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Adaptive quadratic functional estimation of a weighted density
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We consider the problem of estimating the integral of the square of a probability density function f

on the basis of a random sample from a weighted distribution. Specifically, using model selection via a
penalized criterion, an adaptive estimator for

∫
f 2 based on weighted data is proposed for probability

density functions which are uniformly bounded and belong to certain Besov bodies. We show that the
proposed estimator attains the minimax rate of convergence that is optimal in the case of direct data.
Additionally, we obtain the information bound for the problem of estimating

∫
f 2 when weighted data are

available and compare it with the information bound for the case of direct data. A small simulation study
is conducted to illustrate the usefulness of the proposed estimator in finite sample situations.

Keywords: adaptive minimax estimation; Besov bodies; Haar basis; projection estimators; quadratic
functional estimation; weighted distributions

1. Introduction

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables with
cumulative distribution function (c.d.f.) F and probability density function (p.d.f.) f with respect
to the Lebesgue measure on the real line R = (−∞, ∞). In practice, it sometimes happens that
direct data are not available. There are several settings that lead to weighted data sets. Weighted
distributions are used in statistics to model sampling in the presence of selection bias. Observations
which do not have an equal chance of being selected lead to this sampling scheme which can
be described in the following way: let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted
distribution with p.d.f. gw given by

gw(y) = w(y)f (y)

μw

, (1)

where the weight function w satisfies w(y) > 0 for all y ∈ R and μw = E(w(X)) < ∞ (see,
e.g., [1]). (The restriction w(y) > 0 for all y ∈ R is necessary for identifiability reasons; this
constraint guarantees that gw is indeed a p.d.f.; see, e.g., [2,3].) When the probability that an

*Corresponding author. Email: t.sapatinas@ucy.ac.cy; fanis@ucy.ac.cy

ISSN 0233-1888 print/ISSN 1029-4910 online
© 2010 Taylor & Francis
DOI: 10.1080/02331880903237114
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
6
:
3
7
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
1
0



572 A. Petsa and T. Sapatinas

observation is selected is proportional to its size, i.e., when w(y) = y, length-biased data arise.
Inter-event time data, the visibility bias in aerial survey techniques, the quality control problem
of estimating fibre length distribution and sampling from queues or telephone networks are some
examples of settings where weighted data arise (see, e.g., [2,4]).

Cox [4] proposed an estimator of F given by

F̃ (y) = n−1μ̂w

n∑
i=1

w−1(Yi)I(−∞,y](Yi),

where μ̂w = n(
∑n

i=i w
−1(Yi))

−1 and IA(y) = 1 if y ∈ A and 0 otherwise. Hence, this estimator
can be interpreted as the empirical distribution function for weighted data. Vardi [2,3] showed
that F̃ is the non-parametric maximum likelihood estimator of F for this case, and that μ̂w

is a
√

n-consistent estimator of μw. Kernel estimators of f for weighted data from model (1)
were proposed by Bhattacharyya et al. [5] and Jones [6], while their multivariate extensions
were considered in [7]. Asymptotic properties of these estimators were considered in [8,9], for
a Hölder class of p.d.f’s. A Fourier series estimator of f for weighted data from model (1) was
proposed by Jones and Karunamuni [10], while a transformation-based estimator was suggested
by El Barmi and Simonoff [11]. Efromovich [12] suggested a blockwise shrinkage estimator
of f for weighted data from model (1) and showed that this estimator is sharp minimax, that
is, the proposed estimator attains the optimal constant and minimax rate of convergence for
a Sobolev class of p.d.f’s. Additionally a second-order sharp minimax estimator for F , via a
projection on trigonometric bases, and of f by differentiation, for an analytic class of c.d.f’s, was
derived in [13].

Let X be a random variable with c.d.f. F and p.d.f. f with respect to Lebesgue measure on
the real line R, and let f ∈ L2(R) (the space of squared-integrable functions on R). The aim is to
estimate

∫
f 2, assuming f belongs to some smooth class of p.d.f’s. This functional appears, e.g.,

in the Pitman efficacy of the Wilcoxon signed-rank statistic, in rank tests based on residuals in the
linear model and in the asymptotic variance of the Hodges–Lehmann estimator (see, e.g., [14–16]).
Additionally, an estimate of this quantity can be used in test statistics based on the L2-distance (see,
e.g., [17,18]). If independent direct realizations X1, X2, . . . , Xn of X are available, then optimal
solutions to this problem are well known. Bickel and Ritov [19] proposed an estimator of

∫
(f (k))2,

where f (k) is the kth derivative of f , for p.d.f’s satisfying the Hölder condition on f (m) with
smoothness parameter α.Although their estimator is asymptotically efficient when m + α > 2k +
1/4 and asymptotically optimal for k < m + α ≤ 2k + 1/4, it is non-adaptive since it depends on
unknown parameters. Birgé and Massart [20] proposed non-adaptive

√
n-consistent estimators for

functionals of the form
∫

φ(f, f ′, . . . , f (k), ·), for f belonging to some smooth class of p.d.f’s
with smoothness parameter s satisfying s ≥ 2k + 1/4, and proved that

∫
φ(f, f ′, . . . , f (k), ·)

cannot be estimated at a rate faster than n−4(s−k)/(4s+1) if s < 2k + 1/4. Laurent [21,22] extended
these results and built non-adaptive and asymptotically efficient estimators of more general
functionals.

Recently, Laurent [23] used model selection methods to construct an adaptive and asymptoti-
cally optimal (in the minimax sense) estimator of

∫
f 2 for p.d.f’s which are uniformly bounded

and belong to certain Besov bodies. In this paper, we consider the problem of estimation of
∫

f 2

based on a weighted sample from model (1). An estimate of this functional could be used when
statistical procedures developed for direct data (e.g., tests based on L2-distance) are adapted to
weighted data. By modifying the method used by Laurent [23] for the case of direct data and
borrowing also ideas from [6,10,24] in order to take into account the selection bias, we construct
an adaptive estimator of

∫
f 2.

The paper is organized as follows. Section 2 describes the method used to construct an adaptive
estimator for

∫
f 2 based on a weighted sample, using model selection via a penalized criterion.
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Statistics 573

We show that the proposed estimator attains the minimax rate of convergence that is optimal in
the direct data case for p.d.f’s which are uniformly bounded and belong to certain Besov bodies,
under the assumption that the biasing function w(y) is bounded away from 0 and ∞. In Section 2,
using the theory of Ibramigov and Khasminski [25], we derive the information bound for the
problem of estimating

∫
f 2 when weighted data are available. A comparison with the information

bound given for the case of direct data (see, e.g., [19,21,26]) leads to the conclusion that model
sampling in the presence of selection bias can either improve or worsen the information bound in
the problem of estimating

∫
f 2. In Section 3, a small simulation study is conducted to illustrate

the usefulness of the proposed estimator in finite sample situations and to compare it with a simple
projection estimator. Finally, the Appendix contains some auxiliary statements and proofs of the
theoretical results stated in Section 2.

2. Estimation of
∫

f 2 using weighted data by model selection

We consider below the problem of estimating θ = ∫
f 2 based on a weighted sample from model

(1) for p.d.f’s which are uniformly bounded and belong to a certain Besov body. The approach
adapted modifies the method used by Laurent [23] for the case of direct data, also borrowing ideas
from [6,10,24] in order to take into account the selection bias.

2.1. An adaptive estimator of
∫

f 2 using weighted data

We project f onto the space generated by the constant piecewise functions on the intervals
(k/D, (k + 1)/D], k ∈ Z. The projection of f onto this space is given by

fD =
∑
k∈Z

αk,D pk,D,

where pk,D = √
DI(k/D,(k+1)/D] and αk,D = ∫

fpk,D . It is easy to see that

θ̃D = μ2
w

n(n − 1)

∑∑
1≤i,j≤n

i �=j

∑
k∈Z

pk,D(Yi)

w(Yi)

pk,D(Yj )

w(Yj )
(2)

is an unbiased estimator for θD = ∫
f 2

D .
The following assumption is used to prove Theorems 2.1 and 2.2 below.

Assumption 2.1 Let w be a real-valued function satisfying 0 < w1 ≤ w(y) ≤ w2 < ∞
for all y ∈ R.

Under Assumption 2.1, and for uniformly bounded densities f , i.e., ‖f ‖∞ = supy∈R
|f (y)| ≤

M for some finite constant M > 0, it is easy to check that

E(θ̃D − θ)2 ≤
{
(θD − θ)2 + C(M, w)

(
D

n2
+ 1

n

)}
,

where C(M, w) is an absolute constant depending on M , w1 and w2. According to the ideas
presented in [27], the optimal choice of D should minimize the quantity θ − θD + √

D/n or,
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574 A. Petsa and T. Sapatinas

equivalently, maximize the quantity θD − √
D/n. Therefore, we consider the following estimator:

θ̃ = sup
D∈Dn

(θ̃D − pen(D)), (3)

where pen(D) is given by

pen(D) = κ

n

√
(θ̃D + 1)D log(D + 1), (4)

for some constant κ > 0. However, μw is unknown in practice and therefore θ̃D must be
replaced by

θ̂D = μ̂2
w

n(n − 1)

∑∑
1≤i,j≤n

i �=j

∑
k∈Z

pk,D(Yi)

w(Yi)

pk,D(Yj )

w(Yj )
, (5)

where μ̂w is the
√

n-consistent estimator of μw (see Section 1). Therefore, a natural adaptive
estimator for θ = ∫

f 2 is given by the penalized estimator

θ̂ = sup
D∈Dn

(θ̂D − penu(D)), (6)

where penu(D) is given by

penu(D) = κ

n

√
(θ̂D + 1)D log(D + 1).

In the later sections, the notation C is used for absolute constants whose values may vary from
one line to another. The dependency of a constant on some parameter or the bounds of the weight
function is implied in the following way: for example, C(α, R, M) denotes an absolute constant
depending on α, R and M , while C(w) denotes an absolute constant depending on w1 and w2.

2.2. Upper bounds for the L2-risk

Let φ(x) = I[0,1)(x) and ψ(x) = I[0,1/2)(x) − I[1/2,1)(x), and for any j ∈ N, k ∈ Z, let

φj,k(x) = 2j/2
I[0,1)(2

j x − k) and ψj,k(x) = 2j/2[I[0,1/2)(2
j x − k) − I[1/2,1)(2

j x − k)].
Then, the functions {φJ,k, ψj,k : j ≥ J, k ∈ Z} form an orthonormal basis for L2(R), which is
the well-known Haar basis of L2(R). Therefore, any f can be represented (in the L2-sense) by a
Haar series as

f =
∑
k∈Z

αJ,k(f )φJ,k +
∞∑

j=J

∑
k∈Z

βj,k(f )ψj,k,

where αj,k(f ) = ∫
f φj,k and βj,k(f ) = ∫

f ψj,k .
Now let F(α, R, M) be the class of p.d.f’s f which are uniformly bounded by some finite

constant M > 0, and the sequence of coefficients onto the Haar basis belongs to the following
Besov body:

Bα,2,∞(R) =
{

f | β(f ) = (βj,k)j≥J,k∈Z,
∑
k∈Z

β2
j,k ≤ R22−2jα, ∀j ≥ J

}

for some finite constants α, R > 0; that is, we consider the class of p.d.f’s

F(α, R, M) = {f | β(f ) ∈ Bα,2,∞(R), ‖f ‖∞ ≤ M}. (7)
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Statistics 575

Theorem 2.1 Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution with
p.d.f. gw given by Equation (1), with weight function w being continuous and satisfying
Assumption 2.1. Consider the class of p.d.f’s F(α, R, M) defined by Equation (7) with α > 0,
and let

Dn =
{
D | D ∈ N, D ≤ n2

log3(n)

}
. (8)

There exists some constant κ0 > 0 such that if penu(D) is given by Equation (7) for all D ∈ Dn

with κ ≥ κ0 then, there exists some n0 := n0(α, R, M, w) such that θ̂ , given by Equation (6),
satisfies the following inequalities for n ≥ n0:

• for α > 1/4,

sup
f ∈F(α,R,M)

E(θ̂ − θ)2 ≤ C(α, R, M, w)

n
,

• for 0 < α ≤ 1/4,

sup
f ∈F(α,R,M)

E(θ̂ − θ)2 ≤ C(α, R, M, w)

(√
log(nR2)

n

)8α/(1+4α)

.

Remark 2.1 Theorem 2.1 gives a uniform bound of the mean squared error (MSE) of θ̂ ,
leading to the conclusion that θ̂ is an adaptive and

√
n-consistent estimator of θ = ∫

f 2, uni-
formly over F(α, R, M) with α > 1/4, and it also achieves the minimax rate of convergence
(
√

log n/n)4α/(1+4α) which is optimal (in the minimax sense) in the case of direct data when
0 < α ≤ 1/4. The fact that the minimax rate of convergence that is optimal in the case of direct
data can also be attained in the presence of selection bias is consistent with analogous results for
density estimation (see, e.g., [8,9,12]) and distribution estimation (see, e.g., [13]).

Remark 2.2 The estimator θ̂ can be used in tests of the null hypothesis H0 : f = f0, based on
the L2-distance in order to estimate

∫
(f − f0)

2, in the case of weighted data. More precisely,
under the assumptions of Theorem 2.1, the L2-distance of f and f0 can be estimated by θ̂ −∫

f 2
0 − 2μ̂w

∑n
i=1 f0(Yi)/w(Yi) at the minimax rate of convergence that is optimal in the case of

direct data.

Remark 2.3 The simple projection estimator θ̂n (i.e, θ̂D given in Equation (5) with D = n) can
be shown to be uniformly

√
n-consistent for all f ∈ F(α, R, M) with α ≥ 1/4. On the other

hand, in addition, the penalized estimator given by Equation (6) also attains the minimax rate of
convergence that is optimal in the case of direct data for all f ∈ F(α, R, M) with 0 < α ≤ 1/4.
Furthermore, it performs better in finite sample situations, as it will be illustrated in Section 3.

Remark 2.4 If β(f ) ∈ Bα,2,∞(R) with α > 1/2, then f is uniformly bounded and the restric-
tion ‖f ‖∞ ≤ M is not needed in the definition of F(α, R, M) (see, e.g., inequality (8.15) of
Proposition 8.3 in [28]).

Remark 2.5 An upper bound of the constant κ0 can be found using the explicit constants given
in [29]. In practice, a simulation study, analogous to the one used by Birgé and Rozenholc [30]
in density estimation, is needed to calibrate κ0.

Remark 2.6 The assumption 0 < w1 ≤ w(y) ≤ w2 < ∞, y ∈ [0, 1], is very common in density
estimation for weighted data (see, e.g., [9,12,24]). The only difference when compared with
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576 A. Petsa and T. Sapatinas

Assumption 2.1 considered above is that we require 0 < w1 ≤ w(y) ≤ w2 < ∞ for all y, in
order to cover the case of densities with non-compact support. In fact, it is sufficient to require
0 < w1 ≤ w(y) ≤ w2 < ∞ for all y in the support of the density f . Below, we report some
examples that arise in practical settings leading to weighted data with weight function satisfying
Assumption 2.1.

(i) Let 1 − w(y) be a proportion of the frequency of the variable X that is missing (see, e.g.,
[12]). Then, weighted data from model (1) arise. Let w(y) = 0.9y + 0.1 for 0 ≤ y ≤ 1 and
w(y) = 1 for y ≥ 1. The missing proportion decreases in the interval [0, 1] and remains 0 for
y > 1. A generalization of this weight function is w(y) = cy + b, for 0 < y < (1 − b)/c

and w(y) = 1 for y > (1 − b)/c, 0 < c, b < 1, where the missing proportion decreases in
the interval [0, c] and remains 0 for y > c.

(ii) Line transect sampling is another example where weighted data arise (see, e.g., [12]). If we are
interested in estimating the abundance of plants or animals of a particular species in a given
region, we can use line transects. This essentially means that an observer moves along fixed
paths and includes the sighted clusters of objects of interest in the sample. It is obvious that
larger clusters have a larger probability to be included in the sample. An appropriate weight
function would be w(y) = cy + b, for 0 < y < (1 − b)/c and w(y) = 1 for y > (1 − b)/c,
0 < c, b < 1.

(iii) The purpose of a photographic survey described by Patil [31] was to estimate the abundance
of the deep-sea red crab. The data were analyzed using the composite weight function of the
form w(y) = (a + by)v(y, θ), where the sighting function v(y, θ) represented the sighting-
distance bias that is usually bounded away from zero.

(iv) In meta-analysis we study the publication-selection bias and the heterogeneity that might
exist among different studies. Appropriate weight functions that have been found include
(a) half-normal model w(y) = exp[−βp2(y)] and (b) negative exponential model w(y) =
exp[−βp(y)], where p(y) is the P -value when the resulting test statistic takes the value y

(see, e.g., [32]).

2.3. The information bound for estimation of
∫

f 2 using weighted data

Theorem 2.2 below provides the information bound for the problem of estimating θ = ∫
f 2 when

weighted data are available. For some finite M > 0 let H be a class of p.d.f’s defined by

H = {f |f ∈ L2(R), ‖f ‖∞ ≤ M}.
Theorem 2.2 Let f be a member of H. Then, the information bound, Iw(f ), for the estimation
of θ = ∫

f 2 using a weighted sample given by Equation (1), with w satisfying Assumption 2.1, is
given by

Iw(f ) = 4 μw

∫
f 3

w
− 4

(∫
f 2

)2

.

Remark 2.7 The information bound, Id(f ), for the estimation of θ = ∫
f 2 based on a direct

sample (see, e.g., [19,21,26]) equals

Id(f ) = 4
∫

f 3 − 4

(∫
f 2

)2

.

It is easy to see that for any uniform distribution U(a, b), with a < b, Iw(f ) is no smaller than
Id(f ) since

μw

∫
f 3

w
= 1

(b − a)2
d(f, w) = d(f, w)

∫
f 3 ≥

∫
f 3,
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where d(f, w) = μw

∫
f/w ≥ 1, by Jensen’s inequality, with equality if and only if w ≡ 1 (see,

e.g., [13]). However, there are cases where Iw(f ) is (strictly) smaller than Id(f ). For example,
let w(y) = 1 − 0.9y for all y ∈ (0, 1). Let f be the p.d.f. of a Beta distribution with parameters
α = 1 and β = 3. Then, using numerical integration (performed in R, version 2.4.0), or by direct
calculations, we can compute

μw

∫
f 3

w
= 3.4209404 and

∫
f 3 = 27

7
,

thus concluding that Iw(f ) is smaller than Id(f ). The above observations lead to the conclusion
that model sampling in the presence of selection bias can either improve or worsen the information
bound in the problem of estimating θ = ∫

f 2.Analogous conclusions regarding density estimation
based on weighted data can be found in [4,13].

Remark 2.8 Theorem 2.2 has the following implication. If an estimator, say Tn, of θ based on
a weighted sample given by Equation (1), with w satisfying Assumption 2.1 and f belonging to
H, satisfies

√
n(Tn − θ) −→ N(0, Iw(f )) in distribution and lim

n−→∞ nE(Tn − θ)2 = Iw(f ),

then Tn is asymptotically efficient (see, e.g., [21]).

3. Simulations

We present a small simulation study to illustrate the usefulness of the proposed estimator in finite
sample situations. We use the weight function

w(y) =

⎧⎪⎨
⎪⎩

1.10−40 if y < 1.10−40,

y if 1.10−40 ≤ y ≤ 40,

40 if y > 40,

1 2

0.
0

0.
1

0.
2

0.
3

1 2

0.
0

0.
2

0.
4

0.
6

Figure 1. MSE over 50 replications of a weighted sample of size n = 50 generated as in Cases(I) and (II).
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578 A. Petsa and T. Sapatinas

and five different distributions, i.e., (I) χ2-distribution with 3 degrees of freedom, (II) Beta
distribution with parameters α = 3 and β = 1, (III) Beta distribution with parameters α = 5
and β = 4, (IV) Beta distribution with parameters α = 5 and β = 2, and (V) Gamma distribution
with parameters α = 3 and λ = 1.

In each case, M = 50 samples of size n = 50 and 100 were used in order to construct the
boxplots of the MSE. For brevity, we just present the boxplots of MSE for n = 50. For the
proposed estimator we set κ = 2. In Figures 1 and 2, we compare the proposed estimator with
a simple projection estimator described in Remark 2.3. The boxplot on the right represents the
MSE of the projection estimator, while the boxplot on the left represents the MSE of the proposed
estimator. Obviously, the proposed estimator outperforms the projection estimator in all cases.

1 2
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0.
1

0.
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0.
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0.
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1 2
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00
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15

Figure 2. MSE over 50 replications of a weighted sample of size n = 50 generated as in Cases (III) and (V).
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Figure 3. MSE over 50 replications of a weighted sample of size n = 50 generated as in Cases (II) and (IV).
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Although not reported here, the proposed estimator is still better than the projection estimator for
larger sample sizes. In Figure 3, we compare the MSE of pseudoestimator (3) with the MSE of
the proposed estimator, in Cases (II) and (IV). The boxplot on the right represents the MSE of
the pseudoestimator, while the boxplot on the left represents the MSE of the proposed estimator.
Obviously, as it is expected, the estimation of μw deteriorates the quality of the estimator.
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Appendix Proofs

For the detailed proofs we refer to [33].

A.1. Proof of Theorem 2.1

The proof of Theorem 2.1 is broken into several parts. We first prove a lemma and three propositions which are used in
the proof of Theorem 2.1.

Let

Un(HD) = μ2
w

∑∑
1≤i,j≤n

i �=j

HD(Yi , Yj )

w(Yi)w(Yj )
(A1)

and

HD(x, y) =
∑
k∈Z

(
pk,D(x) − αk,Dw(x)

μw

)(
pk,D(y) − αk,Dw(y)

μw

)
. (A2)

In order to prove Lemma A1, we use an exponential inequality for U -statistics of order 2 with constants, obtained by
Houdré and Reynaud-Bouret [29].

Lemma A.1 Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution with p.d.f. gw given by
Equation (1), where f belongs to L2(R) and the weight function w is continuous and satisfies Assumption 2.1. There
exist some positive constants κ1, κ2 and κ3 for which the following inequality holds:

P

{
1

n(n − 1)
|Un(HD)| >

1

n − 1

[
κ1

√
DθDt + κ2‖f ‖∞t + κ3Dt2

n

]}
≤ 5.6 exp (−t).

Proof Let

g(x, y) = HD(x, y)μ2
w

w(x)w(y)
,

and let

A2
1 = n(n − 1)E(g(Y1, Y2)

2),

A2 = sup

⎧⎨
⎩
∣∣∣∣∣∣E(

n∑
i=2

i−1∑
j=1

g(Yi , Yj )αi(Yi)bj (Yj )

∣∣∣∣∣∣ :
n∑

i=2

E
(
α2

i (Yi )
) ≤ 1,

n−1∑
j=1

E

(
b2

j (Yj )
)

≤ 1

⎫⎬
⎭ ,

A2
3 = n sup

x

[
E(g(Y1, x)2] ,

A4 = sup
x,y

|g(x, y)|.

Using arguments similar to those used by Laurent [23], it is easy to see that the following inequalities hold:

A1 ≤ C1(w)
√

n(n − 1)DθD, A2 ≤ C2(w)n‖f ‖∞, (A3)

A3 ≤ C3(w)‖f ‖∞D, A4 ≤ C4(w)D, (A4)

where C1(w) =
√

2
(
1 + w2

2/w2
1

)
, C2(w) = w2

3/w3
1 + 1 + 2(w2/w1), C3(w) =

√
w3

2/w3
1 + w2/w1 and C4(w) = 1 +

w2
2/w2

1 + 2(w2/w1). Using inequalities (A3) and (A4), we can deduce from Theorem 3.4 of [29] that

P

{
|Un(HD)| >

1

n − 1

[
κ1

√
DθDt + κ2‖f ‖∞t + κ3Dt2

n

]}
≤ 5.6 exp(−t),
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where κ1 = C1(ε0, w), κ2 = C3(ε0, w) + C2(ε0, w), κ3 = C3(ε0, w) + C4(ε0, w), C1(ε0, w) = 4(1 + ε0)
3/2C1(w),

C2(ε0, w) = 2n(ε0)C2(w), C3(ε0, w) = 2β(ε0)C3(w) and C4(ε0, w) = 2γ (ε0)C4(w) and ε0 is a fixed positive number.
This completes the proof of Lemma A1. �

Proposition A1 provides a risk bound for the pseudo-estimator θ̃ , given by Equation (3), when M is unknown.

Proposition A.1 Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution with p.d.f. gw given by
Equation (1), with weight function w being continuous and satisfying Assumption 2.1. Consider the class of functions
satisfying ‖f ‖∞ ≤ M with M unknown. Let θ = ∫

f 2 and Dn be defined by Equation (8). There exists some constant
κ0 > 0 such that if pen(D) is given by Equation (4) for all D ∈ Dn, then there exists some n∗ := n∗(α, R, M, w) such
that θ̃ , given by Equation (3), satisfies the following inequality for all n ≥ n∗ and for all κ ≥ κ0:

E

{
θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

)}2

≤ C(w) inf
D∈Dn

[
‖fD − f ‖4

2 + D(M + 1) log(D + 1)

n2

]
+ C(M, w)

n2
.

Proof Let

Pn(hD) = 1

n

n∑
i=1

hD(Yi)μw

w(Yi)
−
∫

hDf

= 1

n

n∑
i=1

μw

2 (fD(Yi) − f (Yi))

w(Yi)
−
∫

2(fD − f )f ,

and let HD(x, y) and Un(HD) be defined by Equations (A1) and (A2), respectively. Also note that the following
decomposition holds:

Un(HD) + Pn(hD) −
∫

(f − fD)2 = θ̃D − θ − 2

n

n∑
i=1

(
μwf (Yi)

w(Yi)
− θ

)
.

Let

VD = Un(HD) + Pn(hD) −
∫

(f − fD)2 − pen(D).

Hence, it is easy to check that

θ̃ − θ − 2

n

n∑
i=1

(
μwf (Yi)

w(Yi)
− θ

)
= sup

D∈Dn

(VD).

Let A = {ω ∈ ω : θ̃D + 1/2 ≥ θD, ∀ D ∈ Dn}. We first obtain an upper bound for

E

⎡
⎣(θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

))2

IA

⎤
⎦ .

The following inequality holds:

E

[
| sup
D∈Dn

VD |2IA

]
≤
∑

D∈Dn

E
[
(VD)2+IA

]+ inf
D∈Dn

E
[
(VD)2−

]
.

Let

C0(M) = inf

{
D ∈ N : D

log (D + 1)
≥ M2

}
.

If

pen(D) ≥ uD(
√

2yD) + 10yDMw2

3nw1

holds on A, where uD(t) = (2κ1
√

DθDt)/n + (2κ2Mt)/n + (2κ3Dt2)n2, then the following inequality holds:

P

{(
VD > uD(

√
2t) + 10Mtw2

3nw1

)⋂
A

}
≤ 6.6 exp (−yD − t).
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Using arguments similar to those used by Laurent [23], we get∑
D∈Dn

E((VD)2+IA) ≤
∑

D∈Dn,D≤C0(M)

E((VD)2+IA) +
∑

D∈Dn,D≥C0(M)

E((VD)2+IA) ≤ C(M, w)

n2

and

E((VD)2−) ≤ C(w)

[
D(M + 1)xD

n2
+ M2

n2
+ ‖fD − f ‖4

2

]
.

Now it remains to find an upper bound for

E

⎧⎨
⎩
(

θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

))2

IAc

⎫⎬
⎭ .

We first obtain an upper bound for P {Ac}. Following the lines of Proposition 2 in [23] and using the fact that |Dn| ≤
n2/log3 n, one obtains

P(Ac) ≤ |Dn|C(M, w)

n8
≤ C(M, w)

n6
for all n ≥ n′ := max(n01, n02).

It is easy to see that the following inequalities hold:

θ̃D ≤ 2Dw2
2

w2
1

, pen(D) ≤ C(w)n, |θ̃ | ≤ C(w)n2 for all n ≥ 3.

θ =
∫

f 2 ≤ ‖f ‖∞
∫

f ≤ M,

∣∣∣∣∣ 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

)∣∣∣∣∣ ≤ 2M

(
1 + w2

w1

)
,

(
θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

))2

≤ C(M, w)n4 for all n ≥ 3.

Therefore, we arrive at

E

⎡
⎣(θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

))2

IAc

⎤
⎦ ≤ C(M, w)n4

P(Ac)

≤ C(M, w)

n2
for all n ≥ n∗ = max(3, n

′
),

thus completing the proof of Proposition A1. �

Proposition A.2 Let Y1, Y2, . . . , Yn be defined as in Proposition A1. Consider the smooth class of p.d.f.’s F (α, R, M)

defined by Equation (7). Let θ̃ be defined as in Proposition A1. For any α > 0, R > 0 and M > 0, there exist some κ0 > 0
and some integer n∗∗ := n∗∗(α, R, M) such that the following inequality holds for all n ≥ n∗∗ and all κ ≥ κ0:

sup
f ∈F (α,R,M)

E

{
θ̃ − θ − 2

n

n∑
i=1

(
f (Yi)μw

w(Yi)
− θ

)}2

≤ C(α, w)(RMα)4/(1+4α)

(√
log (nR2)

n

)8α/(1+4α)

.

Furthermore, for all α > 0, R > 0 and M > 0, there exists some integer n1 := n1(α, R, M) such that the following
inequality holds for all n ≥ n1:

sup
f ∈F (α,R,M)

E(θ̃ − θ)2 ≤ C(α, w)(RMα)4/(1+4α)

(√
log (nR2)

n

)8α/(1+4α)

+ C(w)
M2

n
.

Proof Let

Jn =
⌊

log2

(
n2R4

(M + 1) log (nR2)

)1/(1+4α)
⌋

+ 1.

Following the steps of the proof of Theorem 1 in [23], one can easily complete the proof of Proposition A2. �
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Proposition A3 shows that E

(
supD∈Dn

(θ̂D − θD)
)4

is uniformly bounded for all f ∈ F (α, R, M).

Proposition A.3 Let Y1, Y2, . . . , Yn and the smooth class of p.d.f’s F (α, R, M) be defined as in Proposition A2. θ̃D is
given by Equation (2). Then the following inequality holds:

E

(
sup

D∈Dn

(θ̃D − θD)

)4

≤ C(M, w, R, α).

Proof It is easy to see that the following inequalities hold:

E

(
| sup
D∈Dn

(θ̃D − 2θD)|4
)

= E

{
| sup
D∈Dn

(θ̃D − 2θD)|4IF

}
+ E

{
| sup
D∈Dn

(θ̃D − 2θD)|4IFc

}

≤ c
∑

D∈Dn

E
(
(VD2)

4+
)+ c inf

D∈Dn

E
(
(VD2)

4−
)+ inf

D∈Dn

E
(
(VD1)

4−
)

+ c

{
sup

D∈Dn

[
uD(

√
2yD) + 8MyDw2

3w1n

]}4

,

where F = {θ̃D − 2θD ≥ 0 for some D ∈ Dn}, VD1 = θ̃D − 2θD , VD2 = θ̃D − 2θD − uD(
√

2yD) − 8MyDw2/3w1n

and yD = 4 log(D + 1). Additionally, using

P

(
Pn(2fD) − ‖fD‖2 >

8Mw2(t + yD)

3w1n

)
≤ exp(−t − yD)

and

P

(
VD2 > uD(

√
2t) + 8Mw2t

3w1n

)
≤ 6.6 exp(−t − yD)

we get

E
{
(VD2)

4+
} ≤ C(M, w) exp(−yD)

[
D4

n8
+ D2

n4
+ 1

n4

]
,

and ∑
D∈Dn

E
{
(VD2)

4+
} ≤ C(M, w). (A5)

Now,

E
(
(VD1)

4−
) ≤ cE

(
(Un(HD)4)+ cE

(
(Pn(2fD))4)+ c‖fD‖8

2,

E
(
(VD2)

4−
) ≤ cE

(
(Un(HD)4)+ cE

(
(Pn(2fD))4)+ c‖fD‖8

2 + c

(
uD(

√
2yD) + 8MyDw2

3nw1

)4

.

Using the inequalities

E
(
(Un(HD)4) ≤ C(M, w)

[
D2

n4
+ D4

n8
+ 1

n4

]
,

E
(
(Pn(2fD))4) ≤ C(M, w)

n2
,

‖fD‖8
2 ≤ M8, and{

sup
D∈Dn

[
uD(

√
2yD) + 8MyDw2

3w1n

]}4

≤ C(M, w), (A6)

we arrive at

inf
D∈Dn

E
(
(VD1)

4−
)+ c inf

D∈Dn

E
(
(VD2)

4−
) ≤ C(M, w). (A7)

Finally, inequalities (A5)–(A7) complete the proof of Proposition A3.
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Now we are in a position to prove Theorem 2.1. By using the elementary inequality (a + b)2 ≤ 2a2 + 2b2 and splitting
on complementary events B and Bc, where

B =
{

ω | sup
D∈Dn

(
θ̃D − pen(D)

)
≥ sup

D∈Dn

(
θ̂D − penu(D)

)}
,

one can check that

E(θ̃ − θ̂ )2 ≤ 4E

[
sup

D∈Dn

(θ̃D − θ̂D)

]2

+ 4E

[
sup

D∈Dn

(penu(D) − pen(D))

]2

+ 4E

[
sup

D∈Dn

(θ̂D − θ̃D)

]2

+ 4E

[
sup

D∈Dn

(pen(D) − penu(D))

]2

. (A8)

Additionally, using the Cauchy–Schwartz inequality, one arrives at

E

⎧⎨
⎩
[

sup
D∈Dn

(θ̂D − θ̃D)

]2
⎫⎬
⎭ = E

⎧⎨
⎩ (μ̂2

w − μ2
w)2

μ4
w

[
sup

D∈Dn

(θ̃D)

]2
⎫⎬
⎭

≤ C(w)E

⎧⎨
⎩(μ̂w − μw)2

[
sup

D∈Dn

(θ̃D − 2θD)

]2
⎫⎬
⎭+ C(w, M)E(μ̂w − μw)2

≤ C(w)
√

E(μ̂w − μw)4

√√√√
E

{
sup

D∈Dn

(θ̃D − 2θD)

}4

+ C(w, M)E(μ̂w − μw)2.

Similarly, we can show that

E

[
sup

D∈Dn

(θ̃D − θ̂D)

]2

≤ C(w)
√

E(μ̂w − μw)4

√√√√
E

{
sup

D∈Dn

(θ̃D − 2θD)

}4

+ C(w, M)E(μ̂w − μw)2. (A9)

Moreover, one can easily see that

E

[
sup

D∈Dn

(pen(D) − penu(D))

]2

≤ Cκ2
E

[
sup

D∈Dn

(θ̃D − θ̂D)

]2

(A10)

and

E

[
sup

D∈Dn

(penu(D) − pen(D))

]2

≤ Cκ2
E

[
sup

D∈Dn

(θ̂D − θ̃D)

]2

. (A11)

It is also easy to check that

E(μ̂w − μw)2 ≤ C(w)

n
and E(μ̂w − μw)4 ≤ C(w)

n2
(A12)

(see, e.g., [13,24]). Inequalities (A8)–(A12), together with Proposition A3, lead to

E(θ̂ − θ̃ )2 ≤ C(w)

n
for all n ≥ n0 := max(n∗, 3)

which, together with Proposition A2, completes the proof of Theorem 2.1. �

A.2. Proof of Theorem 2.2

Let gν be a sequence of p.d.f’s such that ‖gν − g0‖2 −→ 0 as n −→ ∞, where g0 = wf0/μ0 and μ0 = ∫
f0w. Let

μw = ∫
f w. We are going to determine the Fréchet derivative of the functional θ = ∫

g2μ2
w/w2 at a point g0, where
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g0 = wf0/μ0 with f0 belonging to the class of p.d.f’s H. It is easy to see that the following equalities hold:

θ(gν) =
∫

μ2
0g

2
ν

w2
=
∫

μ2
0g

2
0

w2
+
∫

μ2
0(gν − g0)

2

w2
+ 2

∫
μ2

0g0(gν − g0)

w2
(A13)

and ∫
μ2

0g0(gν − g0)

w2
=
∫

μ2
0g0gν

w2
− θ(g0) =

∫
gν

[
μ2

0g0

w2
− θ(g0)

]
. (A14)

Additionally, one observes that the following inequality holds:∫
μ2

0(gν − g0)
2

w2
≤ w2

2

w2
1

‖gν − g0‖2
2 = o(‖gν − g0‖2). (A15)

Using (A13)–(A15), one obtains that

θ(gν) = θ(g0) + 2
∫

gν

[
μ2

0g0

w2
− θ(g0)

]
+ o(‖gν − g0‖2)

= θ(g0) + 2
∫

(gν − g0)

[
μ2

0g0

w2
− θ(g0)

]
+ o(‖gν − g0‖2).

Therefore, the Fréchet derivative is given by θ
′
(g0) = 2[μ2

0g0/w
2 − θ(g0)]. In what follows, 〈·, ·〉 denotes the scalar

product in L2(R). Following Ibragimov and Khasminskii [25], we consider the space orthogonal to the square root of the
likelihood s0 = √

g0, i.e.,

H =
{
k ∈ L2(R) :

∫
ks0 = 0

}
,

and the projection operator onto this space, i.e.,

PH (t) = t −
(∫

ts0

)
s0.

Since Y1, Y2, . . . , Yn are i.i.d. random variables, the family {P n
g } is locally asymptotically Gaussian at all points g =

wf /μw with f belonging to H, in the direction H(g0) with normalizing factor An(g0), where An(g) = (1/
√

n)(
√

g0)g

(see, e.g., Example 2.2 of [25]). Let Kn = √
nθ

′
(g0)AnPH(g0), where θ

′
(g0) = 2[μ2

0g0/w
2 − θ(g0)].

Then

Kn(k) = K(k) =
∫

2s0k

[
μ2

0g0

w2
− θ(g0)

]
− 2

∫
ks0

∫
g0

[
μ2

0g0

w2
− θ(g0)

]

=
∫

k

{
2s0

[
μ2

0g0

w2
− θ(g0)

]
− 2s0

∫
g0

[
μ2

0g0

w2
− θ(g0)

]}
.

Therefore, Kn(k) −→ K(k) weakly, where K(k) = 〈h, k〉 and

h = 2s0

[
μ2

0g0

w2
− θ(g0)

]
− 2s0

∫
g0

[
μ2

0g0

w2
− θ(g0)

]
.

According to Theorem 4.1 of [25], for any estimator of θ, say Tn, and for any family of vicinities of g0, say {V (g0)},
we have

inf
V (g0)

lim inf
n−→∞ sup

g∈V (g0)

n E(Tn − θ)2 ≥ ‖h‖2
2.

Hence, the information bound is given by

Iw(f ) := ‖h‖2
2 = 4

∫
g0

{
μ2

0g0

w2
− θ(g0) −

∫
g0

[
μ2

0g0

w2
− θ(g0)

]}2

= 4
∫

f 3
0 μ0

w
+ 4θ2(g0) − 8θ(g0)

∫
g2

0μ2
0

w2

= 4 μ0

∫
f 3

0

w
− 4

(∫
f 2

0

)2

,

thus completing the proof of Theorem 2.2. �
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