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Abstract 

In this paper, a general characterization of a class of discrete self-decomposable distributions based on discrete 
p-monotonicity is obtained. This result can be thought as the discrete version of an earlier result due to Shanbhag (1972), 
Artikis (1982) and Alamatsaz (1985). Applying this result, discrete versions of some recent characterizations obtained by 
Kotz and Steutel (1988), Huang and Chen (1989) and Alamatsaz (1993) are given. Also, as a by-product of another related 
result, an extension of Forst's (1979) characterization of discrete self-decomposable Poisson mixtures is arrived at. 
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1. Introduction 

The notions of unimodality exist for both non- 
lattice as well as lattice distributions each one 
having its own interpretation. Khintchine (1938) 
established a characterization for unimodal distri- 
butions by proving that a real-valued random vari- 
able X has a unimodal distribution with mode at 
0 if and only if X ~ U Z ,  where U is uniformly 
distributed on (0, 1) and independent of some ran- 
dom variable Z. Olshen and Savage (1970), general 
ized, amongst other things, the concept of unimodal- 
ity to p-unimodality and proved that a one-dimen- 

* Correspondence address: Theofanis Sapatinas, 25th Mar- 
tiou 12, Nea Palatia Anikis, 19015, Greece. 

sional random variable X is p-unimodal if and only 
if 

X d U 1 / p z ,  (1) 

where p > 0 and U is uniform in (0, 1). In terms of 
characteristic functions (ch.f.'s), (1) is equivalent to 
stating that 

qb(t) = p O(ut)u v -  l du, - o o  < t < o o ,  (2) 

where ~b is the ch.f. of the random variable X and 
~O is some ch.f. Shanbhag (1972) characterized ¢ for 
which ¢ is a certain power of (b itself when p = 1. 
By following Shanbhag's exact line of proof, Artikis 
(1982) (with an incomplete proof) and Alamatsaz 
(1985) generalized this result for p /> 1. Recently, 
Kotz  and Steutel (1988), Huang and Chen (1989) 
and Yeo and Milne (1991) obtained interesting 
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characterizations based on the relation (and some 
of its extensions) 

X d= U(Xt + X2), (3) 

where X~ and X2 are independent random vari- 
ables with distribution the same as that of X. More 
recently, Alamatsaz (1993) obtained, as a corollary 
to his earlier result (Alamatsaz, 1985), the solution 
of the equation 

X l  .~_ . . .  -~- X K  d O l / p ( X K +  1 AI - . . .  "~ X K + M ) ,  (4) 

where M , K  (M > K) are integers, p > 0, U is 
uniformaly distributed on (0, 1), X[s are identical, 
X1 . . . . .  Xx are independent, and U and Xx + ~, . . . ,  
Xx+u are also independent. He also revealed that 
the results obtained by Kotz and Steutel (1988), 
Huang and Chen (1989), Devroye (1990) and Yeo 
and Milne (1991) follow as special cases of his 
results. 

Unimodal discrete i distributions have a different 
structure from that of generalized unimodal distri- 
butions. Steutel (1988), gave a definition analogous 
to (1), relative to discrete distributions. Restrictions 
to distributions on No = {0, 1, 2 . . . .  }, he defined 
that a random variable X is p-monotone, where 
p > 0 i f  

X d= U~/v@Z,  (5) 

where U is uniformly distributed on (0, 1) and inde- 
pendent of the non-negative integer-valued r.v. Z; 
the multiplication u @ Z is defined (see Steutel and 
van-Harn, 1979) by ~X=oZ/, where {Zi} is a se- 
quence of independent Bernoulli random variables 
with success probability u and X is a non-negative 
integer-valued random variable independent of 
{Zi}. By considering a discrete version of (3), that is, 

X d= U,/P@(X~ + X2), (6) 

where X, X~ and X2 are non-negative integer- 
valued random variables that are indentically dis- 
tributed, U is uniform in (0, 1) and independent of 
X1 and )(2, Alzaid and A1-Osh (1990) obtained, 

1 A discrete distribution {p.} with support as a subset of the 
lattice of integers is said to be unimodal if there exists at least one 
integer no such that p, ~> p._ ~ for all n ~< no and p,+ t ~< P, for all 
n/> no; the point no is called the vertex (or the mode) of {p.}. 

amongst other things, a characterization of a class 
of infinitely divisible distributions which parallels 
the result of Kotz and Steutel (1988) for the con- 
tinuous case. 

Clearly (6) is a special case of (5) which, in terms 
of probability generating functions (p.g.f.'s), the lat- 
ter is equivalent to stating that 

P(t) = p G(1 - u(1 - t))ue-~du, t e [ - 1 , 1 ] ,  

(7) 

where P is the p.g.f, of the random variable X and 
G is some p.g.f. 

In the present paper, we shall investigate charac- 
terizations of a class of discrete self-decomposable 
distributions based on the relation (7). Specifically, 
using (7), we shall characterize P for which G is 
a certain power of P itself. Furthermore, we shall 
prove that P (and hence G) in this case is discrete 
self-decomposable and therefore unimodal for all 
p > 0. In connection with the above, an extension 
of a result due to Forst (1979) concerning the dis- 
crete self-decomposability of Poisson mixtures is 
obtained. Finally, as applications of the above re- 
suits, we shall arrive at characterizations of the 
negative binomial (and hence for the geometric) 
distribution which can be thought as the discrete 
versions of the recent results of Kotz and Steutel 
(1988), Huang and Chen (1989) and Alamatsaz 
(1993). 

2. The characterizations 

Theorem 1. Let P in (7) be non-degenerate. Then 

G(t) = (P(t)) ~p+r- 1)/~, for all t e [ - 1, 1], 

if and only if 

P ( t ) = ( l  + c ( 1 - t F )  -p/~, t ~ [ - 1 , 1 ] ,  

where y = r - l, l < r <~ 2 and c > O. 

Proof. Eq. (7) is equivalent to 

p f l  -t 
P(t) ( 1 - t ) VJ o  G ( 1 - s ) s P - l d s ,  

(8) 

t ~ [ - 1 , 1 ] ,  

(9) 
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which, in view of the assumption that G(t)= 
(p(t))~p+r-1)/p, is equivalent to 

d 
{P(t)(1 - t)'){P(t)(1 - t)P} -tp+~- ')/P 

= - p ( 1  - t) - r ,  t ~ ( - 1, 1 ) .  ( 1 0 )  

From this equation, we get P(t) -~ 1 i f r  = 1; as P is 
non-degenerate, we have to exclude then this case. 
Integrating on both sides of (10), and appealing to 
the continuity of P, we get 

P ( t ) = ( 1  +c(1  - t )  r - l )  p/tr-1), t e l - I , 1 ] ,  

where c is a non-zero constant with respect to t. 
Now, define 

P,,(t) = [P(1 - ( 1  - t)/m~/t'-~))] m, m = 1,2 . . . . .  

Hence, l ira, , .  ~ Pro(t) = P*(t), where 

{ PC ( 1 - t ) ~ - ~ }  t ~ [ - 1 , 1 ] .  P*(t) = exp r -  1 

(11) 

From the continuity theorem for p.g.f.'s, it follows 
that P* is a p.g.f. Clearly, P* is now the p.g.f, of 
a discrete stable distribution. From what is ob- 
served by Steutel and van-Harn (1979), it is im- 
mediate that we need r here to be such that 
1 < r ~< 2 and c > 0; in that case, the P* can indeed 
be seen to be discrete stable with exponent 
7 -- r - 1. Hence, it is clear that P is given by (8). 
The converse is immediate by the fact that 

d 
~tP(t) = cp(1 - t)e-l(1 + c(1 - t)7)-lp(t) 

and then 

G(t) = P(t) (1 - t) d (p(t))tp+~/~ 
p dt {P(t)}= 

This completes the proof of the theorem. []  

Obviously, P (and hence G) given by (8) is the 
p.g.f, of a discrete infinitely divisible random vari- 
able. In the sequel, we show that P ( and hence G) is 
also discrete self-decomposable and hence uni- 
modal for all p > 0. Before that, we prove a general 
theorem concerning discrete (infinitely divisible) 
self-decomposable p.g.f.'s. 

Theorem 2. Let P* be the p.g.f, of a discrete (infinite- 
ly divisible) self-decomposable distribution on No. 
Then, for every 0 < ? ~< 1, the fi~nction G* given by 

G * ( t ) = P * ( 1 - ( 1 - t ) ~ ) ,  t e [ - 1 , 1 ]  (12) 

is the P.gf  of  a discrete (infinitely divisible) self- 
decomposable distribution on No. 

Proof. The infinitely divisibility part is obvious. To 
prove the other part, set h(t)= 1 - ( 1 -  tF and 
note that 

O*(t) P*(h(t)) 
G*(1 - e(l - t)) P*( l  - (1 - (1 - c(1 - t))) ~) 

P*(h(t)) 
P*(1 - c ~ + c~h(t)) 

=P*(h(t)) ,  t e [ - 1 , 1 ]  

is a compound p.g.f, for each c ~ (0, 1). Hence, the 
result follows. []  

Remark 1. (i) By taking P* in the above theorem 
as the p.g.f, of a negative binomial distribution with 
index p/7 and parameter 1/(1 + c), it is easily seen 
that the p.g.f. G* given by (12) coincides with 
P given by (8). This implies that P (and hence G) in 
question is discrete (infinitely divisible) self-decom- 
posable and hence, in view of a result due to Steutel 
and van Harn (1979), unimodal for all p > 0. 

(ii) It is also worth pointing out here that P given 
by (8) can be thought as the p.g.f, of a more general 
form of the discrete Linnik distribution studied 
recently by Devroye (1993). 

The following corollary of Theorem 2 is the dis- 
crete version of Theorem 2 of Alamatsaz (1985) 
concerning mixtures of stable distributions, and 
itself is an extension of a result due to Forst (1979). 

Corollary 1. Let Ga be the p.g.f of a discrete stable 
distribution with exponent 7 given by 

G l ( t ) - - e x p { - 2 ( 1 - t y } ,  t e [ - 1 , 1 ] ,  

where 2 > 0 and ~ ~ (0, 1]. Then 

P~(t) = I v(Gl(t))xdF(x),  (13) 
do  
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with F as some self-decomposable distribution func- 
tion on R + = [0, ~ ), is the p .g f  of a discrete self- 
decomposable distribution. 

Proof. Let X be the random variable correspond- 
ing to the self-decomposable distribution function 
F on ~ +. Then, in view of the result that Poisson 
(0) mixtures are discrete self-decomposable when 
the mixing random variable 0 is self-decomposable 
(see Forst, 1979), 

P * ( t ) = E ( e  ~x~l t)), t ~ [ - 1 , 1 ]  

is the p.g.f, of a discrete self-decomposable distribu- 
tion for some 2 > 0. Moreover, 

G*(t) = P*(1 - (1 - t) ~) = E(e -~xtl -iv) = Pl(t), 

t ~ [ - - 1 , 1 ] .  

This implies that P~ in question is discrete self- 
decomposable. [] 

Remark 2. (i) It is worth mentioning here that by 
taking F in the above corollary as a gamma distri- 
bution with index P/7 and scale parameter 1, the 
P.g.f. Px given by (13) also coincides with P given 
by (8). 

(ii) It is also worth pointing out here that mix- 
tures of discrete self-decomposable distributions 
are not necessarily discrete self-decomposable even 
if the mixing distribution is also self-decomposable 
with support on [0, ~ )  (see, for example, Alamat- 
saz, 1983). It follows, however, from Corollary 
1 that: "Power mixtures of all discrete stable p.g.f.'s 
are discrete self-decomposable when the mixing 
distribution is self-decomposable with support on 
[0, 0o ) ' .  On taking 7 = 1, Corollary 1 gives Forst's 
(1979) result. 

In the sequel, we reveal, amongst other things, 
how discrete versions of some recent results in 
the literature are connected with Theorem 1. (Our 
results are analogous to that of Alamatsaz (1993) 
for the continuous case.) To achieve our goal, The- 
orem 1 is interpreted in terms of random variables 
as follows. 

Xi's are independent non-negative integer-valued 
random variables and identical to a random variable 
X with p .g f  P. Then 

X d U1/PO(XI ÷ ... + XK), (14) 

if and only if 

P( t )=(1  + c ( 1 - t F )  -"/~, t e [ - 1 , 1 ] ,  

where T = p( K - 1 ) ,  1 < K <~ (1/ p + 1) a n d c > 0 .  

From the above, when p = 1 it is seen that a solu- 
tion to (14) exists only for K = 2. In this case, we 
obtain a characterization of the geometric distribu- 
tion analogous to that of Kotz and Steutel (1988) 
for the exponential distribution. 

Corollary 2. Under the notation of Theorem 3, 

X & U @ ( X I + X 2 )  

if and only if 

P(t )=(1  + c ( 1 - t ) )  -1, t ~ [ - 1 , 1 ] ,  

for some c > 0; i.e. X .,~ geometric. 

By taking K = 2, Theorem 3 of Alzaid and 
A1-Osh (1990) is obtained. 

Corollary 3. Under the notation of Theorem 3, 

X d U 1 / p ( ~ ( X  1 ..~ X2) 

if and only if 

0 < p ~ < l  and P( t )=(1  + c ( 1 - t ) P )  -1, 

t ~ [ - - 1 , 1 ] ,  

for some c > O. 

Remark 3. In proving their result, Alzaid and A1- 
Osh (1990) preassumed that 0 < p ~< 1. They also 
showed that p.g.f.'s of the form given in Corollary 
3 are infinitely divisible. Obviously, in view of Re- 
mark 1, these p.g.f.'s are more specifically discrete 
self-decomposable and hence unimodal. Thus, Co- 
rollary 3 is an improved version of Alzaid and 
A1-Osh result. 

Theorem 3. Let U be a uniformly distributed random 
variable on (0, 1) independent of XI . . . . .  XK, where 

By choosing different values of p (p ~< 1), The- 
orem 3 results in several other characterizations of 
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e.g. negative b inomial  distributions.  Fo r  instance, if 
we take p = ½, a solution to (14) exists only for 
K = 2 or  3. Fo r  example,  in the case of  K = 3, we 
obtain  the following corollary.  

if and only if 

P(t) = (1 + c(1 -- t))-  1, t E 1- - -  1, 13, 

for some c > O; i.e. X ~ geometric. 

Corollary 4. Under the notation o f  Theorem 1, 

X ~ = U 2 @ ( X I + X 2 + X 3 )  

if and only if 

P(t) = (1 + c(1 - t))-  1/2, t e [ -  1, 1],  

for  some c > 0; i.e. X ~ negative binomial with index 
1 

By considering ano the r  in terpre ta t ion of The- 
o rem 1 in terms of r a n d o m  variables,  we could 
obtain  the solut ion of (15) given below. This equa-  
t ion can be thought  as the discrete version of (4). 

Theorem 4. Let  M and K (M > K)  be positive inte- 
gers, X1 . . . . .  XK+M be non-negative integer-valued 
random variables and identical with a common p . g f  
P such that X1 . . . . .  X r  are independent U, XK+ 1 . . . .  , 
XK + M are independent and U are uniformly distrib- 
uted on (0, 1). Then 

X l  + . . .  _~_ X K d U 1 / p ( ~ ( X K +  1 -}- . . .  _}_ X K + M )  

if and only if 

P ( t ) = ( 1  + c ( 1 - t )  v) 1/IM-K}, t ~ [ - - 1 , 1 ] ,  

where v = ( M -  K ) p / K ,  O < 7 <~ 1 and c >O. 

(15) 

As an appl icat ion of Theo rem 4, a character iza-  
t ion of the negative binomial  distr ibution analog-  
ous to that  given by H u a n g  and Chen (1989) and 
Alamatsaz  (1993) for the g a m m a  distr ibution is 
obtained.  

Corollary 5. Under the notation o f  Theorem 4, rela- 
tion (15) holds with p = K / ( M  - K)  if and only if 

P ( t ) = ( 1  + c ( 1 - t ) )  -1/~M-K), t ~ [ - 1 , 1 ] ,  

for  some c > 0; i.e. X ~ negative binomial with index 
1 / (M -- K). 

In particular, when M = K + 1, then 

X 1  ~_ . . . . . ~ _ X K  d u 1 / K ( ~ ( X K +  1 .q_ . . .  _~_ X2K+I ) 

(16) 

In concluding,  we ment ion  that  the for thcoming  
m o n o g r a p h  of C.R. Rao  and D.N. Shanbhag  
("Choquet-Deny type functional equations with ap- 
plications to stochastic models", 1994) will address 
mult ivar ia te  extensions of  some of the preceding 
results. 

Errata 

Note added in proof: Independent ly  to our  work,  
van H a r n  and Steutel (1993) have obta ined  charac-  
terizations related to our  Theo rem 1 by considering 
a generalized mult ipl icat ion opera t ion  in which 
subcritical branching processes, both  with discrete 
and cont inuous  state space, play an impor t an t  role. 
Also, Pakes  (1994) has studied the p rob lem in the 
general case where U is any r a n d o m  variable with 
suppor t  on (0, 1). 
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