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SUMMARY. Wavelet shrinkage estimation has been found to be a powerful tool for the
nonparametric estimation of spatially variable phenomena. Most work in this area to date
has concentrated primarily on the use of wavelet shrinkage techniques in the nonparametric
regression context where the data are modelled as observations of a signal corrupted with
additive Gaussian noise. Limited work for applications involving data which are actually
counts such as Poisson or Bernoulli data has also been considered. Recently, Antoniadis
and Sapatinas (2001) have developed a wavelet shrinkage methodology for obtaining and
assessing smooth estimates for complicated data such as those arising from a (univariate)
natural exponential family with quadratic variance function (the variance is, at most, a
quadratic function of the mean) studied by Morris (1982, 1983). The Gaussian, Poisson,
gamma, binomial, negative binomial and generalized hyperbolic secant distributions are
the only members of this family.

In this article we show that, subject to certain modifications, the wavelet shrinkage
methodology of Antoniadis and Sapatinas (2001) can be extended to the case where the
data arise from a (univariate) natural exponential family with cubic variance function (the
variance is, at most, a cubic function of the mean) studied by Letac and Mora (1990).
Twelve different distributions are the only members of this family. The first six appear
in Morris (1982, 1983); most of the other six appear as distributions of the first passage
times in the literature, the inverse Gaussian distribution being the most famous example.
As an illustration of the proposed wavelet shrinkage methodology, a simulation study for

inverse Gaussian data has been conducted.
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1. Introduction

Wavelet shrinkage estimation has been found to be a powerful tool
for the nonparametric estimation of spatially variable phenomena. Most
work in this area to date has concentrated primarily on the use of wavelet
shrinkage techniques in the nonparametric regression context where the data
are modelled as observations of a signal corrupted with additive Gaussian
noise. Donoho and Johnstone (1994, 1995, 1998) and Donoho et al. (1995)
showed that wavelet shrinkage estimation, with a properly chosen threshold,
has various important optimality properties. For a recent survey of research
in this and other related areas we refer, for example, to Antoniadis (1997),
Vidakovic (1999), Abramovich et al. (2000) and Antoniadis et al. (2001).

In the case where the data are actually counts (such as Poisson data),
Donoho (1993) proposed to first pre-process the data using a variance-
stabilizing and normalizing transformation, such as the one proposed by
Anscombe (1948), and then to apply usual wavelet shrinkage techniques.
Despite the seemingly straightforward nature of this approach, it has
been criticized for often smoothing away more structure than is tolerable.
Typically, the complaint is one of oversmoothing or attenuation of fine
detail structure in the underlying object (e.g. signal or image), especially in
situations involving very low levels of counts. As a result, wavelet shrinkage
estimation techniques have been recently developed by directly considering
the original, untransformed count data (see Kolaczyk, 1997, 1999a, 1999b,
Nowak and Baraniuk, 1999, Timmermann and Nowak, 1999 for Poisson data;
Antoniadis and Leblanc, 2000 for Bernoulli data).

Borrowing ideas from modulation estimators that were originally
developed for Gaussian data by Beran and Diimbgen (1998), Antoniadis and
Sapatinas (2001) have recently developed a wavelet shrinkage methodology
that has been successfully applied to various types of data. In particular,
they have discussed a wavelet shrinkage methodology for (univariate) natural
exponential families (NEF) with quadratic variance functions (QVF). The
Gaussian, Poisson, gamma, binomial, negative binomial and generalized
hyperbolic secant distributions are the only NEF with QVF, i.e., the variance
is a polynomial function of the mean with degree less than or equal to 2 for
each of these distributions (see Morris, 1982, 1983).

In this article we show that, subject to certain modifications, the
methodology of Antoniadis and Sapatinas (2001) can be extended to the
case where the data arise from NEF with cubic variance functions (CVF).
Twelve different distributions are the only NEF with CVF, i.e., the variance
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is a polynomial function of the mean with degree less than or equal to 3
for each of these distributions. The first six appear in Morris (1982, 1983)
whilst most of the other six appear as distributions of the first passage
times in the literature, the inverse Gaussian distribution being the most
famous example (see Letac and Mora, 1990); this latter distribution has
been used to model the motion of particles in a colloidal suspension under
an electric field and in sequential analysis to cite only a few examples (see
Seshadri, 1999). The main difference between the results presented here
and those obtained by Antoniadis and Sapatinas (2001) is that, while in the
NEF-QVF case a closed form estimator is available for the variance function
involved in the resulting wavelet estimator, this is not the case for the six
extra distributions of the NEF-CVF. The estimation of the variance function
is now case specific and it seems that more than two observations at each
sampling point are required to get adequate estimates. To overcome this, a
further step of binning the data to generate multiple observations has been
considered. The results discussed here are, therefore, presented to augment
(errors from a larger family of distributions) rather than to supplant the
methodology of Antoniadis and Sapatinas (2001).

This article is structured as follows. Section 2 briefly reviews
the relevant material on NEF-CVF that we shall need in subsequent
sections. In Section 3, we discuss a non-linear wavelet shrinkage
methodology for data arising from NEF-CVF. To illustrate the usefulness
of the proposed wavelet shrinkage methodology, a simulation study
for inverse Gaussian data has been conducted in Section 4.  The
computational algorithms related to wavelet analysis were performed
using the Matlab toolbox WaveLab that is freely available from
http://www-stat.stanford.edu/software/software.html. The entire
study was carried out using the Matlab programming environment.

2. Background Material on NEF-CVF Distributions

This section briefly overviews some material that we shall use in
subsequent sections. For a more detailed account we refer to Letac and
Mora (1990).

A parametric family of distributions with natural parameter space
© C R = (—o0,00) is a NEF if random variables X governed by these
distributions satisfy

Po(X € 4) = [ expat = 4(0)) dF (o), 1)
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with F' a Stieltjes measure on R not depending on § € ©, the natural
parameters, and sets A C R. The cumulant generating function () gives
(1) unit probability. The random variable X is the natural observation.
Exponential families that are not NEF are nonlinear transformations of NEF.
The natural observation X has mean and variance

p=(0) = Eo(X) = [ 0 dFy(o)

V(1) = " (6) = Vy(X) = / (2 — u)? dFy(x)

and cumulants C,(u) = ) (#), r = 1,2,... . The function V(1) on its
domain ©Q = ¢/(©) is called the variance function (VF) of the NEF and
characterizes the NEF (but no particular members of the NEF).

Consider now NEF which have CVF given by

V(1) = v + vip + vop® + vz, (2)
where vy, v1, v9 and vs are real-valued constants. We shall write
X ~ NEF — CVF (i, V()

to denote a random variable which follows a NEF with mean y and CVF
V(p) given by (2). It can be shown that exactly twelve types of NEF-CVF
exist. The first six appear in Morris (1982, 1983); the other six are the Abel,
Takécs, strict arcsine, large arcsine, Kendall-Ressel and inverse Gaussian
distributions. Most of these appear as distributions of the first passage times
in the literature, the inverse Gaussian distribution being the most famous
example. We refer to Table 2 of Letac and Mora (1990) for more details
about these latter six distributions. The twelve types of distributions can be
extended by convolutions all of which preserve both the NEF and the CVF
properties (see Proposition 2.5 in Letac and Mora, 1990). This is the key
property for developing the wavelet shrinkage methodology in Section 3.

3. Wavelet Shrinkage for NEF-CVF Distributions

We consider the problem of recovering a signal from independent NEF-
CVF observations, which may be formulated as follows. Let Y =Y, =
(Y(t))ier be a random function observed on the set T'= T, = {1,...,n}.
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The components Y (¢) of Y are assumed to be independent random variables
such that
Y (t) ~ NEF — CVF(u(t), V(u(t)), teT, (3)

where
V(p(t) = vo + v1p(t) + vop® () + vsp®(t), te€T

for real-valued constants vy, vi, ve and vs. Working with functions
on T rather than vectors in R™ is convenient for our purposes. We
assume, hereafter, that the mean vector pu = (u(t))icr consists of sampled
observations at equally spaced points on [0, 1] of an unknown but otherwise
smooth function p that we wish to recover from the data Y = (Y (¢))ier
without assuming any particular parametric form.

Define @ = Wpu to be the vector of wavelet coefficients corresponding
to p, where W is the n x n orthogonal matrix associated with the discrete
wavelet transform (DWT) (see, for example, Mallat, 1989). The squared
error loss is widely used for studying the quality of nonparametric function
estimators. By the orthogonality of the wavelet transform the squared error
loss in the wavelet domain is equivalent, up to a y/n factor, to the squared
error loss in the observation domain. Throughout we work on the wavelet
domain; the squared error loss of any estimator (linear or nonlinear) 8 (which
depends on 0= WY) and its corresponding risk are respectively defined to
be

9% 9%

L(6,0) = ave[(@ — 0)*] and p(0,0) = E(L(8,0)),

ave(g) = % > (),

teT

where

for any g € R”, the space of real-valued functions defined on 7.

When the observed function Y is Gaussian, with V(Y) = V(Y (t)) = o2
for all ¢ € T, Beran and Diimbgen (1998) have shown that one can
construct estimators of @ by diagonal shrinkage that are (i) asymptotically
minimax optimal over a variety of ellipsoids in the parameter space and
(74) sometimes more efficient than the oracle-based estimators introduced by
Donoho and Johnstone (1994). These estimators take the form HWY, where
H = diag(h) is the diagonal matrix of order n and h : T' — [0, 1] (depends on
6= WY) is chosen to minimize the estimated risk of the linear estimator 6=
0h = HWYY over all functions h in a class # C [0, 1]7. Such estimators are,
by construction, nonlinear and shrink each coordinate towards zero, different
coordinates being possibly treated differently. Adapting the terminology of
Beran and Diimbgen (1998), each function h in a class H C [0,1]7 will be
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called a modulator and the estimators éﬁ = HW'Y will be referred to as the
modulation estimators.

Since the Gaussian distribution is a particular member of the NEF-
CVF family, our estimation procedure developed in Section 3.1 below for
estimating @ for the general NEF-CVF model will based on similar ideas
discussed above.

3.1. Estimating the optimal modulator using the cross-validation mean
squared error. In this section we mostly follow the approach suggested by
Antoniadis and Sapatinas (2001) but adapting it to the NEF-CVF case.
We will first construct a suitably consistent estimator p of the risk p(éh, 0)

and we will propose to estimate 8 by the modulation estimator GB = HWY,

where h is any function in A C [0,1]7 that minimizes 5. The methodology is
actually based on the division property of NEF-CVF mentioned in Section 2,
and a cross-validation approach similar to that developed by Nowak (1997)
in the case where one has more than one independent observations of an
unknown signal.

Suppose that, instead of observing data Y, we observe the pseudo-
sample {Z1,...,Zy} (ie. Zy,...,Z, are independent random variables) with
Zi. = (Zk(t))ier such that

Zk(t)~NEF—CVF<u(t),R(u(t))>, k=1,....p, teT,

v(t) = %u(t) and  R(v(t)) = %Uo +uiw(t) + poar? (1) + p osr’ (1)

for real-valued constants vy, v, vo and ws. Then, using Proposition 2.5 of
Letac and Mora (1990),

p
Y =) 7, and Zzlzzk:lY.
P P

Consider now an estimation procedure based on the pseudo-sample
{Z,,...,Z,} producing modulation estimators of the form éh depending on
a modulator h = (h(t))ier. Applying this procedure to the pseudo-sample
{Z1,...,Z,}, without using the jth element, and defining H = diag(h),
leads to a modulation estimator

. p
6 = HWZY) where Z0) = 3z,
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with corresponding signal estimate

Z(j) _ WT@%).

To estimate the optimal modulator, we shall first construct a suitable
consistent estimator of the risk p(éh, #) based on the cross-validation mean
squared error or its equivalent form, the prediction sum of squares (PRESS)
(see, for example, Eubank, 1999, p. 43). Let

p
= NHEWZ® - Wz, . (4)

For simplicity, we will use hereafter the following notation
O=WY =pWZ, 6,=WZ, and o’=V(0).
For t € T, let
. i(ek ——9 ) -2 z,,: W(Zi, — Z)(t))".
p—1 p—1

p el b=

Some algebraic calculations show that expression (4) may be written as

Pl) = 2530 (6%0) — 20 (1= h(1)6* (1)
teT

+p 21— R()*[62() + (p — DE*(2)])

Since  the  components Y (f) of Y are independent
NEF-CVF (u(t), V(u(t))) and W is orthonormal, it is easily seen that, for
all t € T', we have

E(0(t)) = 0(t) and (6 Zwth o?(t). (5)

Moreover,

E(P(h)) = g ave((1 — h)262 + h20?) + Iﬁ

which implies that

ave(h?a?) + n ave(a?),

1
. ave(h’a?) + p ave(o?)

E (Bp(h)) = p(0y,,0) + —

n



316 A. ANTONIADIS, P. BESBEAS AND T. SAPATINAS

and, therefore, 2 P(h) is a biased upwards estimator of the risk p(@h, 0). A
possible correction to this estimator is

ph) = ZP(h)-

= ave((1 — h)?0°) + ave((2h — 1)&?). (6)

1 ave(h%6?) — p ave(6?)

Throughout C' denotes a generic universal real constant which does not
depend on n, 0, o2 or H, but whose value may be different in various
places. Also, let J(?) be the uniform covering integral associated with
the uniform covering number of H (see, for example, Dudley, 1987, Beran
and Diimbgen, 1998). The following two propositions are similar to those
appeared in Antoniadis and Sapatinas (2001). The proof of Proposition 1 is
based on Lemmas 6.3 and 6.4 of Beran and Diimbgen (1998) while the proof
of Proposition 2 is based on Theorem 2.2 of Beran and Diimbgen (1998).

REMARK 1 . The proof of Lemma 6.4 of Beran and Diimbgen (1998)
assumes random vectors with independent components, which is not
anymore true under the present set-up. However, a closer look at the proof
of the above mentioned lemma shows that the independence assumption is
used to conveniently apply a general theorem (Theorem 6.1) on independent
stochastic processes. When we adapt Lemma 6.4 under our setting, and use
its proof, the only thing that needs to be checked is the boundedness of the
wavelet transform in L?, which is obviously true for the wavelet basis that
we have used. Theorem 6.1 of Beran and Diimbgen (1998) still holds, when
the involved processes are linearly transformed by a bounded linear operator
in L?, which is exactly the case here.

Proposition 1 is about convergence of the risk p(h). Proposition 2
establishes that h and h, as well as 0 and 0h, converge to one another.

PROPOSITION 1 . Let H be any closed subset of [0,1]7 containing 0, let

h be a minimizer of p(@h,ﬂ) over h € H and let h be minimize p(h) over
he?H. Then

E(5(h) — p(8y,,0)))

\/]E (ave(8 — 6)*) + \/ave(a'202)

NG
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PROPOSITION 2 . Let h be a minimizer of p(éh,ﬂ) over h € H and let
h be the minimizer of p(h) over h € H. Then

\/E(ave(é —0)%) + \/ave(0'202)
vn
)

E (ave ((0'2 +6%)(h — ﬁ)2>> < CJ(H)

)

+ E(|ave(6? — o
and

F(ave(8 — 0)%)
NG

REMARK 2 . It follows from (5) and the Strong Law of Large Numbers
that ave(é?) is a consistent estimator of ave(o?). Hence, in view of
Propositions 1 and 2, a class H such that J(#) = o(n'/?) together with
the boundedness of F(ave(@ — 0)%) and ave(o20?) ensure the success of

the estimator 05. Note that since the components of Y are NEF-CVF

distributed, boundedness of E(ave (8 —0)*) and ave(a-26?) follow if ave(8?) <
¢, for some ¢ > 0. This can be interpreted as a smoothness assumption on

1.

+ E(|ave(6? — 6?)]).

E (ave ((9}~l - 9h)2>> < CJ(H)

REMARK 3 . A particular consequence of Propositions 1 and 2 is that
the estimator of y derived from our modulation estimator @, attains the

optimal mean integrated squared error asymptotic rates O (n=25/(st1) for
a class of submodels for p, namely the class of functions belonging to an
ellipsoid of the Sobolev class W3 of smoothness index s > 1/2. Indeed, in
such a case we have ave(8%) < O(n—*/(25t1)) and, because of the smoothness
of u, it is easy to show that E(|ave(6? — 62)]) — 0 at a rate n~2%/(25+1) a5
n — oo. The asymptotic rate of éﬁ is then a direct application of Corollary
2.3 of Beran and Diimbgen (1998).

3.2. Computation of the optimal modulation estimator. Our objective
now is to choose h to minimize p(h) defined in (6). As mentioned in Remark
2, a class # such that J(#) = o(n'/?) ensure the success of the estimator
6 . Various examples of modulator classes H to which Propositions 1 and
2 apply can be now constructed, similar to those given in Examples 1-5 of
Beran and Diimbgen (1998) for the Gaussian case.

In what follows, however, we have concentrated on an estimator that is a
multiple-Stein shrinkage estimator, similar to the one obtained in Example
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2 of Beran and Diimbgen (1998). Let B = B,, be a partition of 7" in intervals
of length [In(Inn)], where [ z] denotes the integer part of z, and consider

H:{Zch(B); ce[o,l]B}, (7)

BeB

where 1p is the indicator function of B. Example 2 of Beran and Diimbgen

(1998) shows that we indeed get J(#) = o(n!/?). The values of ¢(B) that

define the minimizer, h, of p(h) over all functions h in the class H defined

in (7) are given by

ave(1p(0” — 6%)),
ave(1 392)

where (u); = max(u,0). Inspection of (8) shows that, for each t € B,
h(t) = 0 when ave(1560%(t)) < ave(1562(¢)). Hence, the modulator is set to
0 when the signal-to-noise ratio is less than 1. Moreover, for each t € B, the
modulator tends to 1 as the signal-to-noise ratio tends to 1. (Note that for
sample sizes n < 1024, or even n < 2048, the partition B = B,, considered
above is such that only two consecutive sampling points are required to
compute the value of the modulator h over B )

The derivation of the values ¢(B) in (8) that define the optimal modulator
rely upon a realization of a pseudo-sample {Z;,...,Z,} which is not
observable. Furthermore, one would expect better results when the size p of
this pseudo-sample is large. We now show that the limiting (as p — oo) form
of the optimal modulator can be approximated by an expression computed
directly from the original data. For each t € T, only 62(¢) in (8) depends
on the pseudo-sample {Z;,...,Z,}. Recall from (5) and the Strong Law of
Large Numbers that, for each ¢t € T, () is a consistent estimator of o2(¢)

o —

and that E(62(¢)) = S, leV(u(l)). If now, for each t € T, V(u(t)) is
an estimator of V(u(t)) (such as, for example, a uniform minimum variance
unbiased estimator (UMVUE)), an intuitive appealing approximation of the
values of ¢(B) that define our optimal modulator, overcoming the fact that
the pseudo-sample is never observed, takes the form

&(B) : (8)

where
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Finally, our optimal (nonlinear) modulation estimator is given by

6, = 15 0. (10)

h o)

A ave(15(9° — &2))
BeB ave(1

—

We now discuss how to obtain, for each ¢ € T', the UMVUE V (u(t)) of
the variance function V(u(t)) of a NEF-CVF(u(t),V (1(t))) that is needed
to obtain 52(t) given in (9). Kokonendji and Seshadri (1996) have obtained
the Rao-Blackwell estimator of the determinant of the variance of a NEF on
R? based on (d + 1) observations. Therefore, the UMVUE of the variance
function of a given (univariate) NEF can be easily obtained by applying
Theorems 2.2 and 3.3 of Kokonendji and Seshadri (1996) with d = 1.
However, for the (univariate) NEF-CVF, the UMVUE does not have a closed
expression and one has to perform the computation for each type separately
(Letac, private communication).

Obviously, in the univariate case, one needs 2 observations for each t € T'
and therefore, as Kokonendji and Seshadri (1996) pinpoint, their results
in the case of NEF-QVF can be regarded as a partial generalization of
the UMVUE obtained by Morris (1983) (one needs 1 observation for each

t € T'). Therefore, in this case, we suggest the type of the estimator Vm)
and the resulting optimal modulation estimator obtained by Antoniadis and
Sapatinas (2001).

For each of the remaining six distributions of a NEF-CVF, we suggest

—

to obtain, for each t € T, a UMVUE V (u(t)) of the variance function
V(p(t)) by introducing a further step of binning the data to generate multiple
observations. More specifically, the data are divided into bins of equal size
L =2™ (for some m > 0) and, for each bin, we calculate a UMVUE using a
sample of size L. Then, in each bin, we estimate the corresponding variances
by the same UMVUE (obtained for that particular bin) and calculate (9)
and (10). The binning is, therefore, important and we study its effect on the
performance of our optimal modulation estimator by conducting a simulation
study using inverse Gaussian data in Section 4 below.

We end this section sa}glg\ that (10) involves the projection of the

variance function estimate V' (u(t)) onto the pointwise square of the wavelet
basis functions (see (9)). An efficient filter bank algorithm for computing
such projections for one-dimensional signals can be derived from the diagonal
elements of the covariance structure of wavelet coefficients described in the
papers of Vannucci and Corradi (1999) or Kovac and Silverman (2000). The
resulting squared discrete wavelet transform (SDWT) of a signal sampled
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at n = 27, for some J > 0, fixed equidistant points requires only order n
operations, so is computationally fast.

4. Simulation Study

The inverse Gaussian distribution is widely used in modelling a variety
of phenomena involving first passage times in biology, ecology, reliability
and survival analysis, to mention a few. For an excellent monograph on
this distribution and its statistical applications, see Seshadri (1999). The
probability density function (pdf) of an inverse Gaussian distribution with
mean parameter u and shape parameter A is given by

1/2 Y
> exp{—u}, z>0; p>0,Ax>0.
2ucx
(11)

The inverse Gaussian distribution is the most famous one among the
six extra types of distributions obtained from a NEF-CVF. Thus, in order
to gauge the performance of the proposed wavelet shrinkage methodology
(we call this procedure CVFCV), we have conducted a simulation study by
considering inverse Gaussian distributed times series data, i.e.

f@sp, ) = <2m3

Y (t) ~ inverse Gaussian(u(t), V(u(t))), teT,

where V(u(t)) = pu3(t)/A(t). For such data, three factors of interest were
included in the study: the morphology of the mean function p(t), the bin
size L involved in the construction of the UMVUE of the variance V (u(t))
(as discussed in Section 3.2), and the inverse of coefficient of variation (ICV)
p(t) = X(t)/p2(t) (i-e the ratio mean/variance).

Motivated by various phenomena of similar nature that are often
encountered in practice, the underlying mean function was allowed to take
two different shapes: that of a burst (Kolaczyk, 1997) given by u(t) =
A + A1I1 (t) + A2I2 (t) + A3.[3 (t) with

Ii(t) = exp{—(|t — timax|/o+)"} if t < 1imax,
! exp{—(|t - ti,max|/0d)y} if ¢t> i max

and that of a very smooth function (Beran and Diimbgen, 1998) given by

n(t) = A+ 2[6.75t%(1 — )3,
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where A, Ay, Ay, A3, t; max, ¥, 0, and 0,4 are prespecified constants. These
functions were used by Antoniadis and Sapatinas (2001) to illustrate their
wavelet shrinkage methodology for various types of distributions arising from
a NEF-QVF (they called this procedure QVFCV).

The UMVUE of the variance V (u(t)) = p?(t)/A(t) of a random variable
with pdf (11) for a sample size n greater than or equal to 2 has been obtained
by Korwar (1980) and Iwase and Set6 (1983). To study the effect of binning
in the performance of the resulting modulation estimator for the inverse
Gaussian case, we have considered two possibilities: L = 2 (sample of size 2)
and L = 4 (sample of size 4). Using the notation of Iwase and Set6 (1983)
and replacing n with L, these are given respectively by

~ 2X3V ~ 4X2(1 — arctan(V X /4)/2)
9=—=—— and k4= — ,
VX +2 (VX)1/2

where
1 L L
Vv . _ -1 -1
X_E;XZ and V_X;(Xi Xh.
1= 1=

To gain some insight into the behaviour of the proposed wavelet shrinkage
estimation procedure at low, medium and high ICV, p(¢) admitted the values
1, 3 and 5 per time point. Finally, each mean function was sampled at N =
256,512, 1024 equidistant data points, i.e. T ={t; =i/n,i=1,...,n = N}.
Figures 1 and 2 show respectively the two mean functions with a medium
ICV (p(t) = 3) for the two bin sizes (L = 2,4) and estimates from a single
trial, using the CVFCYV procedure based on N = 256 equispaced data points.
At each of the 18 (= 2 x 3 x 3) design points, and for the 2 (L = 2,4) different
bin sizes, estimates were calculated using CVFCV over 500 trials. The results
of these simulations are shown in Figures 3 and 4. The method was based on
Daubechies’ nearly symmetric wavelets of order 8 (see, Daubechies, 1992, p.
195). Random variates from an inverse Gaussian distribution were generated
using the method of transformations with multiple roots (see, for example,
Michael et al., 1976).

As one can see from these figures, the CVFCV procedure produces
estimates with satisfactory mean squared errors uniformly across the various
combinations of morphology and ICV for bin size L = 2. It is evident that the
results are improving considerably as we increase the number of grid points
and as we move from low to high ICV. Increasing the bin size (L = 4),
it has a profound effect on the performance of the CVFCV estimator for
the burst function. However, the results are getting slightly better as we
increase the number of grid points and as we move from low to high ICV. As
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it is expected, the binning does not affect substantially the performance of
the CVFCV estimator for the smooth function for all combinations of grid
designs and ICV.

Smooth Smooth + inverse Gaussian errors
52 : : . . . .
515
51
50.5
50 : : : : : : :
0 02 04 06 08 1 0 02 04 06 08 1
Estimation using bin size 2
52.5 - - - - 52.5
52 52
515 515
51 51
50.5 505
50 50
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Figure 1. The smooth function (solid), along with estimates from
a single trial, using CVFCV (dot-dashed) based on N 256
equispaced data points with a medium ICV (p(t) = 3) and the two
bin sizes (L = 2,4).
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Figure 2. The burst function (solid), along with estimates from
a single trial, using CVFCV (dot-dashed) based on N = 256
equispaced data points with a medium ICV (p(t) = 3) and the two
bin sizes (L = 2,4).
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Figure 3. Boxplots of inverse Gaussian simulation results for the
smooth function (top) and burst function (bottom). In each panel,
there is a triplet of boxplots indicating the mean squared error of the
estimates produced by CVFCV over 500 trials using (1) N = 256,
(2) N =512 and (3) N = 1024 equidistant data points. The ICV
was taken, in each row as p(t) = 1 (left panel), p(t) = 3 (middle
panel) and p(t) = 5 (right panel). All simulations were conducted
using bin size L = 2.
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Figure 4. Boxplots of inverse Gaussian simulation results for the
smooth function (top) and burst function (bottom). In each panel,
there is a triplet of boxplots indicating the mean squared error of the
estimates produced by CVFCV over 500 trials using (1) N = 256,
(2) N =512 and (3) N = 1024 equidistant data points. The ICV
ratio was taken, in each row as p(t) = 1 (left panel), p(t) = 3 (middle
panel) and p(t) = 5 (right panel). All simulations were conducted

using bin size L = 4.
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