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Abstract

We propose a simple computational method in the context of generalized method of moments
for improving the efficiency of regression coefficient estimates. The gains in efficiency arise by
incorporating additional moment conditions in the estimation framework based on maximal over-
lap wavelet packet transforms of the continuous explanatory variables. A major advantage of the
proposed method is that it does not require additional exogenous auxiliary information but relies
on wavelet packet transforms of the existing continuous explanatory variables. Based on existing
theory, we provide theoretical arguments for the proposed methodology, for both linear and non-
linear models, and demonstrate its advantages with both an empirical application concerning two
brand demand models and a Monte Carlo simulation study.
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1 Introduction

In recent years a number of methods have been proposed in the econometrics lit-
erature for improving the efficiency of regression coefficient estimates, particularly
in the presence of auxiliary information. The theoretical foundations provided by
White (1980) and Hansens (1982) have been utilized from a variety of perspectives
and several methods have been proposed, primarily in the context of generalized
method of moments (GMM), that can lead to efficiency gains, making effective use
of the auxiliary information. For instance, Cragg (1983) proposed creating addi-
tional auxiliary variables in the form of polynomial functions of the explanatory
variables and utilize them as instrumental variables in a two-stage least-squares
(2SLS) procedure. When the variance of the model’s error term depends on these
auxiliary variables, the 2SLS procedure can provide gains in efficiency. More re-
cent examples include information theoretic alternatives to GMM. In this direction,
Imbens (1997) and Imbens, Spady & Johnsons (1998) estimate the parameters of
interest jointly with the distribution of the data utilizing over-identifying moment
conditions. Unlike the empirical distribution case, new and non-equal weights are
attached to each observation and the weighted version of the sample moment con-
ditions is set to zero. This approach has also been extended to the case when the
sample is not a random draw from the population; see, e.g., Nevo (2002, 2003),
Hellerstein & Imbens (1999). In another example, Qian & Schmidt (1999) make use
of additional moment conditions that do not depend on the unknown parameters in
order to improve efficiency.

In addition to Cragg’s polynomial instruments, several other non-linear instru-
mental variables have been proposed in the literature. Dagenais & Dagenais (1995)
suggested a higher moment estimator by utilizing instrumental variables constructed
from higher moment functions of the existing exogenous variables. The resulting esti-
mator provides consistent parameter estimates in cases when there is measurement
error as well as efficiency gains compared with the ordinary least-squares (OLS)
method. A similar approach was also followed by Lewbel (1997) who constructed
instrumental variables by utilizing functions of the exogenous variables, with fi-
nite third own and cross moments. In addition to dealing with measurement error
problems, the instrumental variables were shown to provide gains in efficiency. Don-
ald, Imbens & Newey (2003) suggested the construction of non-linear instrumental
variables by employing approximating functions of exogenous variables. Candidate
functions include splines, power series, Fourier series and exponentials. Utilizing
such instruments, efficient empirical likelihood, GMM and instrumental variable es-
timators under conditional moment restrictions can be constructed from a sequence
of unconditional restrictions. We augment the class of non-linear instrumental vari-
ables with further non-linear transformations in the form of wavelets. We achieve
this by performing wavelet transformations on the realized values of the exogenous
variables which we incorporate as additional instruments in the GMM estimation
procedure. By definition, such transformations are deterministic and can hence be
considered as part of the information set associated with a data generating pro-

1

1Michis and Sapatinas: Wavelet Instruments for Efficiency Gains

Published by The Berkeley Electronic Press, 2007



cess (DGP). As demonstrated by Ramsey & Zhang (1997) and Ramsey & Lampard
(1998a, 1998b) wavelet transformations can uncover useful economic information
regarding the frequency variation of the economic variables in time. This makes
the proposed wavelet instrumental variables particularly attractive for the estima-
tion of relations between the economic time series variables since the additional
information generated by the wavelet transformations can lead to important effi-
ciency gains. Our focus is on the maximal overlap discrete wavelet packet transform
(MODWPT) which possesses some desirable properties that enable the construction
of additional instruments. Wavelet packets form an organized but extremely flexible
class of functions of which wavelets are a subset. Wavelets are a modern and pow-
erful mathematical tool and the subject of extensive research currently in statistics,
most notably in the fields of non-parametric estimation and time series analysis.
Introductions from a statistical perspective can be found in the books by Percival
& Walden (2000) and Vidakovic (1999), and in the review articles by Abramovich,
Bailey & Sapatinas (2000) and Antoniadis, Bigot, & Sapatinas (2001).

The article is organized as follows. Section 2 provides the necessary wavelet
theoretical foundations for the construction of the wavelet instruments. Section 3
provides basic theoretical results for efficiency gains when incorporating additional
wavelet instruments into the GMM estimation framework. Results are provided for
both linear and non-linear models. Section 4 presents two empirical applications
based on the proposed methods that concern one linear and one non-linear brand
demand model from a fast moving consumer goods product category of the Canadian
retail trade. Section 5 includes a detailed Monte Carlo simulation study in order to
investigate the asymptotic gains in efficiency with the use of wavelet instruments.
Concluding remarks are made in Section 6.

2 The Construction of Wavelet Instruments

2.1 Wavelets and the Time-Frequency Plane

Representations of time series can be performed either in the time or in the frequency
domain. While the first representation is purely concentrated in time, the second is
purely concentrated in the frequency domain, summarizing the information available
in the time series as a function of frequency. The frequency representation can
be obtained by applying the Fourier transform to the observed time series which
entails approximating them through a linear combination of sines and cosines (an
orthonormal basis). However, Fourier analysis is mostly fruitful when working with
stationary time series (see, e.g., Priestley, 1981).

Wavelet analysis offers the opportunity for simultaneous representation of time
series in both the time and in the frequency domain. In other words, it represents
another, but fixed, tiling of the time-frequency plane. This two-dimensional plane
represents time along the horizontal axis and frequency along the vertical axis.
Waveforms (segments of time series) can be schematically represented by areas in
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the time-frequency plane with their width indicating duration and height indicating
frequency bandwidth (see, e.g., Figure 4 in Nason & Sapatinas, 2002).

Wavelet analysis utilizes some new families of orthonormal bases termed wavelets.
For an appropriate basic function, say ψ, termed the mother wavelet, a set of
wavelets, ψj,k, can be obtained by dilating (expansion in the range by a multi-
plicative factor) and translating (shift in the range by 2jk units) the mother wavelet
ψ as follows:

ψj,k(t) = 2−j/2ψ(2−jt− k), j, k ∈ Z,

where Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers. These translations and
dilations of the mother wavelet enable the wavelet transform to capture futures in
the original times series that are local in both the time and the frequency domain.
Through the scaling and translation operations, one is able to analyze the observed
time series at different points in time and different frequencies, hence, permitting the
analysis of time-varying phenomena, such as non-stationary time series, frequently
encountered in many disciplines. (see, e.g., Nason & von Sachs, 1999).

The derived wavelets form an orthonormal basis for L2(R), the space of functions
with finite “energy” on the real line R = (−∞,∞). Having available wavelet bases,
one can represent any function g ∈ L2(R) as linear combinations of wavelets much
like the Fourier approximation, i.e.,

g(t) =
∑
j∈Z

∑
k∈Z

qj,kψj,k(t), (1)

where

qj,k =

∫
R

g(t)ψj,k(t);

here qj,k forms the series of wavelet coefficients of g.
Formula (1) demonstrates that g(t) can be represented by basis functions, ψjk(t),

at different scales proportional to 2j for integers j, i.e., a multiresolution analysis.
The mother wavelet is usually chosen to be a short-duration oscillation and therefore
localized both in time (short-duration) and in frequency (because it oscillates). The
derived wavelets are scaled and translated (by 2jk) versions of the mother wavelet:
the scaling and translation operations permit analysis of time series at different
times and frequencies (time-frequency analysis). Wavelets tile the time-frequency
plane as follows: as j gets smaller the wavelets become finer and finer scale objects,
oscillate more quickly, are packed closer together and the corresponding tiles get
taller (they cover a wider frequency range) and thinner (their duration is less). As
j gets larger the opposite happens (see, e.g., Figure 4 in Nason & Sapatinas, 2002).

2.2 Wavelet Packet Libraries

Wavelet packets constitute a larger class of orthogonal bases of which wavelets are
a subset and the wavelet packets are derived as linear combinations of wavelet func-
tions. Wavelet packet libraries are collections of such bases; any orthonormal basis
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selected from this library is a wavelet packet basis of L2(R) (see, e.g., Vidakovic,
1999, Section 5.3).

Unlike the DWT, where the basis elements are associated with scaling and di-
lation of the mother wavelet (see, e.g., Percival & Walden, 2000, p. 59), the basis
elements selected from a wavelet packet library are associated with a specific scale,
location and frequency in the range [0, 1/2]. In the case of discrete time series, the
wavelet packet transform computes all possible filtering combinations efficiently uti-
lizing all basis functions in the library. To illustrate this, suppose we are interested
in obtaining the discrete wavelet packet transform (DWPT) of an observed time
series of length T = 2J , J ∈ Z+, utilizing a wavelet family of even length L. Let
(h0, h1, . . . , hL−1) and (g0, g1, . . . , gL−1) be the discrete high-pass and low-pass filters
associated with this wavelet family. In obtaining the vectors of wavelet packet coeffi-
cients wj,n at different frequency intervals λj,n = [n/2j+1, (n+1)/2j+1], the following
operations are performed recursively to obtain the vector elements:

wj,n,t =
L−1∑
l=0

ulwj−1,[n/2],2t+1−l mod Tj−1
, t = 0, 1, . . . , Tj − 1, (2)

where

ul =

{
hl, if n mod 4 = 0 or 3,
gl, if n mod 4 = 1 or 2,

and [·] denotes the ‘integer part’ operator. In practical applications, the DWPT
is obtained through a pyramid algorithm which commences with the input vector
w0,0 to be the observed data (of dyadic length T = 2J , J ∈ Z+) and proceeds
recursively. The algorithm involves O(T log(T )) operations. In the first stage, the
input vector is high and low pass filtered with downsampling by 2 to obtain the
w1,0 and w1,1 vectors of wavelet packet coefficients respectively, each of length T/2j,
where j = 0, 1 . . . , J . In the second stage, the operations in (2) are performed on
each one of the vectors w1,0 and w1,1 to produce the second level of wavelet packet
coefficient vectors w2,0, w2,1, w2,2 and w2,3. The procedure can then be repeated
up to J levels, with J = log2(T ), where in each case the wavelet packet coefficient
vectors cover the frequency interval [0, 1/2] and 2j vectors are generated at each
level.

2.3 Wavelet Instruments

Another popular DWPT is the maximal overlap discrete wavelet packet transform
(MODWPT), which generates coefficient vectors of length T = 2J , J ∈ Z+, at each
level of the transform. The procedure is similar to the DWPT but there is no longer
a downsampling of the filtering output involved in the pyramid procedure and a
rescaled wavelet filter is used in (2). Specifically, in place of the filters hl and gl, we
now use the filters h̃l = hl/

√
2 and g̃l = gl/

√
2. The observations in the MODWPT

coefficient vectors w̃j,n are computed again using a pyramid type algorithm based
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on the equations:

w̃j,n,t =
L−1∑
l=0

ũlw̃j−1,[n/2],t−2j−1l mod T , t = 0, 1, . . . , T − 1,

where

ũl =

{
h̃l, if n mod 4 = 0 or 3,
g̃l, if n mod 4 = 1 or 2.

Under this transform, 2T − 2 wavelet packets vectors are generated which have, at
every scale, equal length T with the original time series.

In the analysis that follows, we shall be interested in utilizing MODWPT of
continuous explanatory time series variables as additional instrumental variables
(which will be refer to as wavelet instruments) in time series regression econometric
models. For this to be feasible, the generated wavelet transforms should be of
equal length with the original time series and in addition the time location of the
generated wavelet coefficients should have a one to one correspondence with the
time points in the original time series. The maximal overlap discrete wavelet packet
transform described above does not meet this last requirement but it is possible to
circularly shift the elements in each one of the MODWPT vectors generated in order
to be aligned with the time points in the original explanatory time series; (see, e.g.,
Percival & Walden, 2000, p. 234; Nason & Sapatinas, 2002). In the subsequent
analysis, it is assumed that all the level J MODWPT coefficient vectors have been
circularly shifted to align with the original explanatory time series.

2.4 Time-Scale Decompositions of Economic Time Series

Economic time series enclose information about the activities of multiple agents in
the economic environment. These activities arise at several different frequencies in
time forming cycles of varying length in the economic data. The different cycles
typically enclose different characteristics and considerations by the economic agents
which reflect economic reasoning and decision making over different time horizons.
A classic distinction of cycles in economics analysis comes in the form of short and
long run behavior. In firm theory for example several decisions have a short term
orientation such as the introduction of an advertising campaign while other deci-
sions involve long run planning and consideration such as the decision to expand
operations to another country. Despite their complex structure and the inclusion of
multiple cycle components economic time series are only observed at a single sam-
pling rate which results in an aggregation of the different frequencies in the data.
As a consequence important information is lost in the estimation of economic rela-
tionships. Ramsey & Lampart (1998a, 1998b) recognized this fact and emphasized
the ability of the wavelet analysis to generate time-scale decompositions of economic
time series over different frequencies, uncovering variation in the series over cycles
of varying length. Using MODWT, the authors conducted two empirical studies by
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estimating different regression relationships between personal income and consump-
tion in the first study and money and gross domestic product in the second study
over different time-scales. Their empirical results confirmed that the relationships
between the variables examined did vary significantly across time-scales and also
that the phase of the relationship varied with the state of the system. This pa-
per proposes an alternative approach for utilizing the time-scale decompositions of
wavelet analysis by constructing wavelet instrumental variables though MODWPT
and inserting them in the estimation procedure in order to improve efficiency. The
extra information contained in the wavelet instruments regarding the frequency ac-
tivities included the exogenous variables, provides a more detailed account regarding
their variation and behavior in time isolating also features that are specific to each
time-scale. When inserted into appropriate estimation procedures we show that this
extra information permits a more accurate refinement of the causal effect of the
exogenous variables on the dependent variable.

Pricing series of brands and products constitute another example of economic
time series enclosing frequency variation over different cycles in time. Leeflang &
Witting (1992) categorize pricing variation in short-term, medium-term and long-
term. Short-term variation covers cyclical variation of 4 weeks duration or less which
is most commonly associated with temporary price reductions (price promotions)
and the absence of competitive reactions to observed price changes in the market.
Medium-term variation ranges from 4 to 13 weeks and arises mainly by regular
price changes and competitive reactions. Cycles exceeding 13 weeks in duration
define long term variation which is associated with long-term strategic objectives in
the market. In the empirical part of section 4 we decompose the pricing series of
two brands and construct wavelet instruments which cover variation over different
frequencies. These are then inserted in the estimation of brand demand models and
are shown to provide important gains in the efficiency of the coefficient estimates
since they permit a more detailed account of the price cycles described above to be
included in the estimation process.

The wavelet literature on economics continues to grow. Some recent examples
include Gencay, Selcuk & Whitcher (2001a, 2001b, 2001c) who demonstrate the
benefits of using wavelet analysis in order to evaluate variations in foreign exchange
volatility across different time scales. In another application, Gencay, Selcuk &
Whitcher (2003, 2005) found strong evidence that the relation between the return
of a portfolio and its beta (systematic risk) in the context of a Capital Asset Pricing
Model (CAPM) becomes stronger as the wavelet scale increases. A somewhat differ-
ent but very interesting class of wavelet applications addresses specification testing
issues in econometrics. For instance, Lee & Hong, (2001a, 2001b) provide tests for
serial correlation of unknown form and ARCH effects, and Fan & Gencay (2007) for
unit roots and cointegration.
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3 GMM with Wavelet Instruments

3.1 Linear Models

Consider the following DGP of the classical linear regression form:

y = Xβ + ε, E(ε′ε) = Δ,

where y is a T × 1 vector of time observations on the dependent variable, X is the
T ×K1 matrix of observations on K1 exogenous continuous variables, and ε is the
T × 1 error term vector with covariance matrix of unknown form Δ. The error term
is assumed to satisfy the condition:

E(ε | Ω) = 0, (3)

where Ω is the information set. Typically, the information set contains all the
potential exogenous variables associated with the specific DGP and in addition all
deterministic functions of these variables (see, e.g., Davidson & MacKinnon, 2004,
p. 216). Consequently, the MODWPT of the continuous exogenous variables in X
belong to the information set since they are, by definition, deterministic functions
of these variables.

In the analysis that follows, we shall be interested in constructing a T×K matrix
Z, of instrumental variables that, in addition to the K1 exogenous explanatory
variables, will also contain K2 additional instruments in the form of the MODWPT
coefficients of the continuous exogenous variables in X. Equality (3) implies the
N = K = K1 + K2 moment conditions Z ′(y − Xβ) = 0 which can be solved for
the GMM estimator of β. Specifically, the efficient GMM estimator minimizes the
following criterion function:

Q(β, y) = (y −Xβ)′Z(Z ′ΔZ)−1Z ′(y −Xβ). (4)

Elaborating Z instead of X in the estimation procedure can be shown to provide
gains in efficiency subject to the standard orthogonality and identifiability condi-
tions. For consistent estimation of the parameter vector β, it is required that y, X
and ε are stationary and ergodic random variables and, in addition to condition (3),
the following two identification conditions hold ( see, e.g., Wooldridge, 2002, p. 93):

(i) rank {E(Z ′Z)} = K;

(ii) rank {E(Z ′X)} = K1.

As discussed in Section 2, applying a MODWPT on the variables in X generates
2T − 2 wavelet packet coefficient vectors, each one of length T . This introduces
N = K1 × (2T − 2) additional wavelet instruments in the estimation procedure,
and a selection has to be performed according to some rule in order to reduce
the dimensionality of the estimation problem so as to satisfy the order condition
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T > N . This condition is necessary for the rank conditions (i)-(ii). Furthermore,
the generated MOWPT coefficient vectors are not orthogonal between them and an
orthogonal transformation must be performed on the matrix of wavelet instruments
in order to avoid the problem of multicollinearity. Principal components is one
transformation that effectively addresses both issues (see, e.g., Johnson & Wichern,
1998, pp. 458–513).

In the present analysis, we are primarily interested in selecting K2 principal
components that will be inserted as additional instruments in the T ×K matrix of
instrumental variables Z. The main consideration is to choose K2 in such a way
that captures as much of the variability inherent in the MODWPT coefficients in the
T×N matrix M , but at the same time retains the number of instruments sufficiently
small in order to avoid finite sample problems for the GMM estimator. If a large part
of the variability inherent in the matrix M of instrumental variables is explained by
the first few principal components, we can represent them by the T ×K2 sub-matrix
P1 and retain the rest in the T × (N −K2) sub-matrix P2, where P = [P1, P2] is the
matrix of principal components of M . Hence, a simple choice of wavelet instruments
to be inserted in the estimation problem (4) is the matrix P1 which together with
matrix X form the matrix of all instrumental variables Z = [ZX , ZP1 ] = [X,P1].

The efficient GMM estimator has the well known form:

β̂l = (X ′ZΣ−1Z ′X)−1X ′ZΣ−1Z ′y,

where T−1Z ′X
p→ D and T−1Z ′ΔZ

p→ Σ is the asymptotic covariance matrix of the
sample moments. (In what follows, “

p→” denotes convergence in probability.) The
asymptotic covariance matrix of the GMM estimator is:

Var(β̂l) = (D′Σ−1D)−1

and can be consistently estimated from:

V̂ar(β̂l) = T (X ′ZΣ̂−1Z ′X)−1,

where Σ̂ is a heteroskedasticity and autocorrelation consistent estimator of Σ. Such
estimators have been proposed by, e.g., Hansen (1982), Newey & West (1987). To
illustrate the possible efficiency gains generated by incorporating the additional
wavelet instruments in the GMM estimation procedure, partition the matrices D

and Σ as follows, where DXP1 is the sub-matrix of elements associated with the
wavelet instruments in P1:

D =

[
DXX

DXP1

]
and Σ =

[
ΣXX ΣXP1

ΣP1X ΣP1P1

]
.

Now, consider the estimator:

β̃l = (X ′ZXΣ−1
XXZ

′
XX)−1X ′ZXΣ−1

XXZ
′
Xy,
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where β̃l does not contain the additional matrix of wavelet instruments P1. It can
be then shown that:

Var(β̃l) ≥ Var(β̂l)

if and only if
DXP1 ≥ ΣP1XΣ−1

XXDXX . (5)

For a detailed proof of the relevant theorem concerning efficiency gains arising from
utilizing additional instruments see, e.g., Peracchi (2001, Theorem 11.6). When
incorporating wavelet instruments as demonstrated above, test statistics and confi-
dence intervals can be constructed in the usual way.

3.2 Non-Linear Models

Let Θ be a compact subset of R
K1 and define the moment functions Ψ : H×Θ �→ R

K ,
K ≥ K1, based on a DGP φ involving a nonlinear regression function. LetH = [y, Z]
be a multivariate stationary and ergodic random variable which includes the en-
dogenous variable y and the exogenous variables in Z as defined in Section 3.1. The
moment function Ψ is Borel measurable in Z and twice continuously differentiable
with respect to β ∈ Θ, the K1-dimensional parameter vector of interest. In addition,
assume:

(i) Eφ[|Ψ(y, Z; β)|] <∞;

(ii) T−1
∑T

t=1 Ψ(yt, Zt; β)
p→ Eφ[Ψ(y, Z; β)];

(iii) Eφ[Ψ(y, Z; β∗)] = 0 for a unique element β∗ ∈ Θ;

(iv) the covariance Eφ[Ψ(y, Z; β∗)Ψ(y, Z; β∗)′] = Σ0 and the Jacobian
Eφ[∇βΨ(y, Z; β)] = Ψ matrices are of full rank.

In the over-identified case, i.e., when K ≥ K1 (where K = K1 + K2 and K2 is
the number of wavelet instruments as in Section 3.1) the GMM estimator minimizes
the following sample analog of the population moment conditions in order to be as
close to zero as possible:

β̂ = arg min
β∈Θ

[
T∑
i=1

Ψ(yi, Zi; β)

]′
Ξ

[
T∑
t=1

Ψ(yi, Zi; β)

]
,

where Ξ is a K ×K finite, symmetric, positive definite matrix. The asymptotically
best GMM estimator corresponds to choosing Σ−1

0 for Ξ in which case the asymp-
totic covariance matrix of the GMM estimator becomes Var(β̂) = T−1(Ψ′Σ0Ψ)−1.
Chamberlain (1987) showed that this estimator is asymptotically efficient in the
general class of semi-parametric estimators.

To illustrate the possible efficiency gains generated by incorporating the ad-
ditional wavelet instruments in the GMM estimation procedure when a nonlinear

9

9Michis and Sapatinas: Wavelet Instruments for Efficiency Gains

Published by The Berkeley Electronic Press, 2007



regression function is involved, we adopt a similar reasoning as for the linear case in
deriving relation (5). Let the moment conditions be written in a generalized residual
function form:

Eφ[Ψ(y, Z; β∗)] = Eφ[Z
∗ψ(y, Z; β∗)] = 0,

where Z∗ = ZΠ and Π = (Z ′Δ0Z)−1Z ′ψ is the full rank K×K1 projection matrix of
the optimal linear combinations of the K instruments, ψ is a T×K1 Jacobian matrix
with elements (∂ψ/∂βi) (i = 1, 2, . . . , K), and Eφ[ψ(y, Z; β)ψ(y, Z; β)′] = Δ0. The
covariance matrix of the asymptotically best GMM estimator then takes the form:

Var(β̂) =
(
D′0Σ

−1
0 D0

)−1
,

where T−1Z ′Δ0Z
p→ Σ0 and T−1Z ′ψ

p→ D0. By replacing Σ0 with a heteroskedastic-

ity and autocorrelation consistent estimator Σ̂0, the covariance matrix of the GMM
estimator can be estimated by:

V̂ar(β̂) = T
(
ψ̂
′
ZΣ̂−1

0 Z ′ψ̂
)−1

,

where ψ̂ ≡ ψ(β̂) (see, e.g., Davidson & MacKinnon, 2004, p. 377).
Implicit in the above GMM estimation framework are the order condition T > K

and the analog of the rank conditions (i)-(ii) in Section 3.1. Specifically condition
(i) remains essentially the same while in place of condition (ii) we now require
that rank{E(Z ′ψ)} = K1 (see, e.g., Wooldridge, 2002, p. 426). Consequently, the
discussion of Section 3.1 for effective dimension reduction in the construction of the
matrix of wavelet instruments equally applies here.

The following proposition, whose proof is given in the Appendix, is a direct
extension to the non-linear case of the arguments providing relation (5).

Proposition 3.1 Assume the standard GMM conditions (i) – (iv) to hold. Let
Z = [ZX , ZP1 ] = [X,P1] be the matrix of instruments and partition the matrices D0

and Σ0 as follows:

D0 =

[
DXψ

DP1ψ

]
and Σ0 =

[
ΣXX ΣXP1

ΣP1X ΣP1P1

]
.

Let also

β̂nl = arg min
β∈Θ

[
T∑
i=1

Z ′iψ(yi, Zi; β)

]′
Ξ

[
T∑
i=1

Z ′iψ(yi, Zi; β)

]
,

and

β̃nl = arg min
β∈Θ

[
T∑
i=1

X ′
iψ(yi, Xi; β)

]′
Ξ

[
T∑
i=1

X ′
iψ(yi, Xi; β)

]
,

where T−1Z ′Δ0Z
p→ Σ0 and T−1Z ′ψ

p→ D0. Then,

Var(β̃nl) ≥ Var(β̂nl)

if and only if
DP1ψ ≥ ΣP1XΣ−1

XXDXψ.
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4 An Empirical Application

In this section, we empirically examine the efficiency gains arising by incorporating
additional wavelet instruments in the estimation procedure in the context of two
brand demand models. The data were supplied by ACNielsen-Canada and con-
cern weekly scanning observations on two leading brands from a well defined fast
moving consumer goods category that will be referred to as ‘brand 1’ and ‘brand
2’. Measurements concern a Canadian province as covered by the ACNielsen retail
measurement services, hence the sales figures for each brand refer to its total sales
volume at the province level. The sales volume is measured in the category’s unit of
measurement as adopted by ACNielsen, i.e., kgs. There are 117 weekly observations
associated with each brand ending in September 2003. Since the data refer to a real
life empirical project the names of the brands and the exact dates of the observa-
tions (i.e., week of a specific promotional activity) cannot be revealed due to strict
confidentiality issues.

For ‘brand 1’ we examine a linear demand model specification with the variables
included in logarithm form,

LogSALESt = β0+β1 LogPRICEt+β2 LogCOMPRt+β3 LogPROMOt+β4 LogDISTRt.

Price refers to the relative average price over the range of stock keeping units (SKU)
under the specific brand. COMPR represents similarly defined relative average
prices of the main competitive brands in the market. Two such prices were found
to have a statistically significant effect on the sales volume of ‘brand 1’ and were
included in the model specification as ‘compr 1’ and ‘compr 2’ (this refers to the
relative average price of ‘brand 2’ below). PROMO refers to promotional activities
relevant to ‘brand 1’. Two kinds of such activities appeared for ‘brand 1’ in the
market: (a) ‘features’, which is an advertisement in a flyer that comes in the local
newspaper where the brand’s SKU are shown and (b) ‘display’, which is any sec-
ondary location (over and above their regular store location) of the brand’s SKU
within a given store. Both of them have been included as binary variables. DISTR
refers to the brand’s numeric handling distribution. This is the percentage of stores
in the province to which any of the brand’s SKU are distributed.

For ‘brand 2’ we examine a non-linear demand model specification with market
share as the dependent variable,

SHAREt = β0 + exp {β1 PRICEt + β2 COMPRt + β3 PROMOt + β4 DISTRt} .
Variable interpretations are similar to the case of ‘brand 1’, with the exception that
one competitive brand price and one promotion type (‘features’) were incorporated
in the estimation of model.

4.1 Wavelet Packet Analysis

The MODWPT was applied on all the continuous variables of each model, followed
by principal components analysis on all the derived wavelet packets coefficient vec-
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tors. In this way, the desired dimension reduction was achieved and the first 10, 15,
20, 25 and 30 principal components were successively used as additional instruments
in the GMM estimation of the linear and non-linear models discussed respectively
in Sections 3.1 and 3.2.

Through the wavelet transform the different cycles of periodicity inherent in the
pricing and distribution time series are now uncovered and inserted in the estima-
tion of the demand models. As emphasized in section 2.5 this information was not
previously observed due to the frequency aggregation in the observed sampling rate
of the data. This is particularly true for the pricing series which most commonly
enclose short term, medium term and long term cyclical variation as per the analysis
of Leeflang & Witting (1992). Using spectral analysis Bronnenberg, Mela & Bould-
ing (2006) examined empirically the periodicity of pricing and verified the existence
of several different cycles with distinct characteristics. Among other empirical gen-
eralizations the authors concluded that the cross-brand correlation in prices occurs
at multiple planning horizons, and the planning horizon of the predominant inter-
action does not typically coincide with the sampling rate of the data. Furthermore,
aggregating pricing interactions across frequencies obscures distinct and different
interactions. Such cases are particularly fruitful for wavelet transformations which
effectively decompose the data into the underlying frequencies while at the sale time
preserving their time location characteristics.

The wavelet packet analysis was performed using the WaveThresh 3.0 soft-
ware that is freely available from http://www.stats.bris.ac.uk/ wavethresh/.
WaveThresh 3.0 computes the wavelet packet coefficient vectors for time series of
length that is a power of two. In order to overcome this restriction, we pad the
time series with zeros up to length T = 128 = 27. As Nason & Sapatinas (2000)
point out, due to the time localization of the wavelet transform, the extra zeroes
do not affect the majority of the wavelet coefficients except at very coarse scales
where they get included in their calculation. This generates 254 wavelet packet co-
efficient vectors for each variable with 128 coefficients (observations) in each vector.
After the appropriate time alignment of the coefficients we remove from each vector
the coefficients associated with the padded zeros in order to obtain wavelet packet
coefficient vectors of length 117.

The choice of a wavelet basis and its associated filters is another point of consid-
eration when applying the MODWPT. Ideally, the choice of a wavelet basis should
be such that it is able to capture as much of the information laying in the analyzed
time series as possible. In this respect, it is advisable to experiment with several
bases in the context of a specific application in order to arrive at the best possi-
ble representations. In deriving the MODWPT of the continuous variables in our
empirical application, the Daubechies’ least asymmetric wavelet filter of length 10
is employed (see, e.g., Daubechies, 1992, Table 6.3), which was found to provide
particular good prediction performance in the context of our empirical model.
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4.2 Results

GMM estimation was performed first without the addition of any wavelet instru-
ments (GMM) and then with successive additions of 10 (GMM 10 PC), 15 (GMM
15 PC), 20 (GMM 20 PC), 25 (GMM 25 PC) and 30 (GMM 30 PC) wavelet instru-
ments. In each case, the wavelet instruments referred to the top ranked principal
components (PC) from a principal component analysis on the matrix of all derived
MODWPT coefficient vectors as explained in Section 3. Table 1 summarizes the dif-
ferences in the coefficient estimates between the different GMM procedures. In all
cases, the coefficient estimates have similar values and meaningful economic inter-
pretation. An exception is the drop in the price coefficient estimate of the non-linear
model observed between GMM and the rest 5 GMM estimates utilizing the wavelet
instruments.

Table 1 also contains the estimates of the standard errors associated with each
estimation procedure and the achieved reductions in the standard errors by the
successive use of the additional wavelet instruments. Heteroskedasticity and auto-
correlation robust standard errors were obtained through the use of Bartlett weights
as suggested by Newey & West (1987) with the lag truncation parameter being 4.
As it is evident in the results, there are successive reductions on the standard error
estimates of all the coefficients with the use of increasing number of wavelet instru-
ments. For the GMM 30 PC case these reductions range from 34% to 58% for the
linear model coefficients and from 58% to 75% for the non-linear model coefficients.
We did not proceed further with the addition of more wavelet instruments because
after the level of 30 PC evidence of deterioration to the standard errors began to
appear something which is in line with existing theoretical knowledge stressing neg-
ative effects to the finite sample properties of the GMM estimator when a high
number of instruments is incorporated in the estimation procedure. Finally, Table 1
provides values of the chi-square test for over-identifying restrictions which confirm
the validity of the additional wavelet moment conditions.

The above mentioned GMM results were then compared with the estimator pro-
posed in Cragg (1983) where the additional instruments introduced in the GMM
framework were in the form of polynomial (PL) functions of the continuous ex-
planatory variables, zjt = xj+1

t . Successively, one polynomial form from each next
continuous explanatory variable was used until achieving the required number of
instruments for each estimation round. Table 2 provides the corresponding results
for the differences in the coefficient estimates, the standard error reductions and the
chi-square tests when using polynomial instruments. As it is evident in the results,
the use of polynomial instruments provides significant gains in efficiency which for
some coefficients (for example ‘distribution’ and ‘features’ in the non-linear model)
are higher from those realized when utilizing wavelet instruments. However, this is
only true when the overall number of instruments is small. At the level of 30 in-
struments, wavelets outperform polynomial functions in all the coefficient standard
error estimates providing higher reductions up to the level of 20% in the linear case
and 30% in the non-linear case.
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5 A Monte Carlo Simulation Study

In order to investigate the asymptotic gains in efficiency associated with the use of
wavelet instruments, we contacted a detailed Monte Carlo simulation study similar in
design to the one proposed by Cragg (1983). The results of the study are summarized
in Table 3. This involved an equation with one constant and one explanatory variable
of the following form,

yt = β0 + β1xt + εt,

where the values of the scalars β0 and β1 were obtained using independent, log-
normally distributed pseudo-random variables. These were held fixed in the sub-
sequent replications of the experiment. The errors εt were independent, normally
distributed pseudo-random variables with mean zero and variances,

σ2
t = γ0 + γ1xt + γ2x

2
t .

In the initial experiment, a sample size of T = 32 was generated and the parame-
ter values were set as β = (1.0, 1.0) and γ = (0.1, 0.2, 0.3) which ensured substantial
heteroskedasticity. Each conducted experiment included 1000 replications using in-
dependent samples from the specified model. The distributional and functional form
specifications of the model are such that all that matters are the relative values of
the parameters in γ, which permits one to present all results in relative terms. As
noted by Cragg (1983), the estimated error variance Σ̂ and the bias (β̂A− β) of the
feasible IV estimator, β̂A = (X ′Z(Z ′Σ̂Z)−1Z ′X)−1X ′Z(Z ′Σ̂Z)−1Z ′y, with variance

V̂ar(β̂A) = (X ′Z(Z ′Σ̂Z)−1Z ′X)−1, do not depend on β and can be selected arbi-
trarily. The same however is not true for the variables xt and the specified form
of heteroskedasticity which exert influence on the results. The model specification
ensured substantial efficiency difference between the least-squares estimator, β̂L =
(X ′X)−1X ′y, with variance Var(β̂L) = (X ′X)−1X ′ΣX(X ′X)−1, and the true Aitken
estimator, β̃E = (X ′Σ−1X)−1X ′Σ−1y, with variance Var(β̃E) = (X ′Σ−1X)−1.

For each replication of the experiment, 3 estimated variance values are reported
that make use of wavelet instruments, in relative terms to their least-squares popu-
lation variances. First, the relative asymptotic variances are provided by the diago-
nal elements of (X ′Z(Z ′ΣZ)−1Z ′X)−1 relative to those of (X ′X)−1X ′ΣX(X ′X)−1.
Second, the variances of the actual feasible IV estimators relative to least-squares es-
timator are provided by the ratio (β̂Ai −βi)2/Var(β̂L)ii. Third, the relative estimated

variances are provided in which case the numerator is V̂ar(β̂A).
In the first phase of the experiment, estimations were performed with the use

of 4 wavelet instruments obtained from each of the 4 levels of coefficients arising
from the MODWPT (level 0 contained the higher number of coefficient vectors,
32). In addition, results for 3 different wavelet families are reported in order to
observe the impact of the choice of wavelet filter on the results. These were the
Daubechies Least Asymmetric (with a filter of length 10), the Daubechies Extremal
Phase (with a filter of length 10) and the Haar wavelet family. The findings which
are summarized in Table 3 bare similarities with Cragg’s polynomial instruments.
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There are significant gains in efficiency in the case of the asymptotic and the esti-
mated variances at all levels and with all the wavelet families. The highest gains
arise by the use of the Haar family and the level 0 instruments. This could be due
to the finer details provided by the wavelets coefficients at this level which provide
superior variability and information in the estimation framework. The same was
not true however for the actual variances of the slope coefficient, whose variance
values were not significantly different from those of least-squares. This could be an
indication for the need of a higher number of wavelet instruments until important
efficiency gains are realized. In order to investigate this, estimations were performed
using 10 and 15 wavelet instruments from the Daubechies least asymmetric MOD-
WPT at levels 0 and 1, where 32 and 16 wavelet coefficient vectors were generated
respectively. The results indicate a clear improvement in the efficiency gains arising
from the variance of the actual estimator and even higher gains for the asymptotic
and estimated variances. The robustness of the efficiency gains arising from the
use wavelet instruments were also investigated in the presence of more exogenous
variables. The model specification in this case was,

yt = β0 + β1x1t + β2x2t + εt,

where the values of the scalars x1t and x2t were obtained again using independent,
log-normally distributed pseudo-random variables which were held fixed in the sub-
sequent replications of the experiment. The errors were independent, normally dis-
tributed pseudo-random variables with mean zero and variances,

σ2
t = γ0 + γ1x1t + γ2x

2
1t + γ3x2t + γ4x

2
2t.

Similarly with the initial experiment, a sample size of T = 32 was generated and
the parameter values were set as β = (1.0, 1.0, 2.0) and γ = (0.1, 0.2, 0.3, 0.2, 0.5)
which again ensured substantial heteroskedasticity. Each conducted experimented
included 1000 replications using independent samples from the specified model.
With the use of 10 wavelet instruments from levels 0 and 1 of the Daubechies Least
Asymmetric MODWPT, significant efficiency gains were realized with all the es-
timators and for all the model coefficients. In a second phase, the effect of the
sample size on the realized efficiency gains was examined using the design proposed
by Cragg (1983). The experiment in this case included generation of sample sizes of
32, 128 and 512 observations with 1000 replications involved in each case similarly
to phase one. The actual and estimated variances relative to their asymptotic values
were calculated, arising from the use of 4 wavelets instruments from each level of
the Daubechies Least Asymmetric MODWPT in the estimators. The results clearly
suggest that the actual and estimated variances do get closer to their asymptotic
values as the sample size is increasing.

In summarizing the results of the Monte-Carlo simulation study, we conclude
that the MODWPT can provide useful wavelet instruments that can lead to sig-
nificant gains in efficiency. In our study, we have found evidence that higher gains
in efficiency arise by the use of instruments from the finer resolution levels of the

15

15Michis and Sapatinas: Wavelet Instruments for Efficiency Gains

Published by The Berkeley Electronic Press, 2007



MODWPT and with the use of the Haar filter. Of even more importance is to choose
a sufficiently high number of wavelet instruments in order to effectively capture all
the ranges of frequency variation hidden in the original data. In addition, we have
found evidence that the efficiency gains are robust to the use of additional exogenous
variables and the actual and estimated variances do converge to their asymptotic
values as the sample size is increasing.

6 Conclusions

We have incorporated wavelets, a modern and powerful mathematical tool, in the
context of generalized method of moments estimation framework. As determinis-
tic functions of the realized values of economic variables, maximal overlap wavelet
packet transforms provide valid instruments that can be effectively incorporated
in the generalized method of moments estimation framework for improving the effi-
ciency of regression coefficient estimates. Based on existing theory, we have provided
theoretical arguments for the proposed methodology, for both linear and non-linear
models, and have demonstrated its advantages with both an empirical application
concerning two brand demand models and a Monte Carlo simulation study.

Appendix: Proof of Proposition 3.1

Following Peracchi (2001, pp. 383–384),

Var(β̃nl)− Var(β̂nl) =
(
D′XψΣ−1

XXDXψ

)−1

− (
D′0Σ

−1
0 D0

)−1
.

Consequently,
Var(β̃nl) ≥ Var(β̂nl)

if and only if
D′0Σ

−1
0 D0 ≥ D′XψΣ−1

XXDXψ.

Obviously,

D′0Σ
−1
0 D0 =

[
D′Xψ D′P1ψ

]
Σ−1

0

[
D′Xψ
D′P1ψ

]
= D′Xψ

(
Σ−1
XX + Σ−1

XXΣXP1H
−1ΣP1XΣ−1

XX

)
DXψ

−D′P1ψ
H−1ΣP1XΣ−1

XXDXψ

−D′XXΣ−1
XXΣXP1H

−1DP1ψ +D′P1ψ
H−1DP1ψ.
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Since Σ0 is symmetric and positive definite, H = ΣP1P1−ΣP1XΣ−1
XXΣXP1 is symmetric

and positive definite, implying that

D′0Σ
−1
0 D0 −D′XψΣ−1

XXDXψ = D′XψΣ−1
XXΣXP1H

−1ΣP1XΣ−1
XXDXψ −D′P1ψ

H−1ΣP1XΣ−1
XXDXψ

−D′XXΣ−1
XXΣXP1H

−1DP1ψ +D′P1ψ
H−1DP1ψ

=
(
D′P1ψ

−D′XψΣ−1
XXΣXP1

)
H−1

(
D′P1ψ

− ΣP1XΣ−1
XXDXψ

)
.

Therefore,
Var(β̃nl) ≥ Var(β̂nl)

if and only if
DP1ψ − ΣP1XΣ−1

XXDXψ ≥ 0.

This completes the proof of Proposition 3.1. �
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     Table 1  GMM Estimation with Wavelet Instruments
Coefficient GMM GMM (10 PC) GMM (15 PC) GMM (20 PC) GMM (25 PC) GMM (30 PC)

Difference in Coefficient Estimates between GMM and GMM with Wavelet instruments
Linear Model

Intercept - -0.330 -0.242 -0.241 -0.378 -0.268
Log Price - -0.013 -0.075 -0.095 -0.052 -0.056

Log CPrice1 - -0.199 -0.123 -0.153 -0.140 -0.060
Log CPrice2 - 0.163 -0.003 0.053 -0.069 -0.043

Log Dist - 0.192 0.156 0.152 0.244 0.169
Feature - 0.008 0.006 0.008 0.005 -0.002
Display - -0.003 -0.001 -0.002 -0.004 -0.003

Non-Linear Model
Intercept - 1.298 1.324 2.768 2.613 2.407

 Price - -0.250 -0.305 -0.369 -0.357 -0.298
CPrice1 - 0.138 0.192 0.143 0.140 0.096

Dist - 0.000 -0.001 0.000 0.000 0.000
Feature - -0.015 -0.015 0.006 0.010 0.012

Coefficient Standard Errors with Additional Wavelet Instruments
Linear Model

Intercept 1.217 0.948 0.937 0.874 0.758 0.662
Log Price 0.352 0.269 0.248 0.188 0.187 0.149

Log CPrice1 0.554 0.424 0.381 0.370 0.331 0.317
Log CPrice2 0.546 0.457 0.435 0.401 0.351 0.285

Log Dist 0.695 0.548 0.540 0.504 0.429 0.376
Feature 0.025 0.018 0.017 0.015 0.012 0.010
Display 0.010 0.009 0.008 0.007 0.007 0.007

Non-Linear Model
Intercept 3.488 2.450 1.939 1.477 1.332 1.222

 Price 0.557 0.264 0.193 0.158 0.159 0.135
CPrice1 0.304 0.171 0.149 0.133 0.129 0.101

Dist 0.002 0.001 0.001 0.001 0.001 0.001
Feature 0.035 0.025 0.023 0.015 0.013 0.012

Chi-Square Test for Wavelet Overidentifying Restrictions
Linear model - 8.6643 11.304 12.2736 14.3657 15.625

Non-Linear Model - 12.6914 13.5804 16.4283 18.0188 18.3478

Standard Error Reductions with Additional Wavelet Instruments
Linear Model

Intercept - 22.05% 22.94% 28.14% 37.70% 45.56%
Log Price - 23.63% 29.65% 46.55% 46.83% 57.65%

Log CPrice1 - 23.52% 31.18% 33.18% 40.31% 42.86%
Log CPrice2 - 16.15% 20.20% 26.53% 35.66% 47.74%

Log Dist - 21.11% 22.20% 27.44% 38.18% 45.85%
Feature - 25.61% 30.08% 40.65% 50.41% 58.54%
Display - 12.40% 23.20% 26.60% 28.70% 34.80%

Non-Linear Model
Intercept - 29.76% 44.42% 57.66% 61.82% 64.97%

 Price - 52.62% 65.40% 71.61% 71.42% 75.71%
CPrice1 - 43.92% 51.08% 56.25% 57.66% 66.80%

Dist - 21.99% 27.75% 45.03% 49.06% 58.74%
Feature - 28.41% 33.81% 57.39% 63.35% 66.19%
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 Table 2  GMM Estimation with Polynomial Instruments
Coefficient GMM GMM (10 PC) GMM (15 PC) GMM (20 PC) GMM (25 PC) GMM (30 PC)

Difference in Coefficient Estimates between GMM and GMM with Polynomial instruments
Linear Model

Intercept - -0.242 -0.073 -0.092 -0.108 -0.058
Log Price - -0.239 -0.210 -0.228 -0.116 -0.085

Log CPrice1 - 0.325 0.363 0.393 0.063 0.156
Log CPrice2 - -0.052 -0.090 -0.058 0.034 -0.199

Log Dist - 0.120 0.023 0.026 0.057 0.048
Feature - -0.021 -0.020 -0.021 -0.006 -0.005
Display - -0.001 -0.001 -0.001 -0.005 -0.005

Non-Linear Model
Intercept - 2.757 2.586 1.999 1.990 1.684

 Price - -0.407 -0.348 -0.316 -0.308 -0.251
CPrice1 - 0.176 0.131 0.140 0.135 0.103

Dist - 0.000 0.000 0.000 0.000 0.000
Feature - -0.008 -0.009 -0.008 -0.008 -0.008

Coefficient Standard Errors with Additional Polynomial Instruments
Linear Model

Intercept 1.217 1.001 0.884 0.871 0.802 0.829
Log Price 0.352 0.284 0.258 0.251 0.227 0.225

Log CPrice1 0.554 0.451 0.432 0.421 0.358 0.345
Log CPrice2 0.546 0.469 0.466 0.460 0.456 0.405

Log Dist 0.695 0.560 0.493 0.487 0.448 0.466
Feature 0.025 0.016 0.015 0.015 0.011 0.011
Display 0.010 0.009 0.009 0.009 0.009 0.009

Non-Linear Model
Intercept 3.488 2.812 2.298 2.108 1.919 1.815

 Price 0.557 0.289 0.227 0.231 0.203 0.190
CPrice1 0.304 0.178 0.130 0.131 0.124 0.118

Dist 0.002 0.001 0.001 0.001 0.001 0.001
Feature 0.035 0.023 0.021 0.022 0.022 0.023

Chi-Square Test for Polynomial Overidentifying Restrictions
Linear model - 4.4097 4.6763 4.8536 7.4199 8.1794

Non-Linear Model - 14.3021 14.3767 15.3192 15.6998 15.9008

Standard Error Reductions with Additional Polynomial Instruments
Linear Model

Intercept - 17.69% 27.30% 28.43% 34.09% 31.88%
Log Price - 19.40% 26.67% 28.69% 35.47% 36.10%

Log CPrice1 - 18.67% 22.01% 24.07% 35.46% 37.79%
Log CPrice2 - 13.95% 14.50% 15.62% 16.35% 25.76%

Log Dist - 19.38% 29.08% 29.89% 35.50% 32.91%
Feature - 34.96% 38.21% 39.02% 54.07% 54.07%
Display - 10.80% 10.50% 10.20% 13.00% 14.70%

Non-Linear Model
Intercept - 19.40% 34.11% 39.56% 44.99% 47.97%

 Price - 48.17% 59.23% 58.43% 63.62% 65.85%
CPrice1 - 41.58% 57.36% 56.87% 59.27% 61.08%

Dist - 29.32% 46.60% 49.79% 49.58% 49.06%
Feature - 35.80% 39.49% 36.93% 36.93% 36.08%
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              Table 3  Efficiency Gains with Different  Wavelet Filters, Decomposition Levels, Number of  Instruments, Number of Exogenous Variables and Sample Sizes.

Sample  Exogenous  Instruments Asymptotic Actual Estimated Asymptotic Actual Estimated Asymptotic Actual Estimated

 Variance of Estimates and Estimates of Variances as Proportions of Least Squares Variances (standard errors in parenthesis)

Least Squares 32 1 - 1.000 1.045 (1.183) 0.842 (0.208) 1.000 1.035 (1.088) 0.803 (0.221) - - -

D.L. Asym. - Level 0 32 1 4 0.585 (0.208) 0.830 (1.076) 0.547 (0.210) 0.552 (0.213) 1.058 (1.225) 0.487 (0.212) - - -
D.L. Asym. - Level 1 32 1 4 0.679 (0.193) 0.946 (1.146) 0.620 (0.203) 0.623 (0.205) 1.072 (1.188) 0.535 (0.209) - - -
D.L. Asym. - Level 2 32 1 4 0.670 (0.209) 0.802 (0.983) 0.610 (0.216) 0.622 (0.213) 1.030 (1.180) 0.537 (0.218) - - -
D.L. Asym. - Level 3 32 1 4 0.584 (0.209) 0.885 (1.135) 0.546 (0.203) 0.551 (0.218) 1.045 (1,221) 0.480 (0.206) - - -

D. E. Phase - Level 0 32 1 4 0.455 (0.212) 0.714 (0.925) 0.434 (0.200) 0.483 (0.223) 0.999 (1.154) 0.424 (0.205) - - -
D. E. Phase - Level 1 32 1 4 0.596 (0.207) 0.886 (1.076) 0.552 (0.207) 0.566 (0.204) 1.080 (1.226) 0.490 (0.204) - - -
D. E. Phase - Level 2 32 1 4 0.635 (0.209) 0.873 (1.086) 0.585 (0.210) 0.609 (0.212) 1.058 (1.210) 0.525 (0.209) - - -
D. E. Phase - Level 3 32 1 4 0.578 (0.224) 0.811 (0.979) 0.543 (0.220) 0.585 (0.228) 0.990 (1.103) 0.516 (0.225) - - -

Haar - Level 0 32 1 4 0.348 (0.169) 0.668 (0.884) 0.346 (0.163) 0.330 (0.179) 0.954 (1.139) 0.306 (0.164) - - -
Haar - Level 1 32 1 4 0.312 (0.169) 0.698 (0.997) 0.320 (0.157) 0.286 (0.164) 0.950 (1.135) 0.271 (0.152) - - -
Haar - Level 2 32 1 4 0.431 (0.187) 0.727 (0.998) 0.422 (0.181) 0.423 (0.189) 0.982 (1.167) 0.385 (0.180) - - -
Haar - Level 3 32 1 4 0.584 (0.212) 0.818 (1.119) 0.544 (0.207) 0.594 (0.221) 0.977 (1.198) 0.517 (0.216) - - -

Aitken 32 1 - 0.012 - - 0.023 - - - - -

D.L. Asym. - Level 0 32 1 10 0.277 (0.147) 0.636 (0.963) 0.280 (0.137) 0.271 (0.154) 0.941 (1.113) 0.246 (0.140) - - -
D.L. Asym. - Level 1 32 1 10 0.327 (0.159) 0.687 (0.901) 0.335 (0.155) 0.298 (0.158) 0.942 (1.130) 0.280 (0.154) - - -

D.L. Asym. - Level 0 32 1 15 0.131 (0.087) 0.498 (0.739) 0.158 (0.092) 0.132 (0.103) 0.847 (1.031) 0.134 (0.101) - - -
D.L. Asym. - Level 1 32 1 15 0.183 (0.107) 0.669 (0.888) 0.207 (0.110) 0.175 (0.120) 0.913 (1.070) 0.173 (0.116) - - -

Least Squares 32 2 10 1.000 1.048 (1.096) 0.536 (0.276) 1.000 1.012 (0.842) 0.513 (0.604) 1.000 0.987 (0.815) 0.580 (0.361)

D.L. Asym. - Level 0 32 2 10 0.261 (0.162) 0.571 (0.717) 0.181 (0.107) 0.503 (0.226) 0.887 (0.560) 0.254 (0.343) 0.247 (0.189) 0.892 (0.939) 0.213 (0.196)
D.L. Asym. - Level 1 32 2 10 0.216 (0.160) 0.438 (0.606) 0.195 (0.134) 0.488 (0.219) 0.922 (0.585) 0.259 (0.355) 0.290 (0.318) 0.846 (1.174) 0.270 (0.299)

Aitken 32 2 10 0.010 - - 0.073 - - 0.033 - -

Ratios of Average Actual and Estimated Variances to Asymptotic (standard errors in parenthesis)

Least Squares 32 1 - - - 0.842 (0.208) - - 0.803 (0.221) - - -

D.L. Asym. - Level 0 32 1 4 - 1.459 (1.804) 0.967 (0.258) - 2.013 (2.326) 0.939 (0.387) - - -
D.L. Asym. - Level 1 32 1 4 - 1.410 (1.682) 0.955 (0.306) - 1.765 (1.941) 0.919 (0.365) - - -
D.L. Asym. - Level 2 32 1 4 - 1.208 (1.430) 0.974 (0.393) - 1.718 (1.960) 0.940 (0.450) - - -
D.L. Asym. - Level 3 32 1 4 - 1.564 (1.959) 0.993 (0.347) - 1.997 (2.406) 0.945 (0.389) - - -

Least Squares 128 1 - - - 0.578 (0.421) - - 0.582 (0.337) - - -

D.L. Asym. - Level 0 128 1 4 - 0.847 (0.760) 0.485 (0.363) - 0.960 (0.910) 0.462 (0.276) - - -
D.L. Asym. - Level 1 128 1 4 - 0.888 (0.822) 0.446 (0.345) - 0.991 (0.944) 0.431 (0.273) - - -
D.L. Asym. - Level 2 128 1 4 - 0.841 (0.706) 0.437 (0.314) - 0.960 (0.917) 0.435 (0.256) - - -
D.L. Asym. - Level 3 128 1 4 - 0.936 (0.755) 0.466 (0.351) - 1.025 (0.846) 0.454 (0.272) - - -

Least Squares 512 1 - - - 0.541 (0.317) - - 0.548 (0.306) - - -

D.L. Asym. - Level 0 512 1 4 - 0.840 (0.741) 0.457 (0.312) - 0.898 (0.815) 0.459 (0.294) - - -
D.L. Asym. - Level 1 512 1 4 - 0.723 (0.654) 0.355 (0.235) - 0.767 (0.736) 0.365 (0.225) - - -
D.L. Asym. - Level 2 512 1 4 - 0.744 (0.732) 0.376 (0.252) - 0.810 (0.770) 0.389 (0.244) - - -
D.L. Asym. - Level 3 512 1 4 - 0.768 (0.739) 0.411 (0.293) - 0.858 (0.843) 0.421 (0.276) - - -
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