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Abstract

We obtain a characterization of the negative binomial distribution by using arguments based on power-series families
of distributions for �-monotone random variables. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

The notions of unimodality exist for both non-lattice as well as lattice distributions, each one having its
own interpretation. Let X be a real-valued random variable (rv) and let F be its distribution function. The
rv X (or F) is said to be unimodal about 0 (or with mode at 0) if F is convex on (−∞; 0) and concave on
(0;∞). Olshen and Savage (1970) generalized the concept of unimodality on R= (−∞;∞) to �-unimodality
and proved that a real-valued rv X is �-unimodal about 0, where �¿ 0, if and only if

X d=UZ; (1)

where U ∼ Beta(�; 1) and independent of the rv Z . (The case �=1 is the famous characterization of unimodal
about 0 distributions on R due to Khintchine (1938).)
Discrete unimodal distributions have a di�erent structure from that of unimodal distributions on R. Steutel

(1988) gave a de�nition analogous to Eq. (1), relative to discrete distributions. Restricting to distributions on
N0 = {0; 1; 2; : : :}, he de�ned a rv X to be �-monotone (discrete �-unimodal on N0), where �¿ 0, if:

X d=U ⊗ Z; (2)

where U ∼ Beta(�; 1) and independent of the non-negative integer-valued rv Z ; the multiplication u ⊗ X is
de�ned (see Steutel and van Harn (1979)) by

∑X
i=0 Bi, where {Bi} is a sequence of independent Bernoulli

rv’s with success probability u, and X is a non-negative integer-valued rv independent of {Bi}. For a detailed
account on unimodality of probability measures, we refer to the recent monograph of Bertin et al. (1997).
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Over the last decade, characterization results based on the product forms (1), (2) have arisen. The emphasis
in most of these results is not on unimodality per se, but rather the distribution of Z is chosen to be closely
related to that of X , and to be stochastically larger than X . For example, sums or the maximum of independent
copies of X have been considered. The goal is to identify distributions which are left invariant under a random
contraction of Z – see, e.g. van Harn and Steutel (1993), Sapatinas (1995), Bertin et al. (1997) and references
there in. Incidentally, van Harn and Steutel (1993) have also studied the case when the multiplication ⊗ is
generalized by a lattice-preserving operation whose de�nition involves a subcritical Markov branching process.
This was extended to the general case where U is any rv with support on (0; 1) by Pakes (1995).
In this note, we look at a characterization in which the distribution of Z is not chosen to be related to

that of X in the ways mentioned above. Rather we take X and Z to share a structural property – that the
distributions of X and Z belong to discrete exponential families of distributions. Speci�cally, we try to identify
discrete distributions comprising a power-series (PS) family which are �-monotone (in the sense (2)) and with
Z having a distribution belonging to a modi�ed power-series (MPS) family. (PS and MPS families are the
discrete analogues of natural exponential and exponential families respectively, see Johnson et al. (1993),
pp. 70, 74.) We will show, subject to some positivity assumptions, that X and Z necessarily have negative
binomial distributions.

2. The characterization

Let X and Z be non-negative integer-valued rv’s. We assume that X has a distribution belonging to a PS
family depending on a parameter � with probability mass function (pmf) given by

pn(�) =
bn�n

B(�)
; b0¿ 0; bi ¿ 0 for some i¿2; (3)

where B(�) is the normalizing function and � takes values in the interval [0; �); 0¡�6∞, where � is the
radius of convergence of B(�).

Theorem. Assume that X and Z as de�ned above satisfy Eq. (2) for all �. Then, Z has a distribution
belonging to a MPS family with pmf given by

gn(�) =
cn(a(�))n

C(a(�))
; c0¿ 0; (4)

where C(a(�)) is the normalizing constant, a(�) is a non-negative function, di�erentiable with respect to �
and is not a constant, if and only if

X ∼ Negative binomial (�; ·):

(Furthermore, if X ∼ Negative binomial (�; ·) then Z ∼ Negative binomial (�+1; ·) with ‘·’ referring to the
same parameter.)

Proof. The ‘if’ part of the assertion can be easily veri�ed by substitution. We shall establish the ‘only if’
part of the assertion. Let P and G be the probability generating functions (pgfs) of X and Z , respectively. In
terms of pgfs, Eq. (2) is equivalent to stating that

P(t) = �
∫ 1

0
G(1− u(1− t))u�−1 du; t ∈ [− 1; 1];
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which can be written as

G(t) = P(t)− (1− t)
�

d
dt
{P(t)}: (5)

On using the assumptions of the theorem, Eq. (5) is seen to be equivalent to

∞∑
n=0

cn(a(�)t)n = h(�)

{ ∞∑
n=0

bn(�t)n − 1
�

∞∑
n=0

(n+ 1)bn+1�n+1tn +
1
�

∞∑
n=0

nbn(�t)n
}
; (6)

where h(�) = C(a(�))=B(�). Putting t = 0 in Eq. (6), we get h(�) = c0�=(b0�− b1�). Equating coe�cients of
t n in Eq. (6), we get

cn(a(�))n =
h(�)�n

�
(bn(n+ �)− bn+1(n+ 1)�): (7)

Observe that a(0) = 0 and consider �rst the case b1 = 0. Obviously, we have that

C(a(�)) = c0 + c1a(�) + c2a(�)2 + · · · ≡ (c0=b0)(b0 + b2�2 · · ·): (8)

It follows from Eq. (8) that c1 = 0, and hence from Eq. (7) that b2 = 0. Going back and forth between Eqs.
(7) and (8) shows that only b0 and c0 are positive, i.e. X = Z = 0 almost surely. Consider now the case
b1¿ 0 and b2 = 0. It follows from Eq. (7) that b3 = 0, otherwise we get c2¡ 0. By arguing inductively from
Eq. (7) we get that a(�) ˙ �h(�) and cn; bn = 0 for n¿2. Finally consider the case b2¿ 0. It follows that
all bi’s and ci’s are positive and

a(�) = �� for some �¿ 0;

cn =
c0
b0
bn

(n
�
+ 1

)
�−n; n¿0;

(n+ 1)bn+1
(n+ �)bn

= �; for some �¿ 0; n¿0;

which entails

bn = b0

(−�
n

)
(−�)n; n¿0; (9)

cn = c0

(−(�+ 1)
n

)
(−�)n�−n; n¿0: (10)

Eqs. (9) and (10) imply that X ∼ Negative binomial (�; ·) and that Z ∼ Negative binomial (� + 1; ·). This
completes the proof of the ‘only if’ part and hence of the theorem.

Remark 1. On taking �= 1; a characterization of the geometric distribution is arrived at.

Remark 2. If the assumption that bi ¿ 0 for some i¿2 given in Eq. (3) is relaxed; then we do not arrive at
the characterization in question. The following counterexample shows that if we take b2 = 0 then there are
PS families related by Eq. (2) which are not negative binomial distributions.
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Example. Let X be a Bernoulli rv with success parameter �=(1 + �) such that 0¡�¡�. Then:

P(t) =
(
1 + �t
1 + �

)
; t ∈ [− 1; 1]

and, hence, G given by Eq. (5) is equal to

G(t) =
(
(�− �) + (�+ 1)�t

�(1 + �)

)
; t ∈ [− 1; 1]:

The above pgf is again the pgf of a Bernoulli rv with success parameter (1 + �)�=[�(1 + �)] and, thus, our
claim is valid.

Remark 3. (i) The above example can easily be extended to show that X can have both a PS distribution
and be represented by Eq. (2) with Z failing to have a MPS distribution. To see this; let X be a binomial rv
with pgf:

P(t) =
(
1 + �t
1 + �

)N
; t ∈ [− 1; 1];

where N is a positive integer. Let R=N=�; and restrict � so that �¡ 1=R. Then Eq. (2) holds with Z having
the pgf:

G(t) =
(
1 + �t
1 + �

)N (
1− R�+ (1 + R)�t

1 + �t

)
; t ∈ [− 1; 1];

which can be parametrized to comprise a MPS distribution only when N = 1.
(ii) A further question is whether Z having a PS distribution implies that X has a MPS distribution. We

answer in the negative. To see this; let:

G(t) = exp{−�(1− t)}; �¿ 0; t ∈ [− 1; 1]
and consider Eq. (2) with �= 1. Then:

P(t) =
1− exp{−�(1− t)}

�(1− t) ; t ∈ [− 1; 1];

which generates the upper tail sums of the Poisson (�) distribution; normalized to be a distribution. This is
not a MPS distribution.
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