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Abstract: We consider function estimation in nonparametric regression over Besov
spaces and under pointwise lu-risks (1 ≤ u < ∞). First we derive both non-adaptive
and adaptive minimax pointwise rates of convergence in the standard nonparametric
regression model, complementing recent related results obtained in the Gaussian
white noise model. Then we investigate theoretical performance of Bayes factor
estimators at a single point in wavelet regression models with independent and
identically distributed errors that are not necessarily normally distributed. We
compare both non-adaptive and adaptive Bayes factor estimators in terms of their
frequentist optimality over Besov spaces and under pointwise lu-risks (1 ≤ u < ∞)
for various combinations of error and prior distributions, extending recent non-
adaptive results obtained for error and prior models with exponential descents and
under pointwise l2-risks. We provide sufficient conditions that determine whether
the unknown response function belongs to a Besov space a-priori with probabil-
ity one, and identify regions wherein the response function enjoys both pointwise
optimality, for the proposed non-adaptive and adaptive Bayes factor estimators,
and a-priori Besov membership. A simulation study is conducted to illustrate the
performance of the proposed adaptive Bayes factor estimation procedure with hy-
perparameters estimated in a fully Bayesian framework.
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1. Introduction

Over the last decade, the nonparametric regression literature has been dom-
inated by nonlinear wavelet methods. These methods are based on the idea of
thresholding, meaning that if an empirical wavelet coefficient is sufficiently large,
that is if its magnitude exceeds a predetermined threshold, then the correspond-
ing term in the empirical wavelet expansion is retained (or shrunk towards zero);
otherwise it is omitted. The resulting term-by-term wavelet thresholding esti-
mators possess optimal or near-optimal rates of convergence, and are typically
implemented through fast algorithms which make them very appealing in prac-
tice (see, e.g., Donoho and Johnstone (1994, 1995, 1998), Donoho, Johnstone,
Kerkyacharian and Picard (1995), Vidakovic (1999), Abramovich, Bailey and
Sapatinas (2000), and Antoniadis, Bigot and Sapatinas (2001)).
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Various Bayesian and empirical Bayes approaches for term-by-term nonlin-
ear wavelet shrinkage and wavelet thresholding estimators have been proposed.
These approaches impose a prior distribution on the wavelet coefficients of the
unknown response function. That is designed to capture the sparseness of wavelet
expansions common to most applications. A popular prior model for each wavelet
coefficient is a scale mixture of a symmetric unimodal distribution and a point
mass at zero; the distribution corresponding to the non-zero component repre-
sents the significant coefficients, while the point mass at zero represents the negli-
gible coefficients. The response function is then estimated by applying a suitable
Bayes rule to the resulting posterior distribution of the wavelet coefficients. Dif-
ferent choices of loss function lead to different Bayes rules and hence to different
(usually level-dependent) nonlinear wavelet shrinkage and wavelet thresholding
rules (see, e.g., Chipman, Kolaczyk and McCulloch (1997), Abramovich, Sapati-
nas and Silverman (1998), and Clyde, Parmigiani and Vidakovic (1998)).

However, until recently, the frequentist optimality (in the minimax sense)
properties of these Bayesian estimators have not been studied. (Hereafter the
distribution that refers to the prior model corresponds to the non-zero compo-
nent in the scale mixture distribution for the prior model referred to above.)
Abramovich, Amato and Angelini (2004) investigated optimality of posterior
mean, posterior median, and Bayes factor estimators in terms of the global L2-
risk for the combination of normal error and normal prior distributions in the
Gaussian white noise model. Pensky (2006) and Pensky and Sapatinas (2007)
studied optimality of posterior mean and Bayes factor estimators, respectively,
with respect to the global L2-risk for a wide variety of combination of error and
prior distributions in the nonparametric regression model. Johnstone and Sil-
verman (2005) explored optimality of adaptive empirical Bayes posterior mean
and posterior median estimators with respect to a wide range of global Lu-risks
(0 < u ≤ 2) for normal error and some heavy-tailed prior distributions; they
paid particular attention to the distinction between sampling the unknown func-
tion within Gaussian white noise and sampling at discrete points, and between
placing constraints on the function itself and on the discrete wavelet transform
of its sequences of values at the observation points, obtaining results for all rel-
evant combinations of these scenarios. The optimality of an adaptive empirical
Bayes procedure for the Bayes factor estimator with respect to the global L2-
risk for normal error and some heavy-tailed prior distributions, in the standard
nonparametric regression model, was considered in Pensky and Sapatinas (2007).

On the other hand, Abramovich, Angelini and De Canditiis (2007) explored
the optimality of posterior mean, posterior median, and Bayes factor estimators
in terms of the pointwise l2-risk for the combination of normal error and normal
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prior distributions in the Gaussian white noise model. They showed that un-
der the considered Bayesian hierarchical model, pointwise optimality is achieved
up to a logarithmic factor. The frequentist optimality of the Bayes factor esti-
mator applied to combinations of error and prior distributions with exponential
descents, under pointwise l2-risk, was studied by Bochkina and Sapatinas (2006)
in the nonparametric regression model. As they demonstrated, the use of a more
flexible Bayesian hierarchical model, under certain conditions, achieves pointwise
optimality without the extra logarithmic factor that appeared in the results of
Abramovich, Angelini and De Canditiis (2007).

This paper continues the line of investigation of Bochkina and Sapatinas
(2006), extending their pointwise optimality (in the minimax sense) results for
Bayes factor estimators, obtained in the nonparametric regression model, in three
general directions: (a) studying not just the pointwise l2-risk but also pointwise
lu-risks (1 ≤ u < ∞); (b) considering not only combinations of error and prior
distributions with exponential descents but also combinations of error and prior
distributions with polynomial descents; (c) providing not only non-adaptive but
also adaptive Bayes factor estimators, and (d) providing sufficient conditions
that determine whether the unknown response function belongs to a Besov space
a priori with probability 1, and identifying the regions wherein the response
function enjoys both pointwise optimality, for the proposed non-adaptive and
adaptive Bayes factor estimators, and a priori Besov membership.

In order to accomplish these objectives, we first complement the recent non-
adaptive and adaptive rates of convergence under pointwise lu-risks (1 ≤ u < ∞)
obtained by Cai (2003) in the Gaussian white noise model. In particular, in Sec-
tion 2, we consider function estimation in the standard nonparametric regression
model over Besov spaces, and derive both non-adaptive and adaptive minimax
rates of convergence under pointwise lu-risks (1 ≤ u < ∞). In Section 3, we
introduce Bayesian models for the wavelet coefficients and discuss assumptions
on the error and prior distributions, extending previously considered (in the con-
text of pointwise l2-risk optimality) error and prior models. In Section 4, we
provide statements about optimality of both non-adaptive and adaptive Bayes
factor estimators over Besov spaces and under pointwise lu-risks (1 ≤ u < ∞)
for the various combinations of error and prior distributions discussed in Section
3. In Section 5, we provide sufficient conditions that determine whether the un-
known response function belongs to a Besov space a-priori with probability one,
and identify regions wherein the response function enjoys pointwise optimality
for the proposed non-adaptive and adaptive Bayes factor estimators and a-priori
Besov membership. In Section 6, we report on a simulation study to illustrate
performance of the proposed adaptive Bayes factor estimation procedure with



1392 NATALIA BOCHKINA AND THEOFANIS SAPATINAS

hyperparameters estimated in a fully Bayesian framework. Proofs of the theo-
retical results stated in Sections 2, 4 and 5, as well as some auxiliary statements,
are available online at http://www.stat.sinica.edu.tw/statistica.

2. Minimax Rates of Convergence in the Standard Nonparametric Re-
gression Model over Besov Spaces and Under Pointwise Risks

Consider the standard nonparametric regression model

yi = f(ti) + zi, i = 1, . . . , n, (2.1)

where ti = i/n, f is the unknown response function that is assumed to belong to
the space of square integrable functions on [0, 1], i.e., f ∈ L2[0, 1], and where the
errors zi are independent N(0, σ2) random variables of known variance σ2 with
0 < σ2 < ∞.

This model can be viewed as a discretisation of the Gaussian white noise
model

dYn(t) = f(t)dt +
σ√
n

dW (t), t ∈ [0, 1], (2.2)

where W (t) is a standard Brownian motion and f ∈ L2[0, 1]. This model, under
some smoothness constraints on the unknown response function f , is asymptot-
ically equivalent (in Le Cam sense) to the standard nonparametric regression
model (2.1) (see, e.g., Brown and Low (1996a)).

For any possible estimator f̃ of f based on n observations from either model
(2.1) or model (2.2), define the maximal pointwise lu-risk with respect to the
lu-loss function (1 ≤ u < ∞) over a space F of functions defined on the unit
interval [0, 1] as

Ru
n(f̃ ,F , t0) = sup

f∈F
E|f̃(t0) − f(t0)|u (2.3)

for any fixed point t0 ∈ (0, 1). The difficulty of the estimation problem is mea-
sured by the minimax pointwise lu-risk (1 ≤ u < ∞)

R∗,u
n (f̃ ,F , t0) = inf

f̃
Ru

n(f̃ ,F , t0), (2.4)

where the infimum is taken over all estimators f̃ of f , and we wish to determine
the rate of convergence of the minimax pointwise lu-risk (2.4) as n → ∞.

Cai (2003) obtained the non-adaptive and adaptive minimax rates of con-
vergence under pointwise lu-risks (1 ≤ u < ∞) in the Gaussian white noise
model (2.2), when F is the Besov ball Br

p,q(A) of radius A > 0 in the Besov
space Br

p,q[0, 1]. For definitions and discussions on the relevance of Besov spaces
in scientific problems, we refer the reader to Donoho and Johnstone (1998) and
Mallat (1999). Cai (2003) showed that, provided 1 ≤ p, q ≤ ∞ and r > 1/p, the

http://www.stat.sinica.edu.tw/statistica
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non-adaptive minimax rate of convergence under pointwise lu-risks (1 ≤ u < ∞)
is

R∗,u
n (f̃ , Br

p,q(A), t0) ³ n−[(u(r−1/p))/(2(r−1/p)+1)] as n → ∞, (2.5)

while the corresponding adaptive rate is

R∗,u
n (f̃ , Br

p,q(A), t0) ³
( n

log n

)−[(u(r−1/p))/(2(r−1/p)+1)]
as n → ∞. (2.6)

(Here, we adopt standard notation and write g1(n) ³ g2(n) to denote 0 <

lim inf(g1(n)/g2(n)) ≤ lim sup(g1(n)/g2(n)) < ∞ as n → ∞.)
Our first objective is to complement the non-adaptive (2.5) and adaptive

(2.6) minimax rates of convergence under pointwise lu-risks (1 ≤ u < ∞), ob-
tained by Cai (2003) in the Gaussian white noise model (2.2), to the standard
nonparametric regression model (2.1). This is accomplished in Theorems 1 and
2.

Theorem 1.[non-adaptive] Consider the standard nonparametric regression mo-
del (2.1). The non-adaptive minimax rate of convergence under pointwise lu-risks
(1 ≤ u < ∞), over Besov balls Br

p,q(A) of radius A > 0 with 1 ≤ p, q ≤ ∞ and
r > 1/p, is given by

R∗,u
n (f̃ , Br

p,q(A), t0) ³ n−[(u(r−1/p))/(2(r−1/p)+1)] as n → ∞. (2.7)

Theorem 2.[adaptive] Consider the standard nonparametric regression model
(2.1). The adaptive minimax rate of convergence under pointwise lu-risks (1 ≤
u < ∞), over Besov balls Br

p,q(A) of radius A > 0 with 1 ≤ p, q ≤ ∞ and r > 1/p,
is given by

R∗,u
n (f̃ , Br

p,q(A), t0) ³
( n

log n

)−[(u(r−1/p))/(2(r−1/p)+1)]
as n → ∞. (2.8)

These minimax pointwise results, obtained for both the standard nonpara-
metric regression model (2.1) and the Gaussian white noise model (2.2), reveal
that, unlike the corresponding minimax rates of convergence under global Lu-
risks (see, e.g., Johnstone and Silverman (2005), for 0 < u 6 2), the minimax
rates of convergence under pointwise lu-risks (1 ≤ u < ∞) depend not only on
the smoothness index r, but also on the parameter p. Moreover, they converge at
minimax rates slower than the corresponding global minimax rates and the min-
imum cost for adaptation is a logarithmic factor; this latter observation agrees
with earlier results in the case of Lipschitz and Sobolev classes under pointwise l2-
risks, obtained by Lepski (1990), Brown and Low (1996b), Lepski and Spokoiny
(1997), and Tsybakov (1998), in the Gaussian white noise model (2.2).
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3. Pointwise Optimality of Bayes Factor Regression Estimators

3.1. Wavelet regression model

Now we consider the nonparametric regression model without the assumption
of Gaussian errors

Yi = f(ti) + Zi, i = 1, . . . , n, (3.1)

where ti = i/n, f ∈ L2[0, 1] is the unknown response function and where the Zi’s
are independent and identically (i.i.d.) distributed random variables with mean
E(Z1) = 0 and variance Var (Z1) = σ2 with 0 < σ2 < ∞.

Any f ∈ L2[0, 1] can be represented (in the L2-sense) by a wavelet series

f(t) =
∑

k∈KL−1

θ̃kφLk(t) +
∞∑

j=L

2j−1∑
k=0

θ̃jkψjk(t)

where, for some fixed primary resolution level L ≥ 0, φLk(t) = 2L/2φ(2Lt − k),
ψjk(t) = 2j/2ψ(2jt−k), θ̃k =

∫ +∞
−∞ φLk(t)f(t)dt and θ̃jk =

∫ +∞
−∞ ψjk(t)f(t)dt; here,

φ is the scaling function, ψ is a corresponding wavelet function, and KL−1 is the
set of indices for which the scaling function φLk is defined. (Note, for the standard
wavelet transform with periodic boundary corrections, KL−1 = {0, . . . , 2L − 1}.)
For suitable choices of φ and ψ, and appropriate modifications of boundary ψjk,
the corresponding set of φLk and ψjk forms an orthonormal set in L2[0, 1] (see,
e.g., Cohen, Daubechies and Vial (1993)), and Johnstone and Silverman (2004)).

Application of the boundary corrected discrete wavelet transform (DWT) to
(3.1) yields

Uk = uk + εk, k ∈ KL−1,

Wjk = wjk + εjk, j = L,L + 1, . . . , J − 1, k = 0, . . . , 2j − 1,

where J = log2(n), and εk, εjk are uncorrelated random variables with zero mean
due to the unitary property of the DWT. Let θk = uk/

√
n and θjk = wjk/

√
n

and recall that θ̃k ≈ θk and θ̃jk ≈ θjk for large n (see, e.g., Vidakovic (1999)). In
the Appendix, we provide a more detailed treatment of this relationship for the
boundary coiflets {φ, ψ}, a particular case of a wavelet system used to establish
the pointwise optimality results given in subsequent sections (see Lemma 4 in
Bochkina and Sapatinas (2006)). In this case, there will be 2L − 2(S − s − 1)
scaling coefficients at the primary resolution level L, with KL−1 = {0, . . . , s −
1, S−1, S, . . . , 2L−S, 2L−s, 2L−s+1, . . . , 2L−1} (see Johnstone and Silverman
(2004, p.83)).

As in Pensky (2006) and Pensky and Sapatinas (2007), the distributions of
the errors εjk are modeled to be independent and allowed to vary with resolution
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levels εjk ∼ ϕj(·). For the probability density functions (pdf’s) ϕj of the errors,
we consider not only the standard Gaussian pdf (see Abramovich, Angelini and
De Canditiis (2007)) or the double-exponential pdf (see Bochkina and Sapatinas
(2006)), but also two more general types of distributions. The first are distri-
butions with power-exponential descents, also known as Subbotin distributions,
with pdf’s

ϕj(x) = Cβσ−1
j exp

(
−

(
|x|
σj

)β)
, 0 < σ ≤ σj ≤ σ̄ < ∞, β > 0, (3.2)

with C−1
β = 2Γ(β−1)β−1 (see, e.g., Johnson, Kotz and Balakrishnan (1995, Chap-

ter 24)). This family includes Gaussian distribution (β = 2) and Laplace (double
exponential) distribution (β = 1). We also consider a general family of heavy-
tailed distributions with pdf’s ϕj such that∣∣∣∣ϕ(k)

j (x)
ϕj(x)

∣∣∣∣ < Cϕk, k = 1, 2, 3, 4, (3.3)

for some Cϕk > 0 independent of x (see Pensky (2006)). For example, (3.3) is
satisfied for Student’s t distribution. We also assume that the error distributions
are symmetric; this holds for the Subbotin and Student’s t distributions.

Finally, for the distribution of the errors of the scaling coefficients, εk, we
only assume that it has a finite variance σ2

L−1.

3.2. Bayesian model

We use the Bayesian framework to construct estimators θ̂k of θk (based on
Uk) and θ̂jk of θjk (based on Wjk) in order to estimate the unknown response
function f . Since the wavelet representations of a vast majority of functions
contain only a few non-negligible wavelet coefficients in their expansions, similar
to the priors used previously in the Bayesian wavelet regression literature, and
in order to ‘control’ the trade-off between sparse and dense sequences, we take
the following prior distribution

wjk ∼ πj,nτj,nh(τjn·)+(1−πj,n)δ0(·), j = L,L+1, . . . , k = 0, . . . , 2j −1, (3.4)

where 0 ≤ πj,n ≤ 1 and πj,n = 0 for j ≥ J , τj,n > 0, δ0 is the Dirac function (the
pdf of the point mass at zero), and wjk are independent random variables. To
complete the prior specification of f , we place noninformative priors (e.g., the
uniform density on R) on the scaling coefficients uk, k ∈ KL−1.

We impose all conditions on the prior odds ratio βj,n = (1−πj,n)/πj,n. Note
that we allow dependence of πj,n (and hence of βj,n) not only on the resolution
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level j but also on n (for some justification of this dependence, see Bochkina and
Sapatinas (2006) or Pensky and Sapatinas (2007)). We assume that the prior
distribution h is symmetric unimodal. Subbotin and Student’s t distributions
belong to this class. Results are stated without specifying a particular form of h.

Bayesian inference is conducted for each wavelet coefficient separately. Write

djk =
Wjk√

n
and νj =

√
nτjn. (3.5)

Let Ij(djk) be the density of the marginal distribution of djk given θjk 6= 0, i.e.,

Ij(djk) =
∫ +∞

−∞

√
nϕj [

√
n(x − djk)]νjh(νjx)dx, (3.6)

and let ζj,n(djk) be the posterior odds ratio

ζj,n(djk) =
Ij(djk)

[
√

nϕj(
√

ndjk)]
, (3.7)

derived using the relation between wjk and θjk and (3.4)−(3.5). Thus, the pos-
terior pdf of θjk given djk is of the form

p(θjk | djk) =
√

nϕj(
√

n(θjk−djk))νjh(νjθjk) + βj,n
√

nϕj(
√

ndjk)δ0(θjk)
Ij(djk) + βj,n

√
nϕj(

√
ndjk)

. (3.8)

We use (3.8) in the next section to introduce the Bayes factor estimator.

3.3. Bayes factor estimator

The Bayes factor estimator of θjk is derived as follows (see Vidakovic (1998)):
after observing djk, we test the hypothesis

H0 : θjk = 0 versus H1 : θjk 6= 0.

If the hypothesis H0 is rejected, θjk is estimated by djk, otherwise θjk = 0, so
that the estimator θ̂jk is given by θ̂jk = djk I([(P (H1 | djk))/(P (H0 | djk))] > 1),
where I(A) denotes the indicator function of the set A. Observe that the posterior
odds ratio can be rewritten as [(P (H1 | djk))/(P (H0 | djk))] = [(ζj,n(djk))/(βj,n)].
Thus, we can write

θ̂jk = djk I
(
ζj,n(djk) > βj,n

)
. (3.9)

Due to the symmetry of both error and prior density functions, the ζj,n(djk) are
even functions of djk. If, moreover, the ζj,n(djk) are strictly increasing in djk for
djk > 0, then

ζj,n(djk) > βj,n if and only if |djk| > tj,n = ζ−1
j,n(βj,n). (3.10)
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Hence, (3.9) is a hard thresholding rule with the threshold tj,n, i.e.,

θ̂jk = djk I
(
|djk| > tj,n

)
. (3.11)

Indeed, in the majority of practical cases, it is true that (3.9) gives rise to a hard
thresholding rule (see Lemma 1 in Pensky and Sapatinas (2007)).

Note that under the considered error model, the noninformative priors for
the scaling coefficients uk, k ∈ KL−1, result in their posterior distributions being
proper and their estimates being the corresponding empirical scaling coefficients
Uk, k ∈ KL−1. Thus, θ̂k = Uk/

√
n, k ∈ KL−1. Since we assumed that πj,n = 0 if

j ≥ J , k = 0, . . . , 2j − 1, we have θ̂jk = 0 as j ≥ J , k = 0, . . . , 2j − 1. Therefore,
the Bayes factor regression estimator of f is

f̂BF (t) =
∑

k∈KL−1

θ̂kφLk(t) +
J−1∑
j=L

2j−1∑
k=0

θ̂jkψjk(t), (3.12)

where the coefficients θ̂jk are found using (3.9) with the function ζj,n(djk) defined
by (3.7) and (3.6).

3.4. Assumptions

Now we formulate conditions on the wavelet system {φ, ψ} and the pdf ’s h

and ϕj .

(S1) φ and ψ are the boundary coiflets introduced in Johnstone and Silverman
(2004), possessing s > r vanishing moments, and based on orthonormal
coiflets supported in [−S + 1, S], s < S, with L ≥ log2(6S − 6).

(S2) ϕj and h are unimodal symmetric densities and, if pdf ’s ϕj belong to the
family of heavy-tailed densities (3.3),

∫ ∞
0 |x|uϕj(x)dx < ∞. (Note that the

latter condition holds for all u when the pdf ’s ϕj belong to the family of
power-exponential densities (3.2)).

(S3) |ϕj(x)/h(x)| ≤ Cϕh.

In (S3) constant Cϕh is independent of j which requires some kind of unifor-
mity for the pdf ’s ϕj . The consequence of this restriction is that the asymptotic
expressions for the thresholds tj,n will depend on the resolution level j rather
than on the particular form of ϕj .

In what follows, we compare various Bayes factor regression estimators f̂BF

in terms of their ability to achieve the non-adaptive (2.7) and adaptive (2.8)
minimax rates of convergence under pointwise lu-risks (1 ≤ u < ∞); these are
pointwise optimal (in the minimax sense) for Gaussian errors. Since for the
majority of resolution levels (j ≤ J0 where J −J0 → ∞ as n → ∞) the errors εjk
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are asymptotically N(0, σ2) distributed, provided that E(Z4
1) < ∞, we expect

that the optimal pointwise rates of convergence over these levels for an arbitrary
distribution of the errors, satisfying (S1)-(S3), are not faster than the optimal
pointwise rates of convergence for Gaussian errors.

4. Pointwise Optimality of Bayes Factor Regression Estimators

4.1. The non-adaptive case

In this section, we show that the non-adaptive minimax pointwise rates of
convergence (2.7) are achievable for the Bayes factor estimators, either when the
pdf’s ϕj are power-exponential or when both pdf’s ϕj and h are heavy-tailed.

Following Bochkina and Sapatinas (2006), we divide wavelet resolution levels
into two groups: low with L ≤ j ≤ j1 and high with j1 < j ≤ J − 1, where

j1 =
1

2(r + 1/2 − 1/p)
log2 n. (4.1)

We assume that parameters νj and βj,n of the suggested Bayesian model, de-
scribed in Section 3, are

νj = C12jm(j) , where m(j) =
{

m1, L ≤ j ≤ j1,

m2, j1 < j ≤ J − 1,
(4.2)

βj,n = Cβ2ja(j)nb(j) , where (a(j), b(j)) =
{

(a1, b1), L ≤ j ≤ j1,

(a2, b2), j1 < j ≤ J − 1.
(4.3)

Note that we allow both hyperparameters m(j), a(j) and b(j) to vary with reso-
lution level j.

Remark 2. We have considered here a more general parametrization of βjn

compared to that in Bochkina and Sapatinas (2006) which now includes the model
considered in Abramovich, Angelini and De Canditiis (2007) as a particular case
with b(j) = 0, as well as the case considered in Bochkina and Sapatinas (2006)
with aBS

(j) = a(j)m(j) and bBS
(j) = −a(j)/2.

We start with the case where the pdf ’s ϕj are power-exponential, and set
x+ = max(0, x).

Theorem 3. Assume (S1), (S2) and (S3), 1 ≤ u < ∞, and f ∈ Br
pq(A) with

1 ≤ p, q ≤ ∞, A > 0 and 1/p < r < s. Assume that ϕj(x) = cσ−1
j e−(|x|/σj)

β
,

0 < σ 6 σj 6 σ̄ < ∞, β > 0, h has a bounded second derivative, and assume
that ζjn(x) increases for x > 0 for j 6 j1. Assume

1. m1 6 r − 1/p + 1/2 and b1 + 1/2 + [((a1 − m1)+)/(2(r − 1/p) + 1)] 6 0 (if
a1 = m1, the inequality is strict);
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2. m2 > r − 1/p + 1/2 and

a) β 6 1 and b2 + [((a2)+)/(2(r − 1/p) + 1)] > 0;

b) β > 1 and b2 +[a2/(2(r−1/p)+1)]− [(2(r−1/p))/(2(r−1/p)+1)](u/2−
a2)+ > 0.

Then, for any t0 ∈ (0, 1), Ru
n(f̂BF , Br

pq, t0) = O(n−[(u(r−1/p))/(2(r−1/p)+1)]) as
n → ∞.

Remark 3. It is evident that if the error distribution has light tails (i.e., β > 1),
we have more freedom to choose the hyperparameters a2 and b2. Also, for u = 2,
the cases with β = 1 and β = 2, together with exponential h, were considered
by Bochkina and Sapatinas (2006), as well as the case of Gaussian prior and
Gaussian error distributions. Simple calculations show that the conditions on
a(j) and b(j) stated in Theorem 3, imply conditions on aBS

(j) in Bochkina and
Sapatinas (2006), with aBS

(j) = a(j)m(j) and bBS
(j) = −a(j)/2.

Theorem 4. Assume (S1), (S2) and (S3), 1 ≤ u < ∞, and f ∈ Br
pq(A) with

1 ≤ p, q ≤ ∞, A > 0 and 1/p < r < s. Let ϕj be a heavy tailed distribution
satisfying (3.3) with variance σ2

j , 0 < σ 6 σj 6 σ̄ < ∞, and assume that h has a
bounded second derivative and that ζjn(x) increases for x > 0 for j 6 j1. Assume

1. m1 6 r − 1/p + 1/2 and b1 + 1/2 + [((a1 − m1)+)/(2(r − 1/p) + 1)] 6 0 (if
a1 = m1, the inequality is strict);

2. m2 > r − 1/p + 1/2 and b2 + [((a2)+)/(2(r − 1/p) + 1) > 0.

Then, for any t0 ∈ (0, 1), Ru
n(f̂BF , Br

pq, t0) = O(n−[(u(r−1/p))/(2(r−1/p)+1)]) as
n → ∞.

Remark 4. The conditions on the hyperparameters are the same in Theorem 3
for 0 < β 6 1 and in Theorem 4, since the power exponential pdf’s in the latter
case satisfy (3.3). Note also that in order to achieve non-adaptive pointwise
optimality, we assume different behavior of the ratio of the variances between
error and prior distributions, ν2

j /n, at low and high resolution levels.

Remark 5. If ϕj and h are Student’s t distributions, i.e., having pdf

gν(x) = cν

(
1 +

x2

ν

)−(1+ν)/2
, −∞ < x < ∞, (4.4)

with ν = ρ and ν = γ degrees of freedom, respectively, then the assumptions of
Theorem 4 are satisfied if 2 < γ < ρ and ρ > u.

Remark 6. The assumption that h has a bounded second derivative in Theorems
3 and 4 can be replaced with the assumption that ϕj have second derivatives
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bounded uniformly in j (see Remark 7).

4.3. The adaptive case

In this section, we show that the adaptive minimax pointwise rates of con-
vergence (2.8) are achievable for the Bayes factor estimators when the pdf’s ϕj

are power-exponential.

Theorem 5. Assume (S1), (S2) and (S3), 1 ≤ u < ∞, and f ∈ Br
pq(A) with

1 ≤ p, q ≤ ∞, A > 0 and 1/p < r < s. Let ϕj be the pdf of N(0, σ2
j /2),

0 < σ 6 σj 6 σ̄ < ∞, and assume that h is such that ζjn(x) increases for x > 0.
Assume

1. νj/
√

n 6 C for some C > 0;

2. C1n
b+1/22aj 6 βjn

√
n/νj < C2n

B for some B, C1, C2 > 0 and b + 1/2 −
(u/2 − a)+ > 0.

Then, for any t0 ∈ (0, 1), Ru
n(f̂BF , Br

pq, t0)=O((n/(log n))−[(u(r−1/p))/(2(r−1/p)+1)])
as n → ∞.

Theorem 6. Assume (S1), (S2) and (S3), 1 ≤ u < ∞, and f ∈ Br
pq(A) with

1 ≤ p, q ≤ ∞, A > 0 and 1/p < r < s. Assume that ϕj(x) = Cβσ−1
j e−(|x|/σj)

β
,

0 < σ 6 σj 6 σ̄ < ∞, β > 0, and assume that h is such that ζjn(x) increases for
x > 0, and that h is either heavy-tailed (3.3) (with ϕj replaced by h) or Gaussian.
Assume

1. νj/
√

n → 0 as n → ∞;

2. C1n
b+1/22aj 6 βjn

√
n/νj < C2 exp{B[log n]β/2} for some B, C1, C2 > 0 and

b + 1/2 − (u/2 − a)+ > 0.

Then, for any t0 ∈ (0, 1), Ru
n(f̂BF , Br

pq, t0)=O((n/(log n))−[(u(r−1/p))/(2(r−1/p)+1)])
as n → ∞.

5. A-priori Besov Membership of Pointwise Optimal Models

In this section we explore Besov membership of functions whose wavelet
coefficients obey the probability model described in Section 3.2, and compare
the required sufficient conditions with those for pointwise optimality in both
non-adaptive and adaptive cases.

As in Pensky (2006) and Pensky and Sapatinas (2007), for simplicity, we
restrict ourselves to the case of finite parameters p and q. We assume that the
wavelet coefficients of f are independent and that

θjk ∼ πj,nνjh(νj ·)+ (1−πj,n)δ0(·), j = L,L+1, . . . , k = 0, . . . , 2j − 1, (5.1)
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where 0 ≤ πj,n ≤ 1 and πj,n = 0 for j ≥ J , νj > 0, with βj,n = (1 − πjn)/πj,n.
For the parametrization of βj,n and νj used in the non-adaptive case (Sec-

tion 4.1), the sufficient condition of a-priori Besov membership is given in the
following proposition.

Proposition 1. Assume that f has independent wavelet coefficients with dis-
tribution (5.1) with mother wavelet function’s regularity s > 0, and that param-
eters νj and βjn are, respectively, of the form (4.2) and (4.3). Then, f ∈ Br

p,q,
1/p < r < s, 1 6 p, q < ∞, almost surely, if

1.
∫
|x|max(p,q)h(x)dx < ∞;

2. b1 > [((p(r+1/2−m1)−a1)+)/(2(r+1/2−1/p))], and the inequality is strict
if p(r + 1/2 − m1) − a1 = 0;

3. b2 > Z[p(r + 1/2 − m2) − a2], where Z = [1/(2(r + 1/2 − 1/p))] if p(r +
1/2 − m2) − a2 < 0 and Z = 1 otherwise; and the inequality is strict if
p(r + 1/2 − m2) − a2 = 0.

Condition 1 is satisfied by prior distributions with light tails, e.g., the power-
exponential ones; this assumption is, however, essential for heavy-tailed distribu-
tions. Conditions 2 and 3 apply to the hyperparameters of βj,n and νj . Compar-
ing these conditions with conditions for non-adaptive pointwise optimality (over
lu-risks, 1 ≤ u < ∞), we see that they do not overlap since for non-adaptive
pointwise optimality the weakest condition is b1 6 −1/2, while for a-priori Besov
membership the weakest condition is b1 > 0. Thus, in order to simultaneously
achieve non-adaptive pointwise optimality and a-priori Besov membership, a
wider set of functions is needed.

For the adaptive parametrization (Section 4.2), the sufficient condition of
a-priori Besov membership is given in the following proposition.

Proposition 2. Assume that f has independent wavelet coefficients with dis-
tribution (5.1) with mother wavelet function’s regularity s > 0, and that param-
eters νj and βjn satisfy βjn/νj > C2ajnb and νj = Cν2mj. Then, f ∈ Br

p,q,
1/p < r < s, 1 6 p, q < ∞, almost surely, if

1.
∫
|x|max(p,q)h(x)dx < ∞;

2. b > (p(r + 1/2) − (p + 1)m − a)+; the inequality is strict if p(r + 1/2) − (p +
1)m − a = 0.

Combining Proposition 2 and Theorem 6, we obtain that f enjoys adaptive
pointwise optimality (over lu-risks, 1 ≤ u < ∞) for the Bayes factor estimator
and a-priori Besov membership, for 1/p < r < s, 1 6 p, q < ∞, if

m 6 1
2
, b >

(
max

{
(u − 1)

2
, p

(
r +

1
2

)
− (p + 1)m

}
− a

)
+

,
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and if the moment of order max(p, q) of the prior distribution h is finite and the
error distribution ϕj is Subbotin.

Thus, for some p0 ∈ [1,∞), which for heavy-tailed prior distributions h can
be the largest finite moment, the adaptive pointwise optimality (over lu-risks,
1 ≤ u < ∞) and a-priori Besov membership are achieved simultaneously over
Besov spaces f ∈ Br

p,q, 1/p < r < s, 1 6 q 6 ∞, 1 6 p 6 p0, if, for instance,
m = 1/2, a = max(u/2, p0s), and b = 0.

6. Numerical Results

In this section, we report on a study the proposed adaptive Bayes Factor es-
timator using simulated data, with parameters estimated in a fully Bayesian
way using freely available WinBUGS software (see Spiegelhalter, Thomas and
Best (1999)). We also compared this fully Bayesian Bayes Factor (FBBF) es-
timator with the adaptive wavelet estimation procedure (WT) proposed in Cai
(2003). The WT estimator is a hard thresholding wavelet estimator with thresh-
old σ

√
u log2 n. The wavelet transform used in our implementation was per-

formed using R and packages wavethresh and wavelets that are freely avail-
able from www.r-project.org.

6.1. Model specification

To the simulated data, we fitted a Bayesian model with double-exponential
prior distribution h and Gaussian error distribution ϕj , with σ2

j ≡ σ2. The-
orem 5 implies that in order to achieve the adaptive minimax pointwise rate
of convergence, we need to constrain the hyperparameters as νj 6 Cn1/2 and
Cnb2aj 6 βj/νj < nB−1/2, with b + 1/2 − (u/2 − a)+ > 0. In the fully Bayesian
context, we can either impose these constraints on the prior distribution of the
hyperparameters with a fixed u or we can check that the mean posterior esti-
mates of πj and νj satisfy these constraints. Here, we followed the second path
since we do not want the prior knowledge about the coefficients to depend on
the chosen measure of goodness-of-fit. To check the conditions we used values
a = u/2 and b = 0.

Thus, we considered the independent uniform prior distributions for πj and
exponential distributions for νj , i.e., πj ∼ U[0, 1] and νj ∼ Exp(1). We used a
non-informative scale-invariant prior on the precision parameter σ−2 with density
f(x) = 1/x. To estimate the parameters in the hierarchical model above using
the WinBUGS software, the improper prior for σ−2 was approximated by a proper
prior Gamma distribution with pdf proportional to x0.001−1e−0.001x ≈ x−1. Using
posterior predictive model checks (see Lewin, Bochkina and Richardson (2007)),
we found that this model fit data well. To fit the model, two chains were run

www.r-project.org
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for 80,000 iterations in each, and the last 50,000 thinned by 5 were used for
estimating the posterior distributions.

6.2. Simulation study

Now, we present results of the simulation study, with the remainder of this
section devoted to the discussion of these results.

In this simulation study, we evaluated the performance of the FBBF and WT
estimators using Daubechies’ compactly supported ExtremePhase 2 and Coiflet 2
wavelet filters (see Daubechies (1992, p.196 and p.258) respectively), and primary
resolution levels L = 2, 3 and 4. We considered three different kinds of test
functions, defined on the unit interval (representing different types of situations):
(a) HeaviSine, a function that is discontinuous with two jumps (see, e.g., Donoho
and Johnstone (1994)), (b) Laplace, a function that is continuous but has a
discontinuity in the first derivative (see, e.g., Angelini, De Canditiis and Leblanc
(2003)), and (c) Parabolas, a function that has continuous first derivative but
there are big jumps in the second derivative (see, e.g., Antoniadis, Bigot and
Sapatinas (2001)).

For each test function, M = 100 samples were generated by adding inde-
pendent random noise ε ∼ N(0, σ2) to n = 256, 512 and 1,024 equally spaced
points on [0, 1]. To represent various noise levels, the values of σ were taken to
correspond to the values

√
2.5 and

√
5 for the (root) signal-to-noise ratio (SNR)

SNR(f, σ) =

√
(1/n)

∑n
i=1(f(ti) − f̄)2

σ
, where f̄ =

1
n

n∑
i=1

f(ti).

The goodness-of-fit for an estimator f̂ of f at a point t0 was measured by the
mean lu-error:

MEu(f, t0) =
1
M

M∑
m=1

|f̂m(t0) − f(t0)|u.

For brevity, we only report in detail the results for the Laplace function using
n = 1, 024, L = 2 and ExtremePhase 2 wavelet filter, for data with SNR =

√
2.5.

Different combinations of test functions, sample sizes, primary resolution levels,
wavelet filters and SNR values yield similar results in magnitude. The mean
lu-errors over the majority of points for the FBBF estimator are lower than for
the WT estimator, except for the outlier values for u = 20 (Figure 1). From
the fitted plots, we can see that as the threshold of the WT estimator increases
with increasing u, the rather irregular WT estimate for u = 1 becomes smoother.
At the point t = 0.5, the mean lu-error of the FBBF estimator is smaller than
the error of the WT estimator for u = 1, for u = 2, 3 they are similar, and for
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Figure 1. Boxplots of 100 simulation results of the FBBF and WT estimators
for the Laplace function at point t0 = 0.5.

Figure 2. Posterior estimates of πj,n with 95% credible intervals for a simu-
lated dataset (ExtremePhase 2 wavelet filter, SNR =

√
2.5).
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u = 20 it is greater than the error of the WT estimator. From Figure 2, it can
be seen that the proportions of non-zero wavelet coefficients decrease fast, thus
fitting curves of the type πj = 1/(1 + C2aj) satisfying Condition 3 of Theorem 5
is simple. For example, for values a = u/2, the corresponding values (a,C) are
(0.5, 2), (1, 1), (1.5, 0.4). For u = 20, the constant is very small. Thus, it appears
that the Bayes Factor estimator is probably optimal for u = 1, 2, 3.
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