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Abstract

We consider the problem of estimating the unknown response function and its deriva-
tives in the standard nonparametric regression model. Recently, Abramovich et al.
(2010) applied a Bayesian testimation procedure in a wavelet context and proved
asymptotical minimaxity of the resulting adaptive level-wise maximum a posteri-
ori wavelet testimator of the unknown response function and its derivatives in the
Gaussian white noise model. Using the boundary-modified coiflets of Johnstone and
Silverman (2004), we show that dicretization of the data does not affect the order of
magnitude of the accuracy of a discrete version of the suggested level-wise maximum
a posteriori wavelet testimator, obtaining thus its adaptivity and asymptotical min-
imaxity in the standard nonparametric regression model that is usually considered
in practical applications. Simulated examples are used to illustrate the performance
of the developed wavelet testimation procedure and compared with three recently
proposed empirical Bayes wavelet estimators and a block thresholding wavelet esti-
mator.
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1 Introduction

Asymptotical minimaxity in nonparametric function estimation is usually con-
sidered under the Gaussian white noise model, driven by the following stochastic
differential equation

dYN (t) = f(t)dt +
σ√
N

dW (t), t ∈ T = [0, 1], (1.1)

where σ > 0 is assumed to be known and finite, f ∈ L2(T ) is the unknown re-
sponse function and W is a standard Wiener process. According to Ibragimov and
Khasminskii (1981, p. 5), the Gaussian white noise model (1.1) has been initially
introduced as a statistical model by Kotel’nikov (1959). Since then, it has been ex-
tensively studied in the nonparametric literature and is considered as an idealized
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model that provides an approximation to many nonparametric models. We call it
the continuous data model.

In particular, under some smoothness assumptions on f , the continuous data
model (1.1) is asymptotically equivalent (in Le Cam sense) to the nonparamet-
ric regression model (see Brown and Low, 1996). In the standard nonparametric
regression model, one observes Gaussian random variables governed by

Yi = f(i/N) + σ εi, i = 1, 2, . . . , N, (1.2)

where σ > 0 is assumed to be known and finite, f ∈ L2(T ) is the unknown response
function and εi, i = 1, 2, . . . , N , are independent N(0, 1) random variables. We call
it the discrete data model.

The statistical estimation problem is to estimate the unknown response function
f based on observations from either the continuous data model or the discrete data
model. In order to derive our minimax results, we shall assume that f belongs to
a Besov ball Bs

p,q(M) of a radius M > 0. The parameter s measures the degree of
smoothness while p and q specifiy the type of norm used to measure the smooth-
ness. Besov classes contain various traditional smoothness spaces such as Hölder
and Sobolev spaces as special cases. However, they also include different types of
spatially inhomogeneous functions (see, e.g., Meyer, 1992). As in Johnstone and
Silverman (2005), we consider the cases where q = ∞, 1 ≤ p ≤ ∞ and either (i)
s > 1/p or (ii) s = p = 1. The restriction (i) ensures that the corresponding Besov
balls are embedded in balls of the space of continuous functions (ensuring also that
the point evaluation functionals f 7→ f(t0) are continuous, so that the discrete data
model makes sense). As in Donoho and Johnstone (1998) and Johnstone and Silver-
man (2005), the restriction (ii) is included since a ball in the space of functions of
bounded variation is contained in a ball of the Besov space Bs

1,∞(M) and contains a
ball of the Besov space Bs

1,1(M) (in this case, we can make sense of point evaluation
functionals f 7→ f(t0) by agreeing to use, say, the left continuous versions of f in
the space of functions of bounded variation).

The fact that wavelet series constitute unconditional bases for Besov spaces has
caused various wavelet-based estimation procedures to be widely used for estimating
the unknown response f , assuming it lies in these spaces, in either the continuous
data model or the discrete data model. The standard wavelet approach for the
estimation of f is based on finding the empirical wavelet coefficients of the data
and denoising them, usually by some type of a thresholding rule. Transforming
them back to the function space then yields the resulting estimate. The main
statistical challenge in such an approach is a proper choice of a thresholding rule. A
series of various wavelet thresholds originated by different ideas has been proposed
in the literature during the last decade, e.g., the universal threshold (see Donoho
and Johnstone, 1994), Stein’s unbiased risk estimation threshold (see Donoho and
Johnstone, 1995), the false discovery rate threshold (see Abramovich and Benjamini,
1996), the cross-validation threshold (see Nason, 1996), the Bayes threshold (see
Abramovich, Sapatinas and Silverman, 1998) and the empirical Bayes threshold
(see Johnstone and Silverman, 2005).
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Abramovich and Benjamini (1996) demonstrated that thresholding can be seen
as a multiple hypothesis testing procedure, where one first simultaneously tests the
wavelet coefficients of the unknown response function f , for significance. The coeffi-
cients concluded to be significant are then estimated by the corresponding empirical
wavelet coefficients of the data, while the non-significant ones are discarded. Such a
testimation procedure evidently mimics a hard thresholding rule. Here, we proceed
along the lines of the testimation approach, where we utilize the recently devel-
oped maximum a posteriori Bayesian multiple testing procedure of Abramovich
and Angelini (2006). Their hierarchical prior model is based on imposing a prior
distribution on the number of false null hypotheses.

Recently, Abramovich, Grinshtein and Pensky (2007) applied the Bayesian ‘tes-
timation’ approach of Abramovich and Angelini (2006) in order to recover an un-
known high-dimensional Gaussian mean vector, and upper error bounds were ob-
tained over various weak and strong lp-balls, 0 ≤ p < ∞. Their results were
extended to more general cases by Abramovich et al. (2010) who then applied the
Bayesian testimation procedure in a wavelet context in order to show that a level-
wise maximum a posteriori wavelet testimator of the response function f is adaptive
and asymptotical minimax in the continuous data model. Their results were also
extended to the estimation of the derivatives of f . A small simulation study was
also conducted to illustrate the performance of the proposed wavelet testimator in
practice, assuming that the discrete data model holds.

Because of its orthonormality properties, carrying out a wavelet decomposition
of dYN (t) described by the continuous data model, we obtain independent obser-
vations Yjk ∼ N(θjk, 1/N). In practice, however, instrumentally acquired data
that is digitally processed is typically discrete. Such settings can be represented
by the discrete data model. In this case, the discrete wavelet transform of the se-
quence N−1/2Yi yields independent observations Ỹjk ∼ N(θ̃jk, 1/N). In much of the
existing literature, however, the difference between Yjk and Ỹjk is often ignored. Es-
timators are usually motivated, derived and analyzed in the continuous data model
and then, in practical applications, are applied to the discrete data model. An
interesting problem is to investigate the risk bounds of an estimator based on the
observations Ỹjk from the discrete data model. Donoho and Johnstone (1999) used
Deslauriers-Dubucs interpolation to pass from the discrete data model to the contin-
uous data model. Jonhstone and Silverman (2004) used boundary-modified coiflets
to show that the discrete wavelet transform of finite data from the discrete data
model asymptotically provides a close approximation to the wavelet transform of
the data from the continuous data model. These results were then used in John-
stone and Silverman (2005) to prove that discretization of the data does not affect
the asymptotic convergence rates of the upper risk bounds of their proposed em-
pirical Bayes estimators. As pointed out above, Abramovich et al. (2010) derived
and theoretically studied their proposed adaptive level-wise maximum a posteriori
wavelet testimator of the response function and its derivatives in the continuous
data model and then they applied it in the discrete data model, revealing nice finite
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sample properties. However, a theoretical justification allowing one to do this is
lacking from the theoretical findings of Abramovich et al. (2010).

Our aim is to fill this gap. In what follows, we use the Bayesian testimation
methodology proposed by Abramovich, Grinshtein and Pensky (2007), and further
extended by Abramovich et al. (2010), for estimating an unknown high-dimensional
mean vector in a Gaussian sequence model. We refer to these papers for more de-
tails. In Section 2, using the boundary-modified coiflets of Johnstone and Silverman
(2004), we show that discretization of the data does not affect the order of magnitude
of the accuracy of a discrete version of the suggested level-wise maximum a posteri-
ori wavelet testimator, obtaining thus its adaptivity and asymptotical minimaxity
in the discrete data model that is usually considered in practical applications. In
Section 3, we present a simulation study to illustrate the performance of the de-
veloped level-wise maximum a posteriori wavelet testimator, and compare it with
three recently proposed empirical Bayes wavelet estimators and a block threshold-
ing wavelet estimator. Finally, the proofs of the theoretical results are given in
Appendix A.

2 Level-wise MAP Wavelet Testimator in the Discrete Data Model

In this section, we consider the boundary-corrected version of the level-wise
maximum a posteriori (MAP) wavelet testimator, constructed under the continuous
data model, in order to estimate the unknown response function f and its derivatives
in the discrete data model, and prove its adaptivity and asymptotical minimaxity.

2.1. A brief overview of the MAP testimator. Consider the multiple hypothesis
testing problem, where we wish to simultaneously test

H0i : µi = 0 versus H1i : µi 6= 0, i = 1, 2, . . . , n.

A configuration of true and false null hypotheses is uniquely defined by the indicator
vector x = (x1, ..., xn)′, where xi = I(µi 6= 0) and I(A) denotes the indicator
function of the set A. Let κ = x1 + ... + xn = ||µ||0 be the number of non-zero
µi, i.e., ||µ||0 = #{i : µi 6= 0}. Assume some prior distribution πn on κ with
πn(κ) > 0, κ = 0, . . . , n. For a given κ, all the corresponding different vectors
x are assumed to be equally likely a priori. After some simple calculations, the
proposed Bayesian multiple testing procedure leads to finding κ̂ which maximizes
the logarithm of the posterior distribution. The data corresponding to the κ̂ largest
absolute values survive and the rest are set to 0, yielding the MAP testimator. For
a detailed review of the MAP methodology, we refer to Abramovich, Grinshtein and
Pensky (2007) and Abramovich et al. (2010).

In what follows, using the boundary-modified coiflets of Johnstone and Silver-
man (2004), the MAP methodology is applied in a wavelet context to derive adaptive
and asymptotically minimax wavelet estimators of the unknown response function
f in the discrete data model.
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2.2. Estimation of the unknown response function and its derivatives. Consider
the discrete data model. Let R be the number of continuous derivatives of the
scaling function φ. Suppose that the wavelets and scaling functions are modified
by the boundary construction described in Section 5.3 of Johnstone and Silverman
(2005). Assume that, for N = 2J , we have sufficient observations to evaluate
the preconditioned sequence PJY , where Y = (Y1, Y2, . . . , YN ), and let Ỹ be the
boundary corrected discrete wavelet transform of N−1/2PJY, defined in Section 5.4
of Johnstone and Silverman (2005).

When Y = (Y1, Y2, . . . , YN ) is a vector of independent Gaussian random vari-
ables with common variance σ2, as in the discrede data model, then Ỹ has a multi-
variate Gaussian distribution whose elements have variances bounded by cAσ2/N ,
where cA is a positive constant. Furthermore, the array of interior wavelet coef-
ficients Ỹ I is an array of independent Gaussian random variables with common
variance σ2/N . For furter details, see Sections 5.3 and 5.4 in Johnstone and Silver-
man (2005).

Take L such that 2L ≥ 6(S−1) for some appropriate S > 0 (see Sections 5.3 and
5.4 in Johnstone and Silverman, 2005). We also write θI for the wavelet coefficients
θjk with j ≥ L and k ∈ KI

j (i.e., the interior wavelet coefficients), θB for the wavelet
coefficients θjk with j ≥ L and k ∈ KB

j (i.e., the boundary wavelet coefficients). For
further details on θI , KI

j , θB and KB
j , we refer to Sections 5.3 and 5.4 in Johnstone

and Silverman (2005).

Requiring some conditions on the prior and using appropriate thresholds for
estimating the boundary wavelet coefficient array θB , allows one to adaptively esti-
mate the unknown response function f and its derivatives by the adaptive level-wise
MAP wavelet testimator f̂N and its corresponding derivatives, respectively, under
the discrete data model at the optimal convergence rates. Such a plug-in estimation
of f (r) by f̂

(r)
N , where r ≥ 0 is an integer, is, in fact, along the lines of the vaguelette-

wavelet decomposition approach of Abramovich and Silverman (1998). (Here, and
in what follows, f (s), where s ≥ 0 is an integer, denotes the s-th derivative of f
and, by convention, f (0) = f .)

Define the estimated coefficient array θ̂ as follows:

(I) Estimate the coarse scaling coefficients by their observed values, i.e., set
θ̂L−1 = ỸL−1.

(II) Estimate the interior wavelet coefficients θI by the corresponding θ̂I . This is
accomplished by applying the MAP procedure on Ỹ I for each L ≤ j ≤ J − 1
under the assumptions on the prior in Abramovich et al. (2010, Section 2.2,
Collorary 1). (Note that β = 0 when we estimate f , that is when r = 0.)

(III) Threshold the boundary wavelet coefficient array θB separately to obtain θ̂B .
Specifically, at level j, use a hard threshold of τA

√
j/N , where τ2

A ≥ cA(1 +
β) log 2 for some cA > 0 and for β ≥ 2r, where r ≥ 0 is an integer, so that for
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each L ≤ j ≤ J − 1 and k ∈ KB
j , the estimated boundary wavelet coefficients

are given by
θ̂jk = ỸjkI

(|Ỹjk| > τA

√
j/N

)
.

(IV) For unobserved levels j ≥ J , set θ̂jk = 0.

In order to establish our theoretical properties, we follow Johnstone and Silver-
man (2005) and consider again functions f whose wavelet coefficient array θ falls
in the sequence Besov ball bs

p,∞(M), where M > 0, s > max(0, 1/p − 1/2) and
0 < p ≤ ∞.

We note first that the proposed level-wise MAP wavelet testimator (described
by the steps (I)-(IV) above) does not rely on the knowledge of the parameters s,
p, and M of a specific sequence Besov ball bs

p,∞(M) and it is, therefore, inherently
adaptive.

Furthermore, as in Johnstone and Silverman (2005), we measure the risk of the
proposed adaptive level-wise MAP wavelet testimator as an estimate of the wavelet
expansion of the unknown respone function f itself by

R∗N,r(f) = E‖θ̂L−1 − θL−1‖22 +
∞∑

j=L

22rjE‖θ̂j − θj‖22, r = 0, 1, 2, . . . .

Theorem 2.1. Assume that the scaling function φ and the mother wavelet ψ
have R continuous derivatives and support [−S +1, S] for some integer S > R, and
that

∫
xmφ(x)dx =

∫
xmψ(x)dx = 0 for m = 1, 2, . . . , R−1, R ≥ 2. Assume that the

wavelets and scaling functions are modified by the boundary construction described
in Section 5.3 of Johnstone and Silverman (2005). Consider the construction of the
adaptive level-wise MAP wavelet testimator described by the steps (I)-(IV) above.
Suppose that 0 < s < R, 0 < p ≤ ∞, 2r ≤ β, where r ≥ 0 is an integer and
r < min

(
s,

(
s + 1/2− 1/p

)
p/2

)
, and either i) s > 1/p or ii) s = p = 1. Let F(M)

be the set of functions f whose wavelet coefficient array θ falls in the sequence Besov
ball bs

p,∞(M). Then, there is a constant C, independent of N , such that

sup
f∈F(C)

R∗N,r(f) ≤ CN−2(s−r)/(2s+1).

Remark 2.1. Using wavelets with bounded support and vanishing moments
up to order R − 1, R ≥ 2, (e.g., as those considered in Theorem 2.1), provided
that 1 ≤ p ≤ ∞ and max(0, 1/p − 1/2) < s < R, the sequence of Besov balls
bs
p,∞(M), M > 0, are equivalent to the corresponding Besov balls Bs

p,∞(M) =
{f | f ∈ Lp, ||f ||Bs

p,∞ ≤ M} of the functions themselves (see, e.g., Appendix D
in Johnstone, 2002). Also, according to Donoho et al. (1997) and Johnstone and
Silverman (2005), as N →∞, the asymptotical adaptive minimax convergence rate
for the L2-risk of estimating the rth derivative of the unknown response function
f in the discrete data model over Besov balls Bs

p,q(M), where M > 0, 0 < s < R,
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0 ≤ r < min{s, (s + 1/2− 1/p)p/2}, 1 ≤ p, q ≤ ∞ and s > 1/p, is given by

inf
f̃N

sup
f∈Bs

p,q(M)

E||f̃ (r)
N − f (r)||22 ³ N−2(s−r)/(2s+1),

where the infimum is taken over all possible estimators f̃N (i.e., measurable func-
tions) from the discrete data model. (Here, and in what follows, g1(N) ³ g2(N)
denotes 0 < lim inf{g1(N)/g2(N)} ≤ lim sup{g1(N)/g2(N)} < ∞ as N →∞.)

Note that, in view of Proposition 1 in Johnstone and Silverman (2005) showing
that, for any integer r such that 0 ≤ r ≤ s, and any function f with a boundary-
corrected wavelet expansion (see (32) in Johnstone and Silverman, 2005), one has

∫ 1

0

|f (r)(t)|2dt ≤ ‖θL−1‖22 +
∞∑

j=L

22rj‖θj‖22, r = 0, 1, 2, . . . .

Consider now the estimator

f̂N (t) =
∑

k∈KL−1

θ̂L−1,kφLk(t) +
J−1∑

j=L

2j−1∑

k=0

θ̂jkψjk(t), t ∈ [0, 1], (2.1)

where the estimated wavelet coefficient array θ̂ is obtained by the steps (I)-(IV)
above. (For the definition of the set of indices KL−1, associated with the boundary-
modified coiflets, we refer to Section 5.3 in Johnstone and Silverman, 2005.) Then,
Theorem 2.1 also establishes, as a by-product, the asymptotical minimaxity for
the L2-risk of the rth derivative of the proposed adaptive level-wise MAP wavelet
testimator f̂

(r)
N over Besov balls Bs

p,∞(M), where M > 0, 0 < s < R, 0 ≤ r <
min{s, (s + 1/2− 1/p)p/2}, 1 ≤ p ≤ ∞ and s > 1/p.

Remark 2.2. According to Donoho and Johnstone (1998), as N → ∞, the
asymptotical adaptive minimax convergence rate for the L2-risk of estimating the
unknown response function f in the discrete data model over Besov balls Bs

p,q(M),
where M > 0, 0 < s < R, 1 ≤ p, q ≤ ∞ and either s > 1/p or s = p = q = 1, is
given by

inf
f̃N

sup
f∈Bs

p,q(M)

E||f̃N − f ||22 ³ N−2s/(2s+1),

where the infimum is taken over all possible estimators f̃N (i.e., measurable func-
tions) from the discrete data model.

Consider now the wavelets mentioned in Remark 2.1 and the estimator f̂N de-
fined in (2.1). Therefore, in view of the above, on noting that R∗N,0(f) = E||f̂N−f ||22
(due to Parseval’s equality), Theorem 2.1 also establishes, as a by-product, the
asymptotical minimaxity for the L2-risk of the proposed adaptive level-wise MAP
wavelet testimator f̂N over Besov balls Bs

p,∞(M), where M > 0, 0 < s < R,
1 ≤ p ≤ ∞ and either s > 1/p or s = p = 1.
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Remark 2.3. It is easy to see that the assumptions on πj in Step 2 above for
r = 0 and β = 0 are satisfied by, e.g., the truncated geometric prior TrGeom(1−qj),
with probability of success pj = 1− qj , given by

πj(κ) =
(1− qj)qκ

j(
1− q2j−2S+3

j

) , κ = 0, 1, . . . , 2j − 2S + 2, qj ∼ e−c(γj).

3 Simulation Study

In this section, we present a simulation study to illustrate the performance of the
developed level-wise MAP wavelet testimator and compare it with three empirical
Bayes wavelet estimation procedures and one block thresholding wavelet estimation
method, namely, the posterior mean (PostMean) and posterior median (PostMed)
wavelet estimators proposed in Johnstone and Silverman (2005), the Bayes Factor
(BF) wavelet estimator proposed in Pensky and Sapatinas (2007) and the Neigh-
Block (Block) wavelet thresholding estimator proposed in Cai and Silverman (2001).
We note that all estimators are adaptive to the unknown smoothness and attain the
optimal convergence rate, except for the Block estimator that is near optimal (up
to a logarithmic factor). For PostMean, PostMed and BF wavelet estimators we
used the Double-exponential prior, where the corresponding prior parameters were
estimated level-by-level by marginal likelihood maximization, as described in John-
stone and Silverman (2005). The prior parameters for the level-wise MAP wavelet
testimator were estimated by conditional likelihood maximization described in Sec-
tion 4.2 of Abramovich et al. (2010). For the Block wavelet estimator, the lengths
of the overlapping and non-overlapping blocks and the value of the thresholding
coefficient, associated with the method, were selected as suggested by Cai and Sil-
verman (2001). Finally, for all competing methods, σ was estimated by the median
of the absolute value of the empirical wavelet coefficients at the finest resolution
level divided by 0.6745.

In the simulation study, we evaluated the above five estimators for a series of
test functions. We present the results for the Corner, Sharp Peak, Blip and Spikes
test functions defined on [0, 1]. The formulae for Corner, Blip and Spikes can be
found in Antoniadis, Bigot and Sapatinas (2001), while the formula for Sharp Peak
is given by

f(t) =
{

2t, if 0 ≤ t ≤ 0.5,
2− 2t, if 0.5 ≤ t ≤ 1.

Note that a thorough and detailed simulation study was presented in Abramovich
et al. (2010, Section 4.3), where five different estimators were compared with MAP
wavelet testimator for the Bumps, Blocks, Heavisine, Doppler, Peak andWave test
functions.

For each test function, M = 100 samples were generated by adding independent
Gaussian noise ε ∼ N(0, σ2) to n = 1024 equally spaced points on [0,1]. The value
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Figure 1: Corner, Sharp Peak, Blip and Spikes test functions, sampled at n = 1024
points.

of the (root) signal-to-noise ratio (SNR) was taken to be 3 (high noise level), 5
(moderate noise level) and 7 (low noise level), where

SNR(f, σ) = σ−1

(
1
n

n∑

i=1

(f(ti)− f̄)2
)1/2

and f̄ =
1
n

n∑

i=1

f(ti).

The goodness-of-fit for an estimator f̂ of f in a single replication was measured by
its mean squared error (MSE), defined as

MSE(f, f̂) =
1
n

n∑

i=1

(f̂(ti)− f(ti))2.

We report the results for n = 1024 using the compactly supported mother
wavelet Coiflet 3 (see Daubechies, 1992, p. 258) and the primary resolution level
j0 = 4 (different choices of wavelet functions and resolution levels yielded basically
similar results in magnitude). The sample distributions of MSE over replications for
all estimators in simulation studies were typically highly asymmetrical and affected
by outliers. Therefore, we preferred the sampled medians of MSEs rather than
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Table 1: Relative median MSE for the Corner, Sharp Peak, Blip and Spikes test
functions, sampled at n = 1024 data points and using three values of SNR (3, 5 and
7), for the various wavelet estimators. The minimal relative median MSE for each
estimator is bold.

n signal SNR MAP BF Postmed Postmean Block
1024 Corner 3 0.8155 0.2931 1 0.8382 0.7427

5 0.8091 0.378 1 0.9367 0.8008
7 0.8697 0.3924 1 0.9541 0.7436

1024 Sharp Peak 3 0.7542 0.121 0.7296 0.556 1
5 0.8802 0.1215 0.814 0.6328 1
7 0.787 0.182 0.8345 0.6761 1

1024 Blip 3 0.9149 0.7199 0.9974 1 0.874
5 0.9218 0.8328 1 0.9778 0.865
7 0.9449 0.8611 0.9778 1 0.9793

1024 Spikes 3 0.8761 0.6093 9937 1 0.9396
5 0.8394 0.5466 0.953 0.9775 1
7 0.8187 0.5865 0.9501 1 0.9596

means to gauge the estimators’ goodness-of-fit. For each estimator, test function
and noise level, we calculated the median MSE over all 100 replications. To quantify
the comparison between estimators over various test functions and noise levels, for
each considered model we found the best estimator among the five ones, i.e., the one
achieving the minimum median MSE, and evaluated the relative median MSE of the
i-th estimator defined as min1≤j≤5{Median(MSEj)}/Median(MSEi), i = 1, 2, . . . , 5
(see Table 1).

Evidence from Table 1 (see also Table 1 in Abramovich et al., 2010) indicates
that there is no ‘uniformly best’ estimator. The relative performance of each esti-
mator depends on a specific test function and the noise level. However, the MAP
testimator results in the highest minimal relative median MSE over all cases among
the considered five estimators (see the bold numbers in Table 1). The minimal
relative median MSE of an estimator reflects its inefficiency at the most challeng-
ing combination of a test function and SNR level and is a natural measure of its
robustness. Additionally, we compared the competing estimators in terms of spar-
sity, measured by the total number of non-zero wavelet coefficients (averaged over
100 replications) surviving after thresholding. These results are given in Table 2
below. The proposed method is sparser than the empirical Bayes estimators (note
that PostMean is not included in this comparison since is a non-linear shrinkage,
hence all wavelet coefficients survive). The sparsity of the Neighblock thresholding
estimator depends on the signal.
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Table 2: Sparsity, averaged over 100 simulations, of the various wavelet methods
for the Corner, Sharp Peak, Blip and Spikes functions, sampled at n = 1024 data
points and using three values of SNR (3, 5 and 7).

n signal SNR MAP BF Postmed Block
1024 Corner 3 65.57 143.21 93.46 18.58

5 57.72 154.54 90.62 22.7
7 55.24 144.8 86.57 27.95

1024 Sharp Peak 3 63.42 184.95 90.85 16.87
5 59.95 178.56 96.59 16.64
7 73.71 172.75 97.24 16.93

1024 Blip 3 103.29 114.55 109.67 170.4
5 114.12 129.02 127.49 216.41
7 129.9 141.96 141.13 240.17

1024 Spikes 3 86.71 158.73 107.66.13 72.14
5 96.6 171.88 112.26 78.17
7 117.7 170.56 119.12 82.9
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A Appendix

Recall that the symbol C is used for a generic positive constant, independent of
N , which may take different values at different places. Also, recall that we write
θI for the wavelet coefficients θjk with j ≥ L and k ∈ KI

j (i.e., the interior wavelet
coefficients), θB for the wavelet coefficients θjk with j ≥ L and k ∈ KB

j (i.e., the
boundary wavelet coefficients) and set θI

j = {θjk, k ∈ KI
j} and θB

j = {θjk, k ∈ KB
j }

for each j ≥ L.

A.1. Proof of Theorem 2.1. Following the steps in the proof of Theorem 3.3 in
Abramovich, Grinshtein, Petsa and Sapatinas (2010), it is easy to show that

J−1∑

j=L

22rjE(‖θ̂I
j − θ̃I

j ‖22) +
∞∑

j=J

22rj‖θj‖22 ≤ CN−2(s−r)/(2s+1). (A.1)

Using Proposition 2 of Johnstone and Silverman (2005), we get

J−1∑

j=L

22rjE‖θ̂B
j − θ̃B

j ‖22 ≤ CN−2(s−r)/(2s+1). (A.2)
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Discretization bias: The risks in (A.1) and (A.2) all quantify errors around
the vector of discretized coefficients θ̃. To control the difference in risk norm between
θ̃ and the vector of true coefficients θ, define ∆ = max(0, 1/2−1/p) and r

′′
= s−∆.

Obviously, for 2 ≤ p ≤ ∞, r
′′

= s′, while for 0 < p < 2, r
′′

= s. Using the well-
known norm inequality in infinite-dimensional spaces (see, e.g., Propositions 6.11
and 6.12 in Folland (1999)),

‖x‖q ≤ ‖x‖p ≤ ‖x‖qn
1/p−1/q,

for any 0 < p < q ≤ ∞ and x = (x1, x2, . . . , xn), we immediately have

‖θ̃j − θj‖2 ≤ 2j∆‖θ̃j − θj‖p, L− 1 ≤ j ≤ J − 1.

Hence, using Proposition 5 in Johnstone and Silverman (2004), we get
J−1∑

j=L−1

22rj‖θ̃j − θj‖22 ≤
J−1∑

j=L−1

22(r+∆)j22∆j‖θ̃j − θj‖2p

≤
J−1∑

j=L−1

CM222∆j2−2ã(J−j)2−2js′

= CM22−2α̃J
J−1∑

j=L−1

22j(α̃−r
′′

),

where α̃ = s−max(0, 1
p − 1). If ã = r

′′
, then

J−1∑

j=L−1

22rj‖θ̃j − θj‖22 ≤ CM22−2ãJJ.

On the other hand, if ã < r
′′
, then

J−1∑

j=L−1

22rj‖θ̃j − θj‖22 ≤ CM22−2ãJ
J−1∑

j=L−1

22j(ã−r
′′

)

= CM22−2ãJ2(L−1)(ã−r
′′

)

[
1− 22(ã−r

′′
)(J−L−1)

1− 22(ã−r′′ )

]

≤ CM22−2ãJ .

Therefore, combining the above, we arrive at the following bound
J−1∑

j=L−1

22rj‖θ̃j − θj‖22 ≤ CM2Jλ
′
2−2ãJ , ã ≤ r

′′
,

with λ
′

= 1 if and only if ã = r
′′

and λ
′

= 0 otherwise. Consider now the case
ã > r

′′
. Then,
J−1∑

j=L−1

22rj‖θ̃j − θj‖22 = CM22−2ãJ
J−1∑

j=L−1

22j(ã−r
′′

)
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= CM22−2ãJ22(ã−r
′′

)(L−1)[22(ã−r
′′

)(J−L−1) − 1]

≤ CM22−2ãJ22(ã−r
′′

)(J−2) ≤ CM22−2Jr
′′

= C
M2

N2r′′
, ã > r

′′
.

Letting r
′′′

= min{r′′ , ã}, and combining all cases above, we arrive at the the bound

J−1∑

j=L−1

22rj‖θ̃j − θj‖22 ≤ CM2N−2r
′′′

(log N)λ
′
, (A.3)

with λ
′
= 1 if and only if ã = r

′′
and λ

′
= 0 otherwise.

Combining (4), (5) and (6) we arrive at

R∗N,r(f) ≤ CN−2(s−r)/(2s+1),

completing thus the proof of Theorem 2.1.
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