j0−1)
′ and the

vectors of empirical wavelet coefficients d̂j = (d̂j,0, d̂j,1, . . . , d̂j,2j−1)′ for levels j = j0, . . . , J − 1.

Similarly, let cj0 = (cj0,0, cj0,1, . . . , cj0,2j0−1)
′ be the vector of scaling coefficients and let

dj = (dj,0, dj,1, . . . , dj,2j−1)′ be the vectors of wavelet coefficients for levels j = j0, . . . , J − 1.
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Huang & Cressie (2000) considered the following Bayesian model

ω | β, σ2 ∼ N(β, σ2 I), (68)

where ω = (ĉ
′
j0 , d̂

′

j0 , . . . , d̂
′

J−1)
′ and the signal β = (c

′
j0

,d
′
j0 , . . . ,d

′
J−1)

′ is assumed to have a

prior distribution given as

β | µ, θ ∼ N(µ, Σ(θ)),

where µ = ((µ?
j0

)
′
, µ

′
j0

, . . . , µ
′
J−1)

′ is the deterministic mean structure and Σ(θ) describes the

variability and the correlation in the signal. The hyperparameter µ represents the large-scale

variation (low-frequency term) in β. In other words, one could write

β = µ + η, (69)

where η ∼ N(0,Σ(θ)) is the stochastic component representing the small-scale variation (high-

frequency term). Note that in the Bayesian approaches described earlier, µ = 0.

As pointed out by Huang & Cressie (2000), the presence of both deterministic mean structure

and a stochastic structure help us to recover a wider variety of signals, including piecewise-

smooth signals considered in nonparametric regression and nonsmooth signals often appearing in

time series analysis and spatial statistics. The identification of the deterministic µ and stochastic

η in (69) is however an ill-posed problem. Although, in finite samples, it is possible to separate

them out asymptotically with some further assumptions on µ and η (see, for example, Johnstone

& Silverman (1997)), it is impossible to distinguish them.

It is easily seen that the corresponding L2-based Bayes rule corresponds to the posterior

mean of β conditionally on σ2, given by

E(β | ω, σ2) = µ + Σ(θ)(Σ(θ) + σ2 I)−1(ω − µ), (70)

which is a shrinkage rule (called the DecompShrink I method). In order to apply it in practice,

Huang & Cressie (2000) suggested the following empirical specification of the parameters σ2, µ

and θ

σ: Rather than using the robust estimate (23), σ is estimated using a method based on

the variogram of the original process y = (y1, . . . , yn)′ given in (1), resulting in a more

reliable estimate when the signal β is either deterministic (i.e Σ(θ) = 0) or stochastic (i.e.

Σ(θ) 6= 0). This is so, because when the underlying signal contain stochastic components,

they will confound with the noise component in all the empirical wavelet coefficients and,
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therefore, (23) tends to overestimate the true value of σ. The estimator of σ2 is σ̂2, where

σ̂ =





(
k2γ̂(k1)−k1γ̂(k2)

k2−k1

)1/2
if k2γ̂(k1) ≥ k1γ̂(k2) ≥ k1γ̂(k1)(

γ̂(k1)+γ̂(k2)
2

)1/2
if γ̂(k2) < γ̂(k1)

0 otherwise

(71)

for 0 < k1 < k2 and 2γ̂(k) is the robust estimator (based on the median absolute deviation)

of the variogram 2γ(k) = V(yt+k − yt) at lag k. The recommended values are k1 = 1 and

k2 = 2.

µ: Because the scaling coefficients represent low-frequency features of the underlying function,

µ?
j0

is estimated, as before, by µ̂?
j0

= ĉj0 ; it is declared that the empirical scaling coefficients

ĉj0 are deterministic (i.e. its stochastic counterpart η̂?
j0 = 0). For the wavelet coefficients

at each level j (j = j0, . . . , J−1), the deterministic mean µj could be considered as coming

from components that are potential outliers in the normal probability plot of d̂j because

significant mean components usually stand out among the nonzero stochastic components,

which are more evenly distributed at each scale. Therefore, quantities based on normal

probability plots can be used (see, equations (8) and (9) in Huang & Cressie (2000)) to

obtain estimates µ̂j of µj for j = j0, . . . , J − 1.

θ: The vector of hyperparameters θ is estimated by maximum likelihood based on the

marginal distribution of the data ω, with the plug-in values σ̂2 and µ̂ estimated above.

That is,

θ̂ = arg inf
θ
{log (|Σ(θ) + σ̂2I|) + (ω − µ̂)′(Σ(θ) + σ̂2I)−1(ω − µ̂)}. (72)

The prior covariance matrix Σ(θ) is assumed to be a block diagonal matrix. Specifically,

the stochastic scaling coefficients η̂?
j0 = 0 (which is in line with the earlier assumption

that all the scaling coefficients ĉj0 are attributed to the deterministic mean component

µ?
j0

). At each level j = j0, . . . , J − 1, the stochastic wavelet coefficients ηj are assumed to

be independent random variables with zero means (which allows one to model ηj at each

level j separately) with V(ηj) = σ2
j I. Therefore, from (72), the components of the pseudo

maximum likelihood estimator θ̂ of θ = (σ2
j0

, . . . , σ2
J−1) are given by

σ̂2
j = max

(
0,

(ωj − µ̂j)′(ωj − µ̂j)
2

− σ̂2

)
, j = j0, . . . , J − 1. (73)

Remark 4.14 Although it is not considered in our simulation study in Section 5, we mention

that Huang & Cressie (2000) also dealt with the case of a more general prior covariance matrix
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Σ(θ) which allows us for correlation between the stochastic components ηj for j = j0, . . . , J − 1.

Binary tree structures and an optimal-prediction Kalman-filter algorithm are used to obtain

recursive estimates η̂jk of ηjk for j = j0, . . . , J−1 and k = 0, 1, . . . , 2j−1. The resulting wavelet

shrinkage estimator is called DecompShrink II. However, as pointed out by Huang & Cressie

(2000), the improvement of DecompShrink II in finite samples, if any, over DecompShrink I is

small. Therefore, the latter method is preferable in terms of its good performance and ease of

computation.

4.3.6 Thresholding estimates based on nonparametric mixed-effects models

Similar in spirit to the deterministic/stochastic decomposition approach discussed in

Section 4.3.5, Huang & Lu (2000) considered wavelet thresholding estimators based on

nonparametric mixed-effect models.

By considering the wavelet expansion of the unknown response function g, a prior model for

g is given by

g(t) =
2j0−1∑

k=0

αj0kφj0k(t) + δZ(t) with Z(t) ∼
∞∑

j=j0

2j−1∑

k=0

γjkψjk(t), t ∈ [0, 1], (74)

where αj0k = 〈g, φj0k〉 and γjk = 〈g, ψjk〉 (‘∼’ means ‘equal in distribution’). The coefficients

αj0k are now modelled as fixed effects (which usually reflect the main features of g), whilst the

coefficients γjk are modelled as random effects (which usually reflect the fine features of g).

These random coefficients are assumed uncorrelated with zero mean and E(γ2
jk) = λj . Huang

& Lu (2000) used the prior model (74) to model the relation between the prior parameters and

the Besov spaces (similar in spirit to the work of Abramovich, Sapatinas & Silverman (1998) –

see Remark 4.11). It can be seen that the regularity of posterior estimators can be controlled

via the prior parameter λj (in fact, the ‘posterior’ of g lies in space that is smoother than the

‘prior’ space).

Assuming that Z is a Gaussian process, the Bayes rule under the L2-loss is the posterior

mean of g given the observations y = (y1, . . . , yn)′ from model (1). It is easily seen that this can

be calculated as

E(g(t) | y) = µ(t) +
δ2

σ2
[w(t)]

′
M−1(y − µ), (75)

where µ(t) =
∑2j0−1

k=0 αj0kφj0k(t), w(t) is the 1×n matrix defined by W (t, tj) (for any j = 1, . . . , n

and any t ∈ [0, 1]), M = w + (δ2/σ2)W , µ = (µ(1), . . . , µ(n))′, w is the n × n matrix defined

by W (ti, tj) (for any i = 1, . . . , n and any j = 1, . . . , n). Recall that W is the n× n orthogonal

matrix associate with the DWT discussed in Section 2.2.
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If the coefficients αj0k ( k = 0, 1, . . . , 2j0−1) are unknown, ones needs to estimate them from

the data y. Huang & Lu (2000) proposed a generalized least squares estimate for αj0k. It turns

out that the resulting shrinkage estimator is the best linear unbiased predictor (BLUP) and it

is equivalent to a method of regularization estimator (MORE). Moreover, it is asymptotically

equivalent to a diagonal shrinkage estimator. When the parameters values for σ, δ and λj are

not available, adaptive estimators are necessary. The method of regularization (as discussed in

Antoniadis (1996) and Amato & Vuza (1997)) could be used to obtain the resulting wavelet

shrinkage estimator.

An alternative adaptive and computationally economical thresholding estimator for g was

suggested by Huang & Lu (2000) given by

ĝ(t) =
2j0−1∑

k=0

α̂j0kφj0k(t) +
J−1∑

j=j0

2j−1∑

k=0

max

(
0,

nγ̂2
jk − σ2

nγ̂2
jk

)
γ̂jkψjk(t), t ∈ [0, 1], (76)

where α̂j0k = 1
n

∑n
i=1 yiφj0k(ti) and γ̂jk = 1

n

∑n
i=1 yiψjk(ti). (Note that the DWT can be applied

to get the estimates α̂j0k and γ̂jk.) When σ2 is unknown, Huang & Lu (2000) suggested to select

its value in (76) by generalized cross-validation (with low computational cost) and the resulting

estimator is called the GGV-BLUPWAVE.

Remark 4.15 We mention that similar ideas to the ones discussed above have been

independently explored and developed by Angelini, De Canditiis & Leblanc (2003). We note

that the methods discussed in these papers could also be applied to non-equispaced designs.

A fast algorithm to obtain the resulting shrinkage estimator in such cases was developed by

Angelini, De Canditiis & Leblanc (2003). However, since this paper only deals with the standard

nonparametric regression model as defined in (1), this algorithm is not considered in our

simulation study in Section 5.

4.4 Bayesian Methods: Block Shrinkage and Thresholding

In Section 4.2, it was shown that one way to increase estimation precision in classical term-by-

term thresholding estimators was by utilising information about neighboring empirical wavelet

coefficients. In other words, empirical wavelet coefficients could be thresholded in blocks rather

than individually using global thresholds. This idea has been recently discussed by Abramovich,

Besbeas & Sapatinas (2002) in a Bayesian framework to obtain level-dependent nonoverlapping

block shrinkage and nonoverlapping block thresholding estimates.

Consider the model given by (2) and (3). At each resolution level j (j = j0, . . . , J − 1), the

wavelet coefficients djk are grouped into nonoverlapping blocks bjK of length lj = j. In each
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case, the first few empirical wavelet coefficients might be re-used to fill the last block (which is

called the Augmented case) or the last few remaining empirical wavelet coefficients might not be

used in the posterior-based inference (which is called the Truncated case), should lj not divide

2j exactly.

Let mj be the number of blocks (i.e. K = 1, . . . , mj) and consider, at each level j, the

following prior model on bjK

bjK | γjK ∼ γjKN(0, Vj) + (1− γjK)δ(0), K = 1, . . . , mj , (77)

where δ(0) is a vector of lj point masses at zero. The matrix Vj is an lj×lj nonsingular covariance

matrix given by Vj = τ2
j Pj where Pj is the lj × lj matrix with elements Pj [k, l] = ρ

|k−l|
j for

k, l = 1, . . . , lj with |ρj | < 1 (otherwise Pj cannot be a positive definite matrix). It is also

assumed that γjK has its own prior distribution given by

P (γjK = 1) = 1− P (γjK = 0) = πj , with 0 ≤ πj ≤ 1

and that, at each level j, the blocks bjK (K = 1, . . . ,mj) are independent. The marginal prior

distribution of bjK is then of the form

bjK ∼ πjN(0, Vj) + (1− πj)δ(0), K = 1, . . . , mj . (78)

Note that, at each level j, the same prior parameters are used for all blocks bjK and that

all the variances (i.e diagonal elements of Vj) are equal to τ2
j . According to the prior model

(78), a block bjK is either zero with probability 1 − πj , or multivariate normally distributed

with zero-mean and covariance Vj . This prior model supposes that if a wavelet coefficient is

non-zero (zero), then its neighboring wavelet coefficients are likely to be non-zero (zero). As in

the classical approach, to complete the Bayesian model, vague priors on the scaling coefficients

cj0k, k = 0, . . . , 2j0 − 1 are placed which are therefore estimated by their empirical counterparts

ĉj0k, k = 0, . . . , 2j0 − 1. The above model is, obviously, an extension of the prior model of one

normal distribution and a point mass at zero (lj = 1) discussed in Section 3.2.

At each level j, consider the corresponding blocks b̃jK of empirical wavelet coefficients

d̂jk | djk, σ
2 ∼ N(djk, σ

2). Then, by combining the prior model (78) with the normal likelihood

b̃jK | bjK , σ2 ∼ N(bjK , σ2I), the posterior distribution of bjK conditionally on σ2 can be

expressed as

bjK | b̃jK , σ2 ∼ 1
1 + OjK(bjK , σ2)

N(Aj b̃jK , σ2Aj) +
OjK(bjK , σ2)

1 + OjK(bjK , σ2)
δ(0), (79)

where Aj = (σ2V −1
j + I)−1 and the posterior odds ratio that γjK = 0 versus γjK = 1 is given by

OjK(bjK , σ2) =
1− πj

πj

√
det(Vj)

σ2lj det(Aj)
exp

{
− b̃

′
jKAj b̃jK

2σ2

}
. (80)
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The posterior (79) can be used to generate block shrinkage and block thresholding estimators

using Bayes rules under L2 and L1-losses. Define for the jK-th block the vector ˜̂
dj = Aj b̃jK

and its elements ˜̂
djk. Then, we have

• posterior means:

It is immediately seen that the posterior mean of bjK conditionally on σ2 is given by

E(bjK | b̃jK , σ2) =
1

1 + OjK(bjK , σ2)
˜̂
dj . (81)

This is a block shrinkage estimator where each empirical wavelet coefficient within a block

is shrunk by the same shrinkage factor depending on all coefficients within the block. It

is called the PostBlockMean estimator.

• marginal posterior medians:

It is easily seen that, for the posterior distribution given by (79), the marginal posterior

distribution of djk conditionally on σ2 is expressed as

djk | b̃jK , σ2 ∼ 1
1 + OjK(bjK , σ2)

N(d̃jk, σ
2Ajj) +

OjK(bjK , σ2)
1 + OjK(bjK , σ2)

δ(0),

where Ajj is the diagonal entry of Aj (they are the same for all k). Hence, following the

arguments of Abramovich, Sapatinas & Silverman (1988) discussed in Section 4.3.2, the

posterior median of djk | b̃jK is of the following closed form

Median(djk | b̃jK , σ2) = sign( ˜̂
djk)max (0, ζjK), (82)

where

ζjK = | ˜̂djk| − σ
√

AjjΦ−1

(
1 + min(OjK(bjK , σ2), 1)

2

)
.

This is an individual thresholding estimator where each empirical wavelet coefficient is

thresholded utilising information about neighbouring coefficients within a block. It is

called the PostBlockMed estimator.

The vector ĝ of the corresponding estimates of the unknown response function g at the

observed data-points can be derived by simply performing the IDWT to the vector consisting

of both the empirical scaling coefficients (obtained from applying any of the previous losses on

the resulting posterior distributions using the vague priors on the scaling coefficients) and the

shrunk or thresholded empirical wavelet coefficients (obtained from one of (81) or (82)).

As before, estimates of the hyperparameters πj , τ2
j , ρj and σ2 can now be obtained by using

empirical Bayes methods which are based on using marginal maximum likelihood estimates of
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the hyperparameters. At each level j, it is easily seen that the marginal distribution of the

empirical blocks b̃jK is a mixture of two multivariate normal distributions. Therefore, defining

b̃jK = (b̃jK : k = 1, . . . , mj), the marginal log-likelihood function is, up to a constant

L(π, τ2
j , ρj , σ

2 | b̃jK) =
mj∑

K=1

log
{

πj(det(Bj))−1/2 exp
(
−1

2
b̃
′
jKB−1

j b̃jK

)

+ (1− πj)σ−lj exp
(
− 1

2σ2
b̃
′
jK b̃jK

)}
, (83)

where Bj = σ2I + τ2
j Pj .

Since expression (83) does not lead to closed form solutions for the maximum likelihood

estimates of πj , τ2
j , ρj and σ2, numerical minimisation of −L in (83) must be used in order to

obtain the maximum likelihood estimates of these hyperparameters. Abramovich, Besbeas &

Sapatinas (2002) suggested to use the robust estimate (23) for σ and to numerically minimize

−L. The log-likelihood function was reparametrised with

πj =
1

1 + exp (−θ1j)
, τj = |θ2j | and ρj =

2
π

arctan (θ3j)

so that parameter estimates would lie in the ranges

0 ≤ π̂j ≤ 1, τ̂j ≥ 0 and − 1 < ρ̂j < 1,

respectively. The algorithm that they have used for the minimisation of −L is the Nelder-Mead

simplex search method which does not require first derivatives of −L.

Remark 4.16 We have also considered hybrid schemes by applying, on the first few resolution

levels, after a fixed level (which is a user-choice), the posterior mean and median estimators

discussed in Sections 4.3.1 and 4.3.2, and using the block shrinkage and thresholding estimators

(discussed in this section) on the remaining resolution levels.

We mention that Abramovich, Besbeas & Sapatinas (2002) have also considered block

thresholding estimators using a Bayesian hypothesis testing approach, similar in spirit to the one

discussed in Section 4.3.3. Furthermore, at each resolution level j, they have considered blocks

of size O(j) and have studied the effect of various block sizes in the numerical performance of

the resulting empirical Bayes block shrinkage and block thresholding estimators. Since there are

2j empirical wavelet coefficients at each resolution level j, it is often more convenient to chose

the block sizes lj to be dyadic integers; this results in block sizes that evenly divide the empirical

wavelet coefficients at each resolution level j into nonoverlapping blocks, and it has been also

considered by Abramovich, Besbeas & Sapatinas (2002). However, for brevity, these alternative

choices have not been considered in our simulation study in Section 5.
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We conclude this section with Table 2 which reports, in a synthetic way, the main denoising

procedures that were discussed and their corresponding properties.

Method Bayes Global Level Shrink Thresh Block σ̂ 6= MAD

Minimax • •
SCAD • •

VisuShrink • •
Translation Invariant • •

Multiple Hypotheses Testing • •
Cross-validation • •

SureShrink • •
Recursive Hypothesis Testing • •

BlockJS • • •
NeighBlock • • •

Single Posterior Mean • • •
Single Posterior Mean 2 • • • •
Single Posterior Median • • •

Single Posterior Median 2 • • • •
Bayesian Hypothesis Testing • • •

BAMS • • • •
Decompsh • • •

Mixed • • •
Blocking Posterior Median • • • •
Hybrid Posterior Median • • • •
Blocking Posterior Mean • • • •
Hybrid Posterior Mean • • • •

Table 2: Main characteristic properties of the set of denoising procedures discussed in Section 4.

The column Bayes groups all methods relying on a Bayesian procedure. The columns Global and

Level refer to the method of choice for the threshold level in wavelet thresholding which are grouped

into two categories: global thresholds and level-dependent thresholds. The columns Shrink and

Thresh denote the type of thersholding used, while the column Block refers to methods for which

the wavelet coefficients are thresholded in blocks rather than term-by-term. Finally, the column

σ̂ 6= MAD indicates whether or not the noise level σ is estimated with the robust estimate (23).
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5 Description of the Simulation

In all cases, the data (xi, yi) were generated from a model of the form

yi = f(xi) + εi, {εi} i.i.d. N(0, σ2),

where {xi} are equispaced in [0, 1], x0 = 0 and xn = 1. The factors were

1. The sample sizes n.

2. The test functions f(x).

3. The values of σ2.

For each combination of these factor levels, a simulation run was repeated 100 times holding

all factor levels constant, except the {εi} which were regenerated. In order to compare the

behavior of the various estimation methods (see Table 3), each of them based on two different

wavelet filters, we have used six different criteria: MSE, L1, RMSE, RMSB, MXDV and CPU.

These criteria were computed as follows:

MSE: This is the average over 100 runs of

1
n

n∑

i=1

(f(xi)− f̂(xi))2.

L1: This is the average over the 100 runs of

n∑

i=1

|f(xi)− f̂(xi)|.

RMSE: The mean squared error was computed for each run and averaged over the 100 runs.

Then its square root was taken.

RMSB: Let f̄(xi) be the average of f̂(xi) over the 100 runs. The RMSB is the square root of

1
n

n∑

i=1

(f(xi)− f̄(xi))2.

MXDV: This is the average over 100 runs of

max
1≤i≤n

|f(xi)− f̂(xi)|.

CPU: This is the average over 100 runs of the CPU time.

49



In these simulations we have concentrated on the Symmlet 8 wavelet basis (as described

on page 198 of Daubechies (1992)), and on the Coiflet 3 basis (as described on page 258 of

Daubechies (1992)).

The set of test functions, f , that we have used is similar to the one used by Marron, Adak,

Johnstone, Neumann & Patil (1998). This set works both quite well and also quite poorly for

a variety of wavelet estimators, and is shown in Figure 5.1. Explicit formulae of these curves

are given in Appendix I. For the sake of completeness, we summarize here from Marron, Adak,

Johnstone, Neumann & Patil (1998) the motivation behind each of these functions. A visual

idea of the noise level that we have used in this paper is also given in Figure 5.2.

1. Step: This function should be very hard to estimate with linear methods, because of its

jumps, but relatively easy for nonlinear wavelet estimators.

2. Wave: This is a sum of two periodic sinusoids. Since this signal is smooth, linear methods

compare favorably with non linear ones.

3. Blip: This is essentially the sum of a linear function with a Gaussian density, and has been

often used as a target function in nonparametric regression. To make the jump induced by

the assumed periodicity visually clear, the function has been periodically rotated so the

jump is at x = 0.8.

4. Blocks: This step function has many more jumps than the Step above, and has been used

in several Donoho and Johnstone papers, for example Donoho & Johnstone (1994).

5. Bumps: This also comes from Donoho and Johnstone, and is very challenging for any

smoother.

6. HeaviSine: Another Donoho and Johnstone example. This looks promising for linear

smoothers, except for the two jumps.

7. Doppler: The final Donoho and Johnstone example. The time varying frequency makes

this very hard for linear methods, with power spread all across the spectrum. It is more

suitable for the wavelets, with their space time localization.

8. Angles: This function is piecewise linear, and continuous, but has big jumps in its first

derivatives.

9. Parabolas: This function is piecewise parabolic. The function and its first derivative are

continuous, but there are big jumps in its second derivative. It is ideal for the Symmlet 8

50



0 0.5 1
0

0.2

0.4

0.6

0.8

1

Corner
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Spikes
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Time Shifted Sine

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Parabolas
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Angles
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Doppler

0 0.5 1
0

0.2

0.4

0.6

0.8

1

HeaviSine
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Bumps
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Blocks

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Blip
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Wave
0 0.5 1

0

0.2

0.4

0.6

0.8

1

Step

Figure 5.1: The twelve signals used in the simulation study in this paper, based on 256 design
points.
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Figure 5.2: The noisy versions of the signals shown in Figure 5.1, giving a visual impression of
our ‘high noise’ Gaussian errors setting.
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bases. Estimation should be reasonable for linear methods because both the function and

its first derivative are continuous.

10. Time Shifted Sine: This is a time shifted sine wave. It is intended to be a very smooth

function, but rather far from a linear combination of sine waves. We view this as

representing the type of curve that ”traditional smoothers” would consider estimating.

For consistency of mnemonics, the various denoising procedures that we have used (acronyms,

type of thresholding and reference to the appropriate sections of this paper) are summarized in

Table 3. Insight into the performance of the various wavelet based denoising procedures described

in Table 3 can be obtained from graphical outputs and numerical tables. However, the resulting

graphical outputs and numerical tables across all criteria, sample sizes, test functions, noise

levels, wavelet filters and denoising procedures are very extensive. Looking at our simulation

results, it was apparent that the criteria L1 and MSE are closely correlated with RMSE. Also,

most of the conclusions hold whatever wavelet filter is used. Hence, for reasons of space, we

only report, in Appendix II, in detail the results for two samples sizes, n = 128 (a moderate

sample size) and n = 512 (a large sample size), for four criteria (RMSE, RMSB, MXDV and

CPU), a particular wavelet filer (Symmlet 8), a root-signal-to-noise ratio rsnr = 3 (a high noise

level), for all test functions and all smoothing procedures. Even so, the graphical outputs

summarizing the behaviour of the smoothers with respect to the various criteria are quite

extensive. Graphical outputs for other combinations of sample sizes and noise levels, as well as

numerical tables, can be derived using appropriate Matlab scripts. These scripts are based on

Version 8 of the Wavelab toolbox for MATLAB (Buckheit, Chen, Donoho, Johnstone & Scargle

(1995)) and are available at http://www-lmc.imag.fr/SMS/software/GaussianWaveDen.html

or http://www.ucy.ac.cy/∼fanis/links/software.html . We refer at this point to Section 8

for more details on which files the user should download and how to start running them.

We remark below on some of the conclusions we drew after a careful examination on the

simulations’ output.

6 Summary of Results

As expected, for the same test function and denoising procedure, whatever wavelet filter is

used, the RMSE is roughly proportional to the inverse of the square root of the sample size.

In terms of RMSE, TI-H, BAMS and DECOMPSH are markedly better on the Step function,

whatever the sample size is, and the results are quite similar with respect to the filter used. As

for computational efficiency, for small sample sizes, TI-H and BAMS are much more efficient
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1 VISU-H VisuShrink Hard 4.1.2

2 VISU-S VisuShrink Soft 4.1.2

3 SURE SureShrink 4.1.6

4 HYBSURE SureShrink Hybrid 4.1.6

5 TI-H Translation-Invariant Hard 4.1.3

6 TI-S Translation-Invariant Soft 4.1.3

7 MINIMAX-H Minimax Hard 4.1.1

8 MINIMAX-S Minimax Soft 4.1.1

9 CV-H Cross-Validation Hard 4.1.5

10 CV-S Cross-Validation Soft 4.1.5

11 NEIGHBL NeighBlock 4.2.2

12 BLOCKJS-A Block Thresholding Augment 4.2.1

13 BLOCKJS-T Block Thresholding Truncate 4.2.1

14 THRDA1 Hypothesis Testing Soft 4.1.7

15 FDR-H False Discovery Rate Hard 4.1.4

16 FDR-S False Discovery Rate Soft 4.1.4

17 PENWAV Linear Penalization 3.1

18 SCAD Nonlinear Penalization Hybrid 3.1 & 4.1.1

19 DECOMPSH Deterministic/Stochastic 4.3.5

20 MIXED Mixed-Effects 4.3.6

21 BLMED-A Blocking Posterior Median Augment 4.4

22 BLMED-T Blocking Posterior Median Truncate 4.4

23 HYBMED-A Hybrid Blocking Median Augment 4.4

24 HYBMED-T Hybrid Blocking Median Truncate 4.4

25 BLMEAN-A Blocking Posterior Mean Augment 4.4

26 BLMEAN-T Blocking Posterior Mean Truncate 4.4

27 HYBMEAN-A Hybrid Blocking Mean Augment 4.4

28 HYBMEAN-T Hybrid Blocking Mean Truncate 4.4

29 SINGLMED Single Posterior Median 4.3.2

30 SINGLMED-2 Single Posterior Median 4.3.2

31 SINGLMEAN Single Posterior Mean 4.3.1

32 SINGLMEAN-2 Single Posterior Median 4.3.1

33 SINGLHYP Bayesian Hypothesis Testing 4.3.3

34 BAMS Bayesian Adaptive Multiresolution 4.3.4

Table 3: Acronyms for the set of denoising procedures applied in the simulation study. The section

column refers to the actual sections where these procedures have been defined.
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than DECOMPSH, while for large sample sizes the three methods are equivalent. One would

expect a similar conclusion with respect to the Blocks function. While this is true for BAMS and

DECOMPSH, CV-S outperforms TI-H in this case in terms of RMSE. Note also that Symmlets

are better suited than Coiflets in this case, which is mainly due to the presence of many jumps

in the Blocks function.

For the smooth function Wave, most Bayesian methods do well. Among the non-Bayesian

denoising procedures, PENWAV and TI-H are competitive, especially for large sample sizes.

The fact that PENWAV is fine is not surprising given the fact that this is the type of functions

where linear methods are generally equivalent to nonlinear ones. Similar conclusions hold also

for the Time Shifted Sine function.

For the Blip function as well as for the Parabolas function, TI-H is markedly better than

other methods, and the use of Coiflets improves the RMSE. At the other end, SURE, MIXED

and SINGLHYP perform poorly for these test functions.

For the Bumps, Angles and Spikes functions almost all Bayesian procedures are equivalent

(with the exception of SINGLHYP) and do markedly better than the other procedures in terms

of RMSE. Among the non-Bayesian procedures, once again TI-H is fine. Both wavelet filters

lead to similar results. For such functions it is therefore advisable to denoise using Bayesian

procedures, if computational cost is not an issue.

Finally, for the Heavisine and Doppler functions almost all procedures give equivalent results,

with the exception of SURE and SINGLHYP which perform poorly.

Criterion MXDV allows a finer comparison between Bayesian methods when these are in

competition. Larger values of MXDV occur for functions with many spikes or discontinuities,

but this is expected. The curious behavior of MXDV for some of the methods with the Bumps

signal calls for some explanation. Recall that, throughout the simulations, the primary resolution

level j0 = [log2(log(n))] + 1 was used for all methods. This value of j0 affects whether or not

the spikes in the Bumps signal are felt in the lowest level of wavelet coefficients. For j0 = 3, the

standard methods, especially PENWAV and DECOMPSH both smooth out the spike effect to

a big extent.

Among all denoising procedures and almost all test functions, the minimum RMSB is

achieved by the SURE procedure, which shows that the bias in the procedures is almost

never a substantial contributor to RMSE, reflecting the capability of these automatic denoising

procedures to fit a large variety of functions.

In terms of the mean squared error criterion, a conceivable competitor to SURE among

the other methods is NEIGHBLOCK, especially when the underlying function is of significant

spatial variability.
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The strange behaviour of some of the methods with the Waves signal is probably due to the

fact that for all methods the same primary resolution level j0 = [log2(log(n))]+ 1 was used, and

most methods smooth to some extent the high frequencies in the Waves signal.

Table 4 in the Appendix II shows the average of the CPU time involved in computing the

estimates for the Corner function by each method and the two sample sizes. Our simulations

show that non-Bayesian methods uniformly outperform Bayesian methods in terms of CPU time

in all examples, and indeed the relative performance of Bayesian procedures is even worse for

some other examples than the Corner presented in detail.

7 Overall Conclusions

As expected, no wavelet based denoising procedure uniformly dominates in all aspects. For

larger sample sizes and when a function is expected to be mainly smooth, Coiflets lead to better

results due to the fact that scaling functions associated to Coiflets have better approximation

properties that other Daubechies filters. While Bayesian methods perform reasonably well at

small sample sizes for relatively inhomogeneous functions, their computational cost may be a

handicap, when compared with translation invariant thresholding procedures.

8 An illustrative example

This section explains in some detail which files the user should download and how to start

running them. In order to provide some hints of how the functions should be used to analyse

real data sets, a detailed practical step-by-step illustration of a wavelet denoising analysis on

electrical consumption is provided.

Prerequisites

As already noted, our library makes an extensive use of the Matlab routines available in the

WaveLab package developed by Buckheit, Chen, Donoho, Johnstone & Scargle (1995) at Stanford

University. WaveLab has over 800 subroutines which are well documented, indexed and cross-

referenced. The library is available, free of charge, over the Internet World Wide Web (WWW)

access. Versions are provided for Macintosh, Unix and Windows platforms. The WaveLab package

is made available as a compressed archive, in a format suitable for the machine in question:

.zip (for MS-Windows), .tar.Z (for Unix) and .sea.hqx (for Macintosh). The archives may

be accessed by WWW access to http://www-stat.stanford.edu/∼ wavelab.
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Once the appropriate compressed archive has been transferred to your machine, it should be

decompressed, with the relevant tools, and installed. On a personal computer (Macintosh or

Windows), the archives should be decompressed and installed as a subdirectory of the toolbox

directory inside the Matlab folder. On a Unix workstation or server, the archives could either

be installed in the systemwide Matlab directory, if you have permission to do this, or in

your own personal Matlab directory, if you do not. Once the actual files are installed, you

should have a number of subdirectories of .m files in the directory WaveLab. Matlab can

automatically, at startup time, make all the WaveLab package available (read the installations

instructions accompanying the archive). We will assume from now on that the Wavelab routines

are available in your machine. We will also assume that you have already downloaded our

GaussianWaveDen package from http://www-lmc.imag.fr/SMS/software/GaussianWaveDen

or http://www.ucy.ac.cy/∼fanis/links/software.html and you have installed its

subroutines by specifying its path in Matlab. Once this is done you can try running the demo

that we will describe in this section. Each function in GaussianWaveDen has an accompanying

html help documentation in the directory html-help.

An electrical consumption example

The example we present here involves a real-word signal – electrical consumption measured

over the course of three days. This signal is particularly interesting because of noise introduced

whenever a defect is present in the monitoring equipment. The data consist of measurement

of a complex, highly-aggregated plant: the electrical load consumption, sampled minute by

minute, over a 5-week period. The resulting time series of 50,400 points is partly plotted in the

top panel of Figure 8.3. External information is given by electrical engineers, and additional

indications can be found in Misiti, Misiti, Oppenheim & Poggi (1994). This information includes

the following remarks:

• The load curve is the aggregation of hundreds of sensors measurements, thus generating

measurement errors.

• The consumption is accounted for 50% by industry and for the other half by individual

consumers. The component of the load curve produced by industry has a rather regular

profile and exhibits low-frequency changes. On the other hand, the consumption of

individual consumers may be highly irregular, leading to high-frequency components.

• There are more than 10 millions individual consumers.
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• Daily consumption patterns also change according to rate changes at different times (e.g.

relay-switched water heaters to benefit from special night rates).

• For the 3-day observations, indexed from 1 to 4096, the measurement errors are unusually

high, due to sensors failures.
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Figure 8.3: An electricity consumption signal and its denoised versions.

We shall not report here a complete analysis which is included in Misiti, Misiti, Oppenheim

& Poggi (1994). We only want to illustrate some of the denoising procedures developed in this

paper to the local description of this time series, which effectively remove the noise. We choose

a portion of the sample signal corresponding to a midday period. Observe, however, that the

midday period has a complicated structure because the intensity of the electricity consumers

activity is high and it presents very large changes. An appropriate noise removal allows the

identification of interesting features of the data.

Figure 8.3 has been generated using the following Matlab command lines.

% Load the original 1-D signal, choose a portion of it and plot it.

%

% load the signal in s.

s=file2var(‘eleccum.dat’);

% fix the time axis.
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x=(1:4096);

signal=s(x);

% Plot the original signal

plot(x,signal); title(‘Electrical Signal’);

% Denoise the plotted portion of the signal using few of our procedures.

% Using the Translation Invariant procedure with soft thresholding.

f = recTI(signal,’S’);

% Using the Neighblock procedure.

g=recneighblock(signal);

% Plot the results.

subplot(3,1,1);

plot(x,signal); axis([-20 4097 100 600]); title(‘Electrical Signal’);

subplot(3,1,2);

plot(x,f); axis([-20 4097 100 600]); title(‘Soft TI Denoising’)

subplot(3,1,3);

plot(x,g); axis([-20 4097 100 600]); title(‘Neighblock Denoising’)

One may note on the denoised signal the abrupt changes due to automatic switches. Note

also that the TI-S procedure produces a smooth fit, removing efficiently the massive and high

frequency changes of personal electric appliances in the consumption, while the NEIGHBLOCK

procedure undersmooths the high frequency portions of the observed signal.

To end this section, we would like to mention here a few types of signal processing problems

where the wavelet methods discussed and compared in this paper have been used in practice.

Wavelet denoising procedures have been found to be a particularly useful tool in machinery

fault detection (see Staszewski & Tomlinson (1994) and Lin & McFadden (1997)). Typical

examples of signals encountered in this field are vibration signals generated in defective bearings

and gears rotating at constant speeds. When a machine or its parts change from one state

into another, transients may be seen in the vibration signals. Transients usually have relatively

high frequencies but relatively small time scales and contain rich information about machinery

conditions. This explains why wavelet denoising procedures provide considerable improvement

over certain traditional techniques in the fault detection of mechanical systems.

Wavelet denoising procedures, in conjunction with hypothesis testing, have also been used

for detecting change points in several biomedical applications. Typical examples are the

detection of life-threatening cardiac arrythmia (see Khadra, Al-Fahoum & Al-Nashash (1997)) in

electrocardiographic signals (ECG) recorded during the monitoring of patients, or the detection
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of venous air embolism in doppler heart sound signals recorded during surgery when the incision

wounds lie above the heart (see Chan, Chan, Lam, Lui & Poon (1997)). They also have been

used in astronomical application for estimating periodicities in the light-curves of the variable

star R Aquilae, after appropriate denoising (see Foster (1996)).

A number of interesting applications of wavelets may be also found in economic and financial

applications. Ramsay, Usikov & Zaslavsky (1995) provides an account on research arising from

earlier concerns in the analysis of the stock market.

In conclusion, it is apparent that wavelets are particularly well adapted to the statistical

analysis of several types of data, and denoising tools, like the ones presented in this paper, will

certainly be of great help in revealing features present in data.
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[60] Härdle, W. (1990). Applied Nonparametric Regression. Cambridge: Cambridge University

Press.
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Appendix I

Here are the analytical formulae of the test functions introduced in Section 5.

1. Step:

f1(x) = 0.2 + 0.6I(1/3,3/4)(x).

2. Wave:

f2(x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx).

3. Blip:

f3(x) =
(
0.32 + 0.6x + 0.3e−100(x−0.3)2

)
I[0,0.8](x) +

(
−0.28 + 0.6x + 0.3e−100(x−1.3)2

)
I(0.8,1](x).

4. Blocks: Donoho and Johnstone’s (1994) Blocks function vertically rescaled to [0.2, 0.8].

5. Bumps: Donoho and Johnstone’s (1994) Bumps function vertically rescaled to [0.2, 0.8].

6. Heavisine: Donoho and Johnstone’s (1994) Heavisine function vertically rescaled to

[0.2, 0.8].

7. Doppler: Donoho and Johnstone’s (1994) Doppler function vertically rescaled to [0.2, 0.8].

8. Angles:

f8(x) = (2x + 0.5))I[0,0.15](x) + (−12(x− 0.15) + 0.8)I(0.15,0.2](x) +

0.2I]0.2,0.5](x) + (6(x− 0.5) + 0.2)I(0.5,0.6](x) +

(−10(x− 0.6) + 0.8)I]0.6,0.65](x) + (−5(x− 0.65) + 0.3)I(0.65,0.85](x) +

(2(x− 0.85) + 0.2)I(0.85,1](x).

9. Parabolas:

f9(x) = 0.8− 30r(x, 0.1) + 60r(x, 0.2)− 30r(x, 0.3) +

500r(x, 0.35)− 1000r(x, 0.37) + 1000r(x, 0.41)− 500r(x, 0.43) +

7.5r(x, 0.5)− 15r(x, 0.7) + 7.5r(x, 0.9),

where r(x, c) = (x− c)2I(c,1](x).
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10. Time Shifted Sine:

f10(x) = 0.3 sin{3π[g(g(g(g(x)))) + x]}+ 0.5,

where g(x) = (1− cos(πx))/2.

11. Spikes:

g(x) = 15.6676e−500(x−0.23)2 + 2e−2000(x−0.33)2 +

4e−8000(x−0.47)2 + 3e−16000(x−0.69)2 + e−32000(x−0.83)2 .

f11(x) = (0.6/range(g))g(x) + 0.2.

12. Corner:

g(x) = 623.87x3(1− 4x)I]0,0.5](x) +

187.161(0.125− x3)x4I(0.5,0.8](x) + 3708.470441(x− 1)3I(0.8,1](x),

f12(x) = (0.6/range(g))g(x) + 0.6.
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Figure 8.4: Performance of the estimators for the Step function over 100 simulations. The root
signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.5: Performance of the estimators for the Wave function over 100 simulations. The root
signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.6: Performance of the estimators for the Blip function over 100 simulations. The root
signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.7: Performance of the estimators for the Blocks function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.8: Performance of the estimators for the Bumps function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.9: Performance of the estimators for the HeaviSine function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.10: Performance of the estimators for the Doppler function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.11: Performance of the estimators for the Angles function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.12: Performance of the estimators for the Parabolas function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.13: Performance of the estimators for the Time Shifted Sine function over 100
simulations. The root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512
(right) design points. The wavelet filter used is the Symmlet 8.
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Figure 8.14: Performance of the estimators for the Spikes function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Figure 8.15: Performance of the estimators for the Corner function over 100 simulations. The
root signal-to-noise ratio is equal to 3 for sample sizes of 128 (left) and 512 (right) design points.
The wavelet filter used is the Symmlet 8.
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Method Average CPU Time (n=128) St. Dev. Average CPU Time (n=512) St. Dev.

VISU-H 0.0047 0.0052 0.0057 0.005

VISU-S 0.0044 0.0052 0.0075 0.0044

SURE 0.0131 0.0053 0.0219 0.0044

HYBSURE 0.0108 0.0044 0.018 0.004

TI-H 0.0948 0.008 0.3842 0.0067

TI-S 0.0951 0.0085 0.3842 0.0075

MINIMAX-H 0.0071 0.0048 0.0089 0.0031

MINIMAX-S 0.007 0.0048 0.0094 0.0024

CV-H 0.788 0.0423 2.8711 0.1194

CV-S 0.8123 0.0803 2.9715 0.1487

NEIGHBL 0.0258 0.0065 0.0621 0.005

BLOCKJS-A 0.0131 0.0056 0.0295 0.0026

BLOCKJS-T 0.0124 0.0051 0.0282 0.0039

THRDA1 0.11 0.0236 0.1602 0.0155

FDR-H 0.0314 0.0053 0.0345 0.0052

FDR-S 0.0311 0.0053 0.0341 0.0057

PENWAV 0.0088 0.0041 0.0108 0.0031

SCAD 0.0059 0.0049 0.009 0.003

MIXED 0.0535 0.0083 0.0643 0.0056

DECOMPSH 0.1146 0.0073 0.2216 0.0072

BLMED-A 4.9719 0.7042 7.5799 0.7529

BLMED-T 4.8445 1.0492 8.4865 0.8633

HYBMED-A 8.1662 18.5313 10.4675 24.1012

HYBMED-T 8.1802 18.4423 10.4619 24.2981

BLMEAN-A 4.8831 0.7118 7.3968 0.7442

BLMEAN-T 4.776 1.0416 8.314 0.8564

HYBMEAN-A 8.1064 18.4009 10.3045 24.2128

HYBMEAN-T 8.0896 18.3561 10.3007 24.2864

SINGLMED 15.0696 36.0658 35.8483 60.1153

SINGLMED2 1.27 0.8122 2.0824 1.2284

SINGLMEAN 15.0723 36.1797 35.7626 60.0166

SINGLMEAN2 1.2227 0.8109 2.0086 1.2153

SINGLHYP 15.0615 36.1177 35.7836 60.0317

BAMS 0.0876 0.0077 0.3524 0.0062

Table 4: Average and its standard deviation (over 100 simulations) of the CPU time involved in

computing the estimates for the Corner function by each method and the two sample sizes (n = 128,

n = 512). Non-Bayesian methods uniformly outperform Bayesian methods in terms of CPU time in

all examples.
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