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a b s t r a c t

We derive minimax results in the functional deconvolution model under the Lp-risk, 1 ≤
p < ∞. Lower bounds are given when the unknown response function is assumed to
belong to a Besov ball and under appropriate smoothness assumptions on the blurring
function, including both regular-smooth and super-smooth convolutions. Furthermore, we
investigate the asymptotic minimax properties of an adaptive wavelet estimator over a
wide range of Besov balls. The new findings extend recently obtained results under the
L2-risk. As an illustration, we discuss particular examples for both continuous and discrete
settings.
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1. Introduction

In the past decades, the standard deconvolution model was studied by many researchers who tried to find optimal
solutions to this problem. Amongst them, Donoho (1995), Abramovich and Silverman (1998), Johnstone et al. (2004) and
Chesneau (2008) proposed various wavelet thresholding estimators of the unknown response function in this model that
achieve optimal (in the minimax or the maxiset sense), or near-optimal within a logarithmic factor, convergence rates over
a wide range of Besov balls and for a range of Lp-loss functions defining the risk.
On the one hand, there are several cases when one needs to recover initial or boundary conditions on the basis of

observations of a noisy solution of a partial differential equation. The estimation problem of the initial condition in the
heat conductivity equation was initiated by Lattes and Lions (1967). This problem and the problem of recovering the
boundary condition for elliptic equations based on observations in an internal domainwere considered in aminimax setting
by Golubev and Khasminskii (1999), and sharp asymptotics for the L2-risk over a range of Sobolev balls were obtained.
On the other hand, Casey and Walnut (1994) and De Canditiis and Pensky (2004, 2006) considered the multichannel
deconvolution model which arises in signal and image processing, e.g., in LIDAR (Light Detection and Ranging) remote
sensing and reconstructions of blurred images (see, e.g., Park et al. (1997)). Using the maxiset approach, De Canditiis and
Pensky (2006) derived upper bounds for the Lp-risk, 1 < p <∞, over a wide range of Besov balls, of an adaptive term-by-
term thresholdingwavelet estimator for a fixed target function f (·). However, theminimax properties of their estimator and
the case when the number of channels increases with the number of points at which f (·) is observed were not considered
by De Canditiis and Pensky (2006).
Recently, Pensky and Sapatinas (2009) showed that all the above described problems are special cases of the functional

deconvolution model given by

y(u, t) =
∫
T
f (x)g(u, t − x)dx+

1
√
n
z(u, t), t ∈ T = [0, 1], u ∈ U = [a, b], (1)
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with−∞ < a ≤ b <∞. Here, the kernel or blurring function g(·, ·) is assumed to be known, and z(u, t) is assumed to be
a two-dimensional Gaussian white noise, i.e., a generalized two-dimensional Gaussian field with covariance function

E(z(u1, t1)z(u2, t2)) = δ(u1 − u2)δ(t1 − t2),

where δ(·) denotes the Dirac δ-function. The analogous discrete model, when y(u, t) is observed at n = NM points (ul, ti),
l = 1, 2, . . . ,M and i = 1, 2, . . . ,N , is given by

y(ul, ti) =
∫
T
f (x)g(ul, ti − x)dx+ εli, ti =

i
N
∈ T = [0, 1], ul ∈ U = [a, b], (2)

where εli are standard Gaussian random variables, independent for different l and i.
Pensky and Sapatinas (2009) obtained minimax lower bounds and proposed an adaptive (linear or block thresholding)

wavelet estimator, for both the functional deconvolutionmodel (1) and its discrete version (2), that is asymptotically optimal
(in the minimax sense), or near-optimal within a logarithmic factor, under the L2-risk over a wide range of Besov balls.
The aim of this paper is to provide the analogous statements of the above-mentionedminimax results obtained by Pensky

and Sapatinas (2009) under the L2-risk for the case of Lp-risk, 1 ≤ p <∞. More specifically, we first obtain lower bounds for
the Lp-risk, 1 ≤ p < ∞, when the unknown response function f (·) in functional deconvolution model (1) and its discrete
version (2) are assumed to belong to a Besov ball and the blurring function g(·, ·) is assumed to possess some smoothness
properties, including both regular-smooth and super-smooth convolutions. Furthermore, we investigate the asymptotic
optimal (in the minimax sense) properties of an adaptive (linear or block thresholding) wavelet estimator under the Lp-risk,
1 ≤ p < ∞, over a wide range of Besov balls. As an illustration, we discuss particular examples for both continuous and
discrete settings.
In what follows, as in Pensky and Sapatinas (2009), we assume that for a fixed u ∈ [a, b], both f (·) and g(u, ·) are periodic

functions with period on the unit interval T = [0, 1]; this assumption appears naturally in the above-mentioned special
models which (1) and (2) generalize.

2. Meyer wavelets and Besov balls

Let φ∗(·) and ψ∗(·) be the Meyer scaling and mother wavelet functions, respectively (see, e.g., Meyer (1992)). As usual,

φ∗jk(x) = 2
j/2φ∗(2jx− k), ψ∗jk(x) = 2

j/2ψ∗(2jx− k), j, k ∈ Z,

are, respectively, the dilated and translatedMeyer scaling and wavelet functions at resolution level j and scale position k/2j.
(Here, and in what follows, Z refers to the set of integers.) Similarly to Section 2.3 in Johnstone et al. (2004), we obtain a
periodized version of Meyer wavelet basis by periodizing the basis functions {φ∗(·), ψ∗(·)}, i.e.,

φjk(x) =
∑
i∈Z

2j/2φ∗(2j(x+ i)− k), ψjk(x) =
∑
i∈Z

2j/2ψ∗(2j(x+ i)− k).

Note that, for any j0 ≥ 0 and any j ≥ j0, any f (·) ∈ Lp(T ) can be written as

f (t) =
2j0−1∑
k=0

αj0kφj0k(t)+
∞∑
j=j0

2j−1∑
k=0

βjkψjk(t).

It is well known that the Meyer wavelet basis satisfies the following three properties (see, e.g., Johnstone et al. (2004)):

1. Property of concentration. Let p ∈ [1,∞) and h ∈ {φ,ψ}. For any integer j ∈ {τ , . . . ,∞} and any sequence
u = (uj,k)j,k, there exists a constant c > 0 such that∥∥∥∥∥∥

2j−1∑
k=0

uj,khj,k

∥∥∥∥∥∥
p

p

≤ c2j(p/2−1)
2j−1∑
k=0

|uj,k|p. (3)

(Here, and in what follows, ‖g‖p refers to the Lp-norm of a function g(·).)
2. Property of unconditionality. Let p ∈ (1,∞). Let us set ψτ−1,k = φτ ,k. For any sequence u = (ujk)j,k, we have∥∥∥∥∥∥

∞∑
j=τ−1

2j−1∑
k=0

ujkψjk

∥∥∥∥∥∥
p

p

�

∥∥∥∥∥∥
 ∞∑
j=τ−1

2j−1∑
k=0

|ujkψjk|2

1/2∥∥∥∥∥∥
p

p

.

(Here, and inwhat follows, the notation a � bmeans there exist twopositive constants c1 and c2 such that c1b ≤ a ≤ c2b.)
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3. Temlyakov property. Let σ ∈ [0,∞). Let ψτ−1,k = φτ ,k. For any subset A ⊆ {τ − 1, . . . ,∞} and for any subset
Ω ⊆ {0, . . . , 2j − 1}, we have∥∥∥∥∥∥

(∑
j∈A

∑
k∈Ω

|2jσψjk|2
)1/2∥∥∥∥∥∥

p

p

�

∑
j∈A

∑
k∈Ω

2jpσ‖ψjk‖pp.

Remark 2.1. The property of concentration is used in the proof of Theorem 4.2, in the case of super-smooth convolutions.
The property of unconditionality and Temlyakov property are indirectly used in the proof of Theorem 4.2, since they are
used in the proofs of some auxiliary results (i.e., Theorems 5.4.1 and 5.4.2 in Chesneau (2006)).

Now, let us give the definition of Besov balls, the main function spaces used in our study. LetM ∈ (0,∞), s ∈ (0, R), ρ ∈
[1,∞] and r ∈ [1,∞]. (Here, R refers to the number of vanishing moments and continuous derivatives of the mother
wavelet functionψ∗(·); note that, for the Meyer wavelet basis, R = ∞.) Let βτ−1,k = ατ ,k. We say that a function f belongs
to the Besov ball Bsρ,r(M) if and only if the associated wavelet coefficients βjk, when ρ ∈ [1,∞) and r ∈ [1,∞), satisfy(

∞∑
j=τ−1

(
2j(s+1/2−1/ρ)

(2j−1∑
k=0

|βjk|
ρ

)1/ρ)r)1/r
≤ M,

with respective sum(s) replaced by maximum when ρ = ∞ and/or r = ∞.

3. Construction of the wavelet estimator

Let em(t) = ei2πmt ,m ∈ Z, and for any j0 ≥ 0 and any j ≥ j0, let

φmj0k = 〈em, φj0k〉, ψmjk = 〈em, ψjk〉, fm = 〈em, f 〉

be the Fourier coefficients of φj0k(·), ψjk(·) and f (·), respectively. Moreover, let

h(u, t) =
∫
f (x)g(u, t − x)dx, t ∈ T = [0, 1], u ∈ U = [a, b], (4)

and let the functional Fourier coefficients of h(u, ·), y(u, ·), g(u, ·) and z(u, ·) be given, respectively, by

hm(u) = 〈em, h(u, ·)〉, ym(u) = 〈em, y(u, ·)〉, gm(u) = 〈em, g(u, ·)〉, zm(u) = 〈em, z(u, ·)〉.

Using the properties of the Fourier transform, then for each u ∈ U , for the continuous model (1), we have

ym(u) = gm(u)fm +
1
√
n
zm(u),

where gm(u) = hm(u)/fm and zm(u) are generalized one-dimensional Gaussian processes satisfying

E(zm1(u1)zm2(u2)) = δm1,m2δ(u1 − u2),

where δml is Kronecker’s delta. For the discrete version (2), using properties of the discrete Fourier transform, for each
l = 1, 2, . . . ,M , we have

ym(ul) = gm(ul)fm +
1
√
N
zml,

where zml are standard Gaussian random variables, independent for differentm and l, i.e.,

E(zm1,l1zm2,l2) = δm1,m2δl1,l2 .

A natural estimator of fm is given by

f̂m =



∫ b
a gm(u)ym(u)du∫ b
a |gm(u)|

2du
, in the continuous case,

M∑
l=1
gm(ul)ym(ul)

m∑
l=1
|gm(ul)|2

, in the discrete case.

(Here, and in what follows, h denotes the conjugate of a complex number or a complex function h; h is real if and only if
h = h.)
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Consider also the following assumptions on the blurring function g(·, ·). Define

τ1(m) =


∫ b

a
|gm(u)|2du, in the continuous case,

1
M

M∑
l=1

|gm(ul)|2, in the discrete case,

and suppose that, for some constants ν ∈ R, α ≥ 0 (with ν > 0 if α = 0), β > 0 and some constants K1 and K2, independent
ofm, the choice ofM and the selection of points ul, l = 1, 2, . . . ,M , with 0 < K1 ≤ K2,

τ1(m) ≤ K2|m|−2ν exp(−α|m|β), (5)

and

τ1(m) ≥ K1|m|−2ν exp(−α|m|β). (6)

Following standard terminology, α = 0 corresponds to regular-smooth and α > 0 corresponds to super-smooth blurring
functions g(·, ·). Define also

2j0 = 2J =
3
8π

(
log(n)
2α

)1/β
, α > 0,

2j0 = [log(n)max(p/2,1)], 2J = nδ, α = 0,

(7)

where δ ∈ (0, (2ν + 1)−1]. (Here, and in what follows, [x] denotes the integer part of x.)
By Plancherel’s formula, the scaling coefficients, αj0k, and the wavelet coefficients, βjk, can be represented as

αj0k =
∑
m∈C∗j0

fmφmj0k, βjk =
∑
m∈Cj

fmψmjk,

where C∗j0 = {m : φmj0k 6= 0} and, for all j ≥ j0, Cj = {m : ψmjk 6= 0}, both subsets of 2π/3[−2
j+2,−2j] ∪ [2j, 2j+2], due to

the fact thatMeyer wavelets are band limited (see, e.g., Johnstone et al. (2004), Section 3.1). Hence, αj0k and βjk, are naturally
estimated by

α̂j0k =
∑
m∈C∗j0

f̂mφmj0k β̂jk =
∑
m∈Cj

f̂mψmjk. (8)

We now construct a wavelet (linear or block thresholding) estimator of f (·). For this purpose, we divide the wavelet
coefficients at each resolution level into blocks of length lj. More specifically, let the following set of indices

Aj = {1, 2, . . . , 2j/lj}, Ujt = {k = 0, 1, . . . , 2j − 1 | (t − 1)lj ≤ k ≤ tlj − 1}

and let

lj � [log(n)max(p/2,1)], B̂jt =
(∑
k∈Ujt

|β̂jk|
p/lj
)1/p

.

For any j0 ≥ 0, we finally reconstruct f (·) as

f̂n(t) =
2j0−1∑
k=0

α̂j0kφj0k(t)+
J−1∑
j=j0

∑
t∈Aj

∑
k∈Ujt

β̂jkI
(
|B̂jt | ≥ d2jνn−1/2

)
ψjk(t), (9)

where I(A) is the indicator function of the set A. (Since j0 > J − 1 when α > 0, the estimator (9) only consists of the first
(linear) part and, hence, a threshold parameter does not need to be selected in this case.)
Note that since the choices of j0, J and the threshold value are independent of the parameters s, ρ, r and M (that are

usually unknown in practical situations) of the Besov ball Bsρ,r(M), the wavelet estimator (9) is adaptive with respect to
these parameters.
In what follows, we use the symbol C for a generic positive constant, independent of n, which may take different values

at different places.
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4. Main results

We construct below minimax lower bounds for the Lp-risk, 1 ≤ p < ∞, both for the continuous model (1) and the
discrete model (2). For this purpose, we define the minimax Lp-risk, 1 ≤ p <∞, over the setΩ as

Rn(Ω) = inf
f̃n
sup
f∈Ω

E‖f̃n − f ‖pp,

where ‖g‖p is the Lp-norm, 1 ≤ p < ∞, of a function g(·) and the infimum is taken over all possible estimators f̃n(·)
(measurable functions) of f (·), based on observations either from the continuous model (1) or the discrete model (2).
The following theorem provides the minimax lower bounds for the Lp-risk, 1 ≤ p <∞, under assumption (5).

Theorem 4.1. Let {φj0,k(·), ψj,k(·)} be the periodic Meyer wavelet basis discussed in Section 2. Let s > max(0, 1/ρ − 1/2),
1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0. Then, under the assumption (5), as n→∞, there exists some constant C > 0 such that,

Rn(Bsρ,r(M)) ≥


C(log n)−ps

∗/β , if α > 0,
Cn−α1p, if α = 0, ε > 0,

C
(
log n
n

)α2p
, if α = 0, ε ≤ 0,

(10)

where

α1 =
s

2(s+ ν)+ 1
, α2 =

s− 1/ρ + 1/p
2(s− 1/ρ + ν)+ 1

, ε = sρ +
2ν + 1
2

(ρ − p)

and s∗ = s+ 1/p− 1/min(p, ρ).

Remark 4.1. The two different lower bounds for α = 0 in (10) refer to the dense case (ε > 0) when the worst functions
f (·) (i.e., the hardest functions to estimate) are spread uniformly over the unit interval T , and the sparse case (ε ≤ 0)when
the worst functions f (·) have only one non-vanishing wavelet coefficient. Also, the restriction s > max(0, 1/ρ − 1/2),
1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞, that appears in the statement of Theorem 4.1, ensures that the corresponding Besov spaces are
embedded in L2(T ).

The next theorem provides the minimax upper bounds for the adaptive (with respect to the Besov parameters) wavelet
estimator given by (9), under the assumption (6).

Theorem 4.2. Let f̂n(·) be the adaptive wavelet estimator defined by (9), with j0, J and δ given by (7). Let s > 1/ρ − 1/2 +
1/(2δ) − ν if α = 0 and s > 1/ρ if α > 0, 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0. Then, under assumption (6), as n → ∞,
there exists some constant C > 0 such that,

sup
f∈Bsρ,r (M)

E(‖f̂n − f ‖pp) ≤


C(log n)−ps

∗/β , if α > 0,
Cn−α1p(log n)α1pI{p>ρ} , if α = 0, ε > 0,

C
(
log n
n

)α2p
(log n)max(0,p−ρ/r)I{ε=0} , if α = 0, ε ≤ 0,

(11)

where α1, α2, ε and s∗ as in Theorem 4.1.

Remark 4.2. Theorems 4.1 and 4.2 imply that, for the Lp-risk, 1 ≤ p <∞, the estimator f̂n(·) defined by (9) is asymptotically
optimal (in the minimax sense), or near-optimal within a logarithmic factor, over a wide range of Besov balls Bsρ,r(M) of
radiusM > 0 with s > 1/ρ − 1/2+ 1/(2δ)− ν if α = 0 and s > 1/ρ if α > 0, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞. In particular,
the estimator (9) is asymptotically optimal, except for the cases (i) α = 0, ε = 0, p > ρ/r and (ii) α = 0, ε > 0, p > ρ; in
these latter cases, the estimator f̂n(·) defined by (9) is asymptotically near-optimal within a logarithmic factor, i.e.,

Rn(Bsρ,r(M)) �


(ln n)−ps

∗/β , if α > 0,
n−α1p, if α = 0, ε > 0, p ≤ ρ,(
ln n
n

)α2p
, if α = 0, ε < 0,

or α = 0, ε = 0, p ≤ ρ/r

and

sup
f∈Bsρ,r (M)

E‖f̂n − f ‖pp ≤


Cn−α1p(log n)α1p, if α = 0, ε > 0, p > ρ,

C
(
ln n
n

)α2p
(log n)(p−

ρ
r ), if α = 0, ε = 0, p > ρ/r.
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(Here, and in similar expressions, we abuse notation, and g1(n) � g2(n) denotes 0 < lim inf(g1(n)/g2(n)) ≤
lim sup(g1(n)/g2(n)) < ∞ as n → ∞.) Note that since the constant C in Theorems 4.1 and 4.2 is different, it means
that the estimator f̂n(·) defined by (9) is rate optimal.

5. Examples

In this section, we briefly present inverse problems discussed in Section 1 which can be seen as applications of the
functional deconvolution model (1) or its discrete version (2). The optimality (in the minimax sense), or near-optimality
within a logarithmic factor, for the L2-risk over awide range of Besov balls in the Examples 1–3 belowhave been discussed in
Pensky and Sapatinas (2009) (see their Examples 4, 1, 5, respectively); here, we use themethodology presented in Sections 3
and 4 to check that the corresponding estimators are also optimal or near-optimal under the Lp-risk (1 ≤ p <∞).

Example 1 (Estimation of the Speed of a Wave on a Finite Interval). Let h(t, x) be a solution of the initial boundary value
problem for the wave equation

∂2h(t, x)
∂t2

=
∂2h(t, x)
∂x2

with h(0, x) = 0,

∂h(t, x)
∂t

∣∣∣∣
t=0
= f (x), h(t, 0) = h(t, 1) = 0. (12)

Here, f (·) is a function defined on the unit interval [0, 1] and t ∈ [a, b], a > 0, b < 1. We assume that a noisy solution
y(t, x) = h(t, x) + n−1/2z(t, x) is observed, where z(t, x) is a generalized two-dimensional Gaussian field with covariance
function E[z(t1, x1)z(t2, x2)] = δ(t1 − t2)δ(x1 − x2), and the goal is to recover the unknown speed of a wave f (·) on the
basis of observations y(t, x).
Extending f (·) periodically over the real line, it is well known (see, e.g., Strauss (1992), p. 61) that the solution h(t, x) can

then be recovered as

h(t, x) =
1
2

∫ 1

0
I(|x− z| < t)f (z)dz, (13)

so that (13) takes the form (4) with g(u, x) = 0.5 I(|x| < u), where u in (4) is replaced by t in (13). It is easily seen that the
functional Fourier coefficients gm(·) satisfy (5) and (6) with ν = 1 and α = 0.
Hence, according to Theorems 4.1 and 4.2, the adaptive block thresholding wavelet estimator given by (9) achieves the

following minimax upper bounds (in the Lp-risk, 1 ≤ p <∞)

Rn(Bsρ,r(M)) ≤


n−

sp
2s+3 (ln n)

sp
2s+3 , if s >

3
2
(1− p/ρ),(

ln n
n

) p(s−1/ρ+1/p)
2s−2/ρ+3

(ln n)max(0,p−ρ/r)I(ε=0) , if s ≤
3
2
(1− p/ρ),

over Besov balls Bsρ,r(M) of radius M > 0 with s > 1/ρ − 1/2 − 1/(2δ) + ν, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞. (The minimax
lower bounds (in the Lp-risk, 1 ≤ p <∞) have the same form without the extra logarithmic factor.)

Example 2 (Estimation of the Initial Condition in the Heat Conductivity Equation). Let h(t, x) be a solution of the heat
conductivity equation

∂h(t, x)
∂t

=
∂2h(t, x)
∂x2

, x ∈ [0, 1], t ∈ [a, b], a > 0, b <∞,

with initial condition h(0, x) = f (x) and periodic boundary conditions

h(t, 0) = h(t, 1),
∂h(t, x)
∂x

∣∣∣∣
x=0
=
∂h(t, x)
∂x

∣∣∣∣
x=1
.

Again, suppose that a noisy solution y(t, x) = h(t, x) + n−1/2z(t, x) is observed, where z(t, x) is as in Example 1, and the
goal is to recover the unknown initial condition f (·) on the basis of observations y(t, x).
It is well known (see, e.g., Strauss (1992), p. 48) that, under the assumption of periodicity, the solution h(t, x) is given by

h(t, x) = (4ρt)−1/2
∫ 1

0

∑
k∈Z

exp
{
−
(x+ k− z)2

4t

}
f (z)dz, (14)

which coincides with (4) when t and x are replaced by u and t , respectively. It is easily seen that the functional Fourier
coefficients gm(·) satisfy (5) and (6) with ν = 1, α = 8π2a and β = 2.
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Hence, according to Theorems 4.1 and 4.2, the adaptive wavelet estimator given by (9) achieves the following minimax
convergence rates (in the Lp-risk, 1 ≤ p <∞)

Rn(Bsρ,r(M)) � (ln n)
−
p
2 (s+1/p−1/min(p,ρ))

over Besov balls Bsρ,r(M) of radiusM > 0 with s > 1/ρ, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞.

Example 3 (Estimation in the Multichannel Ddeconvolution Problem). Consider the problem of estimating f (·) ∈ Lp(T ) on the
basis of the following model

dYl(t) = f ∗ gl(t)dt +
1
√
n
dWl(t), t ∈ T = [0, 1], l = 1, 2, . . . ,M, (15)

where gl(·) are known blurring functions andWl(t) are independent standard Wiener processes.

Adaptive term-by-termwavelet thresholding estimators for the model (15) were constructed in De Canditiis and Pensky
(2006) for regular-smooth convolutions (i.e.,α = 0 in (5) and (6)), over awide range of Besov balls. However,minimax lower
and upper boundswere not obtained by these authorswho concentrate instead on upper bounds (in the Lp-risk, 1 < p <∞)
for the error, for a fixed target function (using the maxiset approach). Moreover, the case of super-smooth convolutions
(i.e., α > 0 in (5) and (6)) and the case when M can increase together with N have not been treated in De Canditiis and
Pensky (2006).
Consider now the adaptive wavelet estimator f̂n(·) defined by (9) for the continuous model (1) or the discrete model

(2). Then, under the assumption (6), the corresponding minimax lower bounds are given by Theorem 4.1, while, under
the assumption (5), the corresponding minimax upper bounds are given by Theorem 4.2. Thus, the proposed functional
deconvolution methodology significantly expands on the theoretical findings in De Canditiis and Pensky (2006).
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Appendix. Proofs

Proof of Theorem 4.1. The proof follows by working along the lines of the proof of Theorem 1 in Pensky and Sapatinas
(2009), with necessary modifications, hence we omit the details. (For the details, we refer to Petsa (2009).)
In what follows, we use the symbol c for a generic positive constant, independent of n, which may take different values

at different places.

Proof of Theorem 4.2. For the proof of Theorem 4.2, we are going to use Theorems 5.4.1 and 5.4.2 in Chesneau (2006). The
important assumptions in these theorems are stated below:

(F1) Let us set β̂j0−1,k = α̂j0k. There exist some constant c > 0 such that, for all j ∈ {j0 − 1, j0, . . . , J}, k ∈ {0, 1, . . . , 2
j
− 1}

and n sufficiently large,

E(|β̂jk − βjk|2p) ≤ c22jpνn−p.

(F2) There exist two constants d > 0 and c > 0 such that, for j ∈ {j0, j0 + 1, . . . , J}, t ∈ Aj and n sufficiently large,

P
(
1
lj

∑
k∈Ujt

|β̂jk − βjk| ≥ 2−1d2jνn−1/2
)
≤ cn−p.

We show below that Assumptions (F1) and (F2) hold in order to apply Theorems 4.5.1 and 4.5.2 in Chesneau (2006), for
the case a = 0.
Assumption (F1). Using the theory of generalized random fields, it is easy to check that α̂j0k − αj0k is a centered Gaussian
random variable, with

Var(α̂j0k − αj0k) =



1
n

∑
m∈C∗j0

|φmj0k|
2
(∫ b

a
|gm(u)|2du

)−1
, for the continuous model,

1
NM

∑
m∈C∗j0

|φmj0k|
2
( M∑
l=1
|gm(ul)|2

M

)−1
, for the discrete model.
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Under assumption (6), it is easy to see that

Var(α̂j0k − αj0k) ≤ 2
−j0

∑
m∈C∗j0

|φmj0k|
2 τ
−1
1 (m)
n
≤ 2−j0

K1
n

∑
m∈C∗j0

|m|2ν ≤
c22j0ν

n
,

for both the continuousmodel (1) and the discretemodel (2). Using the same arguments, it is easy to see that, for each j ≥ j0,
β̂jk − bjk are also centered Gaussian random variables with variance

Var
(
β̂jk − βjk

)
≤
c22jν

n
.

Therefore, the following inequalities hold

E(|α̂j0k − αj0k|
p) ≤ cp

(
Var(α̂j0k − αj0k)

)p/2
≤
c2j0νp

np/2
,

E(|β̂jk − βjk|2p) ≤ cp(Var(β̂jk − βjk))p ≤
c22pνj

np
.

Assumption (F2).We first show that Assumption (F2) holds for p ≥ 2. It is sufficient to show that

P
((
1
lj

∑
k∈Uj,t

|β̂jk − βjk|
p
)1/p
≥
d2jνn−1/2

2

)
≤ cn−p. (16)

Consider the centered Gaussian process

Zjt =
∑
k∈Ujt

vk(β̂jk − βjk),

where vk ∈ Ωq =
{
vk : k ∈ Ujt and

∑
k∈Ujt
|vk|

q
≤ 1

}
and 1p +

1
q = 1. By the duality argument used by Chesneau (2008),

we get

sup
v∈Ωq

Zjt(v) =
(∑
k∈Ujt

|β̂jk − βjk|
p
)1/p

.

Thus, Jensen’s inequality and Assumption (F1) lead to

E( sup
v∈Ωq

Zjt(v)) = E
(∑
k∈Ujt

|β̂jk − βjk|
p
)1/p
≤

(∑
k∈Ujt

E
(
|β̂jk − βjk|

p
))1/p

≤ cl1/pj n
−1/22νj := V1.

Under assumption (6), it is easy to see that

E
(
(β̂jk − βjk)(β̂jk − βjk)

)
=

∑
m∈Cj

ψmjkψmjk′
τ−11 (m)
n

. (17)

Hence, using (17), ψmjkψmjk′ = 0 for k 6= k′ and
∑
m∈Cj
|ψmjk|

2
= 1, we arrive at

sup
v∈Ωq

Var
(
Zjt(v)

)
= sup

v∈Ωq

∑
k∈Ujt

∑
k′∈Ujt

vkvk′E(β̂jk − βjk)(β̂jk′ − βjk′)

≤
K122jν

n
sup
v∈Ωq

∑
k∈Ujt

|vk|
2
≤ K1

22νj

n
:= V2. (18)

To continue the proof of Theorem 4.2, we are going to use Lemmas 2 and 5 in Pensky and Sapatinas (2009). Applying

Lemma 5 in Pensky and Sapatinas (2009) with x =
dn−1/2 l1/pj 2νj

4 , V1 = cl
1/p
j n

−1/22νj, V2 = K1 2
2νj

n and d sufficiently large, we
have

P
((
1
lj

∑
k∈Ujt

|β̂jk − βjk|
p
)1/p
≥ 2−12νjdn−1/2

)
= P

(
sup
v∈Ωq

Z(v) ≥ l1/pj 2
−12jδdn−1/2

)
≤ P

(
sup
v∈Ωq

Z(v) ≥ x+ V1

)
≤ exp

(
−
x2

2V2

)
≤ exp(−cd2 log n) ≤ n−p.
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Now, we show that Assumption (F2) holds for 1 ≤ p < 2. It is easy to see that the following inequality holds

P
((
1
lj

∑
k∈Ujt

|β̂jk − βjk|
p
)1/p
≥ 0.5d2jνn−1/2

)
≤ P

((
1
lj

∑
k∈Ujt

|β̂jk − βjk|
2
)1/2
≥ 0.5d2jνn−1/2

)
. (19)

In order to complete the proof of Theorem 4.2, we now apply Lemma 2 in Pensky and Sapatinas (2009) which, combining
with (19), gives (16). Hence, we have shown that (F1) and (F2) are satisfied for all 1 ≤ p <∞. Applying Theorem 5.4.1 and
5.4.2 in Chesneau (2008), we obtain the required upper bounds.
For the case α > 0, the estimator is given by f̂n(t) =

∑2j0−1
k=0 α̂j0kφj0k(t).Minkowski’s inequality leads to

E(‖f̂n − f ‖pp) ≤ 2
p−1E

∥∥∥∥∥∥
2j0−1∑
k=0

(α̂j0k − αj0k)φj0k

∥∥∥∥∥∥
p

p

+ 2p−1
∥∥∥∥∥∥
∞∑
j=j0

2j−1∑
k=1

βjkψjk

∥∥∥∥∥∥
p

p

. (20)

Additionally, using the property of concentration (3) and the definition of j0, we have

E

∥∥∥∥∥∥
2j0−1∑
k=0

(α̂j0k − αj0k)φj0k

∥∥∥∥∥∥
p

p

 ≤ c(log n)p(ν+1/2)/βn−p/4 = o((log n)−ps∗/β), (21)

and ∥∥∥∥∥∥
∞∑
j=j0

2j−1∑
k=1

βjkψjk

∥∥∥∥∥∥
p

p

≤

( ∞∑
j=j0

c2−j(s+1/p−1/min(p,ρ))
)p
= c(log n)−

p
β
(s+1/p−1/min(ρ,p))

. (22)

Inequalities (20)–(22) lead to the optimal rate of convergence for the case α > 0.
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