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Abstract: We investigate the theoretical performance of Bayes factor estimators
in wavelet regression models with independent and identically distributed errors
that are not necessarily normally distributed. We compare these estimators in
terms of their frequentist optimality in Besov spaces for a wide variety of error and
prior distributions. Furthermore, we provide sufficient conditions that determine
whether the underlying regression function belongs to a Besov space a-priori with
probability one. We also study an adaptive estimator by considering an empirical
Bayes estimation procedure of the Bayes factor estimator for a certain combination
of error and prior distributions. Simulated examples are used to illustrate the
performance of the empirical Bayes estimation procedure based on the proposed
Bayes factor estimator, and compared with two recently proposed empirical Bayes
estimators. An application to a dataset that was collected in an anaesthesiological
study is also presented.
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1. Introduction

Over the last decade, the nonparametric regression literature has been dom-
inated by nonlinear wavelet methods. These methods are based on the idea of
thresholding, which typically amounts to individual assessment of each empiri-
cal wavelet coefficient. If an empirical wavelet coefficient is sufficiently large in
magnitude, that is, if its magnitude exceeds a predetermined threshold, then the
corresponding term in the empirical wavelet expansion is retained (or shrunk
towards zero); otherwise it is omitted. The resulting term-by-term wavelet
thresholding estimators possess optimal or near-optimal convergence rates, and
are typically implemented through fast algorithms which makes them very ap-
pealing in practice. See, e.g., Donoho and Johnstone (1994, 1995, 1998) and
Donoho and Johnstone, Kerkyacharian and Picard (1995). See also Vidakovic
(1999), Abramovich, Bailey and Sapatinas (2000) and Antoniadis, Bigot and Sap-
atinas (2001) for comprehensive reviews and appropriate software.

Various Bayes and empirical Bayes approaches for term-by-term wavelet
(nonlinear) shrinkage and wavelet thresholding estimators have also been pro-
posed. (To introduce terminology, a shrinkage rule shrinks empirical wavelet
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coefficients to zero, whilst a thresholding rule shrinks and, in addition, sets to

zero all empirical wavelet coefficients below a certain level.) These approaches

impose a prior distribution on the wavelet coefficients of the unknown response

function that is designed to capture the sparseness of wavelet expansions com-

mon to most applications. The response function is then estimated by applying

a suitable Bayes rule to the resulting posterior distribution of the wavelet co-

efficients. Different choices of loss function lead to different Bayes rules and

hence to different (usually level-dependent) wavelet (nonlinear) shrinkage and

wavelet thresholding rules. See, e.g., Chipman, Kolaczyk and McCulloch (1997),

Abramovich, Sapatinas and Silverman (1998), Clyde, Parmigiani and Vidakovic

(1998), Vidakovic (1998), Angelini and Sapatinas (2004) and Angelini and Vi-

dakovic (2004).

The above papers are devoted to the nonparametric regression model

Yi = f(ti) + Zi, i = 1, . . . , n, (1.1)

where ti = i/n, f is the unknown response function that is assumed to belong

to some functional space F defined on the unit interval [0, 1], and the errors Zi

are independent and identically distributed (i.i.d.) random variables. In most

cases, the Zi’s are assumed to be normally distributed with (mean) E(Z1) = 0

and (variance) Var(Z1) = σ2 < ∞. Recently, the case dealing with non-normal

errors in the Bayesian framework was also studied. See, e.g., Clyde and George

(2000) and Pensky (2006).

Our focus will be on investigating the optimality of the so-called Bayes factor

estimator (see Vidakovic (1998)) for a wide variety of error and prior distribu-

tions. The characteristic of this estimator is that it leads to a hard thresholding

rule, unlike the posterior mean which leads to a (nonlinear) shrinkage rule and

the posterior median which leads to a soft thresholding rule.

The present paper continues the line of investigation of Abramovich, Am-

ato and Angelini (2004), Johnstone and Silverman (2004a, 2005) and Pensky

(2006) who examined frequentist optimality (in the minimax sense) of various

Bayesian and empirical Bayes wavelet (nonlinear) shrinkage and wavelet thresh-

olding estimators for model (1.1). However, unlike Abramovich et al. (2004) and

Johnstone and Silverman (2004a, 2005), this paper is not confined to the case of

normal errors and considers a much wider variety of Bayesian models. In this

sense, this paper is similar to Pensky (2006), where optimality is studied under

very mild restrictions on the errors in (1.1), i.e., it is just assumed that the Zi’s

are i.i.d. random variables with a unimodal and symmetric (but unknown) distri-

bution having E(Z1) = 0 and E(Z4
1 ) < ∞. However, although our main results

are formulated in a similar way to Pensky (2006), the present paper studies a

different set of estimation techniques, namely, Bayes factor estimators which are
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based on hard thresholding of wavelet coefficients, while Pensky (2006) investi-

gates posterior mean estimators which lead to a (nonlinear) shrinkage. In spite
of the seeming similarity between the two papers, the proofs of the statements of

the present paper require a completely different set of techniques. The only ex-

ception is Theorem 3 which is concerned with the well-known Bayesian paradox

and is independent of a particular estimation technique. However, Corollary 4 is
directly tailored to the Bayes factor estimators and is different from Corollaries 4

and 5 in Pensky (2006). Moreover, as we demonstrate below, optimality results

for the Bayes factor estimators are derived under milder conditions than the cor-

responding ones for the posterior mean estimators established in Pensky (2006).
The paper of Bochkina and Sapatinas (2005) also adopts the Bayesian paradigm

for a wide variety of error and prior distributions. However, it does not deal

with model (1.1) directly but instead discusses certain properties of posterior

median estimators obtained from recovering a high-dimensional vector observed
in white noise; moreover, it does not study optimality of the resulting posterior

median estimators. It is also evident from the expressions of the posterior median

estimators obtained in Bochkina and Sapatinas (2005), as well as the forms of
the posterior mean estimators obtained in Pensky (2006), that the Bayes factor

estimator is much easier to evaluate in the majority of cases.

Our work is partly motivated by the results of Abramovich et al. (2004)

who investigated posterior mean, posterior median and Bayes factor estimators,
but only in the case of normal errors and normal priors. Hence, the results

of Abramovich et al. (2004) are much more limited than results of the present

paper. Also, due to their sub-optimal choice of tuning parameters, conclusions

made in Abramovich et al. (2004) are too pessimistic. However, in the case of
normal errors and normal priors, Abramovich et al. (2004) implied that Bayes

factor estimators lead to smaller risks than posterior mean or posterior median

estimators, and in what follows we confirm that indeed Bayes factor estimators

are not only easier to calculate but they also achieve optimality under milder
conditions on the actual errors.

Finally, a few words should be said about the relationship between the

present paper and those by Johnstone and Silverman (2004a, 2005). Unlike the

latter papers, which are concerned with investigation of (adaptive) empirical
Bayes estimators under normal errors, we consider Bayes estimators under a

wide variety of error models. Although Section 3.5 studies a modification of the

technique of Johnstone and Silverman (2005) when Bayes factor rules are used,

investigation of empirical Bayes techniques is not the main goal of this paper
and is done mainly for demonstrating a practical benefit of an empirical Bayes

version of the proposed Bayes factor estimator in finite sample situations.

It should be mentioned that although all three estimation techniques – poste-

rior mean, posterior median, and Bayes factor estimators – can achieve optimality
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as sample size increases, in finite sample situations the posterior mean and pos-
terior median estimators often deliver smaller average mean squared errors than
Bayes factor estimators, while the latter ones preserve peak heights better. This
is mainly due to the fact that posterior mean and posterior median estimators
appear to have slightly better reconstructions over the regions where the under-
lying function is smooth; this is not surprising since posterior mean estimators
are (nonlinear) shrinkage rules while posterior median estimators are soft thresh-
olding rules. Hence, as our simulation study and dataset show, Bayes factor
estimators, as hard thresholding rules, are preferable for irregular functions with
high peaks.

The rest of the paper is organized as follows. In Section 2 we introduce
Bayesian models for the wavelet coefficients. We use some “arbitrary” distri-
bution for the error and a mixture of a point mass at zero and a symmetric,
unimodal distribution for the prior, keeping in mind that the actual distribution
of the wavelet coefficients is unknown at fine resolution levels, and is asymptoti-
cally normal at coarse resolution levels according to the Central Limit Theorem.
In Section 3 we discuss assumptions on the error and prior distributions, and
provide assertions about optimality of Bayes factor estimators in Besov spaces
for various choices of error and prior distributions. Furthermore, we provide
sufficient conditions that determine whether the underlying regression function
belongs to a Besov space a-priori with probability one. An adaptive estimator,
based on an empirical Bayes estimation procedure of the Bayes factor estimator
for a certain combination of error and prior distributions, is also considered. In
Section 4, simulated results are used to illustrate the performance of the empir-
ical Bayes estimation procedure based on the proposed Bayes factor estimator,
and compared with two recently proposed empirical Bayes estimators. We also
present an application to a dataset that was collected in an anaesthesiological
study. Section 5 is reserved for discussion and comparison of the various models
on the basis of optimality, as well as performances on the simulated examples
and the dataset. Finally, in Section 6 (Appendix), we provide some auxiliary
statements as well as the proofs of the theoretical results obtained in Section 3.

2. The Bayesian Model

Consider the nonparametric regression model (1.1) and assume that the un-
derlying response function f belongs to the space of squared integrable functions
on [0, 1], i.e., f ∈ L2[0, 1], and that the Zi’s are i.i.d. random variables with
E(Z1) = 0 and E(Z4

1 ) < ∞. Then any f ∈ L2[0, 1] can be represented (in the
L2-sense) by a wavelet series, i.e.,

f(t) =
∑

k∈KL−1

θ̃kφLk(t) +

∞
∑

j=L

2j−1
∑

k=0

θ̃jkψjk(t),
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where, for some (fixed) primary resolution level L ≥ 0, φLk(t) = 2L/2φ(2Lt− k),

ψjk(t) = 2j/2ψ(2jt−k), θ̃k =
∫ +∞
−∞ φLk(t)f(t)dt and θ̃jk =

∫ +∞
−∞ ψjk(t)f(t)dt; here,

φ is the scaling function, ψ is a corresponding wavelet function and KL−1 is the

set of indices for which the scaling function φLk is defined. For suitable choices of

φ and ψ, and appropriate boundary treatments, the corresponding set of φLk and

ψjk forms an orthonormal set in L2[0, 1]. See, e.g., Cohen, Daubechies and Vial

(1993), Walter (1994, Chap.7) and Johnstone and Silverman (2004b).

Application of the (boundary corrected) discrete wavelet transform (DWT)

to (1.1) yields

Uk = uk + ǫk, k ∈ KL−1,

Wjk = wjk + εjk, j = L,L+ 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1,

where J = log2 n, and ǫk and εjk are uncorrelated random variables due to the

unitary property of the DWT. Let θk = uk/
√
n and θjk = wjk/

√
n and recall

that θ̃k ≈ θk and θ̃jk ≈ θjk. See, e.g., Vidakovic (1999). In the appendix, we

provide a more detailed treatment of this relationship for the boundary coiflets

{φ,ψ}, a particular case of a wavelet system used to establish the optimality

results given in subsequent sections (see Lemma 6). In this case, there will be

2L − 2(S − s− 1) scaling coefficients at the primary resolution level L, and thus

KL−1 is the set of indices for which the corresponding scaling function φLk is

defined. See Johnstone and Silverman (2004b, p.83).

We use the Bayesian framework to construct estimators θ̂k of θk (based on

Uk) and θ̂jk of θjk (based on Wjk) in order to estimate the unknown response

function f . Since the wavelet representations of a vast majority of functions

contain only a few non-negligible wavelet coefficients in their expansions, similar

to the priors used previously in the Bayesian wavelet regression literature, we

place the following prior on the wavelet coefficient wjk

wjk ∼ πj,nτj,nξ(τj,n·)+(1−πj,n)δ(0), j = L,L+1, . . . , k = 0, 1, . . . , 2j−1, (2.1)

where 0 ≤ πj,n ≤ 1 for L ≤ j ≤ J − 1 and πj,n = 0 for j ≥ J , τj,n > 0, δ(0) is a

point mass at zero, and wjk are independent random variables. We also assume

that ξ is a symmetric probability density function (pdf) on R = (−∞,∞) that

is unimodal, positive and finite at zero. To complete the prior specification of f ,

we place noninformative priors (e.g., the uniform density on R) on the scaling

coefficients uk, k ∈ KL−1.

According to the prior model (2.1), wjk is either zero with probability (1 −
πj,n) or with probability πj,n is distributed with the pdf ξ with scale parameter

τj,n; the proportion πj,n indicates whether a value is small or large and can be
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used to ‘control’ the trade-off between sparse and dense sequences. In what

follows, however, we impose all conditions on the prior odds ratio

βj,n =
1 − πj,n

πj,n
. (2.2)

Note that we allow dependence of πj,n (and hence of βj,n) not only on the res-

olution level j but also on n. It is most natural since the proportion of wavelet

coefficients we are intending to keep depends not only on the function f itself

but also on the amount of data available: when n is larger, the estimators of

wavelet coefficients become more reliable and, hence, smaller wavelet coefficients

can be distinguished from pure noise. Consequently, for larger n one can keep

larger number of wavelet coefficients at a particular resolution level j which leads

to the larger values of πj,n.

Let us now discuss the distribution of the errors εjk. It follows from (1.1)

that

εjk ≈ n−
1
2 2

j
2

n
∑

i=1

ψ(2j i

n
− k)Zi.

Since the Zi’s are i.i.d. random variables with E(Z4
1 ) < ∞, it is not difficult to

see that the sequence {n−1/22j/2ψ(2ji/n−k)Zi} satisfies the Lyapunov condition

(see, e.g., Billingsley (1995, p.362), provided that 2j/n→ 0 as n→ ∞. Hence, if

the resolution level is reasonably small (j ≤ J0 where J − J0 → ∞ as n → ∞),

the errors εjk are asymptotically N(0, σ2) distributed and, thus, asymptotically

independent. On the other hand, at high resolution levels, the errors εjk are

uncorrelated and have some unknown pdf ’s µj which are symmetric and have

uniformly bounded (for all j and k) fourth moments, E(ε4jk) ≤ Cσ,ε. For a more

detailed treatment of asymptotic normality, the interested reader is referred to,

e.g., Neumann and von Sachs (1995).

The difficulty of using the µj in Bayesian inference is that they are unknown.

For this reason, we choose general distribution for the errors εjk, namely,

εjk ∼ ηj(·), (2.3)

where the ηj are level dependent symmetric pdf ’s on R that are unimodal, positive

and finite at zero. (For the distribution of errors of the scaling coefficients, ǫk, we

only assume that it has a finite variance.) As we show later, one does not need

the knowledge of the true distribution of the errors εjk and can obtain optimal

estimators of f with a variety error distributions ηj . Moreover, one can consider

ηj = η, i.e., the error distribution does not even need to be level dependent.

Note that we have considered the pdf ’s ξ and ηj to be positive. Narrowing

the support of ξ would imply that we ignore large wavelet coefficients which is
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inappropriate, since they represent important characteristics of the (possibly) in-

homogeneous signal of interest. Similarly, narrowing the supports of the ηj mean

that we exclude noise distributions with heavy tails, like double-exponential or

Student-t pdf ’s. Finally, we assume that both ξ and ηj are finite at zero for

slightly different reasons. For ξ, we assume that all zero mass is accounted for

in the other part of the mixture otherwise the mixture would not be identifiable,

whereas in ηj we assume that there are no zero masses to exclude the ‘pathologi-

cal’ case of observing data without errors. Note also that due to the unimodality

assumption, both ξ and ηj cannot have atom masses at any other points.

In what follows, we conduct Bayesian inference for each wavelet coefficient

separately. Let

djk =
Wjk√
n

and νj =
√
nτj,n. (2.4)

Taking into account the relation between wjk and θjk and (2.1)–(2.4), we find

that the posterior pdf of θjk given djk is of the form

p(θjk | djk) =

√
nηj(

√
n(θjk − djk)) νjξ(νjθjk) + βj,n

√
n ηj(

√
ndjk)δ(0)

∫ +∞
−∞

√
nηj(

√
n(x− djk))νjξ(νjx)dx+ βj,n

√
n ηj(

√
ndjk)

.

The Bayes factor estimator of θjk is derived as follows (see Vidakovic (1998)):

after observing djk, we test H0 : θjk = 0 versus H1 : θjk 6= 0. If H0 is rejected,

θjk is estimated by djk, otherwise θjk = 0, so that the estimator θ̂jk is given by

θ̂jk = djk I

(

P (H1 | djk)

P (H0 | djk)
> 1

)

,

where I(A) denotes the indicator function of the set A. Observe that the posterior

odds ratio can be rewritten as

P (H1 | djk)

P (H0 | djk)
=
ζj,n(djk)

βj,n
,

where

ζj,n(djk) =
Ij(djk)

[
√
nηj(

√
ndjk)]

, (2.5)

Ij(djk) =

∫ +∞

−∞

√
n ηj[

√
n(x− djk)] νjξ(νjx)dx. (2.6)

Rewriting θ̂jk in view of (2.5), we obtain

θ̂jk = djk I(ζj,n(djk) > βj,n). (2.7)
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It is easy to check that ζj,n(djk) are even functions of djk. If, moreover, the
functions ζj,n(djk) are strictly increasing in djk for djk > 0, then ζj,n(djk) >
βj,n if and only if |djk| > tj,n = ζ−1

j,n(βj,n). Hence, (2.7) is a hard thresholding
rule with the threshold tj,n, i.e.,

θ̂jk = djk I(|djk| > tj,n). (2.8)

Indeed, in the majority of practical cases, it is true that (2.7) gives rise to a hard
thresholding rule. This is confirmed by the following statement.

Lemma 1. If ηj is the normal or the double-exponential pdf, then ζj,n(djk) is
strictly increasing in djk for djk > 0. If both ηj and ξ are Student-t pdf’s with
a and b degrees of freedom, respectively, with a > b, then ζj,n(djk) is strictly
increasing in djk for djk > 0 if νj/

√
n → 0 and b > a/(a + 1), while ζj,n(djk) ≤

1 + Can/ν
2
j if

√
n/νj → 0, where the constant Ca > 0 depends only on a.

Note that under the considered error model, the noninformative priors for the
scaling coefficients uk result in their posterior distributions being proper and their
estimates being the corresponding empirical scaling coefficients Uk, k ∈ KL−1,
and thus θ̂k = Uk/

√
n, k ∈ KL−1. Since we assumed that πj,n = 0 if j ≥ J ,

k = 0, 1, . . . , 2j − 1, one has θ̂jk = 0 as j ≥ J , k = 0, 1, . . . , 2j − 1, and therefore

the estimator f̂ of f is of the form

f̂(t) =
∑

k∈KL−1

θ̂kφLk(t) +
J−1
∑

j=L

2j−1
∑

k=0

θ̂jkψjk(t). (2.9)

Coefficients θ̂jk are found using (2.7), where ζj,n(djk) is defined by (2.5) and (2.6).
To complete the construction of the estimator, we need to choose the error model
ηj and the prior model ξ, as well as the values of the parameters νj and βjn, so
that the estimator (2.9) achieves the optimal convergence rate over a wide range
of Besov spaces. This is the purpose of the next section.

3. Optimality in Besov Spaces

The objective of this paper is to formulate conditions under which the esti-

mator f̂ of f , given in (2.9), is optimal in the sense to be described.

3.1. Optimal convergence rate over Besov spaces

For any estimator f̃ of f based on n observations from model (1.1), define

the maximal risk, with respect to the L2[0, 1]-loss function, over a function space

F defined on the unit interval [0, 1], as

Rn(F , f̃) = sup
f∈F

E(‖f̃ − f‖2
2), (3.1)
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where ‖·‖2
2 denotes the L2[0, 1]-norm. Donoho and Johnstone (1998) showed that

when the Zi’s in (1.1) are independent and normally distributed with E(Z1) = 0

and Var(Z1) = σ2 < ∞, and when f belongs to a ball Br
p,q(A) of radius A > 0

in the Besov space Br
p,q[0, 1], then provided r > 1/p and 1 ≤ p, q ≤ ∞,

inf
f̃
Rn(Br

p,q(A), f̃) ≍ n−
2r

2r+1 as n→ ∞, (3.2)

where the infimum is taken over all estimators f̃ of f .

Note that the normal distribution is a particular case of the distribution of

the errors εjk. Since for the majority of resolution levels (j ≤ J0 where J −J0 →
∞ as n → ∞) the errors εjk asymptotically follow the normal distribution, we

can expect to achieve the optimal convergence rate (3.2), as n → ∞, for some

choices of prior (2.1) and error (2.3) distributions.

3.2. Assumptions

In what follows, we formulate conditions on the wavelet system {φ,ψ} and

the pdf ’s ξ and ηj , as well as on the parameters νj and βj,n. We point out that

these conditions are not always necessary in what follows.

(A0) Let φ and ψ be the boundary coiflets introduced in Johnstone and Silverman

(2004b), possessing s continuous derivatives, s−1 vanishing moments, s ≥ 2,

and based on orthonormal coiflets supported in [−S+1, S], s < S. Let also

L ≥ log2(6S − 6).

Let ξ and ηj be symmetric pdf ’s on R that are unimodal, positive and finite

at zero, that they be three times continuously differentiable everywhere, except

possibly at zero, have uniformly bounded fourth moments, and satisfy the con-

ditions

(A1) |ξ(k)(x)/ξ(x)| ≤ Cξ(1 + |x|λξ)k, k = 1, 2, 3, λξ ≥ 0, (3.3)

(A2) |η(k)
j (x)/ηj(x)| ≤ Cη(1 + |x|λη )k, k = 1, 2, 3, λη ≥ 0, (3.4)

(A3) |ηj(x)/ξ(x)| ≤ Cξ,η.

The constants λη, Cη and Cξ,η are assumed to be independent of j which requires

some kind of uniformity for the pdf ’s ηj . The consequence of this restriction

is that the asymptotic expressions for the thresholds tj,n will depend on the

resolution level j rather than on the particular form of the ηj .

In the subsequent development, we consider two general parametric models

for ξ and ηj : power exponential models with pdf ’s proportional to exp{−c|x|β},
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x ∈ R, β > 0, c > 0, and polynomial models with pdf ’s proportional to (1 +

cx2)−ρ, x ∈ R, ρ > 0, c > 0. The polynomial models satisfy (A1) and (A2) for

all ρ > 0 with λξ = 0 and λη = 0, while the power exponential models satisfy

(A1) and (A2) with λξ = 0 and λη = 0 if 0 < β ≤ 1, and with λξ = β − 1 and

λη = β − 1 if β > 1. Note that the common normal ηj - normal ξ model satisfies

(A1) and (A2) with λη = 1 and λξ = 1.

When (A1) and (A2) hold with λξ = 0 and λη = 0, following Johnstone and

Silverman (2004a, 2005), we say that ηj and ξ are heavy-tailed pdf ’s. The most

common examples are the double-exponential and the Student-t pdf ’s. In this

situation, the integral Ij(djk) has the asymptotic expansion

Ij(djk) ∼ νjξ(νjdjk) if νj/
√
n→ 0, (3.5)

that is valid for any djk as long as the relation between νj and n holds. If λξ is

positive, then (3.5) can be used under some restrictions on djk only (see Lemma

2).

Let also

rp = 0.5

[

(
1

p
− 1

2
) +

√

(
1

p
− 1

2
)2 + 2(

1

p
− 1

2
)

]

I(1 ≤ p < 2). (3.6)

Note that rp = 0 when p ≥ 2, and that rp ≤ (1 +
√

5)/4 for any 1 ≤ p < 2.

Remark 1. The assumption (A0) and condition (3.6) are introduced for the

sake of obtaining convergence rates for the L2[0, 1]-norm based risk function. See

Johnstone and Silverman (2004b). All statements of the paper hold for L = 0 and

any periodic s-regular scaling function φ and wavelet ψ with s > max(r, r+1/2−
1/p) if one replaces (3.1) byRn(F , f̃) = supf∈F

(

1/n
∑n

i=1 E[f̃(i/n) − f(i/n)]2
)

.

Remark 2. The assumptions of the existence of fourth moments are used for

derivation of asymptotic expansions of the integral Ij(djk). These conditions can

be dropped and replaced by the conclusions of Lemma 2. These conclusions,

however, have to be verified individually for each combination of the error ηj and

the prior ξ.

Let r > 0, 1 ≤ p, q ≤ ∞ and A > 0. It is well-known that whenever

f ∈ Br
pq(A), its wavelet coefficients θ̃jk satisfy

2j−1
∑

k=0

θ̃2
jk ≤ B 2

−2j(r+ 1
2
− 1

min(p,2)
)

(3.7)

for some B > 0. See, e.g., Johnstone (2002). This implies that the properties of

Besov spaces vary dramatically for 1 ≤ p < 2 and p ≥ 2. Indeed, p ≥ 2 indicates
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that the Besov space is spatially homogeneous while 1 ≤ p < 2 means that the

Besov space is spatially nonhomogeneous. See, e.g., Mallat (1999, Sec.9.2.3). In

order to be able to treat both cases together, we introduce the notation p∗ =

min(p, 2).

Let

j0 = (2r + 1)−1 log2 n, J0 = 0.5 [log2 n+ j1] ,

j1 = r
[

(r + 1
2 − 1

p∗ )(2r + 1)
]−1

log2 n.
(3.8)

We assume that the parameter νj is of the form

νj = C1 2mj , (3.9)

where, for some ε > 0,

m =











m1 = r + 1
2 , L ≤ j ≤ j0,

m2 = (r + 1
2) − ( 1

p∗ − 1
2 )

(

1 + (2r)−1 + ε
)

, j0 < j ≤ j1,

m3 = r + 1
2 , j1 < j ≤ J − 1.

(3.10)

(Note that although we always require ε > 0, in some cases, as we see below, it

is necessary to have more restrictive assumptions on ε.) We refer to L ≤ j ≤ j0,

j0 < j ≤ j1, and j1 < j ≤ J − 1 as low, medium, and high resolution levels,

respectively.

Remark 3. The assumptions about νj can be translated into the ones on τj,n
using (2.4), namely, τj,n = C12

mj/
√
n. This expression coincides with the choice

of τj,n for the normal ηj – normal ξ model in Abramovich et al. (1998) and

Abramovich et al. (2004).

Choose also βj,n such that

βj,n =
( νj√

n

)aj

, where aj =











a1, L ≤ j ≤ j0,

a2, j0 < j ≤ j1,

a3, j1 < j ≤ J − 1.

(3.11)

Observe that if p ≥ 2, then p∗ = 2 and j0 = j1, so that the medium resolution

levels disappear, and m = r + 1/2 for all resolution levels. This situation leads

to “almost linear” estimators which deliver optimality in spatially homogeneous

Besov spaces. In spatially nonhomogeneous Besov spaces (i.e., 1 ≤ p < 2), the

medium resolution levels require a larger spread of the prior distribution, which

leads to lower values of νj and consequently of m. Note also that the resolution

level j1 is chosen so that

J−1
∑

j=j1+1

2j−1
∑

k=0

θ2
jk = O

(

n−
2r

2r+1

)

.
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We also assume that r > rp (see (3.6)), ensuring that j1 = o(J), so that one

can choose resolution level J0, j1 < J0 < J−1, such that J−J0 → ∞. The latter

means that the errors εjk are asymptotically normally distributed for j ≤ j1, so

that µj(x) = (
√

2πσ)−1 exp(−x2/(2σ2)) for j ≤ j1.

Finally, we assume that the ηj do not have significantly lighter tails than the

normal distribution with variance equal to the true variance of the error, i.e.,

(A4) ϕ(
x

σ
) ≤ Cα [ηj(x)]

α, α > 0, (3.12)

where ϕ is the pdf of a N(0, 1) random variable, σ is the true standard deviation

of the error, and Cα > 0 is a constant independent of j.

3.3. Optimality of Bayes factor estimators in Besov spaces

We now discuss the combination of error and prior distributions considered

below to study optimality of Bayes factor estimators.

In effect, we consider two kinds of models, with threshold tj,n as defined

between (2.7) and (2.8), at high resolution levels:

(a) the models for which the threshold tj,n satisfies the condition

√
n tj,n ≥ Ct

νj√
n
, if

√
n

νj
→ 0, (3.13)

where the constant Ct > 0 is independent of n and νj ;

(b) the models for which the threshold tj,n satisfies the condition

√
n tj,n ≥ Ct max

{
√

ln(βj,n

√
n

νj
),

√

ln(βj,n)

}

, if

√
n

νj
→ 0,

where the constant Ct > 0 independent of n and νj .

The first class of models includes all those with λξ = λη = 0 in (3.3) and (3.4),

the normal ηj – normal ξ model, and the normal ηj - double-exponential ξ model.

The second class of models includes, e.g., the normal ηj – polynomial-tailed ξ

model. (The case when ηj are heavy-tailed and ξ is normal delivers sub-optimal

convergence rates due to the slow convergence of the bias when, e.g., the posterior

mean is used as an estimator. See Pensky (2006). Hence, intentionally, we do

not consider these models in the subsequent development.) In these cases, we

have the following result.

Theorem 1. Let {φ,ψ, s, L} be as in (A0), and let f ∈ Br
p,q(A) with 1 ≤ p, q ≤

∞, p∗ = min(p, 2) and max(rp, 1/p
∗) < r < s. Assume that the error distribution

µj has l uniformly (in j) bounded moments, where

l > 2 +
(

r +
1

2

)−1
. (3.14)



FREQUENTIST OPTIMALITY OF BAYES FACTOR ESTIMATORS 611

Choose ξ and ηj as in Section 3.1 satisfying (A1)−(A4), let βj,n be given by

(3.11), and assume that the threshold tjn satisfies (3.13).

(i) If the ηj have exponential descents, i.e.,

ηj(x) = Cj exp
(

−
∣

∣

∣

x

σj

∣

∣

∣

β)

, 0 < σ ≤ σj ≤ σ̄ <∞, Cj > 0, β>0, (3.15)

and λξ = 0 in (3.3) or ξ is the normal pdf, choose a1 < 1, a2 < 1 − (1/p −
1/2)/[α(r + 1/2)(r + 1/2 − 1/p)] and a3 > 1 + 1/[α(r + 1/2)] in (3.11), and

choose ε > [1/(αr(1 − a2))]I(β = 2) in (3.10), where α is defined by (3.12).

Then

Rn(Br
p,q(A), f̂ ) = O

(

n−
2r

2r+1 (lnn)
2−p∗

β

)

as n→ ∞. (3.16)

(ii) If the ηj have polynomial descents, i.e.,

ηj(x) = Cj(1 + |x
σ j

|2)−̺, 0 < σ ≤ σj ≤ σ̄ <∞, Cj > 0, ̺ > 0, (3.17)

choose 1 − ̺/(r + 1/2) < a1 < 1, a2 < 1 and a3 > 0 in (3.11), and choose

ε > 0 in (3.10). Then

Rn(Br
p,q(A), f̂ ) = O

(

n−
2r

2r+1
+κ

)

as n→ ∞,

where

κ =
(1 − a2)(2 − p∗)2

8p∗̺(r + 1
2)

(

1 +
1

2r
+ ε

)

. (3.18)

Theorem 1 shows that in spatially homogeneous Besov spaces (i.e., p∗ =

2), all Bayes factor estimators achieve optimality without a logarithmic factor

(note that both the power of lnn and κ are equal to zero in this case). If

p∗ < 2, the Bayes factor estimator is optimal up to a logarithmic factor if the ηj

have exponential descents, and has sub-optimal convergence rates if the ηj have

polynomial descents. Observe also that, due to (A4), we have the restriction

0 < β ≤ 2 in (3.15), so that the power of the logarithmic function is at least

(1− p/2), which is achieved when the ηj are normal pdf ’s. It is well known that

the (lnn)1−p/2 factor in the optimal convergence rate is unavoidable whenever

coefficients are treated one-by-one. See, e.g., Donoho and Johnstone (1994) and

Cai (1999). This benchmark is met as β = 2 in (3.15). In general, we have the

following results.

Corollary 1. Let the assumptions of Theorem 1 on φ, ψ, s, L, f , r, p, q and µj

hold. Let ηj be double-exponential pdf’s satisfying (3.15), let ξ be such that λξ = 0
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in (3.3), and that (A3) is satisfied. Set a1 < 1, a2 < 1 and a3 > 1 in (3.11),

and choose ε > 0 in (3.10). Then Rn(Br
p,q(A), f̂) = O

(

n−2r/(2r+1) (ln n)2−p∗
)

as

n→ ∞.

Corollary 2. Let the assumptions of Theorem 1 on φ, ψ, s, L, f , r, p, q and µj

hold. Let ηj be normal pdf’s satisfying (3.15), and let ξ be a normal pdf satisfying

(A3) or a double-exponential pdf. Set a1 < 1, a2 < 1−(1/p−1/2)/[α(r+1/2)(r+

1/2− 1/p)], and a3 > 1+1/[α(r+1/2)] in (3.11), and choose ε > 1/(αr(1−a2))

in (3.10), where α is defined by (3.12). Then

Rn(Br
p,q(A), f̂) = O

(

n−
2r

2r+1 (lnn)1−
p∗

2

)

as n→ ∞. (3.19)

Note that the situation when both ηj and ξ have polynomial descents is

covered by Theorem 1. Hence, the only case that we have not discussed so far

is when λη > 0 but (3.13) is invalid, which occurs when the ηj are normal pdf ’s

and ξ has a polynomial descent. In this situation, we cannot guarantee that

the threshold tjn satisfies (3.13) and have to use higher values for βj,n at high

resolution levels in order to achieve optimal convergence rates. In this case, we

have the following result.

Theorem 2. Let the assumptions of Theorem 1 on φ, ψ, s, L, f , r, p, q and µj

hold, and choose ξ and ηj as discussed in Section 3.1 to satisfy (A1)−(A4) with

λη > 0 and λξ = 0. Let the ηj satisfy (3.15), choose βj,n given by (3.11) with

a1 < 1 and a2 < 1 for L ≤ j ≤ j1, and take

βj,n = exp(
νj√
n

), if j1 < j ≤ J − 1. (3.20)

Choose ε > (αr(1− a2))
−1I(β = 2) in (3.10), where α is defined by (3.12). Then

Rn(Br
p,q(A), f̂) is given by (3.16).

Corollary 3. Let the assumptions of Theorem 1 on φ, ψ, s, L, f , r, p, q and

µj hold. Let ηj be normal pdf’s satisfying (3.15), and let ξ be the Student-t pdf.

Choose βj,n given by (3.11) with a1 < 1 and a2 < 1 for L ≤ j ≤ j1, and by (3.20)

for j1 < j ≤ J−1. Let ε > (αr(1−a2))
−1 in (3.10), where α is defined by (3.12).

Then Rn(Br
p,q(A), f̂ ) is given by (3.19).

3.4. Does f ∈ Br

pq
a-priori with probability one?

In Section 3.3, the conditions to achieve optimal convergence rates were

mainly concerned with the choice of the error model ηj . The main assertion

about the prior model ξ was that it should not have faster descent at ±∞ than

the error model ηj. However, it is the behaviour of the prior model ξ that
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determines whether the regression function f belongs to a Besov space a-priori

with probability one. Namely, the following sufficient statement proved in Pensky

(2006) is valid.

Theorem 3. Let p∗ = min(p, 2), max(rp, 1/p
∗) < r < s, 1 ≤ p, q < ∞, and let

ξ, νj and βj,n be such that

∫ +∞

−∞
|x|max(p,q) ξ(x)dx <∞, (3.21)

lim
n→∞

J−1
∑

j=L

[

2j(r+1/2) β
−1/p
j,n ν−1

j

]min(p,q)
<∞. (3.22)

Then f ∈ Br
p,q with probability one.

Since (3.21) requires the prior ξ to have at least max(p, q) ≥ 1 finite moments,

it immediately eliminates the Cauchy prior from consideration. On the other

hand, any prior ξ with exponential descent (e.g., double-exponential) ensures the

validity of (3.21). The following result is an application of Theorem 3.

Corollary 4. Let νj and βj,n be determined by (3.9) and (3.11), respectively,

and assume that ξ satisfies (3.21) for 1 ≤ p, q < ∞. Let p∗ = min(p, 2), assume

that max(rp, 1/p
∗) < r < s, and take a1 < 0, a3 > 0 and

a2 < −pε−1[1 + (2r)−1 + ε], (3.23)

where ε > 0 is defined in (3.10). Then f ∈ Br
p,q with probability one.

Observe that, if p ≥ 2 (i.e., p∗ = 2), the medium resolution levels collapse

(i.e., j0 = j1), and the only assumptions we have are a1 < 0 and a3 > 0 (see

(3.10) and (3.11)). Note also that Corollary 4 remains valid when βj,n has the

form (3.20), as j1<j≤J−1. Hence, it is applicable for the conditions of Theorems

1 and 2 whenever a1 < 0, a3 > 0 and a2 satisfies (3.23). For example, if one

chooses ε=(2r)−1 as in Pensky (2006), then (3.23) becomes a2<−2p(r+1). The

latter restriction can always be accomplished so that, whenever ξ has exponential

descent, f ∈ Br
p,q with probability one for any values of max(rp, 1/p

∗)<r<s and

1≤p, q<∞.

Corollary 4 provides a sufficient condition for overcoming the well-known

Bayesian paradox, up to a log(n) factor, when a prior yielding an optimal Bayesian

estimator over a certain class of functions (e.g., Sobolev or Besov spaces) lies

outside this class. See, e.g., Zhao (2000). This is a stronger result than the state-

ment made in Abramovich et al. (2004, Sec. 3) who considered only the case of

the normal ξ model.
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3.5. Adaptation: an empirical Bayes estimation procedure

If the errors Zi in (1.1) are indeed N(0, σ2), we can choose ηj(x) ≡ η(x) =
(2πσ2)−1/2 exp

(

−x2/(2σ2)
)

and study an adaptive estimator, based on an em-

pirical Bayes estimation procedure, similar to the one considered in Johnstone
and Silverman (2005).

More specifically, at each resolution level j = L, . . . , J − 1, we estimate the

parameters νj and πjn by maximizing the empirical likelihoods

l(πj,n, νj) =

2j−1
∑

k=0

ln
{

(1 − πj,n)
√
nη(

√
ndjk) + πj,nIj(djk)

}

, (3.24)

where Ij(djk) is defined in (2.6). Note that, by Lemma 1, the rule (2.7) can be ex-
pressed as the hard thresholding rule (2.8). Similarly to Johnstone and Silverman

(2005), we want the threshold tj,n to satisfy tj,n ≤ (σ
√

2 ln n)/
√
n, which is equiv-

alent to πj,n ≥ Ωj,n with Ωj,n = 1/[1 + ζj,n((σ
√

2 ln n)/
√
n)]. Maximizing (3.24),

we obtain the empirical Bayes estimators π̂j,n and ν̂j of πj,n and νj, respectively,

and set β̂j,n = (1 − π̂j,n)/π̂j,n. Choose now D ≥ 0 and estimate θjk by using the
hard thresholding rule with the modified threshold t̂j,n, i.e.,

θ̂jk = djk I(|djk| > t̂j,n) ≡ djk I(ζj,n(djk) > τ̂j,n), (3.25)

where

t̂j,n = ζ−1
j,n(β̂j,n), τ̂j,n = β̂j,n, if π̂j,n ≥ Ωj,n,

t̂j,n = (σ
√

2(1 +D) lnn)n−
1
2 , τ̂j,n = ζj,n(σ

√

2(1 +D) lnn(n−
1
2 )), if π̂j,n < Ωj,n.

(3.26)
Since the relationship of the posterior median and Bayes factor estimators

to a pseudo-threshold defined in Johnstone and Silverman (2004a, 2005) (which

serves as the main instrument of their proof) is similar, we modify Theorem 2
of Johnstone and Silverman (2005) to accommodate the Bayes factor estimator.
Hence, we have the following result.

Theorem 4. Let {φ,ψ, s, L} be as in (A0), and let f ∈ Br
p,q(A) with 1 ≤ p, q ≤

∞, p∗ = min(p, 2) and max(rp, 1/p
∗) < r < s. Let θ̂jk be defined by (3.25) with

the modified threshold t̂j,n given by (3.26). Let D ≥ 0 in (3.26), and let ξ be such

that λξ = 0 in (3.3), supx(x2ξ(x)) <∞, and

0 < C1 ≤ x1−κ[ξ(y)]−1

∫ +∞

y
ξ(x)dx ≤ C2 (3.27)

for some C1, C2 > 0, κ ∈ [1, 2], and y large enough. Then

Rn(Br
p,q(A), f̂ ) = O

(

n−
2r

2r+1

)

as n→ ∞. (3.28)
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As in Johnstone and Silverman (2004a, 2005), the assumption that ξ is a

heavy-tailed prior implies that the tails of ξ are exponential or heavier while

assumption supx(x2ξ(x)) < ∞ rules out tail behavior heavier than that of a

Cauchy. The condition (3.27) is just a mild regularity condition which is valid,

e.g., for the double-exponential and Student-t priors used in our development;

it is also valid if the quasi-Cauchy prior considered in Johnstone and Silverman

(2004a, 2005) is used.

4. Numerical Results and Comparisons

In this section, we illustrate the performance of the empirical Bayes es-

timation procedure based on the proposed Bayes factor (BF) estimator, and

compare it with the empirical Bayes estimation procedures based on the poste-

rior mean (PostMean) and posterior median (PostMed) estimators proposed in

Johnstone and Silverman (2005). Simulated samples and a dataset collected in

an anaesthesiological study are used for this purpose. The computational algo-

rithms related to wavelet analysis were performed using the WaveLab software

(http://www-stat.stanford.edu/software/software.html) and the MatLab version

of the EbayesThresh software (http://www-lmc.imag.fr/lmc-sms/Anestis.

Antoniadis/EBayesThresh). The entire study was carried out using the Matlab

programming environment.

4.1. Simulation study

For the PostMean and PostMed estimators, both double-exponential and

quasi-Cauchy priors with normal error were used, while for BF estimators, double-

exponential priors with normal errors were considered. All the prior parameters

were estimated level-by-level by marginal maximum likelihood from the data.

The standard deviation σ of the normal error was estimated by the median

absolute deviation (as suggested by Donoho and Johnstone (1994) and usually

applied in practice), i.e.,

σ̂ =
median(|{dJ−1,k : k = 0, 1, . . . , 2J−1 − 1}|)

0.6745
.

In this simulation study, we evaluated the various empirical Bayes wavelet

estimators using Daubechies’s compactly supported wavelets Symmlet 8 (see

Daubechies (1992, p.198)) and Coiflet 3 (see Daubechies (1992, p.258)), and

primary resolution levels L = 3 and 5. We considered various test functions that

are standard tests for wavelet estimators. See, e.g., the list of test functions of

Section 5 and Appendix I in Antoniadis, Bigot and Sapatinas (2001). For each

test function, M = 500 samples were generated by adding independent random

noise ε ∼ N(0, σ2) to n = 256, 512 and 1,024 equally spaced points on [0,1],
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representing a range of sample sizes, from low to high. The value of σ was taken

to correspond to the values 3 (high noise level), 5 (moderate noise level) and 7

(low noise level) for the (root) signal-to-noise ratio (SNR)

SNR(g, σ) = σ−1

(

1

n

n
∑

i=1

(g(ti) − ḡ)2
) 1

2

, where ḡ =
1

n

n
∑

i=1

g(ti).

The goodness-of-fit for an estimator ĝ of g was measured by (a) its average mean

squared error (AMSE) from the M simulations, and (b) its average maximal

absolute deviation (AMXD) from the M simulations, defined respectively as

AMSE(g) =
1

nM

M
∑

m=1

n
∑

i=1

(ĝm(ti) − g(ti))
2

and AMXD(g) =
1

M

M
∑

m=1

max
1≤i≤n

|ĝm(ti) − g(ti)|.

For brevity, we only report in detail the results for the Bumps function

using Symmlet 8 and L = 3, and in order to investigate the performance of

peak heights, we calculated AMSE and AMXD over the 11 peaks encountered in

Bumps. Figures 1 and 2 contains the results of this simulation study. As observed

in the figures, PostMean and PostMed estimators with quasi-Cauchy priors per-

form better than the corresponding estimators with double-exponential priors

with respect to AMSE in almost all cases, while PostMean estimators perform

better that PostMed estimators with respect to AMXD in almost all cases. The

BF estimators with double-exponential priors have smaller AMSE and AMXD

than PostMean and PostMed estimators with either double-exponential or quasi-

Cauchy priors, indicating that they preserve peak heights better. Although not

reproduced here, PostMean and PostMed estimators have smaller overall AMSE

and AMXD than BF estimators, since they appear to have slightly better recon-

structions over the regions where the underlying function is smooth; this is not

surprising since PostMean is a (nonlinear) shrinkage rule and PostMed is a soft

thresholding rule. On the other hand, although the BF estimators appear to be

slightly noisier over the regions where the underlying function is smooth, they

are not noisy enough to be visually unpleasant. Moreover, different combinations

of test functions with similar characteristics (e.g., Spikes), wavelet functions and

primary resolution levels yield basically similar results.

In summary, there is evidence that the BF estimator preserves the peak

heights better without any substantial cost of inferior treatment of presum-

ably spurious variation elsewhere, and sheds some light on the supposition of
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Johnstone and Silverman (2005, p.1712) that hard thresholding rules with suit-

ably estimated thresholds may have computational advantages and may preserve

peak heights better in finite sample situations.
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Figure 1. Boxplots of 500 simulation results for the Bumps function for

all nine combinations of signal points (first row: 256; second row: 512;

third row: 1,024) and RSNR’s (left column: 3; middle column: 5; right

column: 7). In each panel, there are five boxplots indicating the AMSE

over the 11 peaks, from left to right, for the estimates produced by (1)

PostMean (double-exponential prior), (2) PostMean (quasi-Cauchy prior),

(3) PostMed (double-exponential prior), (4) PostMed (quasi-Cauchy prior),

(5) BF estimators. See Section 4.1 for more details.

4.2. Inductance plethysmography data

We now consider a dataset from anaesthesiology collected by inductance

plethysmography to illustrate the performance of the BF estimator, and to com-

pare it with the PostMean and PostMed estimators. The recordings were made

by the Department of Anaesthesia at the Bristol Royal Infirmary and measure

the flow of air during breathing. See, e.g., Nason (1996).
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Figure 2. Boxplots of 500 simulation results for the Bumps function for

all nine combinations of signal points (first row: 256; second row: 512;

third row: 1,024) and RSNR’s (left column: 3; middle column: 5; right

column: 7). In each panel, there are five boxplots indicating the AMXD

over the 11 peaks, from left to right, for the estimates produced by (1)

PostMean (double-exponential prior), (2) PostMean (quasi-Cauchy prior),

(3) PostMed (double-exponential prior), (4) PostMed (quasi-Cauchy prior),

(5) BF estimators. See Section 4.1 for more details.

Figure 3 shows a section of plethysmograph recording lasting approximately

80 seconds (n = 4, 096 signal points). The two main sets of regular oscillations

correspond to normal breathing. The disturbed behaviour in the centre of the

plot, where the normal breathing pattern disappears, corresponds to the patient

vomiting. The same figure contains the curve estimates obtained using the BF,

PostMean and PostMed estimators, all with double-exponential prior and normal

error models, as suggested by Johnstone and Silverman (2005, p.1718). All the

prior parameters were estimated level-by-level by marginal maximum likelihood

from the data. The standard deviation σ of the normal error was estimated by the

median absolute deviation at the finest resolution level. The various estimators

were evaluated using Daubechies’s compactly supported wavelets Symmlet 8



FREQUENTIST OPTIMALITY OF BAYES FACTOR ESTIMATORS 619

(see Daubechies (1992, p.198)) and Coiflet 3 (see Daubechies (1992, p.258)). For

all methods, the primary resolution level was L = 3.

Figure 3. Section of an inductance plethysmography recording lasting ap-

proximately 80 seconds (Top Left), and smooth estimates obtained using the

PostMean (Top Right), PostMed (Bottom Left), and BF (Bottom Right),

all with double-exponential priors. See Section 4.2 for more details.

Quoting Johnstone and Silverman (2005), “. . . the adaptive smoothing with

data of this kind is to preserve features such as peak heights as far as possi-

ble, while eliminating spurious rapid variations elsewhere . . .”. As in Johnstone

and Silverman (2005), we have judged the efficacy of the various estimation

methods in preserving peak heights simply by looking at the maximum of the

various estimates of the height of the first peak in the inductance plethysmog-

raphy curve. For Symmlet 8, the PostMean and PostMed estimators yield the

same maximum value of 0.840, while the BF estimator gave 0.845. Similarly, as

in Johnstone and Silverman (2005), we have quantified the efficacy of the vari-

ous estimation methods in dealing with the rapid variation near the point 0.85

(on the x-axis) by the range of the estimated curves over a small interval at

this point. The PostMean and PostMed estimators both have a ‘glitch’ of range

0.073, while the corresponding one for the BF estimator is 0.080. Similar results

in magnitude hold for Coiflet 3. The PostMean and PostMed estimators yield

the same maximum value of 0.830, while the BF estimator gave 0.835. For the
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rapid variation near the point 0.85 (on the x-axis), the PostMean and PostMed
estimators have a ‘glitch’ with ranges 0.065 and 0.064, respectively, while the
corresponding one for the BF estimator is 0.071. Although we do not reproduce
them here, similar results hold when increasing or decreasing the value of the
primary resolution level L. (Note that all the above numbers were rounded to
three decimal places.)

In summary, the BF estimator competes well with the PostMean and
PostMed estimators on preserving the peak height without any substantial cost
of inferior treatment of presumably spurious variation elsewhere.

5. Discussion and Concluding Remarks

Table 1 summarizes the optimality comparison of the various Bayes factor
estimators carried out in Section 3. We assume that ηj ≡ η and consider three
choices for the error η and the prior ξ: the normal, the double-exponential and
the Student-t distributions. The choices of ξ and η are listed in the first row and
in the first column, respectively.

Table 1 presents (asymptotic) expressions for ∆ = n2r/(2r+1)R(n,Br
pq(A));

hence ∆ shows deviation from the “ideal” rate O
(

n−2r/(2r+1)
)

. We intentionally
do not consider the cases when η has heavier tails than ξ. For these cases,
Pensky (2006) showed that for the posterior mean estimators one needs additional
assumptions on βj,n, leading to the situation where f does not belong to the
appropriate Besov space with probability one. Moreover, when ξ is the normal
pdf and η has a heavy-tailed pdf , the posterior mean estimators exhibit non-
optimal behavior due to a large bias. These combinations of η and ξ are located
in the left lower corner of Table 1, left blank.

Table 1 shows that all estimators are optimal if p ≥ 2 (i.e., p∗ = 2) while
they are optimal up to a logarithmic factor (lnn)1−p/2 when 1 ≤ p < 2 and η is
the normal pdf. The (lnn)1−p/2 factor is unavoidable when any fixed threshold is
applied to individual wavelet coefficients. See Donoho and Johnstone (1994) and
Cai (1999). When η is the double-exponential pdf , the corresponding estimators
are optimal up to a slightly larger (lnn)2−p factor. On the other hand if η is
the Student-t pdf , the corresponding estimators show sub-optimal behavior in
spatially nonhomogeneous Besov spaces.

We point out that the optimality results for the Bayes factor estimators
discussed above are derived under milder conditions than the corresponding ones
for the posterior mean estimators. See Pensky (2006, Table 1): if the posterior
mean is used as an estimator, then for the normal η – normal ξ model one
needs the restriction that η should have variance which is more than double the
variance of the actual error. For the Bayes factor estimators, we only relate
the variances of η and of the actual error by (3.12), so that one is able to set
variances as α = 1. The latter puts restrictions on the values of a2 in Theorem
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1 and Corollary 1. The most immediate consequence of the latter is that the

normal η – normal ξ model delivers optimal estimators for any p ≥ 2, and

optimal up to the factor (lnn)1−p/2 for any 1 ≤ p < 2, contrary to the conclusion

of Abramovich et al. (2004). The reason for the lack of optimality is that they

chose πj,n = min(1, c2−βj), for some constant c > 0, where β ≥ 0 is now a

constant independent of n, following the work of Abramovich et al. (1998). Note

that this is a highly restrictive assumption that is not true, e.g., for empirical

Bayes estimators where π̂j,n depends on n. See Section 3.5.

Table 1. Frequentist optimality comparison of Bayes factor estimators.

ξ(x) Normal Double-Exponential Student-t

1√
2πσ2

1

exp
(

− x2

2σ2
1

)

1
2σ1

exp
(

− |x|
σ1

)

Γ( ν1+1

2 )(ν1π)−
1
2

Γ( ν1
2 )

“

1+ x2

ν1

”

ν1+1

2

η(x)

Normal ∆=O
(

(lnn)1−
p
∗

2

)

∆=O
(

(lnn)1−
p
∗

2

)

∆=O
(

(lnn)1−
p
∗

2

)

1√
2πσ2

0

exp
(

− x2

2σ2
0

)

if σ0 ≤ σ1 need (3.20)

Double-Exponential ∆=O
(

(lnn)2−p∗)

∆=O
(

(lnn)2−p∗)

1
2σ0

exp
(

− |x|
σ0

)

if σ0 ≤ σ1

Student-t ∆=O (nκ)
Γ( ν0+1

2 )(ν0π)−
1
2

Γ( ν0
2 )

“

1+ x2

ν0

”

ν0+1

2

κ= (1−a2)(2−p∗)2

2p∗(ν0+1) ( 1
2r + ε

2r+1 )

if ν0 > ν1
∆=n2r/(2r+1)Rn(Br

pq(A), f̂);

ε and a2 < 1 are defined by (3.10) and (3.11), respectively;

p∗ = min(p, 2), 1 ≤ p ≤ ∞, r > 0.

The only model in Table 1 which produces sub-optimal estimators when

1 ≤ p < 2 is the Student-t η – Student-t ξ model. Note that the deviation from

optimality is O(nκ), where κ is smaller when ̺ and r are larger and a2 is closer

to one. We, however, cannot take a2 = 1 and, moreover, if a2 > 0, then we

cannot guarantee that f ∈ Br
p,q with probability one. On top of that, ξ should

have max(p, q) finite moments for f ∈ Br
p,q with probability one. Hence, this

combination of models should be avoided.

Let us now compare the sensitivity of the various models to deviations from

normality in the actual error. It is easy to see that only the normal η – Student-t

ξ model requires the stronger assumption (3.20) on βj,n. This is quite different

from the posterior mean case where models with normal η – heavy-tailed ξ were

all sensitive to deviations from normality in the actual error and required very

strong conditions on βj,n, see Pensky (2006). The consequence of (3.20) is that
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“almost all” coefficients at high resolution levels will be “killed” because βj,n is
very large. Therefore, Bayes factor estimators are less sensitive to the deviation
from normality in the actual error.

One more observation concerning the Bayes factor estimators is the following:
Bayes factor estimators produce better results than the corresponding posterior
mean ones. Although the results are similar in both cases, the logarithmic factors
are smaller for both normal η and double-exponential η models when Bayes
factor estimators are used, and so is the polynomial term O(nκ) in the case of
the Student-t η – Student-t ξ model. Last but not least, an empirical Bayes
estimation procedure based on the proposed Bayes factor estimator apparently
beats all the corresponding Bayesian estimators in terms of optimal convergence
rates (since the parameters νj and βj,n in the prior are derived from the random
sample).

We conclude the discussion by pointing out the suggested choice: it is the
normal η – double-exponential ξ model. This model provides the best rates
of convergence for Bayes factor estimators (Theorem 1), it is not sensitive to
deviation from normality in the actual error (Corollary 1), it ensures that f ∈ Br

p,q

with probability one (Corollary 4), and it is suitable for an (adaptive) empirical
Bayes estimation procedure (Theorem 4). On top of that, it allows us to perform
all calculations explicitly in closed form. See Johnstone and Silverman (2004a)
and Bochkina and Sapatinas (2005). Moreover, as was illustrated in simulated
examples as well as in a dataset, it preserves peak heights better, without any
substantial cost of inferior treatment of presumably spurious variation elsewhere,
see Section 4.
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Appendix. Proofs

A.1. The Bayes factor estimator as a thresholding rule

Proof of Lemma 1. For the sake of convenience, we drop the indices in ζj,n(djk),
Ij(djk) and ηj . Let F (x) = ln(ζ(x)) and observe that

F ′(x) =
n

I(x)

∫ +∞

−∞

[

η′(
√
n(x− θ))

η(
√
n(x− θ))

− η′(
√
nx)

η(
√
nx)

]

η(
√
n(x− θ))νjξ(νjθ)dθ. (A.1)
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If η is the N(0, σ2) pdf , then the expression in the square brackets in (A.1) is√
nθ/σ2, so that the integral is positive for x > 0. Hence, both F (x) and ζ(x)

are strictly increasing for x > 0. Similarly, if η(x) = (2σ)−1 exp(−|x|/σ), then

the expression in square brackets in (A.1) is 2I(θ ≥ x)/σ, and F ′(x) > 0.

If both η and ξ are Student-t pdf ’s with a and b degrees of freedom, re-

spectively, with a > b, then ζ(x) ≤ 1 + Can/ν
2
j as

√
n/νj → 0 by Lemma 2.

If νj/
√
n → 0, we use the asymptotic expansion of Lemma 2 to find ζ(x) =

νjξ(νjx)[
√
nη(

√
nx)]−1 [1+O(ν2

j /n)]; hence the behaviour of ζ(x) coincides with

that of q(x) = ξ(νjx)/η(
√
nx). By direct calculations, it can be verified that

q′(x) > 0 for x > 0 whenever (a + 1)n(b + ν2
j x

2) − (b + 1)ν2
j (a + nx2) =

nν2
jx

2(a − b) + (ab(n − ν2
j + (bn − aν2

j ) > 0, which is guaranteed by the con-

ditions of Lemma 1.

A.2. Asymptotics of the thresholds

Asymptotics of the thresholds rely on Lemmas 2 and 3. The first one is

Lemma 2 in Pensky (2006), while the proof of the second follows easily, so we

omit the details.

Lemma 2. If νj|djk| is bounded or νj |νjdjk|λξ/
√
n→ 0, then for any djk,

Ij(djk) = νjξ(νjdjk)
[

1 +O
(

n−1ν2
j |νjdjk|2λξ

)]

as
νj√
n
→ 0.

If
√
n|djk| is bounded or

√
n|√ndjk|λη/νj → 0, then for any djk,

Ij(djk) =
√
n ηj(

√
ndjk)

[

1 +O
(

nν−2
j |

√
ndjk|2λη

)]

as

√
n

νj
→ 0.

Lemma 3. Let F1(x) and F2(x) be strictly increasing functions of x for x > 0

such that F1(x) ≤ F2(x). Let ti be the solutions of the equations Fi(x) = b,

i = 1, 2. Then, t1 ≥ t2.

Lemma 4. Let (A1)−(A3) hold and let νj/
√
n → 0. Then the following

hold.

(i) If the ηj have pdf’s of the form (3.15), and λξ = 0 in (3.3) or ξ is a normal

pdf, then the threshold tj,n satisfies

√
n tj,n = O

(

[

ln
(

ν−1
j βj,n

√
n
)] 1

β

)

as n→ ∞. (A.2)

(ii) If the ηj have pdf’s of the form (3.17), ξ(x) = C(1+x2)−γ for some constant

C > 0 with γ < ̺, and βj,n = (νj/
√
n)a with a < 1, then the threshold tj,n
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satisfies

√
n tj,n ∼







(βj,n

√
n

νj
)

1
2̺ , if 1 − 2̺ ≤ a < 1,

β
1

2(̺−γ)

j,n

(

νj√
n

)
2γ−1

2(̺−γ)
, if a < 1 − 2̺.

(A.3)

Proof of Lemma 4. It follows from Lemma 3 that (A.2) and (A.3) will be
valid if we replace ζj,n by asymptotic lower bounds. For the sake of convenience,
we drop the indices in ζj,n, ηj and σj (so that σ here is not the actual standard
deviation of the error but just some number between σ and σ̄).

(i) When η have exponential descents and ξ is the standard normal pdf , then
(see Abramovich et al. (2004))

√
n tj,n = σ

√
2
√

1 + n−1σ2ν2
j

[

ln
(

(νjσ)−1βj,n

√

n+ ν2
j σ

2
)]

1
2
, (A.4)

so that (A.2) is valid. On the other hand if λξ = 0, then by Lemma 2,
ζ(x) ≥ C1[

√
nη(

√
nx)]−1νjξ(νjx) for some constant C1 > 0. Taking into

account (A3), we find ζ(x) ≥ C2n
−1/2νj exp

{[

1 − (νj/
√
n)

β
]

|x√n/σ|β
}

for

some constant C2 > 0. Note that since νj/
√
n→ 0, we have 1−νj/

√
n ≥ 1/2,

so that tj,n is of the form (A.2).
(ii) When η and ξ have polynomial descents, then for some constant C3 > 0,

ζ(x) = C3n
−1/2νjF (x) with F (x) = (1 + ν2

j x
2)−γ(1 +nx2)̺. Observe now

that

F (x) ∼











1, |x| < 1√
n
,

(nx2)̺, 1√
n
≤ |x| ≤ 1

νj
,

(nx2)̺(ν2
j x

2)−γ , |x| > 1
νj
.

(A.5)

Equating F (x) to C−1
3

√
nν−1

j βj,n and rewriting the constraints in (A.5) in
terms of βj,n, we arrive at (A.3).

Lemma 5. Let (A1)−(A4) hold and let
√
n/νj → 0. If βj,n > 2, then the

following hold.
(i) If λη = 0 in (3.4), then the threshold tj,n = ∞.
(ii) If the ηj are normal pdf’s satisfying (3.15) and ξ is either a normal or a

double-exponential pdf, then the threshold tj,n satisfies
√
n tj,n ≥ Ct νj/

√
n,

where the constant Ct > 0 is independent of n and νj .
(iii) If the ηj are normal pdf’s satisfying (3.15) and ξ is a symmetric pdf on R

that is unimodal, positive and finite at zero, then the threshold tj,n satisfies

√
n tj,n ≥ Ct max

{
√

ln(βj,n

√
n

νj
),

√

ln(βj,n)

}

, (A.6)

where the constant Ct > 0 independent of n and νj.
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Proof of Lemma 5. (i) follows directly from Lemma 2. (ii) If both ηj and
ξ are normal pdf ’s, then (3.13) follows from (A.4). If the ηj are the N(0, σ2)

pdf ’s and ξ is a double-exponential pdf then, using formulae 3.322.2 and 8.254

of Gradshtein and Ryzhik (1980), whenever |x| < νjσ
2/n we have ζj,n(x) ≤

ν2
j (ν2

j − nx2/σ4)−1. Equating the last expression to βj,n, we find that |x| =

σ2νjn
−1

√

1 − 1/βj,n > σ2νj [n
√

2]−1. If |x| ≥ νjσ
2/n, then all existing solutions

of the equation ζj,n(x) = βj,n will satisfy (3.13) with Ct = σ2. (iii) Note that

ξ(x) ≤ ξ(0), so that ζj,n(x) ≤ νjξ(0)/(
√
nηj(

√
nx)). On the other hand, it is not

difficult to see that ζj,n(x) ≤ ηj(0)/ηj(
√
nx)). Application of Lemma 3, in view

of (3.12), now yields (A.6).

A.3. Proofs of statements in Section 3

The proof of Theorem 1 requires the following lemma which is a straightfor-

ward extension of Lemma 4 in Pensky (2006).
Lemma 6. Let {φ,ψ, s, L} be as in (A0), and let 1 ≤ p, q ≤ ∞, p∗ = min(p, 2),

and max(rp, 1/p
∗) < r < s. If f ∈ Br

p,q(A) then, for some constants A0, A1, A2,
A3 > 0, we have

∑

k∈KL−1

(θ̃k − θk)
2 ≤ A0 n

−2r and

J−1
∑

j=L

2j−1
∑

k=0

(θ̃jk − θjk)
2 ≤ A1 n

−2r
(2r+1) (A.7)

and, for L ≤ j ≤ J − 1,

2j−1
∑

k=0

θ2
jk ≤ A2 2−2j(r+ 1

2
− 1

p∗
) and

2j−1
∑

k=0

|θjk|p ≤ A3 2−pj(r+ 1
2
− 1

p∗
). (A.8)

Proof of Theorem 1. Since the wavelet basis is orthonormal,

Rn(Br
p,q(A), f̂) =

∑

k∈KL−1

E(θ̂k−θ̃k)
2+

J−1
∑

j=L

2j−1
∑

k=0

E(θ̂jk−θ̃jk)
2+

∞
∑

j=J

2j−1
∑

k=0

θ̃2
jk. (A.9)

Observe that the first term in (A.9) is bounded by

2
∑

k∈KL−1

[

Var(θ̂k) + (θk − θ̃k)
2
]

= O(n−1) +O(n−2r) = o
(

n−
2r

2r+1

)

due to (A.7), while the last term in (A.9) is bounded by A2−2J(r+1/2−1/p∗) =
O(n−2r/(2r+1)) due to (3.7) and r > rp. The second term in (A.9) is dominated

by

J−1
∑

j=L

2j−1
∑

k=0

E(θ̂jk − θ̃jk)
2 ≤ 2

J−1
∑

j=L

2j−1
∑

k=0

E(θ̂jk − θjk)
2 +A1 n

−2r
(2r+1) (A.10)
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due to (A.7). Thus, we need to evaluate the contribution to Rn(Br
p,q(A), f̂) made

by the first term in (A.10). Let R =
∑J−1

j=L

∑2j−1
k=0 E(θ̂jk − θjk)

2 = R1 +R2 +R3

with terms

R1 =

j0
∑

j=L

2j−1
∑

k=0

E(θ̂jk − θjk)
2, R2 =

j1
∑

j=j0+1

2j−1
∑

k=0

E(θ̂jk − θjk)
2,

R3 =

J−1
∑

j=j1+1

2j−1
∑

k=0

E(θ̂jk − θjk)
2,

corresponding to low, medium and high resolution levels, respectively. We exam-

ine each term in turn.

Low resolution levels. Since for j ≤ j1 the errors are asymptotically normal (see

(3.8)), we can use a result of Donoho and Johnstone (1994) to get

Ri = O





∑

j

2j−1
∑

k=0

[

(t2j,n + n−1σ2)I(|θjk| ≥ tj,n)

+ (θ2
jk + tj,nσn

−1/2 ϕ(tj,n
√
nσ−1))I(|θjk| < tj,n)

])

, i = 1, 2, (A.11)

where, as before, ϕ(x) is the N(0, 1) pdf and the sum is taken over L ≤ j ≤ j0
for i = 1, and j0 + 1 ≤ j ≤ j1 for i = 2. Hence, R1 = O(R11 +R12 +R13), where

R11 =

j0
∑

j=L

2j−1
∑

k=0

n−1σ2, R12 =

j0
∑

j=L

2j−1
∑

k=0

tj,nσn
−1
2 ϕ(tj,n

√
n

σ
),

(A.12)

R13 =

j0
∑

j=L

2j−1
∑

k=0

min(θ2
jk, t

2
j,n).

Note that R11 = O(2j0n−1) = O
(

n−2r/(2r+1)
)

, and that R12 =
∑j0

j=L 2jσ2n−1tj,n√
nσ−1 ϕ(tj,n

√
nσ−1) = O

(

n−2r/(2r+1)
)

since |xϕ(x)| < 1 for any x ∈ R. In

order to derive an upper bound for R13, observe that if βj,n is of the form

(3.11) with a1 < 1, then βj,n
√
n/νj → ∞. If ηj(x) is of the form (3.17) then,

by Lemma 4, we have tj,n = O
(

n−1/2(βj,n
√
n/νj)

1/2̺
)

. Since the threshold is

smaller when ηj has thinner tails, then for ηj(x) < C(1 + x2)−ρ we have tj,n =

o
(

n−1/2(βj,n
√
n/νj)

1/2̺
)

. Hence, R13 = O(
∑j0

j=L 2jn−1[nν−2
j ](1−a1)/(2̺)) =

O(n−1+(1−a1)/(2̺)2j0[2̺−(2r+1)(1−a1)]/(2̺)) = O(n−2r/(2r+1)) provided a1 > 1 −
̺/(r + 1/2). Note that when ηj have exponential descents, one can choose ̺

to be arbitrarily large, i.e., ̺/(r + 1/2) > 1 − a1 is always true. Combining

expressions for R11, R12 and R13 we find that R1 = O
(

n−2r/(2r+1)
)

.
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Medium resolution levels. Since for p ≥ 2 the medium resolution levels collapse,

we consider only the case 1 ≤ p < 2. Observe also that m2 is chosen so that

νj/
√
n → 0 when j0 + 1 ≤ j ≤ j1. Using (A.11), partition R2 as R2 = O(R21 +

R22 + R23) as at (A.12). Let γj,n =
√
ntj,n and observe that γj,n ≥ γ0, where

γ0 > 0 is a constant. Then using the second inequality in (A.8),

R21 =

j1
∑

j=j0+1

2j−1
∑

k=0

n−1σ2I(|θjk| > tj,n)

= O

( j1
∑

j=j0+1

2j−1
∑

k=0

n−1+ p
2n−

p
2 I

(

n−1 < θ2
jkγ

−2
j,n

)

)

= O

(

n−1+ p
2

j1
∑

j=j0+1

2j−1
∑

k=0

|θjk|pγ−p
0

)

= O
(

n−1+ p
2 2

−pj0(r+
1
2
− 1

p
)
)

O
(

n−2r/(2r+1)
)

.

To examine R22, note that for some constant C > 0 we have [ηj(
√
ntj,n)]−1 ≥

C[ηj(
√
ntj,n)]−1ξ(νjtj,n) = Cν−1

j

√
nβj,n = C(ν−1

j

√
n)1−a. Hence, by (A4), we

have ϕ(tj,n
√
n/σ) ≤ σCα[ηj(tj,n

√
n)]α = σCαβ

α
j,n, so that

R22 = O

( j1
∑

j=j0+1

2jn−1 γj,n β
α
j,n

)

. (A.13)

Consider two separate cases. If the ηj are of the form (3.17), then by (A.2),

γj,n = O([lnn]1/β). Hence using (3.11), we rewrite (A.13) as

R22 = O

( j1
∑

j=j0+1

n−1−α(1−a2)
2 [lnn]

1
β 2j(1+m2α(1−a2)

)

= O
(

n−1−α(1−a2)

2 [lnn]
1
β 2j1(1+m2α(1−a2)

)

= O
(

n−
2r

2r+1

)

,

provided

1 +
α(1 − a2)

2
− r(1 +m2α(1 − a2)

(r + 1
2 − 1

p)(2r + 1)
>

2r

2r + 1
,

which is equivalent to m2 < (r+1/2)−(1/p−1/2)
(

1 + (2r)−1 + (αr(1 − a2))
−1

)

.

Note that if β < 2 in (3.15), the value of α can be chosen arbitrary large, so that

ε > (αr(1 − a2))
−1 can be chosen arbitrary small. If the ηj have the polynomial

descents (3.17), then γj,n ∼ (βj,n
√
n/νj)

1/2̺ and ϕ(γj,n/σ) = o(n−υ) for any

υ > 0, so that (A.13) becomes R22 = O
(

n−2r/(2r+1)
)

.
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Let us now examine R23 = R231 +R232, where

R231 =

j1
∑

j=j0+1

2j−1
∑

k=0

θ2
jkI(|θjk| < tj,n), R232 =

j1
∑

j=j0+1

2j−1
∑

k=0

t2j,nI(|θjk| ≥ tj,n). (A.14)

To analyze R231, observe that by Lemma 6,

R231 = O

( j1
∑

j=j0+1

t2−p
j,n

2j−1
∑

k=0

|θjk|p
)

= O

( j1
∑

j=j0+1

t2−p
j,n 2

−j(r+ 1
2
− 1

p
)p

)

. (A.15)

Consider again two cases. If the ηj are of the forms (3.15) then, by (A.2),

tj,n = O(n−1/2(ln n)1/β), and (A.15) becomes

R231 = O

( j1
∑

j=j0+1

n−1+ p
2 2−j(r+ 1

2
− 1

p
)p(lnn)

2−p
β

)

= O
(

n−
2r

2r+1 (ln n)
2−p

β

)

.(A.16)

If the ηj have the polynomial descents (3.17) and the βj,n are of the form (3.11)

with a2 > 1 − 2̺, then tj,n ∼ n−1/2(
√
n/νj)

(1−a2)/(2̺). Then

R231 = O

( j1
∑

j=j0+1

n−1+ p
2 2

−j(r+ 1
2
− 1

p
)p

(

√
n

νj

)

(1−a2)(2−p)

2̺

)

= O

(

n
−1+ p

2
+

(1−a2)(2−p)
4̺ 2

−j0
h

m2(1−a2)(2−p)
2̺

+p
“

r+ 1
2
− 1

p

”i)

= O
(

n−
2r

2r+1
+κ

)

, (A.17)

where κ = (4̺)−1(1− a2)(2 − p)[1− 2m2/(2r + 1)]. Plugging m2 given by (3.10)

into κ results in (3.18).

To finish, we need to examine R232. Recall that
√
ntj,n = γj,n. By (A.14)

and (A.15), we have

R232 =

j1
∑

j=j0+1

2j−1
∑

k=0

n−1γ2
j,nI(θ

2
jk >

γ2
j,n

n
) =

j1
∑

j=j0+1

2j−1
∑

k=0

n−1+ p
2 γ2

j,n(|θjk|γ−1
j,n)p

=

j1
∑

j=j0+1

t
1− p

2
j,n

2j−1
∑

k=0

|θjk|p = O (R231) .

The latter implies that the overall error R2 is of the form (A.16) or (A.17) when

the ηj are given by (3.15) or (3.17), respectively.
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High resolution levels. We need only consider the case 1 ≤ p < 2. Note that

if j1 + 1 ≤ j ≤ J − 1, the errors are not normally distributed any more and we

cannot use (A.11). Partition R3 as R3 = R31 +R32, where

R31 =
J−1
∑

j=j1+1

2j−1
∑

k=0

E
[

(djk − θjk)
2I(ζj,n(djk) ≥ βj,n)

]

,

R32 =

J−1
∑

j=j1+1

2j−1
∑

k=0

θ2
jkP (ζj,n(djk) < βj,n),

and consider two cases here. If λξ = 0 then, by Lemma 2, ζj,n(djk) = O(1) while,

by (3.11), we have βj,n → ∞, so that ζj,n(djk) < βj,n for any djk and R31 = 0.

Hence, in this case, by Lemma 6,

R32 = R3 = O





J−1
∑

j=j1+1

2j−1
∑

k=0

θ2
jk



 = O





J−1
∑

j=j1+1

2
−2j(r+ 1

2
− 1

p∗
)





= O
(

n−
2r

2r+1

)

. (A.18)

If λξ > 0 and (3.13) holds, then R32 has the form (A.18) as before, so that we

need only derive an asymptotic expression for R31.

Since I(ζj,n(djk) ≥ βj,n) = I(|djk| > tj,n) ≤ I(|θjk| > tj,n/2)+I(|djk −θjk| >
tj,n/2), we obtain R31 = O(R311 +R312). Here, since by (A.6) and (3.11) we have

tj,n
√
n > 1, similarly to (A.18) we obtain

R311 =

J−1
∑

j=j1+1

2j−1
∑

k=0

E(djk − θjk)
2I(|θjk| >

tj,n
2

)

= O

( J−1
∑

j=j1+1

2j−1
∑

k=0

n−1I(n−1 < 2θ2
jk)

)

= O

( J−1
∑

j=j1+1

2j−1
∑

k=0

θ2
jk

)

= O

(

n−
2r

2r+1

)

. (A.19)

For the second term, we have

R312 =

J−1
∑

j=j1+1

2j−1
∑

k=0

E

[

(djk − θjk)
2I(|djk − θjk| >

tj,n
2

)

]

=

J−1
∑

j=j1+1

2j−1
∑

k=0

Jjn(djk), (A.20)
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where, by (3.13) and the assumptions of Theorem 1,

Jjn(djk) =

∫ +∞

−∞
z2√nµj(

√
nz)I(

√
n|z| ≥ 0.5Ctνjn

− 1
2 )dz

= n−1
(2

√
n

Ctνj

)l−2
∫ +∞

−∞
|y|sµj(y)dy = O

(

n−1
(

√
n

νj

)l−2)

. (A.21)

Plugging (A.21) into (A.20), we obtain

R312 = O

( J−1
∑

j=j1+1

2jn−1
(

√
n

νj

)l−2
)

= O

( J−1
∑

j=j1+1

n−
2r

2r+1n
(l−2)(r+1

2 )−1

2r+1 2j(1−(r+ 1
2
)(l−2))

)

= O

(

n−
2r

2r+1n
(l−2)(r+1

2 )−1

2r+1 2−j1[(l−2)(r+ 1
2
)−1]

)

= O
(

n−
2r

2r+1

)

, (A.22)

since (l− 2)(r+ 1/2) > 1 by (3.14) and 2−j1 < n−1/(2r+1). Hence, by (A.19) and
(A.22), R3 = O

(

n−2r/(2r+1)
)

. This completes the proof of Theorem 1.

Proof of Corollary 1. Note that the α in (A4) can be chosen as large as one
wishes and λη = 0. Then validity of Corollary 1 follows directly from Theorem 1.

Proof of Corollary 2. It follows easily by using Lemma 5.

Proof of Theorem 2. The difference between the conditions of Theorem 2 and
Theorem 1 is that (3.13) is no longer valid. Hence we need to re-examine the
error at high resolution levels. Observe that the only part of the error which is
affected by this is R312. Note that by (3.20) and (A.6), similarly to (A.21), we
find

Jjn(djk) =

∫ +∞

−∞
z2√nµj(

√
nz)I

(√
n|z| ≥ 0.5Ct

√

ln(βj,n)

)

dz

= O
(

n−1[ln(βj,n)]2−l
)

= O

(

n−1(

√
n

νj
)l−2

)

;

the proof is completed by repeating (A.22). This completes the proof of Theo-
rem 2.

Proof of Corollary 3. It follows easily by using Lemma 5.

Proof of Corollary 4. It follows from (3.22), (3.10) and (3.11) that f ∈ Br
p,q

with probability one if

lim
n→∞

J−1
∑

j=L

[

(

√
n

νj

)aj

2sj

]min(1, p
q
)

<∞, (A.23)
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where s = (1−p∗/2)(1+(2r)−1+ε)I(j0 < j ≤ j1) and ε > 0 is defined by Theorem

1. Since limn→∞
∑j0

j=L(
√
n/νj)

a1 <∞ and limn→∞
∑J−1

j=j1+1(
√
n/νj)

a3 <∞ for

any a1 < 0 and a3 > 0, the only part of (A.23) which needs to be examined is

S = lim
n→∞

j1
∑

j=j0+1

[

(

√
n

νj

)a2

2sj

]min(1, p
q
)

. (A.24)

Let b = −a2 and observe that we can consider 1 ≤ p < 2 only (since otherwise the

term disappears), so that Sj = (νj/
√
n)b2sj = n−b/22Bj with B = (1 + (2r)−1 +

ε)(1− p/2) + b[(r+ 1/2)− (1/p− 1/2)(1 + (2r)−1 + ε). It is easily seen now that

B > 0 and (A.24) holds whenever n−b/22Bj1 ≡ nB1 is uniformly bounded. Here,

B1 = −b/2 + Br/[(2r + 1)(r + 1/2 − 1/p)] by (3.8). The proof is completed by

checking that (3.23) ensures B1 < 0.

Proof of Theorem 4. Due to the embedding properties of Besov spaces

(i.e., Br
p,q(A) ⊂ Br

p,∞(A) for 1 ≤ q ≤ ∞), it is sufficient to prove the re-

sults for q = ∞. The proof follows directly by modifying the proof of The-

orem 2 of Johnstone and Silverman (2005). Note also that the proof of The-

orem 2 of Johnstone and Silverman (2005) is just a modification of Theorem

1 of Johnstone and Silverman (2004a), so it is necessary to check that it is

valid in the case of the Bayes factor estimator. For simplicity, we choose σ =

1, suppress the index j, and note that in our case q = 2 in the notation of

Johnstone and Silverman (2004a, 2005). Johnstone and Silverman (2004a, 2005)

introduced a function β(x) = I(x)/ϕ(x) − 1, where ϕ(x) is the standard normal

pdf , and defined a pseudo-threshold ζ(π) = β−1(1/π), i.e., β(ζ(π)) = 1/π. Fur-

ther, in the proof of Theorem 1, Johnstone and Silverman (2004a) used their

Lemma 3 which states that, for 0 < π ≤ 1,

1 + β
(

tPM (π)
)

< β(ζ(π)) < 2 + β
(

tPM (π)
)

, (A.25)

where tPM(π) is the threshold due to the posterior median estimator. Re-

call that the Bayes factor threshold tBF (π) is derived by solving the equation

I(tBF )/ϕ(tBF )=(1−π)/π, which is equivalent to β(tBF )=1/π−2. Hence, (A.25)

is modified to become 1+β(tBF (π))<β(ζ(π))≤ 2+β(tBF (π)). With this modi-

fication, all of the steps in the proof of Theorem 1 of Johnstone and Silverman

(2004a) go through, the only things which are affected are the constants. Note

also that, under the conditions of Theorem 4, θ̃jk ∈ brp,∞(A) (Besov sequence

ball of radius A), so that ‖θ̃j·‖p ≤ A2−j(r+1/2−1/p) for all j. Hence we can apply

Theorem 2 of Johnstone and Silverman (2005) to get

Rn(Br
p,∞(A), f̂ ) ≤ c

(

A
2

2r+1n−
2r

2r+1 + n−1(lnn)ν +A2n
−2(r+ 1

2
− 1

p
)
)

,
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where ν = 0 if D > 0, and ν = 4 − p∗/2 if D = 0. Observe that the second term

is asymptotically smaller than the first one, and the last term is O(n−2r/(2r+1))

whenever r > rp, resulting in (3.28).
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