
Statistical Papers 37, 53-69 (1996) Statistical Papers 
 9 Springer-Verlag 1996 

Characterizations, length-biasing, 
and infinite divisibility 
Anthony G. Pakes, T. Sapatinas, E. B. Fosam 

Received: July 25, 1994; revised version: June 7, 1995 

Suppose L(X) is the law of a positive random variable X, and Z is positive and 
independent of X. Admissible solution pairs (L(X),L(Z)) are sought for the in-law 
equation )( ~ X o Z, where L0( ) is a weighted law constructed from L(X), and o 
is a binary operation which in some sense is increasing. The class of weights includes 
length biasing of arbitrary order. When o is addition and the weighting is ordinary 
length biasing, the class of admissible L(X) comprises the positive infinitely divisible 
laws. Examples are given subsuming all known specific cases. Some extensions for 
general order of length-biasing are discussed. 
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1. I N T R O D U C T I O N  

Let X be a non-negative random variable (rv) whose law L(X) is 
not degenerate at zero and has distribution function (DF) F.  Next, let 
w : R+ ~-, R+ be a continuous and strictly increasing weight function 
and m = E(w(X)) < oo. The weighted law L()()  formed from L(X) 
and w has the DF F(x) = m -1 f~ w(u)F(du). We refer to Patil  & Rao 
(1977), and to Rao (1985), for a survey of statistical applications and 
to Mahfoud & Pati l  (1982) for some theory. The length-biased law of 
order r, denoted by r-LBL, corresponds to w(x) = x", and the familiar 
length-biased law (LBL) has r = 1. Our point of departure is the fact 
that  weighting always is a stochastic order increasing operation. 

L e m m a  1.1. For x > O, P(f(  > x) > P(X  > x), i.e., X _<a )( .  

Proof. When x > w(1/m), 

P(f( > x) = m -x f(,,oo)w(u)F(du) > m-'w(w-'(m)) f,,oo) f(du).  
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For x <_ w(1/m) argue slm]larly but starting with P(x). & 

R e m a r k  1.1. (i) Essentially this result for the LBL, in terms of haz- 
ard functions for absolutely continuous F, was given by Mahfoud & 
Patil (1982); see p. 483. It was asserted for discrete laws by Patil, Rao 
& Ratnaparkhi (1985) who mention "a monotone likelihood ratio type 
argument between the pdf's" of X and X. The above proof is simple 
and general. 
(ii) The proof requires only that w is non-decreasing and has a suitable 
generaliT~d inverse. If w is decreasing then weighting is a stochastically 
decreasing operation. 

This raises the following general problem. Let Z >_ 0 be a rv, 
independent of X, and o a binary operation on R+ x R+ which is non- 
decreasing in each argument and which satisfies x o z > x, at least if z 
is large enough. Consider the (inflationary) stochastic equation 

2 -- X o Z, ( i . i )  

where ~ denotes equality in law. This equation represents X as being 
stochastically increased to give L()(). We would like to determine the 
range of admissible solution pairs (L(X), L(Z)), and to find conditions 
under which L(Z) uniquely determines a law L(X), or a fairly restricted 
parametric family of laws. If o can be chosen so L(Z) is uniquely 
determined by L(X) then we can formulate characterization theorems. 

Special cases of the inflationary equation (1.1) with o = + exist in 
the literature. Kirmani & AhsanuUah (1987) and Khattree (1989) have 
independently considered the LBL case showing that  L(X) comprises 
the inverse gaussian family IG(m, Am 2) if and only if (iff) Z -~ A-1X~. 
See Seshadri (1993), Theorem 3.12, for a more complete discussion. 
Khattree (1989) shows also that the gamma family Gam(mA/2, 2/A) 
arises iff Z ~ A-1X~. Ahmed & Abouammoh (1993) extend both re- 
sults by showing that a mixture of two X~ laws (k = 1, 2) gives a 
representation of X as a sum of two inverse gaussian, or gamma, rv's. 

Khattree (1989) and Ahmed & Abouammoh (1993) give their re- 
sults in strictly analytical terms, not involving random variable repre- 
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sentations of the sort (1.1). They also give what appear to be inverse 
versions of their results. With our notation, this amounts to solving 
W ~ I?d q- Z for L(W), where L(I2r is the LBL of L(W). T h e  solu- 
tion of course is L(W) = L()~). See Ahsanullah & Kirmani (1984) for 
an earlier formulation, and Seshadri (1993) for references and discus- 
sion. Ahmed & Abouammoh (1993) also have an error in the statement 
about the negative binomial family (see their eq. (3.1)). Specifically, 
they posit an integer valued random variable Y for which y-1  has a 
negative binomial law - this is not valid. 

Using the same underlying approach of these references, we show in 
the next section that  for ordinary length biasing the class of admissible 
L(X) for the additive version of (1.1) (see (2.1) below) is precisely the 
positive infinitely divisible laws. In its essence this is not a new result. 
The expression of (2.1) below in DF terms as a general criterion for infi- 
nite divisibility is due to Steutel (1971), and a lattice-law version is due 
to Katti (1967). However, it bears repeating in the LBL form that we 
give to it. We also formulate a general result relating mixture structure 
of L(Z) to additive structure of L(X). Links with self-decomposability 
are also mentioned. These topics comprise Section 2. 

In Section 3 we present a couple of examples which subsume all 
those mentioned above. Specifically, we couple the Hougaard laws for 
X with gamma laws for Z. A discrete version is also given. 

In Section 4 we discuss some extensions of Theorem 2.1 below to 
the case of the r-LBL operation. Gupta (1975) gave a couple of results 
for this case when Z in (2.1) below is a constant. We generalize one 
of them (Theorem 4.3 below) and give an alternative formulation of 
another (Theorem 4.4 below). Finally, we mention that Pakes (1994) 
discusses the cases where o is maximization or multiplication, for which 
cases a more complete theory can be given. 

2. T H E  A D D I T I V E  C A S E  

We consider the stochastic equation 

R -x+z, (2.1) 
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where L(X) is the LBL of L(X). Let r = E(e -~ be the Laplace- 
Stieltjes transform (LST) of L(X). In this section we write this as 
r = exp(-r  where r is the cumulant generating function (cgf) 
of L(X). Recall that L(X) is infinitely divisible (infdiv) if its cgf has 
the representation 

r = f0:(1 - e-~ (2.2) 

where v is a (positive) measure satisfying I~ xv(dx) < c~ and v([1, oo)) < 
oo. Often v is called a L~vy measure and r is the L~vy exponent (of 
r See Feller (1971) and note that 

m = f0 ~ x v ( d x )  (2.3) 

The following result embraces the known special which here is finite. 
solutions of (2.1). 

T h e o r e m  2.1. Equation (2.1) holds iff L(X) is infdiv, with cgf (2.2), 
and then the LST of Z is 

~(e)  = m-' ]0 ~ xe-%(dx). (2.4) 
Conversely, if the LST of Z, 7, and the constant m > 0 are given, then 
(2.1) has a unique solution which is infdiv with cgf 

r = m ]:  7(u)du. (2.5) 

R e m a r k  2.1. The I~vy measure corresponding to the cgf (2.5) is 

y(dx) = mG(dx)/x. (2.6) 

Proof .  Note first that the LST of )(  is -m- I r  and hence that (2.1) 
is equivalent to the LST relation 

- m - l r  = r  (2.7) 

Now if L(X) is infdiv then we have 

"l(t~) = m-l(d/dt~) log r = m-1r 

i.e., (2.4) holds. Clearly '7 is the LST of a law. 
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Conversely, suppose " /and m are given, and r is determined by 
(2.4). Then (2.2) follows by Fubini's theorem with v given by (2.6), 
and which obviously is a I.~vy measure. Hence r = exp( - r  is the 
LST of an infdiv law, L(X) say, and it satisfies (2.7). & 

Suppose for each t E R that G(x, t) is a DF and that H is a DF on 
1~ Let re(t) be a bounded, measurable, and non- negative function on 
R such that  m = f m(t)H(dt) < cx). Then it is dear that 

v(dzc) = x -1 f G(dx, t)m(t)H(dt) 

is a L~vy measure. If r is its cgf then (2.1) is solved with L(X) having 
the cgf (2.5), where 7(0) = fT(O, t)m(t)H(dt) and -y(., t) is the LST of 
G(., t). This gives the most general mixture formulation of (2.1), but 
in this generality it has only a formal analytical significance. 

Suppose now that  H is a discrete DF placing mass pj at tj, (j = 
0,1,.--). Let Gj(x) = G(x, tj) and 

r = mpj ]o(1 - e-~ 

where we have set mj ~ m. This represents no loss of generality since 
otherwise we just replace pj with pjmj/m. A mixture version of the 
converse part of Theorem 2.1 is immediate: 

T h e o r e m  2.2. If the DF of Z has the mixture form 

a(x)  = Ep Gj(x) 

then any solution L(X) of (2.1) has the representation 

X -EXj, 
where the summands are independent and the cgf of Xj is Cj (/9). (In 
view of this result, the mixture theorems of Ahmed & Abouammoh 
(1993) are formal generalizations of single component cases.) 

Theorem 2.1 places no explicit restriction on the support of the 
laws of X and Z. But one should note that the left extremity of L(X) 
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is, using (2.5), 

t.F = inf sUpp(L(X)) = 01i_~m 8-1r 

= = t o o ( 0 + ) .  

The second equality is (or should be) well-known. Since L(X)  is infdiv, 
its right extremity is infinite. 

When X takes values in the set of non-negative integers l~r0 then 
Z is n ~ i l y  positive. It  is then more convenient to replace (2.1) 
with 

)~ ~ X + 2 + 1 (2.8) 

where ,~ = Z - 1 > 0. Let P(s) be the probability generating function 
(pgf) of X and r be the pgf of 2. Assuming m < co, (2.8) holds iff 
P has the compound Poisson form 

where 

p = mQ, Q = fo 1 

P(s) = exp (-pC1 - q(s)), (2.9) 

r = E((1 + 2 ) - ' )  and q(s) = Q- '  fo s r 
(2.10) 

The following results give characterizations of self-decomposable 
(SD) and of discretely SD laws based on (2.1) and (2.8), respectively. 

T h e o r e m  2.3. Let X and Z be independent and non-negative random 
variables, and let E(X)  < co. Then any two of the following assertions 
implies the third: 
(a) L(X) is SD; 
(b) (2.1) holds; 
(c) L(Z) is absolutely continuous in (0, co) with a non-increasing den- 
sity. 

P roof .  One simply observes that Biggins & Shanbhag (1981) show 
that L(X)  is SD iff its LST r satisfies the relation (2.7) with 

mT(O) = ~i + fo ~ e-e=w(x)dx, 
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where 6 > 0 and w is non-increasing. & 

By appealing to a criterion for discrete SD of Steutel and van H a m  
(1979) (see their (2.7)) we obtain the following discrete analogue of 
Theorem 2.3. 

T h e o r e m  2.4. Let X and Z be independent and SV0 -va lued  random 
variables, and let E(X) < oo. Then any two of the following assertions 
implies the third: 
(a) L(X) is discretely SD; 
(b) (2.8) holds; 
(c) P(Z = j) ~x P(U > j) for some ~l~r0 - valued random variable U. 

3. E X A M P L E S  

Our first example subsumes the cases examined by Kirmani & Ah- 
sanullah (1987), Khattree (1989) and Ahmed & Abouammoh (1993). 
Suppose L(Z) = Gain(a, A), i.e., 

= 

where a, ,k > 0. Then (2.5) yields 

m~log(1 + 0/A), if a = 1; f(o) / [(~ + _ ~l-a], if a r 1. 

When a = 1 we find that L(X) = Gam(m,k, ,k) which, in essence, is 
Khattree's (1989) second characterization. When a r 1 it is convenient 
to set ~ = l - a ,  so 

6 
r  = S [(,x + e )"  - ,xo], 

where 
6 = m A  1-~ and - c ~ < a < l ,  a r  

We write H(a, 6, A) to denote this family of laws. When 0 < a < 1 this 
family was determined by Hougaard (1986) as the natural exponential 
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family (NEF) generated from a positive stable law with index a.  This 
determination entails the above restriction on a,  but our genesis shows 
the parameter space can be enlarged. The puncture at a = 0 is-filled 
by the above Gam(mA, A) laws. The case a - a = 1/2, discussed by 
Kirmani & Ahsanullah (1987) and Khattree (1989), gives the  inverse 
gaussian law IG(m, 262), using Seshadri's (1993) notation. When  a < 0 
we have the following (and obvious) compound-Poisson representation 

Jr 
zr , 
5.=1 

where A /and  the Fj 's  are mutual ly independent, L(AD = Poi ( -6A~/a) ,  
and L(Fj)  = Ga in (A , -a ) .  Hence L(X) assigns positive mass to the 
origin iff a < 0. 

We summarise the main points of this example in the following the- 
orem which generalizes earlier results, cited above, even when a : 1/2 
and a = 1. 

T h e o r e m  3.1. Let a = 1 - ~ and A be positive constants. Any pair 
of the following implies the third: 
(a) (2.1) holds; 
(b) L(Z) : Gam(a,,k); 
(c) For some m > 0, L(X) : H(a,  6, A) where 6 : m)~ a. 

R e m a r k  3.1. (i) An alternative expression of this result is t ha t  the 
H(~, 6, A) family members are the only laws whose LBL's are a con- 
volution of themselves and a gamma law. This is well known for the 
inverse gaussian laws; see Seshadri (1993), p. 52. 
(ii) When 0 < a < 1, Theorem 2.3 shows that  the Hougaard laws are 
SD. 

Now consider (2.8). Suppose 0 < p < 1 and let 

((s)  = , (3.1) 

where q = 1 - p .  This is the pgf of the negative binomial law NBin(p, a). 
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With a = 1 - a, integration in (2.10) leads to the pgf: If a ~ 1, 

P(s) = e x p [ - ( d l a ) ( ( 1 -  ps)a - q~)], d =  mql-a/p,  

and if a -- 1 then 

P(s) = \ 1 - - - ~ ]  " 

(3.2) 

Denote this family by DH(a, d,p). 
When 0 < a < 1 the laws represented by (3.2) comprise the NEF 

generated from the discrete stable law of index a. For this see Pakes 
(1995) and the references therein. Its pgf is 

~_, ajsi = exp[--( d/ oL) ( 1 -  s)~], 

and from this we see that the pgf (3.2) has masses ajp i exp((d/a)q~). 
This is an exact analogue of Hougaard's (1986) continuous laws. But 
note here that  when a = 1 we get a Poisson family; the NEF operation 
only changes the rate parameter. When c~ < 0 we have a compound 
Poisson representation ~f 

ZZ , 
j=l 

where L(Af) = Poi(dqa/p) and L(f~j) = NBin(p,c~). The following re- 
sult is a consequence of the above. 

T h e o r e m  3.2. L e t a = c ~ - i  > 0 a n d 0  < p <  1. Any pair of the 
following implies the third: 
(a) (2.8) holds; 
(b) L(Z) -- SSin(p, a); 
(c) For any m > 0, L(X)  -= DH(c~, d,p), where d =  mq~/p. 

R e m a r k  3.2. (i) The case a = I is a characterization of the NBin(p, d) 
family (d > 0), giving a precise version of Theorem 3.1 of Ahmed & 
Abouammoh (1993). 
(ii) It follows from Theorem 2.4 that DH(c~, d, p) is discretely SD when 
0 _< a _< 1. This can still be true when c~ < 0 and p is sufficiently small. 

When L(Z) is degenerate at zero we have a = 0 in (3.1), giving the 
Poisson law Poi(m) for L(X) .  This was noted by Gupta (1975), p. 763. 
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The following assertion, a corollary of Theorem 2.1, extends this a little. 

T h e o r e m  3.3. Let 0 < c < oo be fixed. Each of the fonowing implies 
the other: 
Ca) 2 x + c; 
(b) For any m > 0, L(X/c) = Poi(m). 

We end this section by mentioning two more examples for (2.8). 
If L(,~) = Poi(A) then the allowable laws L(X) comprise the Poisson- 
Poisson laws having q(s) = exp( -A(1-s ) )  in (2.9). If L(Z) = Bin(n,p) 
then q(s) is the pgf of Bin(n + 1,p), i.e., L(X) is a family of Poisson- 
binomial compounds. The particular case n = 1 gives the Hermite laws, 
L(X) = H e r m ( v ~ ,  (1 -p )  p ~ ) ,  where we have used the parametriza- 
tion of John.qon, Kotz & Kemp (1993), p. 357. 

4. S O M E  E X T E N S I O N S  

We note first a minor extension of Theorem 2.1. Fix a constant 
c > 0 and let L(X) be as above. Seshadri (1993) considers the affine 
weight w(x) = c -t- x. It is easily shown that  the the main assertions of 
Theorem 2.1 continue to hold with (2.5) replaced by 

0(0) = -cO + (c + m) fo ~ 7(u)du, 
where we still have m = E(X). Note that  now the left extremity is 

= - c  + (c + m)a(o), 
which may be negative. 

The case of rth order length biasing in (2.1), that is L()() is now 
the r-LBL of L(X), appears to be much harder. See Gupta (1975) in 
relation to (2.8) when r is an integer. In general (2.7) can be replaced 
by a differential equation of possibly fractional order, a formal move 
that seems of little help. But if L(Z) = Exp(A) then L(X) has a density 
function f ,  and the convolution equation for f obtained from (2.1)can 
easily be solved to give 
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where C is a normalizing constant. (When r = 2 this gives Halphen's 
harmonic laws and C -1 = 2Ko(2Am1/2); see Seshadri (1993), Section 
1.9.) The full family can be regarded as the r-LBL obtained from the 
NEF generated by a Type II extreme-value law. Hence this NEF is 
characterized by a reciprocal relation of the type mentioned in Section 
1. 

If (2.1) is satisfied by ( X , Z )  and L(Z)  is infdiv, then L()() is too. 
So if m2 = E ( X  2) < co, then X has a 2-LBL, L()((2)), and Theorem 
2.1 gives the representation 

.2( 2 ) ~- .2 + z2~- X + Z + Z2, 

where Z2 is independent of Z and its law can be deduced from Theorem 
2.1. Continuing in this way we obtain the following somewhat weak 
extension of this theorem. When mn = E(X n) < co, let )~(n) denote 
the n-LBL of L(X) .  

T h e o r e m  4.1. For integer r _> 2 let rn~ < co and suppose for n = 
0 , . . - , r -  1 that r = (-1)"r the LST of )f(~}, is infdiv. 
Then L(.2 (r)) can be represented by 

.2(r) u x + &, 

where Sr = E~=-I Z,, the Z, are independent with LST 

%(0)= m,,_, 4")(0) 
?T/, n r  " 

The cgf of L(.2(")) is 
0 Cn(0) -- mn+l s %+l(U)du. 

mn 

Example  4.1. Starting with L(X)  = Gam(a, A) we obtain the very 
well-known decomposition, where L(Zn) = Exp(A). Taking r = 2 
and L ( X )  = H(a, 6, A) some algebra gives the above decomposition 
with L(Z1) = Gam(a,A) and L(Z2) is the mixture law pExp()~) + (1 - 
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p)Gam(a, ~), where p = a+--~" A little suprisingly, this representation 
does not extend in all cases when r = 3; the 2-LBL's are infdiv only 
when a > 0. We see this from the following general considerations. 

Let # be a (positive) measure supported in [0, co) and suppose 

X = in:f {~: M(r/) - / e - ' ~ # ( d x ) }  < co. 

The NEF generated by ~u, and denoted by NEF(I~), is the family of 
DF's (F  v : r / >  X), where Fv(dx ) = e--'~D(d.x)/M(rl). For any r > 0, 
the r - LBL exists for each F v and together they comprise the NEF 
with generator xr#(dx). Infinite divisibility for general NEF's receive 
detailed discussion in Seshadri's (1993) monograph, but the following 
result gives a much easier treatment, and in more familiar terms, for 
positive laws. In our more restricted context, it also gives a somewhat 
stronger assertion than the structural results discussed by Seshadri 
(1993). 

T h e o r e m  4.2. If the members of NEF(#)  are infdiv then 

7"0? ) = -M'irl)lMirl) 
is completely monotone (CM): For r />  2:, 

= ~ e- r 

The L~vy measure of F v is 

v,(dz) = 

(4.1) 

Conversely, if M(.) is a positive function defined and differentiable in 
iX, c~) such that i4.1) holds, then (4.3) below defines a family of infdiv 
laws which comprise a NEF whose generator # is uniquely defined up 
to a multiplicative constant by 

M(rl) = exp [- f~'riu)du] , (4.2) 

where rf e iX, co) is an arbitrary constant. 
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P r o o f .  Observe first tha t  the LST of F~ is r - M(r l  -I- O)/M(rl) .  
If F 7 is infdiv then, with a(r/) = logM(r/), 

+ 0 )  - = - 0 F ( 1  - 

where v 7 is a L~vy measure. Differentiation with respect to 0 yields 

+ O) = ] o  e-%vT(d'r')" 
Further differentiation, each time setting 0 = 0, shows tha t  -a/(r / )  = 
r(r/) is CM in (X, oo) and hence (4.1) holds for some measure (. In 
particular the  r ight-hand side of the above equation is now seen to be 
f~' e-X(~162 and hence integration yields 

r = exp [ -  0~(1  - e-~ (4.3) 

For the converse, we note tha t  v 7 as defined above is indeed a I~vy  
measure and hence (4.3) defines a family (FT) of infdiv laws. Clearly 
r = M ( r l + 8 ) / M ( r l )  , where M is given by (4.2). But  (4.2) expresses 
M as the composition of a CM function with one whose derivative is 
CM. Hence (Feller (1971)) M is CM with generating measure ju, say, 
and it follows tha t  (FT) = N E F ( p ) .  & 

If r is a positive integer and F 7 E N E F ( # )  then the DF of the 
r -  LBL, FT, has the LST M(r)(r /+ O)/M(")(y) .  Consequently the 
conditions of Theorem 4.1 are satisfied if T,(r/) = - M  ("+1} (rl)/M(") (7) 
is CM for n = 1 , . . . ,  r - 1. The family Gam(a, 7/), v? > 0, is a NEF and 
"r,,(rl) = (a- t -n  - 1)#h which is CM for each n. We anticipate this from 
Example 4.1. 

When c~ < 1, then for H(~, ~, 77) we have M(rl) = exp(-(~/c~)rfl), 
and hence 

"/'1(77) ~-~ ~T] a - 1  and r2(r/) = at/-~ + a~? -1. 

These are CM, as we expect from Example (4.1). Further algebra yields 

Ta(r/) = 2ar1-1 + d~r/-a + a(a - 1)~/-l(a + 8r11-~) -1. 

The first two terms are CM, but the third is CM iff a < 1. When a > 1 
the last term is negative near the origin and it dominates the whole. 
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Hence Theorem 4.1 is applicable to the 3-LBL only for Hougaard's pa- 
rameter range, 0 < a < 1, and not to the above compound Poisson 
laws. 

To extend Theorem 3.3 consider 

2 (0 ~ X + c (4.4) 

for fixed positive r and c. The DF version is the integral equation 

fo" u 'dF(u) = m F ( x  - c), x > O. 

Clearly, P(0 < X < c) = 0 whence L(X)  is a lattice law with span c. 
If P ( X  = O) = 0 then F ( X )  =_ O. When P ( X  = 0) > 0 the integral 
equation determines all the weights P ( X  = cj) as follows: 

T h e o r e m  4.3. Let r and c be positive constants. The following as- 
sertions are equivalent: 
(a) (4.4) holds; 
(b) For any m > 0, 

(mc-r)J 
P ( X = c j ) = p o  ~ , j = 0 , 1 , - - - ,  

where P0 is chosen so P ( X  < co) -- 1. (The case r = 1 is just Theorem 
3.3, and when r = 2 we have p~l = io(2v/-~/c) ' where I0 is a zero-order 
modified Bessel function.) 

Let r EN and L(X(7 )) denote the weighted law induced by the rth 
order factorial moment: 

P(X(f 0 = j)  = m - l j ( r ) p ( x  = j) ,  

where m = E(X(f r)) < co and j (0  = j ! / ( j  _ r)!. Gupta (1975) solved 
the stochastic relation 

x + r (4.5) 

by solving a linear differential equation of order r satisfied by the pgf of 
L(X) .  His solution depends on r (not quite) arbitrary constants (and it 
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contains an error arising by conflating notation for a summation index 
and the imaginary number). 

Let pj = P ( X  = j). The mass function version of (4.5) is 

j(r)pj = mpj-r. 

For each l = 0 ,1 , . - - ,  r - 1 this equation determines Pt+~ (k e IV) in 
terms of pt only: 

k m 
pt+~ = pt vfiII (2 + 1,r)(r)" 

Choose Pt so that  these weights determine a law on s + rN0, which 
we denote by A(m,r,s  Let a = ( a l , . . . ,  a~) denote an element of the 
r - dimensional simplex St. The following result is a constructive ren- 
dition of Theorem 1 in Gupta (1975). 

T h e o r e m  4.4. Let r E JN be fixed and L(X) be a discrete law with 
E ( X  r) < co. The following assertions are equivalent: 
(a) L(X)  satisfies (4.5); 
(b) For each m > 0 and a E St, 

r-I  
LCX) = E ae+,ACm, r , l ) .  
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