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We consider the problem of testing for additivity and joint effects in multivariate nonparametric re-
gression when the data are modelled as observations of an unknown response function observed
on a d-dimensional (d ≥ 2) lattice and contaminated with additive Gaussian noise. We propose
tests for additivity and joint effects, appropriate for both homogeneous and inhomogeneous re-
sponse functions, using the particular structure of the data expanded in tensor product Fourier or
wavelet bases studied recently by Amato and Antoniadis (2001) and Amato, Antoniadis and De
Feis (2002). The corresponding tests are constructed by applying the adaptive Neyman truncation
and wavelet thresholding procedures of Fan (1996), for testing a high-dimensional Gaussian mean,
to the resulting empirical Fourier and wavelet coefficients. As a consequence, asymptotic normal-
ity of the proposed test statistics under the null hypothesis and lower bounds of the correspond-
ing powers under a specific alternative are derived. We use several simulated examples to illustrate
the performance of the proposed tests, and we make comparisons with other tests available in the
literature.
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1. Introduction

The estimation of a multivariate response function contam-
inated with additive noise suffers from the so-called “curse
of dimensionality”. This notion reflects the fact that statisti-
cal methods in multivariate nonparametric regression estima-
tion lose much of their power if the dimension of the re-
sponse function is large, making these methods less attractive
in practical applications. Additive models are one means of cir-
cumventing the “curse of dimensionality” in multivariate non-
parametric regression problems by approximating the response
function by a sum of univariate functions, one for each dimen-
sion. A theoretical justification for such models is that under
the assumption of additivity the response function can be es-
timated with the same rate of estimation error as in the uni-
variate case (see Stone 1985). In other words, multivariate non-
parametric regression models remain tractable efficiently and

allow for a simple interpretation when the additive structure
is justified. Nowadays there is a plethora of research work
on fitting additive models and estimating their components.
We refer to, for example, Buja, Hastie and Tibshirani (1989),
Hastie and Tibshirani (1990), Lindon and Nielsen (1995),
Lindon (1997), Opsomer and Ruppert (1997, 1998), Sperlich,
Linton and Härdle (1999), Amato and Antoniadis (2001),
Amato, Antoniadis and De Feis (2002), Sperlich, Tjøstheim and
Yang (2002), Zhang and Wong (2003) and Sardy and Tseng
(2004).

Because the additive structure is important in terms of in-
terpretability and its ability to deliver fast rates of conver-
gence in multivariate nonparametric regression estimation, the
application of additive models should be accompanied by a
proper “model check of additivity”. Although early work dates
back to Tukey (1949), it is only recent that the problem of
testing for additivity (which corresponds to the hypothesis of
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checking vanishing interaction terms) has been of real inter-
est. We refer to, for example, Barry (1993), Eubank et al.
(1995), Dette and Derbort (2001), Dette and Wilkau (2001),
Derbort, Dette and Munk (2002) and Sperlich, Tjøstheim and
Yang (2002). Furthermore, the problem of testing for joint ef-
fects (which corresponds to the hypothesis of checking specific
vanishing main effects and interaction terms) has also been con-
sidered in Dette and Derbort (2001). However, asymptotic re-
sults and finite-sample properties of these methods have been
studied under the assumption that the response function obeys
a homogeneous behaviour.

In this paper we consider the problem of testing for additivity
and joint effects in multivariate nonparametric regression when
the data are modelled as observations of an unknown response
function observed on a d-dimensional (d ≥ 2) lattice and con-
taminated with additive Gaussian noise. We propose tests for ad-
ditivity and joint effects, appropriate for both homogeneous and
inhomogeneous response functions, using the particular struc-
ture of the data expanded in tensor product Fourier or wavelet
bases recently studied by Amato and Antoniadis (2001) and
Amato, Antoniadis and De Feis (2002).

The paper is organized as follows. In Section 2 we first for-
mulate the problem of testing for additivity and joint effects
in the bivariate nonparametric regression case, for which the
basic ideas of the proposed methodology are most transparent.
In particular, we transform the data matrix in the Fourier or
wavelet domain by a corresponding tensor product algorithm.
Under the null hypothesis of additivity or joint effects, the em-
pirical Fourier or wavelet coefficient matrices have some par-
ticular structure which separates the empirical coefficients cor-
responding to the response function and to the noise. Due to
the orthogonality of the Fourier or wavelet bases, the empiri-
cal coefficients corresponding to the noise preserve the same
structure and then the part of the matrices corresponding to
the noise is a random sample from a Gaussian distribution
with mean 0 and finite variance σ 2. Therefore, testing for ad-
ditivity or joint effects is equivalent to testing the hypothe-
sis that the part of the empirical coefficient matrices corre-
sponding to the noise come from an r -dimensional Gaussian
distribution with mean 0 and variance σ 2 Ir , for appropriately
defined r . This problem is then handled in Section 3 by ap-
plying the adaptive Neyman truncation and wavelet threshold-
ing procedures of Fan (1996), for testing a high-dimensional
Gaussian mean, to the resulting empirical Fourier and wavelet
coefficient matrices. As a consequence, asymptotic normal-
ity of the proposed test statistics under the null hypothe-
sis and lower bounds of the corresponding powers under a
specific alternative are derived. In Section 4 we use several
simulated examples to illustrate the performance of the pro-
posed tests, and we make comparisons with other tests avail-
able in the literature. Extension of the proposed methodol-
ogy to high-dimensional (i.e., d ≥ 3) predictors is discussed
in Section 5. Finally, some concluding remarks are made in
Section 6.

2. Bivariate nonparametric regression models

We consider the bivariate nonparametric regression model

Yt = m(t) + εt , (1)

where Yt is the response variable, t = (t1, t2) ∈ [0, 1]2 is a two-
dimensional predictor, and εt is a Gaussian random variable with
mean 0 and variance 0 < σ 2 < ∞. Borrowing ideas from the
theory of analysis of variance, an interaction model writes m(t)
as a constant term plus a sum of two functions of one variable
(the “main effects”) plus a function of two variables (the “two
factor interactions”). In other words, the underlying response
function satisfies the following decomposition

m(t1, t2) = m0 + m1(t1) + m2(t2) + m12(t1, t2), (2)

where m0 is a constant term, m1(t1) is either zero or a non-
constant function of t1 (the main effect of t1), m2(t2) is ei-
ther zero or a non-constant function of t2 (the main ef-
fect of t2), and m12(t1, t2) is either zero or a non-zero func-
tion which cannot be decomposed as a sum of a function
of t1 and a function of t2 (the interaction term). In or-
der to make the decomposition (2) unique, the functions
m1(t1), m2(t2) and m12(t1, t2) satisfy the following identifiability
conditions ∫ 1

0
m1(t1) dt1 =

∫ 1

0
m2(t2) dt2 = 0,

∫ 1

0
m12(t1, t2) dt1 =

∫ 1

0
m12(t1, t2) dt2 = 0,

∫ 1

0

∫ 1

0
m12(t1, t2) dt1 dt2 = 0.

We discuss the problem of testing for additivity, i.e.

H0 : m12(t1, t2) ≡ 0 (3)

which corresponds to a vanishing interaction term, and the prob-
lem of testing for joint effects, i.e.

H0 : m1(t1) ≡ 0 and m12(t1, t2) ≡ 0 (4)

which corresponds to a vanishing first main effect plus a vanish-
ing interaction term. (Treatment for the problem of testing the
hypothesis H0 : m2(t2) ≡ 0 and m12(t1, t2) ≡ 0 is analogous
and it is omitted for brevity.)

In practical applications, however, the experimenter always
deals with discrete data. We assume that the response variable
Yt in model (1)–(2) is observed on the two-dimensional lat-
tice {(t1i , t2 j ) : i = 0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1}
in [0, 1]2. We will first deal with the regular design; how-
ever, the non-regular design will also be investigated in later
sections via a bivariate spline interpolation algorithm. Us-
ing the corresponding discrete identifiability conditions, the
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nonparametric regression model is then uniquely decomposed
as

Yi j = m(t1i , t2 j ) + εi j , (5)

where

m(t1i , t2 j ) = m0 + m1(t1i ) + m2(t2 j ) + m12(t1i , t2 j ). (6)

We also assume that the εi j are independent and identically dis-
tributed Gaussian random variables with mean 0 and variance
0 < σ 2 < ∞. The noise level σ may, or may not, be known. If it
is unknown, it will be estimated from the data (see Section 3).
The goal is to develop testing procedures for the hypotheses (3)–
(4) from the observations Yi j in (5)–(6) without assuming any
particular parametric structure for m1(t1), m2(t2) and m12(t1, t2).

2.1. Tensor product Hilbert spaces

The representation of model (2) in terms of tensor product
Hilbert spaces plays an important role in the analysis that fol-
lows and it is discussed below. Hereafter, we assume that the
main effect functions m1(t1) and m2(t2) belong to the Sobolev
spaces H1 = W β1 [0, 1] and H2 = W β2 [0, 1] respectively, where
the regularity indices β1 and β2 take non-integer values greater
than 1/2.

By following Antoniadis (1984), if H1 and H2 are two real
separable Hilbert spaces, the space W = H1⊗̂2 H2 denotes the
tensor product Hilbert space obtained by completing the pre-
hilbertian space H1 ⊗ H2 endowed with the following scalar
product

〈h1 ⊗ h2, k1 ⊗ k2〉W = 〈h1, k1〉H1
〈h2, k2〉H2

, h1, k1 ∈ H1,

h2, k2 ∈ H2.

Let K 1 and K 2 be the linear closed subspaces of H1 and H2

spanned respectively by the constant functions 11 and 12 on
[0, 1], defined by 11(t) = 12(t) = 1 for all t ∈ [0, 1]. Then,
from standard literature on tensor product Hilbert spaces, we
have that W β1 = H1 ⊗̂2 K 2 and W β2 = K 1 ⊗̂2 H2 are closed
linear subspaces of W , and that W β1 and W β2 are isomorphic to
H1 and H2 respectively.

According to the above notation, the constant function m0 of
the model can be represented in W by the corresponding function
M0 in W 0 = K 1 ⊗̂2 K 2, and the main effects m1(t1) and m2(t2)
of the model can be represented in W by the corresponding
functions M1(t1, t2) in W β1 and M2(t1, t2) in W β2 , defined by

M0 = m0 (11(t1) ⊗ 12(t2)), M1(t1, t2) = m1(t1) ⊗ 12(t2)

and M2(t1, t2) = 11(t1) ⊗ m2(t2). (7)

With these notations the mean function m(t1, t2) of model (2),
under the additivity assumption (3), can be explicitly written as

m(t1, t2) = M0 + M1(t1, t2) + M2(t1, t2) (8)

while, under the joint effects assumption (4), can be explicitly
written as

m(t1, t2) = M0 + M2(t1, t2). (9)

Similarly, the discretized values m(t1i , t2 j ) of the mean func-
tion m(t1, t2) of models (8) and (9) can be also explicitly written
as

m(t1i , t2 j ) = M0 + M1(t1i , t2 j ) + M2(t1i , t2 j ), (10)

m(t1i , t2 j ) = M0 + M2(t1i , t2 j ). (11)

2.2. Fourier and wavelet direct separation

Let us consider two orthogonal and periodic bases for L2([0, 1]),
Bi = {ϕi

k(t) : k ∈ Ii }, i = 1, 2. They can be Fourier bases, i.e.
ϕi

k(t) = exp (i2πkt) and Ii = Z for i = 1, 2, or wavelet bases
obtained from a multiresolution analysis of L2(R) adapted to the
interval [0, 1] by periodic boundary handling (see, for example,
Mallat 1999, Section 7.5.1), i.e. Ii = {(−1, 0), ( j, l) : j ≥
0, 0 ≤ l ≤ 2 j − 1} and ϕi

(−1,0)(t) = φi
0,0(t), ϕi

( j,l)(t) = ψ i
j,l(t),

for i = 1, 2. It is easy to prove that B1 ⊗ B2 = {ϕ1
k1

⊗ ϕ2
k2

: k1 ∈
I1, k2 ∈ I2} is a basis for L2([0, 1]2) = L2([0, 1]) ⊗̂2 L2([0, 1]).
Note that the wavelet bases {φ1

0,0(t), ψ1
j,l(t)} and {φ2

0,0(t), ψ2
j,l(t)}

are not necessary the same on the two coordinates. Therefore,
similar to Amato, Antoniadis and De Feis (2002) in the Fourier
case and similar to Amato and Antoniadis (2001) in the wavelet
case, M1(t1, t2) and M2(t1, t2) given in (7) can be decomposed
as

M1(t1, t2) =
∑

k1∈I1,k2∈I2

µ1
k1,k2

ϕ1
k1

(t1)ϕ2
k2

(t2),

M2(t1, t2) =
∑

k1∈I1,k2∈I2

µ2
k1,k2

ϕ1
k1

(t1)ϕ2
k2

(t2),

where

µ1
k1,k2

= 〈
M1(t1, t2), ϕ1

k1
⊗ ϕ2

k2

〉 = 〈
m1, ϕ

1
k1

〉
H1

〈
12, ϕ2

k2

〉
H2

,

µ2
k1,k2

= 〈
M2(t1, t2), ϕ1

k1
⊗ ϕ2

k2

〉 = 〈
11, ϕ1

k1

〉
H1

〈
m2, ϕ

2
k2

〉
H2

.

Furthermore, m(t1, t2) can be decomposed as

m(t1, t2) =
∑

(k1,k2)

µk1,k2ϕ
1
k1

(t1)ϕ2
k2

(t2),

where

µk1,k2 = 〈
m(t1, t2), ϕ1

k1
⊗ ϕ2

k2

〉
= m0

〈
11, ϕ1

k1

〉
H1

〈
12, ϕ2

k2

〉
H2

+ µ1
k1,k2

+ µ2
k1,k2

.

In the Fourier case, since ϕi
k has zero first moment for k �= 0 and

i = 1, 2, we then have{
µ1

k1,k2
= 0, if k2 �= 0,

µ2
k1,k2

= 0, if k1 �= 0,
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implying that µ0,0 = m0 and

{
µk1,0 = µ1

k1,0
, if k1 �= 0,

µ0,k2 = µ2
0,k2

, if k2 �= 0.

In the wavelet case, since the mother wavelets ψ1 and ψ2 have
null moments, we then have

{
µ1

k1,k2
= 0, if k2 �= (−1, 0),

µ2
k1,k2

= 0, if k1 �= (−1, 0),

implying that µ(−1,0),(−1,0) = m0 and

{
µk1,(−1,0) = µ1

k1,(−1,0), if k1 �= (−1, 0),

µ(−1,0),k2 = µ2
(−1,0),k2

, if k2 �= (−1, 0).

In other words, in view of the above, the two-dimensional con-
tinuous Fourier transform (wavelet transform) of the additive
model (8) is simply given by the constant m0, the continuous
Fourier coefficients µ1

k1,0
(wavelet coefficients µ1

k1,(−1,0)) of the
component m1(t1) and the continuous Fourier coefficients µ2

0,k2

(wavelet coefficients µ2
(−1,0),k2

) of the component m2(t2), all
the other continuous Fourier coefficients (wavelet coefficients)
being zero. Similarly, the two-dimensional continuous Fourier
transform (wavelet transform) of the joint effects model (9) is
simply given by the constant m0 and the continuous Fourier co-
efficients µ2

0,k2
(wavelet coefficients µ2

(−1,0),k2
) of the component

m2(t2), all the other continuous Fourier coefficients (wavelet co-
efficients) being zero.

Assume now that the response variable Yt in model (1)–(2)
is observed on the two-dimensional lattice {(t1i , t2 j ) : i =
0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1} in [0, 1]2, and consider
the equivalent discrete model (5)–(6). Assuming further that the
lattice is equispaced with n1 = 2J1 and n2 = 2J2 (for some
integers J1 > 0 and J2 > 0), it is then possible to evaluate the
two-dimensional discrete Fourier or wavelet transform of the
sampled function m(t1i , t2 j ).

Let us consider first the two-dimensional discrete Fourier
transform of the sampled function m(t1i , t2 j ). Let m̂1

k1,k2
and

m̂2
k1,k2

(k1 = −n1/2, . . . , n1/2 − 1; k2 = −n2/2, . . . , n2/2 −
1) be the two-dimensional discrete Fourier coefficients of
M1(t1i , t2 j ) and M2(t1i , t2 j ) respectively. Similarly to the two-
dimensional continuous Fourier transform, it is also true for the
two-dimensional discrete Fourier transform that

{
m̂1

k1,k2
= 0, if −n2/2 ≤ k2 �= 0 ≤ n2/2 − 1,

m̂2
k1,k2

= 0, if −n1/2 ≤ k1 �= 0 ≤ n1/2 − 1.

This means that the matrix (m̂k1,k2 )k1,k2 of the two-dimensional
discrete Fourier coefficients of the additive model (10) has the

following form


0 · · · 0 m̂1
−n1/2,0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 m̂1
−1,0 0 · · · 0

m̂2
0,−n2/2 · · · m̂2

0,−1 m̂0,0 m̂2
0,1 · · · m̂2

0,n2/2−1

0 · · · 0 m̂1
1,0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 m̂1
n1/2−1,0 0 · · · 0




.

(12)

Similarly, the matrix (m̂k1,k2 )k1,k2 of the two-dimensional dis-
crete Fourier coefficients of the joint effects model (11) has the
following form




0 · · · 0 0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 0 0 · · · 0

m̂2
0,−n2/2 · · · m̂2

0,−1 m̂0,0 m̂2
0,1 · · · m̂2

0,n2/2−1

0 · · · 0 0 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 0 0 · · · 0




.

(13)

Let us consider now the two-dimensional (standard form) dis-
crete wavelet transform of the sampled function m(t1i , t2 j ). It
can be fastly computed provided that an approximation of the
scaling coefficients αn

(J1,l1),(J2,l2) = 〈m, φ1
J1,l1

⊗ φ2
J2,l2

〉L2 (0 ≤
l1 ≤ 2J1 − 1; 0 ≤ l2 ≤ 2J2 − 1) is given. A simple approx-
imation consists of considering the sampled values as scaling
coefficients

αn
(J1,l1),(J2,l2) ≈ m(t1l1 , t2l2 )√

2J1 2J2

, l1 = 0, 1, . . . , 2J1 − 1;

l2 = 0, 1, . . . , 2J2 − 1. (14)

Although the approximation (14) is made usually in applica-
tions, we point out that it is more accurate if Coiflets are cho-
sen as wavelet bases (see Beylkin, Coifman and Rokhlin 1991,
Antoniadis 1994).

Let m̂1
k1,k2

and m̂2
k1,k2

(k1 = (−1, 0), (0, 0), . . . , (J1−1, 2J1−1−
1), k2 = (−1, 0), (0, 0), . . . , (J2 − 1, 2J2−1 − 1)) be the two-
dimensional (standard form) discrete wavelet coefficients of
M1(t1i , t2 j ) and M2(t1i , t2 j ) respectively. The two-dimensional
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(standard form) discrete wavelet transform inherits the prop-
erty of the continuous wavelet transform, then it holds
that {

m̂1
k1,k2

= 0, if k2 �= (−1, 0),

m̂2
k1,k2

= 0, if k1 �= (−1, 0).

This means that the matrix (m̂k1,k2 )k1;k2 of the two-dimensional
(standard form) discrete wavelet coefficients of the additive
model (10) has the following form




m̂(−1,0),(−1,0) m̂2
(−1,0),(0,0) m̂2

(−1,0),(1,0) · · · · · · · · · m̂2
(−1,0),(J2−1,2J2−1)

m̂1
(0,0),(−1,0) 0 0 · · · · · · · · · 0

m̂1
(1,0),(−1,0) 0

. . .
. . . · · · · · · 0

...
...

. . .
. . .

. . . · · · ...
...

...
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

...
m̂1

(J1−1,2J1−1),(−1,0) 0 0 · · · · · · · · · 0




. (15)

Similarly, the matrix (m̂k1,k2 )k1,k2 of the two-dimensional (stan-
dard form) discrete wavelet coefficients of the joint effects model
(11) has the following form




m̂(−1,0),(−1,0) m̂2
(−1,0),(0,0) m̂2

(−1,0),(1,0) · · · · · · · · · m̂2
(−1,0),(J2−1,2J2−1)

0 0 0 · · · · · · · · · 0

0 0
. . .

. . .
. . . · · · 0

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 · · · · · · · · · 0




. (16)

3. Testing procedures for additivity
and joint effects

In this section we show how the particular structure of matri-
ces (12), (13), (15) and (16) discussed in Section 2.2 can be
combined with the adaptive procedures of Fan (1996) to derive
powerful testing procedures for additivity and joint effects in
bivariate nonparametric regression models.

3.1. Testing for additivity

We first consider the problem of testing for additivity through the
data Yi j discussed in (5)–(6). We perform a Fourier or wavelet
transform of the data and then operate on the obtained matrices
of corresponding empirical Fourier or wavelet coefficients. The
Fourier and wavelet analysis discussed in Section 2.2 shows

that, in the case of additive structure, only the central row and
central column of the empirical Fourier coefficient matrix (see
(12)) or only the first row and the first column of the empirical
wavelet coefficient matrix (see (15)) contribute to the model; all
the remaining elements represent only noise.

Let A1 be the set of elements belonging to this significant part
of the empirical Fourier or wavelet coefficient matrices, and let
A2 be the set of elements belonging to the remaining (major)
part of the corresponding matrices. The number of elements in
A2 is r = n1n2 −n1 −n2 +1. Letting U to be the r -dimensional

vector consisting of the elements of the set A2 then, by or-
thogonality of the Fourier and wavelet transforms, U is dis-
tributed as an r -dimensional Gaussian distribution, N (a, σ 2 Ir ).

Under the additivity assumption, U is distributed as N (0, σ 2 Ir )
and, therefore, testing the hypothesis (3) (additivity) is equivalent
to testing the hypotheses

H0 : a = 0 versus H1 : at least one component of a is not zero

(17)

for the r -dimensional vector U . The proposed tests for additivity
are based on the adaptive Neyman truncation and wavelet thresh-
olding procedures of Fan (1996) for testing the hypothesis (17).

3.1.1. Fourier and wavelet adaptive Neyman truncation tests

We define the tests FAN (Fourier Adaptive Neyman) and WAN
(Wavelet Adaptive Neyman) whose statistic is

TAN =
√

2 log log r T 	
AN

−{2 log log r + 0.5 log log log r − 0.5 log(4π )}, (18)
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with

T 	
AN = max

1≤k≤r

{
1√
2k

k∑
j=1

(
U 2

j

σ 2
− 1

)}
,

where U j ( j = 1, 2, . . . , r ) are the components of the r -
dimensional vector U obtained from the appropriate part of the
empirical Fourier matrix (for the FAN test) and the empirical
wavelet matrix (for the WAN test), respectively.

By using Theorem 2.1 of Fan (1996), the asymptotic distribu-
tion of the FAN and WAN tests, under the additivity hypothesis
(17), is given by

P(TAN < x) → exp(− exp(−x)), as r → ∞,

and its critical region, for the significance level α, is given by

TAN > − log(− log(1 − α)).

As noted by Fan (1996), the convergence of the TAN test statistic
given above is quite slow. However, the finite sample distribution
based on one million simulations is given in Table 1 of Fan and
Lin (1998).

By using Theorem 2.2 of Fan (1996), the following lower
bound for the power of the FAN and WAN tests under the spe-
cific alternative a = θ0r , with θ0r an r -dimensional vector,

Table 1. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN,

WAN, H and S tests, obtained for the functions m1 − m5 (additive
cases), for sample size (8,8) over an equispaced design in [0,1]2, and
for standard deviations σ = 0.1, 0.5, 1. The parameter j0 was ranged
for both H and S in [0, 2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m1 0.1 0.988 0.980 0.985 0.968 0.947 0.788 0.773 0.678
0.5 0.990 0.974 0.990 0.974 0.959 0.795 0.778 0.635

1 0.989 0.979 0.987 0.973 0.951 0.779 0.768 0.616
m2 0.1 1.000 0.971 0.992 1.000 1.000 0.806 0.792 0.699

0.5 0.989 0.975 0.991 0.993 0.980 0.783 0.773 0.630
1 0.985 0.874 0.991 0.968 0.956 0.786 0.779 0.616

m3 0.1 1.000 0.978 1.000 1.000 1.000 0.782 0.762 0.684
0.5 0.995 0.971 0.995 0.998 0.992 0.805 0.794 0.648

1 0.984 0.966 0.988 0.980 0.971 0.795 0.764 0.586
m4 0.1 1.000 0.968 1.000 1.000 1.000 0.790 0.776 0.694

0.5 0.989 0.972 0.994 0.999 0.961 0.788 0.780 0.635
1 0.992 0.973 0.991 0.985 0.970 0.814 0.800 0.608

m5 0.1 1.000 0.977 0.994 1.000 1.000 0.786 0.775 0.677
0.5 0.992 0.972 0.990 0.998 0.989 0.789 0.775 0.622

1 0.984 0.967 0.991 0.979 0.964 0.799 0.794 0.626

is obtained

Pθ0r (TAN > − log(− log(1 − α)))

≥ Pθ0r

(
1√
2m0

m0∑
j=1

(
U 2

j

σ 2
− 1 − θ2

0 j

)
≥

√
2 log log r

× (1 + o(1)) − max
1≤k≤r

1√
2k

k∑
j=1

θ2
0 j

)
,

where m0 = argmax1≤k≤r
1√
2k

∑k
j=1 θ2

0 j . Moreover, by follow-
ing the arguments given in Fan (1996, Section 2.1), we con-
clude that the FAN and WAN tests perform at least as well as
the ideal Neyman truncation test within a factor of logarithmic-
logarithmic order.

The asymptotic properties of the TAN test statistic given in
(18) are based on σ which has to be known and fixed. When σ

is unknown, we replace it by a consistent estimator. For the FAN
test, we take the following estimate

σ̂ 2 = 1

r − 2

r−1∑
j=2

(
1∑

k=−1

ωkU j+k

)2

,

with ω−1 = ω1 = 1/
√

6 and ω0 = −2/
√

6 as proposed by
Müller and Stadtmüller (1987). For the WAN test, as an estimate
of σ we take the median absolute deviation of the empirical
wavelet coefficients in A2 associated to the finest resolution level
and divided by 0.6745, as proposed by Donoho and Johnstone
(1994). Such choices may affect the small-sample performances
of the tests, but investigation of the small-sample performances
of alternative variance estimators is beyond the scope of this pa-
per. Furthermore, the results of Horowitz and Spokoiny (2001,
Section 2.5) could be used to investigate whether the asymp-
totic results of the FAN and WAN tests still remain true if σ is
replaced by a consistent estimator, regardless that H0 is true or
not, although again such an investigation is beyond the scope
of this paper. Let us just mention that we have found the pro-
posed variance estimators to work well in finite-sample situa-
tions and it is therefore safe to recommend their use in practical
applications.

3.1.2. Hard and soft wavelet thresholding tests

Since large values of |θ0 j | appear at large indices, the FAN test
considered in Section 3.1.1 will not perform well against the
alternative hypothesis whose energy concentrates at very high
frequencies; that is, for inhomogeneous functions. Although an
improvement is possible in this case by the WAN test consid-
ered also in Section 3.1.1, a better performance is expected,
however, by the H (Hard thresholding) and S (Soft threshold-
ing) tests that we describe below. Hereafter, we assume that U j

( j = 1, 2, . . . , r ) are the components of the r -dimensional vec-
tor U obtained from the appropriate part of the empirical wavelet
matrix.
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We first define the Hard thresholding test statistic, TH , as

TH = σ−1
H (T 	

H − µH ), (19)

where

T 	
H = σ−2

J0∑
j=1

U 2
j + σ−2

r∑
j=J0+1

U 2
j I (|U j | ≥ σδH ),

and

µH = J0 +
√

2/πa−1
r δH

(
1 + δ−2

H

)
and

σ 2
H = 2J0 +

√
2/πa−1

r δ3
H

(
1 + 3δ−2

H

)
.

The threshold value is given by δH = √
2 log ((r − J0)ar ), J0 is

the number of the empirical wavelet coefficients left unchanged
(see below) and ar is given by

ar =

 min

(
4

(
max

1≤ j≤r

∣∣∣∣U j

σ

∣∣∣∣
)−4

, log−2 r

)
, J0 = 0

log−2 (r − J0), J0 �= 0.

By Theorem 2.3 of Fan (1996), under the additivity hypothesis

(17), we have that TH
D→ N (0, 1), provided that ar log1/2 r → 0.

Finally, we get the following testing procedure: reject the null
hypothesis (additivity) if

TH > −1(1 − α),

where α is the significance level and  is the standard Gaussian
cumulative distribution function.

By using Theorem 2.4 of Fan (1996), the following lower
bound for the power of the H test under the specific alternative
a = θ0r , with θ0r an r -dimensional vector, is obtained

Pθ0r {TH > −1(1 − α)}

≥ Pθ0r

{ ∑
j∈S0

(
U 2

j

σ 2
− 1

)
≥ m0δ

2
H + σH (−1(1 − α) − Zr )

}
,

provided that m0 = o(r
√

ar ), where S0 is the “oracle” best sub-
set of m0 elements containing the index of the first m0 largest
empirical wavelet coefficients, and Zr is a sequence of random
variables converging to the standard Gaussian random variable
and independent of U j , j ∈ S0. Moreover, by following the argu-
ments given in Fan (1996, Section 2.2), we conclude that the H
test mimics the performance of the oracle wavelet thresholding
test within a factor of logarithmic order.

We now define the Soft test statistic, TS , as

TS = σ−1
S (T 	

S − µS), (20)

where

T 	
S = σ−2

J0∑
j=1

U 2
j +

r∑
j=J0+1

(
sgn(U j )

( |U j |
σ

− δS

)
+

)2

,

and

µS = J0 + 2
√

2/πa−1
r δ−3

S (1 − 4δ−2
S ) and

σ 2
S = 2J0 + 2

√
2/πa−1

r δ−1
S .

The threshold value δS is given by δS = √
2 log((r − J0)ar ),

where J0 is defined as in the H test discussed above and ar is
given by

ar =




min

({
log

(
r∑

j=1

(
U j

σ

)2
)}−2

, log−2 r

)
, J0 = 0

log−2 (r − J0), J0 �= 0.

By Theorem 2.3 of Fan (1996), under the additivity hypothesis
(17), we have that TS

D→ N (0, 1), provided that ar log5/2 r → 0.
Finally, we get the following testing procedure: reject the null
hypothesis (additivity) if

TS > −1(1 − α),

where α is the significance level and  is the standard Gaussian
cumulative distribution function. Since the convergence of TS

is slower than the one based on TH , the test statistic TS is not
further pursued.

The asymptotic properties of the TH and TS test statistics
given in (19) and (20) respectively are based on σ which has
to be known and fixed. When σ is unknown, we replace it by
a consistent estimator; it is again estimated by the median ab-
solute deviation of the empirical wavelet coefficients associated
to the finest resolution level, divided by 0.6745, as proposed by
Donoho and Johnstone (1994). Again, as in Section 3.1.1, we
have found the proposed variance estimators to work well in
finite-sample situations and it is therefore safe to recommend
their use in practical applications.

Finally we discuss the choice of J0 appearing in TH and TS .
Since the wavelet coefficients at the same resolution level carry
the same information, it is reasonable to leave unchanged the
empirical wavelet coefficients belonging to the same resolution
level. If J0 is not zero then its value can be, for example, the
number of elements contained in the first row and first column
of the matrix corresponding to A2, i.e. the empirical wavelet
coefficients of the coarsest level 0. If we know that the wavelet
coefficient are reasonable large we can then decide to leave un-
changed the empirical wavelet coefficient belonging to levels 0
and 1, i.e. to leave unchanged the elements of the first 3 rows
and columns of the matrix corresponding to A2. If we decide to
leave unchanged the empirical wavelet coefficients belonging to
levels 0, 1 and 2 then we leave unchanged the elements of the
first 7 rows and columns of the matrix corresponding to A2, and
so on. The parameter J0 can be defined in terms of an option
parameter j0 by the following formula

J0 = (2 j0 − 1)((n1 − 1) + (n2 − 1) − (2 j0 − 1)),

j0 = 0, 1, 2, . . . , min{J1 − 1, J2 − 1}.
Selecting j0 = 0 we threshold all the empirical wavelet coeffi-
cients, selecting j0 = 1 we threshold all the empirical wavelet
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Table 2. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN, WAN, H and S tests, obtained for the functions m6 − m13 (non-additive

cases), for sample size (8,8) over an equispaced design in [0,1]2, and for standard deviations σ = 0.1, 0.5, 1. The parameter j0 was ranged for
both H and S in [0, 2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m6 0.1 1.000 1.000 0.572 0.520 0.997 0.631 0.624 0.836
0.5 0.092 0.122 0.017 0.036 0.118 0.231 0.233 0.391

1 0.030 0.044 0.016 0.037 0.054 0.232 0.230 0.391
m7 0.1 0.425 0.454 0.066 0.148 0.496 0.414 0.317 0.501

0.5 0.023 0.038 0.012 0.030 0.057 0.188 0.228 0.321
1 0.017 0.028 0.016 0.032 0.054 0.198 0.227 0.316

m8 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.344 0.545 0.228 0.490 0.879 0.866 0.542 0.783

1 0.022 0.071 0.037 0.087 0.270 0.441 0.303 0.498
m9 0.1 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000

0.5 0.073 0.187 0.064 0.118 0.299 0.404 0.345 0.531
1 0.025 0.050 0.015 0.040 0.091 0.255 0.253 0.397

m10 0.1 0.160 0.116 0.480 0.422 0.041 0.995 0.997 0.999
0.5 0.029 0.047 0.109 0.224 0.049 0.315 0.320 0.562

1 0.018 0.030 0.015 0.049 0.048 0.232 0.239 0.400
m11 0.1 0.002 0.053 0.000 0.000 0.004 0.373 0.322 0.499

0.5 0.009 0.027 0.005 0.013 0.040 0.199 0.239 0.386
1 0.013 0.020 0.011 0.018 0.035 0.214 0.214 0.386

m[24]
12 0.1 0.000 0.055 0.000 0.000 0.000 0.273 0.294 0.490

γ = 1 0.5 0.000 0.026 0.000 0.000 0.006 0.215 0.219 0.380
1 0.007 0.021 0.008 0.008 0.031 0.223 0.238 0.388

m[24]
12 0.1 0.000 0.149 0.000 0.000 0.000 0.497 0.494 0.703

γ = 2 0.5 0.000 0.027 0.000 0.000 0.003 0.214 0.226 0.386
1 0.005 0.025 0.006 0.003 0.024 0.223 0.239 0.390

m[24]
13 0.1 0.000 0.023 0.000 0.000 0.001 0.231 0.236 0.417

δ = 1/2 0.5 0.006 0.025 0.007 0.012 0.033 0.204 0.221 0.375
1 0.010 0.023 0.012 0.025 0.049 0.219 0.236 0.386

m[24]
13 0.1 0.002 0.023 0.000 0.000 0.023 0.221 0.242 0.414

δ = 1/4 0.5 0.009 0.025 0.010 0.025 0.037 0.203 0.220 0.372
1 0.011 0.022 0.013 0.027 0.049 0.220 0.235 0.386

coefficients except the ones belonging to the first coarsest level,
selecting j0 = 2 we threshold all the empirical wavelet coeffi-
cients except the ones belonging to the first two coarsest levels,
and so on.

3.2. Testing for joint effects

We now consider the problem of testing for joint effects through
the data Yi j discussed in (5) and (6). As in the problem of testing
additivity, we perform a Fourier or wavelet transform of the data
and then operate on the obtained matrices of corresponding em-
pirical Fourier or wavelet coefficients. The Fourier and wavelet
analysis discussed in Section 2.2 shows that, in the case of joint
effects structure, only the central row of the empirical Fourier
coefficient matrix (see (13)) or only the first row of the empirical
wavelet coefficient matrix (see (16)) contribute to the model; all
the remaining elements represent only noise.

Let A	
1 be the set of elements belonging to this significant part

of the empirical Fourier and wavelet coefficient matrices, and let

A	
2 be the set of elements belonging to the remaining (major) part

of the corresponding matrices. The number of elements in A	
2

is r 	 = n1n2 − n2. Letting U 	 to be the r 	-dimensional vector
consisting of the elements of the set A	

2 then, by orthogonality
of the Fourier and wavelet transforms, U 	 is distributed as an
r 	-dimensional Gaussian distribution, N (a, σ 2 Ir	 ). Under the
joint effects assumption, U 	 is distributed as N (0, σ 2 Ir	 ) and,
therefore, testing the hypothesis (4) (joint effects) is again equiv-
alent to testing the hypothesis (17) for the r 	-dimensional vector
U 	. Therefore, the test statistics TAN given in (18), TH given in
(19) and TS given in (20) are also applied to the r 	-dimensional
vector U 	 when testing for joint effects.

3.3. The non-equispaced design case

We now relax the assumptions that the two-dimensional lattice
is equispaced and that the sample sizes n1 and n2 are powers
of two. We assume that the first covariate t1 is observed at n1

distinct points 0 ≤ t10 < t11 < t12, . . . < t1n1−1 ≤ 1 and
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that the second covariate t2 is observed at n2 distinct points
0 ≤ t20 < t21 < t22, . . . < t2n2−1 ≤ 1, with n1 and n2 being
any two natural numbers. We propose a two-dimensional inter-
polation procedure in order to transform the original data to an
equispaced two-dimensional lattice which can then be handled
by the tools described in Sections 3.1 and 3.2. More specifically,
let (Yi j )i, j be the data matrix observed on the two-dimensional
lattice {(t1i , t2 j ) : i = 0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1}
in [0, 1]2, and let {(t̃1i , t̃2 j ) : i = 0, 1, . . . , m1 − 1; j =
0, 1, . . . , m2 − 1} be an equispaced grid design in the two-
dimensional lattice [0, 1]2 with m1 = 2[log2(n1)] and m2 =
2[log2(n2)], where [x] denotes the integer part of x . We then apply
a bivariate spline interpolation procedure over the data matrix
(Yi j )i, j (0 ≤ i ≤ n1 − 1; 0 ≤ j ≤ n2 − 1) to obtain a new
data matrix (Ỹi j )i, j (0 ≤ i ≤ m1 − 1; 0 ≤ j ≤ m2 − 1), which
contains an approximation of the response function over the two-
dimensional equispaced grid design (t̃1i , t̃2 j ). Of course, when
the Fourier or wavelet transform is applied to the new data matrix,
we obtain empirical coefficients that are no longer independent.
However, as explained in Amato and Antoniadis (2001, Section
3.3), their variances remain bounded. Since the variance estima-
tors and the proposed testing procedures described in Section 3.1
(testing for additivity) and Section 3.2 (testing for joint effects)
require the data to be independent, some power loss is unavoid-
able and this is what we observe in the numerical experiments
of Section 4.

Finally we mention that the above computational procedure
can also be used for random designs. In other words if the first
and second covariates are random, say T1 and T2 respectively,
then we can assume the n1 design points for the first covariate
T1 to be independent random variables with a common density
f1 on [0, 1] and the n2 design points for the second covariate
T2 to be independent random variables with a common den-
sity f2 on [0, 1]; the densities f1 and f2 can be of the same
or different form. Then the above bivariate spline interpolation
algorithm can be applied conditionally on the n1 × n2 design
points T10, T11, . . . , T1n1−1 and T20, T21, . . . , T2n2−1.

4. Simulation study

The purpose of this section is to shed some light on the
theoretical results and to implement the algorithmic steps
discussed in Section 3. We use several simulated examples
to investigate the finite performance of the proposed tests for
additivity and joint effects, and we make comparisons with other
tests available in the literature. The computational algorithms
related to wavelet analysis were performed using Version 8 of
the WaveLab toolbox for MATLAB that is freely available from
http://www-stat.stanford.edu/software/software.
html. The entire study was carried out using the MATLAB
programming environment.

We study the finite sample performance of the proposed
tests over different models. We consider the following additive

Table 3. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN,

WAN, H and S tests, obtained for the functions m1−m5 (additive cases),
for sample size (16, 32) over an equispaced design in [0,1]2, and for
standard deviations σ = 0.1,0.5,1. The parameter j0 was ranged for
both H and S in [0,3]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m1 0.1 0.984 0.985 0.993 0.989 0.962 0.821 0.816 0.903
0.5 0.991 0.990 0.992 0.986 0.971 0.793 0.792 0.820

1 0.989 0.988 0.990 0.994 0.969 0.824 0.774 0.784
m2 0.1 0.994 0.988 0.991 1.000 1.000 0.818 0.802 0.910

0.5 0.989 0.989 0.989 0.989 0.978 0.824 0.811 0.843
1 0.996 0.995 0.989 0.985 0.975 0.814 0.775 0.782

m3 0.1 1.000 0.992 0.989 1.000 1.000 0.821 0.818 0.903
0.5 0.993 0.990 0.988 0.998 0.993 0.810 0.809 0.832

1 0.985 0.984 0.989 0.991 0.979 0.784 0.740 0.750
m4 0.1 0.999 0.987 0.996 1.000 0.983 0.814 0.798 0.909

0.5 0.994 0.993 0.986 0.999 0.968 0.813 0.805 0.820
1 0.992 0.989 0.993 0.991 0.968 0.820 0.760 0.783

m5 0.1 1.000 0.985 0.990 1.000 1.000 0.814 0.813 0.903
0.5 0.991 0.990 0.992 0.996 0.996 0.796 0.777 0.818

1 0.988 0.986 0.982 0.985 0.980 0.796 0.765 0.778

models studied in Derbort, Dette and Munk (2002)

m1(t1, t2) = 0,

m2(t1, t2) = t1 + t2,

m3(t1, t2) = exp (t1) + sin (π t2),

m4(t1, t2) = sin (π t1) + sin (π t2),

m5(t1, t2) = exp (t1) + exp (t2).

Moreover, we consider the following non-additive models stud-
ied in Barry (1993), Eubank et al. (1995) and Derbort, Dette and
Munk (2002)

m6(t1, t2) = t1 t2,

m7(t1, t2) = exp (5(t1 + t2)) / (1 + exp (5(t1 + t2))) − 1,

m8(t1, t2) = 0.5 (1 + sin (2π (t1 + t2))),

m9(t1, t2) = 64 (t1t2)3(1 − t1t2)3,

m10(t1, t2) = (t1 + t2) / 2 + (1 outlier),

m11(t1, t2) = G(t1)G(t2)/36,

where

G(t) =




15t, 0 ≤ t ≤ 0.2,

5 − 10t, 0.2 ≤ t ≤ 0.4,

−9 + 25t, 0.4 ≤ t ≤ 0.6,

18 − 20t, 0.6 ≤ t ≤ 0.8,

−2 + 5t, 0.8 ≤ t ≤ 1.

(For the description of the outlier in m10, see Barry 1993.) Finally
we consider the following non-additive models

m[i j]
12 (t1, t2) = hi (t1) + h j (t2) + γ hi (t1)h j (t2),

i, j = 1, 2, 3, 4, 5,

m[i j]
13 (t1, t2) = (hi (t1) + h j (t2))δ, i, j = 1, 2, 3, 4, 5,
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Table 4. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN, WAN, H and S tests, obtained for the functions m6 − m13 (non-additive

cases), for sample size (16,32) over an equispaced design in [0, 1]2, and for standard deviations σ = 0.1, 0.5, 1. The parameter j0 was ranged for
both H and S in [0, 3]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m6 0.1 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000
0.5 0.885 0.889 0.046 0.083 0.906 0.455 0.245 0.264

1 0.238 0.243 0.017 0.022 0.285 0.221 0.235 0.230
m7 0.1 1.000 1.000 0.650 0.873 1.000 0.948 0.513 0.742

0.5 0.092 0.096 0.012 0.030 0.159 0.230 0.244 0.187
1 0.026 0.025 0.008 0.011 0.056 0.187 0.219 0.161

m8 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000

1 0.976 0.973 0.550 0.794 0.998 0.997 0.513 0.821
m9 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 1.000 1.000 0.717 0.913 1.000 0.998 0.578 0.834
1 0.326 0.333 0.057 0.122 0.636 0.659 0.293 0.320

m10 0.1 0.033 0.012 0.346 0.182 0.022 1.000 1.000 1.000
0.5 0.009 0.009 0.029 0.045 0.025 0.249 0.311 0.299

1 0.007 0.007 0.013 0.020 0.032 0.181 0.227 0.213
m11 0.1 0.379 0.702 0.530 0.002 0.997 0.958 0.744 0.901

0.5 0.013 0.017 0.015 0.011 0.059 0.207 0.231 0.185
1 0.010 0.009 0.012 0.017 0.031 0.179 0.204 0.158

m[24]
12 0.1 0.000 0.120 0.000 0.000 0.161 0.905 0.345 0.591

γ = 1 0.5 0.007 0.008 0.004 0.000 0.036 0.216 0.249 0.106
1 0.013 0.015 0.007 0.002 0.033 0.183 0.225 0.109

m[24]
12 0.1 0.001 0.949 0.000 0.000 0.942 1.000 0.806 0.897

γ = 2 0.5 0.008 0.018 0.001 0.000 0.065 0.294 0.250 0.267
1 0.015 0.016 0.006 0.001 0.044 0.190 0.207 0.224

m[24]
13 0.1 0.011 0.019 0.000 0.000 0.045 0.232 0.211 0.231

δ = 1/2 0.5 0.011 0.010 0.009 0.008 0.029 0.203 0.231 0.235
1 0.010 0.011 0.009 0.005 0.031 0.177 0.203 0.215

m[24]
13 0.1 0.017 0.018 0.002 0.000 0.045 0.215 0.207 0.229

δ = 1/4 0.5 0.011 0.010 0.009 0.012 0.029 0.203 0.231 0.235
1 0.010 0.011 0.010 0.005 0.031 0.177 0.202 0.215

where the parameters γ �= 0 and δ �= 1 specify the devia-
tion from additivity, and h1, h2, h3, h4 and h5 are the Blip,
Heavisine, Spikes, Corner and Doppler functions respectively
(see, for example, Antoniadis, Bigot and Sapatinas 2001). Ob-
viously, these latter functions do not belong to the Sobolev spaces
considered in Section 2. They represent, however, typical signals
often considered in the literature for nonparametric regression
estimation and, moreover, they are encountered in many prac-
tical applications in diverse scientific fields. Moreover, these
inhomogeneous functions are very well-suited for wavelet anal-
ysis; indeed, in this case, the numerical results below show the
benefits of the wavelet-based testing procedures (WAN, H , S)
over their competitors.

When testing for additivity, we give comparisons with the
Vd and V f tests considered in Eubank et al. (1995), the T̂ (1,2)

n

(with order l = 1) test considered in Dette and Derbort (2001),
and the M2,α (with order l = 2) test considered in Derbort,
Dette and Munk (2002). The Vd and V f tests are based on
data-driven methods to select the order of Fourier series esti-

mators of the interaction term, and they test the hypothesis that
this estimator is significantly different from zero. The power
of the tests is asymptotically assessed under specific smooth-
ness assumptions on the underlying response function. The
T̂ (1,2)

n and M2,α tests are based on empirical measurements of
the L2-distance between the general model (2) and the model
satisfying the null hypothesis (3). These empirical distances
are quadratic forms of the data, and asymptotic normality for
them is showed under the hypothesis of additivity and specific
smoothness assumptions for the underlying response function.
The statistics T̂ (1,2)

n and M2,α test the hypothesis that these esti-
mators of the empirical distance are significantly different from
zero.

When testing for joint effects, we give comparisons with the
Ŵn test considered in Derbort and Dette (2001). This test is again
based on an estimator of an empirical L2-distance between the
general model (2) and the model satisfying the null hypothesis
(4), and it tests the hypothesis that this estimator is significantly
different from zero.
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Finally, the above simulation study is also performed in the
non-equispaced design case.

4.1. Testing for additivity

In this section we report the results of the simulation study,
comparing the empirical powers of Vd , V f , M2,α , T̂ (1,2)

n , FAN,
WAN, H and S tests. We assumed that the response functions
m1 − m13 are observed on the two-dimensional regular lattice
{(t1i , t2 j ) : i = 0, 1, . . . , n1 − 1; j = 0, 1, . . . , n2 − 1} in
[0, 1]2, and we considered the values (8, 8), (8, 16), (16, 8),
(16, 16), (16, 32), (32, 16) and (32, 32) for the sample size
(n1, n2). However, for the sake of brevity, we only report the
results for (8,8) and (16, 32), representing a small and a large
sample size respectively. In the simulation study the values of γ

and δ associated with the response functions m12 and m13 respec-
tively were set to γ = 1, 2 and δ = 1/2, 1/4, while the standard
deviation and significance level were taken as σ = 0.1, 0.5, 1
and α = 0.01, 0.05, 0.1 respectively. For the Vd , V f , M2,α and

T̂ (1,2)
n tests, σ was estimated according to the consistent estima-

tors proposed in conjunction with these tests (we refer to the
appropriate papers for more details), while for the FAN, WAN,
H and S tests, σ was estimated according to the consistent esti-
mators proposed in Sections 3.1.1 and 3.1.2. Since the relative
performances of the various procedures for the different cases
of α were roughly the same, we only report the results for α =
0.01. The empirical power has been evaluated by the following
formula

Empirical Power =




1 −
M∑

k=1

lk/M, if H0 is true,

M∑
k=1

lk/M, if H0 is false,

where lk is the response of the generic test statistics applied
to the k-th run (it takes the value 1 if the null hypothesis
is rejected and 0 if the null hypothesis is accepted), and M
is the number of runs (the number of runs was taken M =
1000).

Tables 1 and 3 show the empirical powers of the simula-
tion study for the additive models m1–m5. It is observed that
Vd , V f , M2,α and T̂ (1,2)

n perform better than WAN, H and S,
while FAN gives comparable results. However, the performance
of WAN, H and S improves significantly when the sample size
increases, which qualitatively confirm the asymptotic results. Ta-
bles 2 and 4 show the empirical powers of the simulation study
for the non-additive models m6–m11. It is observed that FAN,
WAN, H and S perform better than Vd , V f , M2,α and T̂ (1,2)

n in
most cases for small noise and in almost all cases for mod-
erate and large noises. We also note that, for m10 and m11,
FAN behaves poorly relatively to WAN, H and S, and this is
explained by the presence of singularity in the underlying func-
tions which is better handled by the wavelet transform. This is
not the case, however, for m6–m9 and we stress the very good be-

Table 5. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN,

WAN, H and S tests, obtained for the functions m1 − m5 (additive
cases), for sample size (10,10) over a lattice generated by combin-
ing two grid designs from (21) and (22), and for standard deviations
σ = 0.1, 0.5, 1. The parameter j0 was ranged for both H and S in
[0,2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m1 0.1 0.987 0.976 0.990 0.982 0.678 0.446 0.890 0.355
0.5 0.988 0.976 0.987 0.980 0.703 0.466 0.893 0.390

1 0.982 0.974 0.987 0.978 0.708 0.443 0.886 0.353
m2 0.1 0.999 0.978 0.994 1.000 0.940 0.453 0.891 0.356

0.5 0.986 0.979 0.990 0.995 0.736 0.448 0.897 0.364
1 0.990 0.980 0.995 0.981 0.687 0.439 0.901 0.347

m3 0.1 1.000 0.983 1.000 1.000 0.997 0.453 0.913 0.368
0.5 0.992 0.980 0.991 0.998 0.743 0.415 0.901 0.332

1 0.991 0.982 0.995 0.994 0.719 0.465 0.894 0.379
m4 0.1 1.000 0.974 1.000 1.000 0.998 0.451 0.994 0.369

0.5 0.993 0.981 0.991 1.000 0.723 0.426 0.895 0.340
1 0.993 0.983 0.992 0.992 0.715 0.399 0.892 0.330

m5 0.1 1.000 0.982 0.996 1.000 0.992 0.442 0.896 0.351
0.5 0.991 0.981 0.993 0.999 0.729 0.434 0.885 0.330

1 0.984 0.974 0.990 0.990 0.719 0.427 0.900 0.361

haviour of FAN for m8 which is well-suited for Fourier analysis.
Tables 2 and 4 also display the results for some combinations
of the functions m12 and m13. These results show that WAN,
H and S outperform Vd , V f , M2,α , T̂ (1,2)

n and FAN and clearly
demonstrate the benefits of the proposed wavelet-based testing
procedures over their competitors for inhomogeneous response
functions.

4.2. Testing for joint effects

The same framework described in Section 4.1 for testing ad-
ditivity has also been considered for testing joint effects, and
we have compared the empirical powers of Ŵn , FAN, WAN, H
and S. The numerical results obtained are very similar to those
for testing additivity. Indeed, for the response functions m1–m5,
the procedures are comparable while, for the response func-
tions m6–m11, FAN, WAN, H and S perform better that Ŵn in
most cases for small noise and in almost all cases for moder-
ate and large noises. For the response functions m[i j]

12 and m[i j]
13

(i, j = 1, 2, 3, 4, 5), WAN, H and S outperform FAN and Ŵn

and demonstrate once again the benefits of the proposed wavelet-
based testing procedures over their competitors for inhomoge-
neous response functions. For the sake of brevity, however, we
omit the results obtained in this case.

4.3. The non-equispaced design case

In this section we report the results of the simulation study ob-
tained in the non-equispaced design case. The procedures Vd ,
V f , T̂ (1,2)

n , Ŵn and M2,α do not change, while the proposed
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Table 6. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN, WAN, H and S tests, obtained for the functions m6 − m13 (non-additive

cases), for sample size (10,10) over a lattice generated by combining two grid designs from (21) and (22), and for standard deviations σ = 0.1,0.5,1.
The parameter j0 was ranged for both H and S in [0,2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m6 0.1 1.000 1.000 0.723 0.699 0.680 0.646 0.584 0.744
0.5 0.113 0.134 0.021 0.037 0.304 0.537 0.460 0.630

1 0.041 0.058 0.011 0.029 0.304 0.576 0.473 0.651
m7 0.1 0.659 0.711 0.151 0.288 0.656 0.688 0.562 0.724

0.5 0.038 0.054 0.020 0.036 0.320 0.571 0.493 0.649
1 0.011 0.021 0.014 0.024 0.299 0.559 0.480 0.658

m8 0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.533 0.647 0.448 0.692 0.683 0.779 0.631 0.788

1 0.022 0.073 0.054 0.106 0.440 0.619 0.496 0.691
m9 0.1 1.000 1.000 1.000 1.000 0.995 0.971 0.924 0.985

0.5 0.110 0.173 0.064 0.124 0.442 0.599 0.512 0.698
1 0.019 0.037 0.017 0.037 0.355 0.576 0.481 0.676

m10 0.1 0.139 0.128 0.473 0.364 0.244 0.767 0.721 0.829
0.5 0.019 0.030 0.094 0.179 0.292 0.592 0.508 0.662

1 0.012 0.022 0.011 0.027 0.308 0.542 0.462 0.646
m11 0.1 0.003 0.177 0.000 0.000 0.315 0.646 0.563 0.732

0.5 0.008 0.024 0.010 0.015 0.325 0.568 0.481 0.639
1 0.0013 0.030 0.023 0.023 0.316 0.562 0.494 0.643

m[21]
12 0.1 0.000 0.075 0.000 0.000 0.005 0.577 0.482 0.658

γ = 1 0.5 0.003 0.019 0.000 0.000 0.243 0.532 0.430 0.606
1 0.009 0.022 0.002 0.005 0.273 0.558 0.470 0.643

m[21]
12 0.1 0.000 0.485 0.000 0.000 0.001 0.591 0.471 0.655

γ = 2 0.5 0.003 0.034 0.000 0.000 0.188 0.568 0.480 0.656
1 0.011 0.024 0.005 0.002 0.268 0.567 0.485 0.656

m[21]
13 0.1 0.000 0.030 0.000 0.000 0.188 0.527 0.445 0.627

δ = 1/2 0.5 0.008 0.016 0.006 0.017 0.282 0.549 0.467 0.625
1 0.010 0.025 0.007 0.024 0.271 0.557 0.473 0.641

m[21]
13 0.1 0.002 0.017 0.001 0.000 0.267 0.549 0.468 0.637

δ = 1/4 0.5 0.011 0.027 0.010 0.017 0.303 0.566 0.478 0.633
1 0.012 0.020 0.007 0.016 0.303 0.588 0.498 0.651

procedures FAN, WAN, H and S are modified according to the ap-
proach described in Section 3.3. The following one-dimensional
grid designs in [0, 1] were considered

ti = exp (i/n) − 1

e − 1
, i = 0, . . . , n − 1, (21)

ti =
√

i/n, i = 0, . . . , n − 1, (22)

ti ∼ Uniform[0, 1], i = 0, . . . , n − 1, (23)

and then an equispaced two-dimensional lattice was created
combining any two of these designs.

For brevity, however, we only present the empirical pow-
ers obtained when testing for additivity for some combinations
of these designs and for the sample size (10, 10). The results
for the additive models m1 − m5 and the non-additive mod-
els m6 − m13, over a lattice generated by combining two gird
design from (21) and (22), are reported in Tables 5 and 6

respectively. The results for the additive models m1 −m5 and the
non-additive models m6 − m13, over a lattice generated by com-
biningtwo grid designs from (23), are reported in Tables 7 and 8
respectively.

From the analysis of the results, we see that the conclu-
sions do not change with respect to the equispaced grid design
case, although some power loss is unavoidable as discussed in
Section 3.3. Indeed, for the additive models m1 − m5, FAN and
H give comparable results while WAN and S perform worse
than in the equispaced design. For the non-additive models
m6 − m11, FAN, WAN, H and S perform better that Vd , V f ,

M2,α and T̂ (1,2)
n in most cases for small noise and in almost all

cases for moderate and large noises. Furthermore, for the non-
additive models m12 − m13, as in the equispaced design, WAN,
H and S outperform Vd , V f , M2,α , T̂ (1,2)

n and FAN, and clearly
demonstrate the benefits of the proposed wavelet-based testing
procedures over their competitors for inhomogeneous response
functions.
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Table 7. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN,

WAN, H and S tests, obtained for the functions m1−m5 (additive cases),
for sample size (10,10) over a lattice generated by combining two grid
designs from (23), and for standard deviations σ = 0.1, 0.5, 1. The
parameter j0 was ranged for both H and S in [0,2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m1 0.1 0.993 0.982 0.995 0.984 0.627 0.208 0.966 0.187
0.5 0.985 0.977 0.994 0.984 0.597 0.207 0.972 0.128

1 0.993 0.987 0.987 0.986 0.623 0.199 0.968 0.121
m2 0.1 1.000 0.974 0.999 1.000 0.608 0.211 0.961 0.187

0.5 0.992 0.982 0.987 0.988 0.611 0.211 0.951 0.117
1 0.992 0.981 0.991 0.983 0.600 0.224 0.967 0.115

m3 0.1 1.000 0.983 1.000 1.000 0.595 0.191 0.951 0.174
0.5 0.990 0.980 0.995 0.997 0.641 0.199 0.965 0.123

1 0.993 0.982 0.995 0.991 0.605 0.185 0.959 0.120
m4 0.1 1.000 0.974 1.000 1.000 0.626 0.225 0.966 0.211

0.5 0.993 0.981 0.991 1.000 0.607 0.230 0.967 0.156
1 0.992 0.983 0.988 0.995 0.595 0.214 0.959 0.133

m5 0.1 1.000 0.982 1.000 1.000 0.593 0.208 0.968 0.196
0.5 0.993 0.981 0.995 1.000 0.600 0.205 0.962 0.127

1 0.985 0.974 0.989 0.990 0.606 0.199 0.963 0.113

5. Extension to high dimensions

Let us consider model (1) in the general case

m(t1, . . . , td ) = m0 +
d∑

j1=1

m j1 (t j1 ) +
∑

1≤ j1< j2≤d

m j1, j2 (t j1 , t j2 )

+ · · · +
∑

1≤ j1<···< jp≤d

m j1,..., jp (t j1 , . . . , t jp ),

where 1 ≤ p ≤ d , m0 is a constant, and m ji (t ji ),
m j1, j2 (t j1 , t j2 ), . . . , m j1,..., jp (t j1 , . . . , t jp ) are unknown smooth
functions; the terms mji (t ji ) are called the “main effects”, the
terms mj1, j2 (t j1 , t j2 ) are called the “two factor interactions”, and
so on.

Testing for additivity is equivalent to testing the hypothesis
that the interaction terms of all order are all equal to zero. We
suppose the main effect mji (t ji ) belongs to Sobolev space Hi =
W βi [0, 1], (βi > 1/2) for each i = 1, . . . , d , and we define the
tensor product Hilbert space W = H1 ⊗· · ·⊗ Hd endowed with
the following scalar product

〈h1 ⊗ · · · ⊗ hd , k1 ⊗ · · · ⊗ kd〉W = 〈h1, k1〉H1
. . . 〈hd , kd〉Hd

,

h1, k1 ∈ H1, . . . , hd , kd ∈ Hd .

We have that the constant function m0 can be represented in W
by a function M0 ∈ 11(t)⊗· · ·⊗1d (t) and, for each 1 ≤ p ≤ d,
the main effect m jp (t jp ) can be represented in W as a function
M p(t1, . . . , td ) ∈ 11(t) ⊗ · · · ⊗ Hp ⊗ · · · ⊗ 1d (t).

If Bi = {ϕi
k(t) : k ∈ Ii }, i = 1, . . . , d , are d orthogonal

and periodic basis for L2[0, 1], then B1 ⊗ · · · ⊗ Bd is a basis
for L2([0, 1]p) = L2[0, 1] ⊗ · · · ⊗ L2[0, 1]. The basis Bi can
be a Fourier basis or a wavelet basis as explained for the two-

dimensional case in Section 2.2. In the case of additivity one has
the following representation

m(t1, . . . , td ) =
∑

(k1,...,kd )

µk1,...,kd ϕ
1
k1

(t1) . . . ϕd
kd

(td ),

where

µk1,...,kd = 〈
m(t1, . . . , td ), ϕ1

k1
⊗ · · · ⊗ ϕd

kd

〉
= m0

〈
11, ϕ1

k1

〉
H1

· · · 〈1d , ϕd
kd

〉
Hd

+ µ1
k1,...,kd

+ . . . + µd
k1,...,kd

.

In the Fourier case, ϕi
k has zero first moment for k �= 0 and

i = 1, . . . , d, then we have


µ1
k1,...,kd

= 0, if k2 �= 0, or k3 �= 0, or kd �= 0
...
µd

k1,...,kd
= 0, if k1 �= 0, or k2 �= 0, or kd−1 �= 0.

In the wavelet case, analogous decompositions hold if proper
indices are used. Under the additivity assumption, the d-
dimensional matrix of Fourier or wavelet coefficients has only d
lines (one along each dimension) related to the respective main
effect functions, all the other coefficients being zeros. The test
for additivity can be performed using the vector Ud consisting
of those elements of the matrix which we expect to be zero un-
der the null hypothesis. Testing for joint effects is also easily
extended to the general case d ≥ 3 since it only requires the
appropriate elements of the vector Ud to be used in the proposed
testing procedures. Finally, other interesting hypothesis testing,
such as testing specific vanishing interaction terms between the
components t j1 , . . . , t jp for 1 ≤ p ≤ d can also be tested by
appropriately adapting the proposed testing procedures.

6. Concluding remarks

We have considered the problem of testing for additivity and joint
effects in multivariate nonparametric regression when the data
are modelled as observations of an unknown response function
observed on a d-dimensional (d ≥ 2) lattice and contaminated
with additive Gaussian noise. We have proposed tests for addi-
tivity and joint effects, appropriate for both homogeneous and
inhomogeneous response functions, using the particular struc-
ture of the data expanded in tensor product Fourier or wavelet
bases studied recently by Amato and Antoniadis (2001) and
Amato, Antoniadis and De Feis (2002). The corresponding tests
were constructed by applying the adaptive Neyman truncation
and wavelet thresholding procedures of Fan (1996), for testing
a high-dimensional Gaussian mean, to the resulting empirical
Fourier and wavelet coefficients. The empirical powers obtained
from the simulation study and the comparisons made with other
tests available in the literature suggest that the advantage of the
proposed tests is twofold. First, they have higher empirical power
in detecting additivity and joint effects for inhomogeneous re-
sponse functions while maintaining a comparable behaviour for
homogeneous response functions as the other available tests and,
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Table 8. Empirical powers (α = 0.01) for the Vd , V f , M2,α , T̂ (1,2)
n , FAN, WAN, H and S tests, obtained for the functions m6 − m13 (non-additive

cases), for sample size (10,10) over a lattice generated by combining two grid designs from (23), and for standard deviations σ = 0.1, 0.5, 1. The
parameter j0 was ranged for both H and S in [0,2]

σ Vd V f M2,α T̂ (1,2)
n FAN WAN H S

m6 0.1 0.999 1.000 0.500 0.184 0.393 0.789 0.735 0.869
0.5 0.096 0.122 0.020 0.030 0.377 0.788 0.712 0.863

1 0.040 0.054 0.011 0.024 0.374 0.820 0.739 0.832
m7 0.1 0.113 0.136 0.024 0.062 0.425 0.800 0.740 0.871

0.5 0.017 0.031 0.016 0.031 0.382 0.792 0.726 0.866
1 0.013 0.018 0.013 0.024 0.391 0.794 0.715 0.805

m8 0.1 1.000 1.000 1.000 1.000 0.439 0.798 0.719 0.864
0.5 0.865 0.891 0.457 0.704 0.418 0.805 0.729 0.878

1 0.241 0.291 0.061 0.123 0.402 0.787 0.708 0.801
m9 0.1 1.000 1.000 1.000 1.000 0.376 0.794 0.716 0.875

0.5 0.457 0.568 0.124 0.197 0.398 0.793 0.718 0.804
1 0.093 0.120 0.025 0.036 0.378 0.800 0.723 0.824

m10 0.1 0.132 0.119 0.471 0.364 0.397 0.807 0.722 0.868
0.5 0.013 0.024 0.100 0.159 0.387 0.772 0.701 0.869

1 0.010 0.021 0.019 0.038 0.390 0.780 0.720 0.852
m11 0.1 0.000 0.019 0.000 0.000 0.392 0.788 0.704 0.876

0.5 0.008 0.019 0.005 0.009 0.388 0.783 0.716 0.884
1 0.0012 0.029 0.003 0.017 0.384 0.779 0.713 0.879

m[21]
12 0.1 0.000 0.022 0.000 0.000 0.367 0.774 0.705 0.876

γ = 1 0.5 0.003 0.017 0.000 0.000 0.366 0.787 0.715 0.874
1 0.008 0.026 0.002 0.004 0.376 0.783 0.692 0.802

m[21]
12 0.1 0.000 0.070 0.000 0.000 0.383 0.786 0.721 0.889

γ = 2 0.5 0.003 0.024 0.000 0.000 0.391 0.780 0.699 0.793
1 0.011 0.021 0.004 0.007 0.412 0.797 0.717 0.819

m[21]
13 0.1 0.000 0.022 0.000 0.000 0.404 0.778 0.708 0.883

δ = 1/2 0.5 0.007 0.014 0.011 0.023 0.394 0.788 0.722 0.894
1 0.011 0.025 0.007 0.018 0.404 0.800 0.735 0.819

m[21]
13 0.1 0.001 0.017 0.001 0.000 0.375 0.791 0.721 0.864

δ = 1/4 0.5 0.012 0.028 0.017 0.023 0.366 0.799 0.723 0.893
1 0.012 0.021 0.013 0.378 0.404 0.815 0.744 0.898

second, their empirical power deteriorates much less, as the noise
level increases, than their competitors.

In summary, we have seen evidence that the Fourier-based
test (FAN) is appropriate for functions obeying a homogeneous
behaviour, while the wavelet-based tests (WAN, H , S) are ap-
propriate for functions obeying a non-homogeneous behaviour.
Furthermore, since these tests are also computationally simple
to obtain, practitioners may sometimes prefer these tests in par-
ticular applications, especially in the case where the underlying
response function obeys a non-homogeneous behaviour and the
noise level is high.
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