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CHARACTERIZATIONS OF SOME WELL-KNOWN
DISCRETE DISTRIBUTIONS BASED ON VARIANTS
OF THE RAO-RUBIN CONDITION

By T. SAPATINAS and M.AH. ALY*
University of Sheffield

SUMMARY. The present note investigates characterizations of some well-known
discrete distributions based on variants of the Rao-Rubin condition. Shanbhag and Clark
{1972), and Patil and Ratnaparkhi (1977), have given characterizations for the Poisson, and
for the binomial and negative binomial distributions, respectively, replacing the Rao-Rubin
condition by conditional expectations of the distributionsof the r.v.’s X and Y. Our work
foeuscs on unification and generalization as well as some extensions of these results. A resulb
relating to the Srivastava and Singh (1975) conjecture and modified versions of the results of
Shanbhag (1977) and Alzaid (1986) are also given.

1. INTRODUOTION

A damage model may be described by a random vector (X, Y) of non-
negative, integer-valued components with ¥ < X so that the joint probability
law for X and Y is of the form

PX=mnY=r)=8Fr|ng,, r=01..,n;n=0,1,..,
where {S(r|n)}is a probability function for each fixed » and {g,} is the
(marginal) probability law of X. (The conditional probability function of Y
given X here is termed the survival distribution.)

It is customary to call Y the undamaged part of X and X — Y the damaged
part. The concept of damage models in discrete probability theory was
introduced by Rao (1963). Rao and Rubin (1964) initiated research in this
area and formulated a characterization theorem for the Poisson distribution
based on conditional and marginal distributions of the r.v. Y. Later
authors have considered conditions that involve only conditional and maxr-
ginal expectations of Y instead of the corresponding distributions.
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In order to state these results we need some notation.

(1) X ~ PSD(9) refers to a power series distribution with parameter
0 of the form
PX =n)=a,0"[A(0),n =01,2...
(2) For a, c real numbers and 7 an integer,
a'” = a(a—1) (@a—2) ... (a—r-+1) ; a® =1,
agy = ala+1) (a42) ... (@+r—1) ;¢ = 1,
Ur,ey = aa+-c) (a+2¢) ... (a+(r—1)0) ; a0y = 1.

Theorem 1.1 (Shanbhag and Clark (1972)). Let X ~ P8D(0) and the
survival distribution {S(r|n)} have S(n|n) to be independent of 6 and its mean and
variance as no and nx (1—a) with o independent of 0. Then, provided
PX=Y)>0,

E(Y)=EY|X =17Y) and var (Y) = var (Y| X = )
iff X ~ Poisson and S(n|n) = on.

Patil and Ratnaparkhi (1977) have provided a slightly different formu-
lation of the above theorem characterizing the Poisson distribution and then
have stated and proved a series of results that lead additionally to the charac-
terizations of the binomial and negative binomial distributions. They have
also given some interesting interpretations of the wunderlying assumptions
that can be of some use in statistical ecology. Specically, these authors have
proved :

Theorem 1.2 (Patil and Ratnaparkhi (1977)). Let X ~ PSD(®) and the

survival  distribution {S(r|n)} have S(n|n) to be independent of 6. Then,
provided P(X = Y) > 0, the following assertions hold :

(8) If the first two factorial moments of the survival distribution are given by

(i)
E(YW],) = nt) 2 :

N i=152,

where 0 < m < N, then
EY))=EY® | X=7Y),i=12 .. {(1.1)

iff X ~ Binomial (N, .)and S(n|n) = v

(b) If the first two factorial moments of the survival distribution are
given by

E(YD|n) =@ 2D 51 2
N
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where 0 <m < N, then (1.1) is valid iff X ~ Negative Binomial (N, .) and
S(n|n) = .

In Section 2, we unify these theorems by characterizing the Polya-Eggen-
berger distribution based on the first two factorial moments of ¥ given
X =mn. A generalization of that result is also obtained. Furthermore,
we obtain extensions of these results based on any three consecutive factorial
moments of the conditional distribution of ¥ given X = n,

In Section 3, we give a result relating to the Srivastava-Singh (1975)
conjecture. Applying this result, modified versions of Shanbhag (1977) and
Alzaid (1986) results are obtained.

2. A UNIFICATION AND EXTENSIONS OF SHANBHAG AND OLARK (1972),
AND PATIL AND RATNAPARKHI (1977) RESULTS

Definition 2.1. A non-negative, integer-valued r.v. X is said to have a
Markov-Polya Distribution i.e., X ~ MPD(n, a, b, c) if

sey

"\ Aoy binr )
— — pALELZ B ) =0 1, veny sn =0, 1: .
P =) ( r ) (a+b)n,er ’ " ’ min=o

where a, b > 0 and ¢ is a real number such that the distribution is well defined.

(Note that this has binomial, hypergeometric and negative hypergeometiio
a8 special cases.)

Definition 2.2. A non-negative, integer-valued r.v. X is said to have a
Polya-Eggenberger Distribution i.e., X ~ PED(h, c, A) if

r
PX = 1) = K(h, ¢, A) ko) ;\—', r=20,1..,

for some A > 0, A > 0, and a real uumber ¢ such that the distribution is well
defined with K(h, ¢, 1) as the normalizing constant. (Note that this has
Poisson, binomial and negative binomial as special cases).

Theorem 2.1. Let X ~ PSD(0) and the survival distribution {S(r|n)}
have S(n|n) to be independent of 6 and its two first factorial moments fo be equal
to the corresponding moments of an MPD(n, a, b, ¢), i.e. given respectively by

a a(a-+c)
"@rn ™ " Giarbroy
ala-t-c)

and n(n-1) (@t

a+b)(a+b+-c)

Then (1.1) is valid iff X ~ PED(a+}-b, c,.)
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Proof. The necessary part of the assertion is trivial. To prove sufficiency,
setting ¢« = 1 in (1.1) giving

¢ = na, 6 Eona” om S(n|n)

x ==
@+0) w0 AO) T 4 o0 S(n|n)
=

By setting B(f) = 20‘: @, 0" S(n |n), the above equation can be written as
R0

_a_4'06)_ B
(a4b) A(0) ~ B)’

which leads to

B(f) = K [A()]%/a+b) .. (2.0)
where K > 0 is an arbitrary constant. Similarly, 7 = 2 in (1.1) yields
a(a---c) A"(6) _ B(0) 2.2)
(@+b)(a+btec) A@)  B@O) - ’
Substituting for B(f) from (2.1) we get
4 {:‘@ —_ o (40t
do A(@)} " (a-+b) {A(ﬁ)} ’
which implies that
lr fe _ (a+b)
dll— ——_t ° ifec£0
{ ’)’(‘H‘b)} > (2.3)
A(0) = ﬁ , :
= if c=0
| d exp{ 7} if ¢
where d and 7y are positive constants. It further follows that
S(n|n) = _Smo) g completes the proof of the theorem.
(“+b)(n,c)
Corollary 2.1. Setc=0in(2.3). Then A(0) =d exp{% }, which implies
that X ~ Poisson and moreover that S(n|n) = (cf%Z)” This is Theorem 1.1,
Corollary 2.2. Set 1 in (23). Then A(0)=d {1+ 0\
orollary 2.2. 8ef ¢ = —1 wn (2.3). en A(0) = {—{—m} ,
which implies that X ~ Binomial with parameters N = a-+b and p= '}7\7%9 and

moreover that S(n|n) = This is Theorsm 1.2(a).

al
@t by
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0 \~(atd
Corollary 2.3. Set ¢ =1 in (2.3). Then A(f) =d {1 }

~ Ya+b)

which implies that X ~ Negative Binomial with parameters N = a-b and
0 ..

p=1— ?W< 1 for y >l€7 and moreover that S(n|n) = (ajwl-(—z));:)' This is

Theorem 1.2(b)

Remark 2.1. It ¢s worth noting that the above characterizations in Corollaries
2.2 and 2.3 are still valid for ¢ << 0 and ¢ > 0 respectively.

The following generalization of Theorem 2.1 can be proved along the
same lines and its proof is omitted.
Theorem 2.2. Under the conditions of Theorem 2.1,
B(Y®W)=EBYW|X = Y+k),i=1,2 . (2.4)

iff X~ PED(a+b,¢,.) and Sn|ntk)= (n;bl"k) @%b;:;;) S(0 | k), where k

is a fixed non-negative integer.

The corresponding corollaries for Theorem 2.2 provide generalizations
of Corollaries 2.1—2.3.

Corollary 2.4. (Srivastava and Singh (1975)). For ¢ = 0, X ~ Poisson

n-+k a \"
and S@|n+b) = ("7 )(m) S(0| ).
Corollary 2.5. For ¢= —1
(n—]—k) )
n / (a+b)™

, X ~ Binomial and S n|nt+k) =
S(0| k).

Corollary 2.6. For ¢ =1, X ~Negative’ Binomial and S(n|n-tk) =

k) ay,
") @i, somm,

In what follows, we give our main extensions of Shanbhag and Clark
(1972), and Patil and Ratnaparkhi (1977) results.

Theorem 2.3, Let X ~PSﬁ(0) and the survival distribution {S(r|n)} be
such that for some fixed k, its kt®, (k4-1)* and (k-12)tt factorial moments are
given respectively by n'®) o, n‘k+) g+l gud nk+d ok+2 for some fized a e (0, 1)
that is independent of 0 ; assume that S(n|n) is independent of 6. If the

factorial moments E(Y'®)) and E(Y%+V) corresponding to Y are non-zero and
0<PX =7Y)<1, then

EYM)=EBYP|X=7), r=k kil, k42 . (25)
A2-21
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iff X ~ Poisson and S(n|n) = am.
Proof. The “if” part is trivial. For the “only if” part, equation (2.5)
is equivalent to
g gu-r =00 a,Sn|n)fnr

arE o = n TR O Jr =k k1, k+2. ... (2.6)

Define 4,(f) = T n" a,07" and A} (0) = Za" a,S(n|n) 67" and note that
n n

A, (0) = Ar4(0) and A7 (0) = 4714 (0), e (27)

for all values of » > 0 and in particular for r =k, k+1. Algebraic mani-
pulation of (2.6) gives

g Q@) _ 47a0) |

4,(6) 40 "= k, k+1. ... (2.8)
(2.8) now yields
%75 log A,(ﬁ) log ANG), r=k, Ic-j—‘l, -
or what is the same
A; (0) = cr (AK0)5 r =k, k41, .. (2.9

where ¢, are positive constants. Since o €(0, 1) and (2.8) implies in view of (2.9)

A0) o

Ay (0) _ Criy (Ak+1(0))a
A(0)
it follows that %(Lg? is a positive constant (say c,) or equivalently (using

2.7) that Ax(0) = ecot+c6 with ¢, > 0. We have then in view of (2.9) for
r =k and (2.7) for all values of r

A,:(ﬁ) = Cp, eco“+01“0,
A(6) = A6) = e* AO)+pi(0),
46) =% a,S(n|m)0" = (¢, 0)* Ai0)+}(0),

and

for appropriate polynomials pg(6) and p(0) of 6 of degree at most k—1. The
reciprocal of (2.6) for r = k then implies

(c;00) B+ E pi(0) e—Co—10 = (c,a) %+, Py(0) e —cox—120,
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which in turn yields

C;l p;(a) eco(l—a)‘l‘cl(l—a)g = d‘k pk(e). ven (2.10)

This relation is valid for all parameter values of  in X ~ PSD(6). 1If this is
true for some non-degenerate @ interval, then (2.10) is valid for all 6. Remem-
bering o €(0,1) and ¢; >0 and letting 6— co, we see that there is a
contradiction unless pg(0) = p;(0) = 0. Consequently, the expressions
for A(0) and A4j(0) imply that X ~ Poisson and S(n|n) = an. This
concludes the proof of the theorem.

Corollary 2.7. k = 0 leads to Theorem 1.1.

Theorem 2.4. Let X ~ PSD(0) and the survival distribution {S(r|n)} be
such that for some fived k, itskth, (k-++1)th and (k+2) factorial moments

are given respectively by n'k %‘k—), nED TED g pesny D pher,
(k) (k+1) (k+2)

0 <m + max {1k} < N ; assume that S(n|n) is independent of 6. If the

factorial moments E(Y®) and E(Y %tV corresponding to Y are non-zero and

0 < PX =7Y) <1, then (2.5) ts wvalid iff X ~ Negative Binomial (N, .) and

m n
S(n l n) = T‘("")).

Proof. The “if” part is trivial. For the “only if” part, equation (2.5)
is equivalent to

T g0 Za"a,Sn|n)on T
n n

N A(6) = T Za,Sn[n)gn

(2.11)

By defining A4,(0) and A:(0) as in Theorem 2.2 and following the same steps
we get

m-tr
A5(0) = c(AdO))F+r v =k, k41, e (212)
: iti tants. M agoy=s(1— 0 )" wh
, . Mor , =0\1— - =1 , where
where ¢, are positive constants. Moreover, 4(0) o(N+H)
. . . dA(0)
¢ is an arbitrary constant, with A;(0) = ¢ > 0 and because 0 > 0,¢c>0.
Now, since Ax(f) = d{%g;@) we get

2] -N
440) = 40) = b (1= ;g ) PO o (213)
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(N+-E)* . .
where fiy = dck o > 0 and pi(0) is polynomial of @ of degree at most
&)
k—1. Equation (2.12), on putting r = k implies that
. 17 —(m+k)
40 =7 (1= sy ) . (2.14)

m+k
where 7y = ¢y 6¥+k > 0. Using the same technique as in caloulating A(0)

we can obtain

7 mo

1= v Fn) ) +pi(6), ... (2.15)

Ve VAR
e

k—1. The reciprocal of (2.11) for r = k implies

where ¢ = > 0 and p;(0) is polynomial of 6 of degree at most

m~—N 0 N-m

My oy Nk (1 Y
N p(6) = o & (1 VT ) P(6). ... (2.16)
By exploiting the same arguments as in Theorem 2.2 in the above expression
(2.16), we can conclude that expressions (2.13) and (2.15) imply X ~ Negative

Binomial with index N, and S(n|n) = 5~ . This concludes the proof of the

theorem.
Corollary 2.8. k = 0 leads to Theorem 1.2(b).

Similarly, we can obtain an analogous extension of Theorem 1.2(a).
In what follows we only state this result.

Theorem 2.5. Let X ~ PSD(0) and the survival distribution {S(r|n)} be

such that for some fized k, its kth, (k1) and (k--2)** factorial moments are given
) mie L, mAEHD miE+2)
respectively by n'® N plk+D NED and nk+d AT where 0<< m -}- max

(1,6} < N ; assume that S(n|n) is independent of 0. If the factorial moments

E(Y"®) and E(Y%+D) corresponding to Y are non-zero and 0 < P(X = Y) < 1,
(n)

then (2.5 is valid iff X ~ Binomial (N,.) and Sn|n) = o

Corollary 2.9. k = 0 leads to Theorem 1.2(a).

Remark 2.2. A natural question which arises now is the follewing.
Can we obtain a similar unification of Theorems 2.3, 2.4 and 2.5 on the lines
of Theorem 2.1? If we scruitinize closely the arguments to prove these
theorems, one can see that the answer to this question is in the affirmative.
This gives rise to the following result :

a4y
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Theorem 2.6. Let X ~ PSD(0) and the survival distribution {S(r|n)} be
such that for some fized k, its kh, (k-+1)* and (k+2)t* factorial moments are
equal to the corresponding moments of an MPD(n, a, b, ¢), i.e. given respectively

O (ks Akt 150) A(k+2:¢)
R T T P () P
{LE}| C| < b; assume that S(n|n) is independent of 6. If the factorial
moments E(Y'®) and E(Y%+D) corresponding to Y are non-zero and
0 < P(X =7Y) < 1,then (2.5) is valid iff X ~ PED (a-}+b,¢c, .) and S(n|n)
Fnse)

- (a+b)(nac).
Corollary 2.10. k = 0 leads to Theorem 2.1.

, where 0 << max

3. A RESULT IN CONNECTION WITH THE SRIVASTAVA-SINGH (1975)
CONJECTURE

Srivastava and Singh (1975) conjectured that the Rao-Rubin RRE(k)
(i.e. P(Y =r) = P(Y = r|X—Y = k)) condition under a binomial survival
distribution implies the original random variable to be Poisson. However,
Patil and Taillie (1979), using a counter example, and more recently Alzaid,
Rao and Shanbhag (1986) have revealed that the validity of the BR(k) condi-
tion for a fixed & > 0 is not sufficient to characterize the Poisson distribution,
thus disproving the conjecture of Srivastava and Singh (1975). This counter
example also disproves Krishnaji’s (1974) claim for RR(1). (Incidentally,
Shanbhag and Taillie (1979) have extended the result of Patil and Taillie
(1979) to Shanbhag’s (1977) set-up.) However, if we put an additional
restriction that X has an infinite divisible or compound Poisson generating
function, then it follows that EBR(1l) indeed characterizes the Poisson distri-
bution. It is also interesting to note that if X ~ PSD(0) with P(X = 0) >0,
then an ER(k) condition implies the RE(0) condition (see Theorem 3.1. below).
This in turn implies that a version of the Srivastava-Singh conjecture
is wvalid provided the original random variable X ~ PSD(f) with
P(X = 0) > 0. We shall now state our main claim through the following.

Theorem 3.1. If X ~ PSDY6) with P(X = 0) > 0 and the survival distri-
bution is independent of 6 and RR(k) is wvalid, then RR(0) is valid.
Proof. The RR(E) condition is equivalent to
PY=9)=PY=y|lX-Y=k,y=0,1,.., .. (3.1)
with P(X-—~Y = k) > 0. Writing the power series distribution of X as

az0%

9z = A@ ’
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with a, > 0, we get from (3.1)

=y ) 0a¢+k0$8(x |z4F)

=0,1,..., .. (32)

T M

with azS8(0lk) > 0 and ayS(y|y) > 0 for some y (in view of the fact that
azgeS(xlztk) > 0 for some z and @, > 0). Substituting for a, xSz |z+k)
the expression azS(x|x)arS(0!k)/a,) (and also for ay S(y|y-k), mutatis
mutandis) on the right hand side of (3.2), we get

PY=y)y=PY =yl X=7Y), y=0,1,..., - (3.3)

with P(X = Y) > 0. But (3.3) is the RR(0) condition, and our proof is
completed.

Applying this result we can obtain modified versions of Shanbhag (1977)
and Alzaid (1986) results. Incidentally, Alzaid (1986) utilized his result to
obtain a characterization, through Rao-Rubin condition, of the class of infi-
nitely divisible laws having power series distributions. Qur modification of
Alzaid’s (1986) result gives, among others, Theorem 3.1 of Srivastava and Singh
(1975) (which is also an improvement of the result of Srivastava and
Srivastava (1970)) as a special cese. In the remaining part of this section
we give these results.

Theorem 3.2. If X ~ PSD(0) with P(X = 0) > 0 and the survival distri

bution of Y given X =2x 1isgiven by S(y|x) = all;—z;y, y=20,1,..., z;
X

®=0,1,..., where ay > 0,b; > 0 for all x > 0 with b, and b, > 0, then an
RRE(k) condition is valid iff {gs} can be put in the form

_C AT

gw —_— E(Aij" xXr = 0’ 1, seny

with some parameter A and normalizing constant c(A),

Proof. 1t follows immediately from our Theorem 3.1 and Theorem 1 of
Shanbhag (1977).

Remark 3.1. The above Theorem 3.2 is also a consequence of Remark 11
of Alzaid, Lau, Rao and Shanbhag (1988).

Theorem 3.3. Let {(X,,Y,;):Ae(a,b),0 < a<b} be a family of non-
negative, integer-valued random vectors with P,(X, > Y,) = 1 such that for all A,

An

Pl(X,'=n)=an m-),n-’: 0, 1, ceey
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-where a,, > 0 and independent of A for every n > 0,a,> 0. Let the survival
distribution {S(r | n)} also be independent of A. Then the following are equivalent :

L P(Y,=n=P(Y,=r|X,—Y,=h),

r=20,1, ..., for all n, k is a fizxed non-negative integer ;
2. P\Y,=r=Py(Y, =r|X,—Y,=0), r=0,1,... . for all A;
3. S(r|n)a,a, = arS(rin)a, »SO|n—r),r=0,1,..,0;n=0,1, ... ;

4. Therw’s Y, and X,—Y, are independent for all A.

Proof. The implication (1) = (2) follows from Theorem 3.3, while impli-
cations (2) = (3) = (4) have been given by Alzaid (1986). Finally the impli-
cation (4) = (1) is obvious.

The following corollary of Theorem 3.3 is Theorem 3.1 of Srivastava and
Singh (1975).

Corollary 3.1. If X, is Poisson with parameter A, the survival distribution
{8(r|n)} is independent of A and such that 0 < S(n|n) < 1 for some n, then (1)
holds, iff the survival distribution is binomsial (n, p), where pe(0, 1) and fixed.

Proof. It follows immediately from our Theorem 3.3 and Corollary 1 of
Alzaid (1986).

Remark 3.2. Multivariate generalizations of Theorems 3.1 and 3.2, and
Corollary 3.1 can also be obtained.
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