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In this paper we consider data on underwater sounds of differing types. Our objective is to filter 
background noise and achieve an acceptable level of reduction in the raw data, whilst at the 
same time maintaining the main features of the original signal. In particular, we consider 
data compression through the use of wavelet analysis followed by a thresholding of small coef- 
ficients in the resulting multiresolution decomposition. Various methods to threshold the wave- 
let representation are discussed and compared using recordings of dolphin sounds. An 
empirical modification to one of them is also proposed which shows promise in better pre- 
serving certain structures in our particular sound data. 
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1. Introduction 

This paper reports some comparisons of various wavelet 
decomposition and thresholding methods to data on under- 
water sounds. Our objective is to filter the original 'noisy' 
recordings to produce a significant reduction in the 
amount of raw data, whilst preserving the main features 
of the original signal. The future intention is to use the 
resulting representation for discriminating between such 
sounds, either by employing multivariate discrimination 
methods, or by using a neural network (Smith et al., 
1993). However, this ultimate objective is only briefly 
referred to here, where the focus is mainly on the pre- 
processing stage. 

The available data relate to underwater sounds of differ- 
ent types, including noises produced by dolphins, shrimps, 
seals, whales, ice breaking and others. They consist of 
selected extracts from lengthy recordings taken in real life 
conditions in the ocean, using a hydrophone placed several 
metres below sea level. The recording apparatus sampled 
the signal at 40 kHz with 16 bit resolution (near CD qual- 
ity). The volume of raw data is therefore considerable. A 
typical example is shown in Figure 1, where a dolphin's 
'whistle' is depicted over a period of 0.8 s and involves in 
excess of 30000 data values, amplitude being between 
-32768 and +32767 (16 bit). The sampling rate of 40 kHz 
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is 2.56 times the maximum frequency of sounds which we 
wish to identify and discriminate between, so there are 
few anti-aliasing problems. For this example we have delib- 
erately selected a section of data that is clearly audible as a 
whistle, although there is also a series of short term 'clicks' 
towards the end of the portrayed signal. 

The analysis of underwater sounds has similarities with 
human speech recognition. However, due to the special 
recording circumstance and the nature of the sounds them- 
selves, there are unique features not found with the more 
commonly analysed speech data. For example, underwater 
data have a larger amount of background noise than is gen- 
erally the case in speech recognition work. Speech data are 
also biased towards low frequency levels, whereas the 
underwater sounds are spread more evenly across the fre- 
quency range between 0 and 16 kHz. Finally, the a priori 
knowledge that can be brought to bear in the analysis of 
human speech is not available for sounds from dolphins 
or shrimps; for example, we cannot in general identify pre- 
cisely when sounds start or for how long they last. 

In the remainder of this paper we consider the results of 
applying wavelet methods to reduce background noise and 
enhance signal in this type of raw data. However, our dis- 
cussion may also be applicable to data from other 
sources; for example, that obtained from spectroscopy, 
medical scanning, or tomography of various descriptions. 
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Fig. 1. An example of  a dophin whistle 

In Section 2, we first present arguments for preferring wave- 
let decomposition to more conventional spectral analysis 
based upon the short-time Fourier transform and briefly 
summarize some relevant aspects of wavelet theory. In 
Section 3, we discuss available techniques for thresholding 
the coefficients of a wavelet decomposition in order to 
reduce noise and enhance signal and suggest an empirically 
derived modification to one of these thresholding methods 
for use on underwater sounds. In Section 4, we compare the 
various thresholding methods using recordings of dolphin 
sounds. Finally, in Section 5, we discuss the implications 
of these results in the wider context of our ultimate objec- 
tive to discriminate between different types of sounds. 

2. The wavelet decomposition 

One of the most common ways of pre-processing sound 
signals is to use a spectral analysis, based on the short 
time Fourier transform (STFT) (see, for example, Bloom- 
field, 1976). This presupposes that it is generally easier to 
analyse sound by frequency components rather than by 
using the amplitude at a given time point. In practice the 
infinite series of the general Fourier expansion is approxi- 
mated for finite values in the STFT, a fast Fourier trans- 
form being employed on small successive 'windows' of the 
data. (A variety of different types of windows have been 
suggested, with various relative advantages.) A typical 
method of summarizing the results from such successive 
time windows is to display them as a 'spectrogram'. This 
has time on the horizontal axis and frequency on the verti- 
cal axis, and the value of the Fourier coefficient at each 
point is displayed as a greyscale (usually black for a low 
value through to white for a high value). Figure 2 shows 

Fig. 2. A spectrogram of  the whistle shown in Fig. 1 

a spectrogram of the dolphin 'whistle' from Fig. 1, based 
on a window size of 256 points. 

Although such a representation is useful, there are a 
number of problems with using the STFT with sound 
data. Firstly, the Fourier transform inherently loses time 
information since it integrates over time. If the time 
window employed is too large, a STFT may provide a 
good broad description, but lose individual events of short 
duration. Such events occur frequently in underwater 
sound data. Window size therefore becomes an important 
factor in the analysis and results may be heavily dependent 
on the choice of this parameter. In general, it will not be 
possible to determine one window size which performs 
well across the whole range of sounds of interest, so differ- 
ent sizes are needed in different sections. Moreover, for 
each different window size a complete STFT computation 
is required, since one cannot construct the STFT for 
smaller windows directly from that using a larger window 
or vice versa. A second problem with Fourier analysis, 
particularly relevant in the discrimination context, is that 
power spectra of recordings made in different circum- 
stances must first be levelled before their Fourier spectral 
decompositions can be compared. Without this levelling 
of spectra results are biased towards certain frequencies 
only, and since the background characteristics of different 
types of underwater sounds are quite different--each 
having been recorded in different circumstances--serious 
comparison of the spectral decompositions of different 
sounds cannot sensibly be undertaken. 

For these reasons we consider an alternative decom- 
position using wavelets. This has the theoretical potential 
for better temporal resolution. It is also invariant to choice 
of the size of the successive time windows which are 
decomposed; one can immediately obtain the wavelet 



Pre-processing of  underwater sounds 267 

decomposition of any required sub-window of time from 
that of a larger window without the need for further 
computation. Furthermore, when it comes to comparison 
of the decompositions of sound recordings made in 
different circumstances, there is no requirement to employ 
additional (and usually ad hoc) methods to level the differ- 
ent power spectra; this is effectively taken care of auto- 
matically within the wavelet decomposition. All the above 
objections to Fourier analysis are thus overcome. 

Wavelet analysis has been used recently as a data com- 
pression technique and as a way of smoothing time series 
such as digitized speech (Donoho, 1993). Some of the 
potential uses of wavelets for statistical problems have 
been recently discussed and developed by Donoho and 
Johnstone (1994, 1995) and Donoho et al. (1995). The dis- 
crete wavelet transform (DWT) is in some ways similar to 
the STFT, but is better able to zoom in on very short-lived 
high frequency phenomena, such as transients in signals or 
singularities in functions. The fast wavelet transform used 
in the DWT (as described by Mallat (1989)) is in principle 
faster than the fast Fourier transform, both of them being 
applied to 2 n observations, for some n. The DWT for this 
case is O(n) whilst the FFT is O(nlogn). For a Fourier 
series expansion the basis functions are sin (-) and cos (.) 
functions at different frequencies. With a wavelet series 
expansion the basis functions are all dilations and transla- 
tions of a single function referred to as the mother wavelet 
and denoted by ~b. The dilation and translations of the 
mother wavelet are: 

~bj, k(x ) = 2J/2~(2Jx-- k), j ,  k E Z, (1) 

wherej is the dilation factor, and k is the translation factor. 
For certain choices of ~b the set of functions ~bj, k form an 
orthonormal basis for all functions in L2 ([~), and it is there- 
fore possible to use the wavelets {~bj, k} as the basis for an 
expansion of a function of interest. The wavelet series repre- 
sentation of such a function f ( . )  E L2(1R) is then: 

f ( x )  = ~ dy, k~y,k(x), 
j , k  

where the wavelet coefficients dj, k are given by: 

= f(x) j,k(x)dx = ( f  , 
or 

where (., .) denotes inner product. 
Of course, the signals that we deal with are unlikely to 

reside in L2(I~) but for certain choices of ~, the wavelets 
can form bases for other spaces (e.g. Besov). 

The oldest example of a function ~ for which the ~j,k 
defined above constitute an orthonormal basis for a 
function f ( . ) E  L2(R) is the Haar function defined by 
~(x)  = 1 on [0, 0.5), ~ ( x ) =  - 1  on [0.5, 1] and ~ ( x ) =  0 
elsewhere. However, a major advance in this area was 
the realization that there are many other families, based on 
mother wavelets other than the Haar function. In particular 

Daubechies (1988) suggested families that have better 
time-frequency localization than that based on the Haar 
function. Daubechie's orthonormal wavelet bases can be 
constructed via a multiresolution analysis as developed by 
Mallat (1989). Therein, the wavelet coefficients dj, k of a 
function f ( . )  for a fixed j ,  describe the difference between 
two approximations o f f ( . ) ,  one with resolution 22 and 
one with coarser resolution 2 j-1. 

Daubechies (1988) constructed two families of wavelets 
which are referred to as the extrema! phase or least asym- 
metric wavelets. These families possess properties such as 
regularity, compact support and vanishing moments. 
(Daubechies (1992) provides important implications of 
these various properties for specific applications.) In parti- 
cular, the mother wavelets, indexed by an integer N and 
denoted by ~PN(X), have regularity proportional to N. 
Regularity enables the wavelet to be selected according to 
the smoothness of the signal to be detected. In later 
sections we focus on the cases N = 2 and N = 6. 

3. Thresholding of  wavelet coefficients 

Whilst a wavelet decomposition of a raw signal (that is the 
set of coefficients resulting from the analysis) can be of value 
in understanding the structure of the signal and comparing 
different types of signals, it does not in itself reduce noise or 
enhance the signal in any way. Indeed the original raw 
signal can be reconstructed precisely and uniquely from 
the wavelet decomposition; there are as many coefficients 
as original data points. A further step, called 'threshold- 
ing', is thus employed to reduce the number of coefficients 
by removing small coefficients (considered to be noise) 
and leaving only the those values deemed to be significant 
according to some chosen criteria; the retained coefficients 
can then be used in subsequent analysis in place of the full 
decomposition of the raw data. Only an approximation to 
the original data can be reconstructed after thresholding; 
the hope is that a cleaner version of the original signal will 
result when only the significant components are retained. 
Such reconstructions are unique, and in many cases the 
compression in the number of data points can be very large 
whilst the reconstruction still approximates the original 
data fairly well. Such an approach is attractive in the 
current application, particularly given the ultimate aim of 
discrimination between different sound types. 

Donoho and Johnstone (1994, 1995) discuss thresholds 
appropriate for recovery of  a function of unknown smooth- 
ness from noisy, sampled data. Suppose data Yl, Y2,.. . ,  Yn 
(n = 2 J+ 1) can be modelled by 

yi=f(xi)'q-s i =  1 ,2 , . . . , n ,  (2) 

where the {ei}7_ 1 are independent and identically distri- 
buted (i.i.d.) N(-0, a2), and f ( . )  is the function we would 
like to estimate. Suppose further that f =  {f(xi)}7= l and 
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f =  {f(xi)}7= 1 are the vectors of true and estimated sample 
values, and that we wish to minimize: 

R(f ,  f )  - E I I f - f H  
n 

Let ~/U denote the DWT, emphasizing that the transform is 
implemented by a sequence of special finite-length filtering 
steps and not by matrix manipulation. Its orthogonality has 
a fundamental statistical consequence: it transforms white 
noise into white noise. Hence, the above model (2) is 
equivalent to 

Yj, k ~-Wj, k-~-Ej, k, j = 0 , 1 , . . . , J ;  k = 0 , 1 , . . . , 2 J - 1 ,  

where {Yj, k} are the wavelet coefficients of {Yi}, {wj, k} are 
the wavelet coefficients of { f (x i ) } ,  and {ej, k} is an i.i.d. 
N(0, cr 2) noise sequence. Consequently, if wj, k are estimates 
of the coefficients (depending on yl k), then there is an esti- 
mate j" o f f  obtained by f = ~ -1 ~,~'where ~ -1 denotes the 
inverse of the DWT. Thus, by thresholding the wavelet 
coefficients wj~k to produce w~k, we can reconstruct an esti- 
mate of f by f*  = ~r-1 # , .  

The choices of appropriate wavelet transform and 
thresholding method are interrelated. In general, given a 
threshold value, the production of the w], k can be either 
by 'hard' or 'soft' thresholding. Hard thresholding simply 
compares a coefficient with the threshold, if it is larger in 
absolute magnitude it is left alone, otherwise it is set to 
zero. Soft thresholding modifies all coefficients wj, k by the 
formula W],k = sgn(wj, k) (IWj, kl -- )OI(Iwj, kl > ,X), where 
sgn is the sign of wj, k, A is the threshold, and I is the usual 
indicator function. 

Choice of the threshold value will depend on the noise 
level a in the data. In practice a will need to be estimated 
from the data, since the true noise level is unlikely to be 
known. The standard deviation of the Wj, k provides one 
such estimate but, as mentioned in Donoho and Johnstone 
(1994, 1995), it is important to use a robust estimator. They 
proposed the median absolute deviation of the wavelet 
coefficients at the level of the decomposition correspond- 
ing to the maximum dilation, divided by 0.6745, because 
the wavelet coefficients at this level are, with a few excep- 
tions, essentially pure noise. Given an estimate of a, one 
then needs to decide on how to use this to set an appro- 
priate threshold value to 'shrink' the empirical wavelet coef- 
ficients. Donoho and Johnstone (1994, 1995) proposed the 
following three methods (see therein for more details and 
statistical properties): 

1. A spatially adaptive method which they refer to as 
RiskShrink. RiskShrink mimics the performance of an 
'oracle' for selective wavelet reconstruction as well as it is 
possible to do so. Based on a new inequality in multivariate 
normal decision theory (which they call its oracle inequal- 
ity), they have shown that attained performance differs 
from ideal performance by at most a factor ~ 2 log (n), 
where n is the sample size. 

Powel l  et al. 

2. Use of the threshold A = c r ~ n ) ,  which they refer 
to as VisuShrink (also known as universal thresholding). 
This is based on the result that when (~i} is a white 
noise sequence of independent and identically distributed 
N(0,1) errors, then P{maxil~i l> ~ ) ~ 0  as 
n ~ ec. VisuShrink is easy to compute, and is asymp- 
totically optimal. 

3. An estimated threshold value which is in a sense 
optimally smoothness-adaptive and which they refer to 
as SureShrink. Here a threshold value is assigned to each 
level of the wavelet decomposition by the principle of mini- 
mizing the Stein unbiased estimate (Stein, 1981) of risk for 
thresholded estimates. They show that SureShrink is 
asymptotically near-minimax and the computational effort 
of the overall procedure is of order n log (n). 

We now propose a fourth method, which is an empiri- 
cally derived modification of VisuShrink and which we 
have found to perform particularly well with our 
underwater sounds. The method is motivated by 
requiring the thresholding method to retain some of the 
temporal structure present in the coefficients in any 
level of the decomposition, as well as taking into 
account their relative magnitudes. It is therefore essen- 
tially in the spirit of a 'position dependent'  threshold, 
which Donoho et al. (1995) suggested might be of  
value in some applications. 

4. The method is based on the simple idea of performing 
multiple non-parametric runs tests on groups of coefficients 
within each level of the decomposition. More specifically, 
each level of the wavelet decomposition is split into equal- 
sized groups of coefficients, where we arrange the number 
of groups to be the same on each level. This means a group 
corresponds to the same time period on all levels. If  the 
number of coefficients that this produces in a group at 
any level is less than 32 then the runs test is not applied 
and the VisuShrink alone is used. Otherwise, significance 
of runs within each group at any level is assessed on the 
basis of the observed number of runs of either positive or 
negative coefficients, using the usual approximate test 
statistic (see, for example, Siegel, 1956). If  the two-tailed 
test is significant at 5%, then the new threshold value is 
taken as a pre-specific percentage of the overall VisuShrink 
value (currently we use a value of 10%). Otherwise, the 
overall VisuShrink is used. We have implemented this pro- 
cedure in the WaveThresh package developed within S-Plus 
by Nason and Silverman (1994) as a new threshold function 
called RunShrink for the wavelet decomposition object. The 
syntax is the same as for VisuShrink with optional para- 
meters which allow control of the runs test applied. 

4. Comparison of different thresholding methods 

In this section we apply and compare the thresholding 
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Fig. 3. Wavelet decompositions of the wh&tle using extremal phase for N = 2 and least asymmetric for N -- 6, respectively 

methods given above using the underwater sound data 
described earlier. For simplicity, we present here results 
relating to the example of dolphin sound given in Fig. 1. 
In fact we have analysed a far more extensive range of 
examples, both in terms of background noise level and 
type of sound, and the results obtained have been broadly 
similar to those presented here. 

We have used the WaveThresh package, referred to ear- 
lier, for the VisuShrink and RunShrink thresholding. For 
RiskShrink and SureShrink we have used Matlab functions 
developed by Donoho and Johnstone and then transferred 
results into S-Plus for graphical presentation; all the figures 

that follow are therefore from Wave Thresh. In the wavelet 
decomposition we employed two different wavelets: 

(i) The extremal phase compactly supported wavelet for 
N -- 2 (these are defined through a set of four non-zero 
coefficients whose numerical values may be found in 
Daubechies (1992, Table 6.1, p. 195)). 

(ii) The least asymmetric compactly supported wavelet 
for N = 6 (these are defined through a set of 12 non-zero 
coefficients whose numerical values may be found in 
Daubechies (1992, Table 6.3, p. 198)). 

Figure 3 shows the wavelet decomposition of the complete 
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dolphin whistle shown in Fig. 1. Figures 4, 5, 6 and 7 show 
the results of the RiskShrink, VisuShrink, SureShrink and 
RunShrink of the previous wavelet analyses on the original 
dolphin whistle, Table 1 summarizes the number of non- 
zero coefficients and the corresponding compressions of 
these figures. In all thresholding methods we have used 
soft thresholding, and the median absolute deviation of 
the wavelet coefficients at the final level J, divided by 
0.6745, has been taken as an estimate of the noise level. 
Donoho and Johnstone (1994, 1995) have discussed vari- 
ous statistical advantages of using soft thresholding. In 
fact, similar results held when we used hard thresholding 

instead of soft, although we do not reproduce the results 
here. 

In measuring how well the various thresholding methods 
work, previous studies, which have mostly used simulated 
data, have been able to compare reconstructions based on 
the thresholded coefficients with the underlying, known, 
signal. In our case, as we are using real data and the under- 
lying true signal is unknown (and is doubtless very com- 
plex) this is not a viable method. However, with these 
particular data a natural way to test the results presents 
itself; that of listening to the reconstructed signals and com- 
paring them with the original. Although this may appear 
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Fig. 6 .  Thresholding the wavelet decompositions of the whistle using SureShrink 
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Fig. 7. Thresholding the wavelet decompositions of the whistle using RunShrink 
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subjective, there is really no quantitative alternative avail- 
able given that the true signal is unknown. In any case, 
even if such a quantitative comparison were possible, it is 
highly doubtful that it would be more sensitive than the 
human ear at detecting differences in the quality of  
sound. In fact when the sounds are actually heard, there 
are very clear and easily discernible audible differences in 
the quality of the reconstructions obtained from the 
various thresholding methods. 

To obtain an approximate quantitative measure of the 
reproduction quality of the different thresholding meth- 
ods, a panel of four musicians was asked to rank the 
quality of the eight reconstructions in terms of closeness 
to the original whistle. The panel were played the recon- 
structions in different random orders but the rankings 
were remarkably consistent--see Table 2. The two 

Table 1. Numbers of non-zero coefficients and compressions for the 
RiskShrink, VisuShrink, SureShrink and RunShrink thresholdings 

#Non-zero coefficients Compression 

RiskShrink 
extremal phase N = 2 8111 
least asymmetric N = 6 13353 

VisuShrink 
extremal phase N = 2 5157 
least asymmetric N = 6 10763 

SureShrink 
extremal phase N = 2 19292 
least asymmetric N = 6 23336 

RunShrink 
extremalphase N = 2 11214 
least asymmetric N = 6 17242 

75% 
59% 

84% 
67% 

41% 
29% 

66% 
47% 

RunShrink reconstructions were rated as the closest to the 
original by all the panel whilst the N = 2 RiskShrink, 
SureShrink and VisuShrink reconstructions were always 
rated as the least like the original. For  the N -- 6 results, 
RiskShrink and SureShrink were rated as slightly better 
than VisuShrink. 

Overall, therefore, considering the relative compression 
ratios and quality of reconstructed sound, RunShrink with 
N = 2 provided the most acceptable results; the recon- 
structed sound in this case was dramatically clearer than 
the original noisy signal and involved a data compression 
of 66%. 

5. Conclusions 

Wavelet analysis has been applied to underwater sounds, 
with the objective of filtering the original 'noisy' recordings 
to produce a significant reduction in the amount of  raw 
data, whilst preserving the main features of the original 
signal. It has been demonstrated that some of  the common 
methods employed to threshold the wavelet coefficients do 
not work well with these particular kind of  data. A modifi- 
cation of  the VisuShrink method has been proposed which 
shows promise in better preserving certain structures in our 
particular underwater sound data. 

Reflecting on these results, one of  the reasons that some 
of the common thresholdings fail with these kind of data 
may be the fact that background noise is unlikely to be nor- 
mal. For  example, there are arguments to suggest that 
errors in the underwater noise waveform may be more 
likely to exhibit a Rayleigh distribution (Creasey et al., 
1989a, b). The common thresholding methods we have 
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Table 2. The panels rankings for the RiskShrink, VisuShrink, SureShrink and RunShrink thresholdings 

Powell et al. 

Subject I Subject 2 Subject 3 Subject 4 Average Rank 

RiskShrink N = 2 7 7 8 6 7 
RiskShrink N = 6 4 3 4 3 4 
VisuShrink N = 2 8 7 7 8 8 
VisuShrink N = 6 4 3 5 4 5 
SureShrink N = 2 6 6 6 6 6 
SureShrink N = 6 3 3 3 4 3 
RunShrink N = 2 2 1 2 1 1 
RunShrink N = 6 1 2 1 2 1 

presented are statistically justified on the basis of noise that 
is normal, or close enough to normality based on central 
limit theorem considerations. Moreover, (linear) ortho- 
gonal wavelet analysis is itself theoretically tied to the 
assumption of normality. For example, Donoho (1993) 
shows that if one considers Cauchy noise then the common 
techniques of Section 3 are not in any sense optimal. 
Currently, there is little theory or methodology developed 
in the case of non-normal errors. Donoho (1993) has pro- 
posed using non-linear multiresolution analysis instead of 
linear analysis, and further theoretical work in this direc- 
tion is still in progress. Nason (1994) has suggested a thres- 
holding method based on cross-validation which makes no 
assumption about noise distribution. However, this method 
would not necessarily be applicable to our data where the 
true signal is non-sparse, since it depends upon a linear 
interpolation between every other time point. Indeed, 
Nason observes that, in general, the cross-validation 
thresholding method seems to work better when estimating 
a smooth signal, while SureShrink tends to do better with 
non-sparse signals. At present, then, the question of appro- 
priate thresholding of  wavelet decompositions remains 
open and ultimately continues to be empirical and data 
dependent. 

We continue to consider improved thresholding methods 
for our data. For example, we are looking at the possibility 
of basing threshold choice on the criterion of  maximizing 
certain differences in the reconstructions of different types 
of sound. In other words of creating a direct link between 
thresholding and our ultimate discrimination objective. In 
the meantime, RunShrink seems to perform reasonably 
well with our data. Certainly, it provides an acceptable bal- 
ance between suitable signal reconstruction and data com- 
pression and allows us to consider using the resulting 
thresholded wavelet decomposition as a basis for signal dis- 
crimination. In this respect, we are currently investigating 
summarizing the thresholded wavelet coefficients within 
small temporal windows in terms of several characteris- 
tics, such as mean and variability within and across levels, 
as well as various aspects of the sequential pattern within 
level. These summary variables then effectively provide us 
with a representation of the raw signal as a multivariate 

time series observed at equally spaced time points; so 
forming a basis for the application of discrimination 
techniques, either of a statistical nature, or using neural 
networks. This work is still in progress, but initial results 
are encouraging. 
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