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Abstract

We investigate the theoretical performance of Bayes factor estimators at a
single point in wavelet regression models with independent and identically
distributed errors that are not necessarily normally distributed. We compare
these estimators in terms of their frequentist pointwise optimality in Besov
spaces for certain combinations of error and prior distributions.
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1 Introduction

Over the last decade, the nonparametric regression literature has been
dominated by nonlinear wavelet methods. These methods are based on the
idea of thresholding. This means that if an empirical wavelet coefficient is
sufficiently large in magnitude, i.e., if its magnitude exceeds a predetermined
threshold, then the corresponding term in the empirical wavelet expansion
is retained (or shrunk towards zero); otherwise it is omitted. The result-
ing term-by-term wavelet thresholding estimators possess optimal or near-
optimal convergence rates, and then are typically implemented through fast
algorithms, which makes them very appealing in practice (see, e.g., Donoho
and Johnstone, 1994, 1995, 1998; Donoho, Johnstone et al., 1995; Vidakovic,
1999; Abramovich et al., 2000; Antoniadis et al., 2001).
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Various Bayesian and empirical Bayes approaches for term-by-term wave-
let nonlinear shrinkage and wavelet thresholding estimators have been also
proposed. (A shrinkage rule shrinks empirical wavelet coefficients to zero,
whilst a thresholding rule shrinks empirical wavelet coefficients and sets all
the coefficients below a certain level to zero.) These approaches impose a
prior distribution on the wavelet coefficients of the unknown response func-
tion, which is designed to capture the sparseness of wavelet expansions com-
mon to most applications. The response function is then estimated by apply-
ing a suitable Bayes rule to the resulting posterior distribution of the wavelet
coefficients. Different choices of loss function lead to different Bayes rules
and hence to different, usually level-dependent, nonlinear wavelet shrinkage
and wavelet thresholding rules (see, e.g., Chipman et al., 1997; Abramovich
et al., 1998; Clyde et al., 1998; Vidakovic, 1998; Clyde and George, 2000;
Angelini and Sapatinas, 2004; Angelini and Vidakovic, 2004).

However, until recently, their frequentist optimality properties (in the
minimax sense) have not been studied. Abramovich et al. (2004) inves-
tigated optimality of posterior mean, posterior median and Bayes factor
estimators in terms of the global L2-loss function for the combination of
normal error and normal prior distributions. Pensky (2006) and Pensky
and Sapatinas (2007) studied optimality of posterior mean and Bayes fac-
tor estimators respectively with respect to the L2-loss function for a wide
variety of combination of error and prior distributions. Johnstone and Sil-
verman (2005) explored adaptive optimality of empirical Bayes posterior
mean and posterior median estimators with respect to a wide range of Lr-
loss functions (0 < r ≤ 2) for normal error and some heavy-tailed prior
distributions. The adaptive optimality of an empirical Bayes procedure for
the Bayes factor estimator with respect to the L2-loss function for normal
error and some heavy-tailed prior distributions was considered in Pensky
and Sapatinas (2007). Recently, Abramovich et al. (2007) explored the op-
timality of posterior mean, posterior median and Bayes factor estimators
in terms of the pointwise l2-loss function for the combination of normal er-
ror and normal prior distributions. They showed that under the considered
Bayesian hierarchical model, pointwise optimality is achieved up to a loga-
rithmic factor.

This paper continues the line of investigation of Abramovich et al. (2007).
However, our focus will be on investigating optimality of the Bayes factor
estimator with respect to the l2-loss function. The characteristic of this
estimator is that it leads to a hard thresholding rule, unlike the posterior
mean which leads to a nonlinear shrinkage rule and the posterior median
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which leads to a soft thresholding rule. Moreover, the Bayes factor estimator
is much easier to evaluate in the majority of cases unlike posterior mean or
posterior median estimators (see Bochkina and Sapatinas, 2005; Pensky,
2006). As in Pensky and Sapatinas (2007), who studied optimality of Bayes
factor estimators with respect to the L2-loss function, we put very mild
restrictions on the errors in the standard nonparametric regression model.
Furthermore, we do not assume the distribution of the errors to be known
and hence consider a range of error and prior distributions for the wavelet
coefficients. Moreover, as we demonstrate below, the use of a more flexible
Bayesian hierarchical model improves the pointwise convergence rates and,
under certain conditions, achieves pointwise optimality without the extra
logarithmic factor that appeared in the results of Abramovich et al. (2007).

The paper is organized as follows. In Section 2, we introduce Bayesian
models for the wavelet coefficients, extending the previously considered (in
the context of pointwise optimality) normal error and normal prior model
in Abramovich et al. (2007) to combinations of error and prior distributions
having exponential descents. In Section 3, we provide the formulae for the
threshold associated with the Bayes factor estimator for certain combina-
tions of error and prior distributions. In Section 4, we discuss assumptions
on the wavelet system, the error and prior distributions as well as their hy-
perparameters, and provide assertions about pointwise optimality of Bayes
factor estimators in Besov spaces for certain combinations of error and prior
distributions. Some concluding remarks are made in Section 5. Finally, in
the Appendix, we provide some auxiliary statements and the proofs of the
theoretical results stated in Section 4.

2 The Bayesian Model

Consider the following nonparametric regression model

Yi = f(ti) + Zi, i = 1, . . . , n, (2.1)

where ti = i/n, f is the unknown response function that is assumed to
belong to the space of square integrable functions on [0, 1], i.e., f ∈ L2[0, 1].
The Zi’s are assumed to be independent and identically distributed (iid)
random variables with E(Z1) = 0 and V(Z1) = σ2 < ∞. We also assume
that E(Z4

1 ) < ∞.
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Then, any f ∈ L2[0, 1] can be represented (in the L2-sense) by a wavelet
series, i.e.,

f(t) =
∑

k∈KL−1

θ̃kφLk(t) +
∞

∑

j=L

2j−1
∑

k=0

θ̃jkψjk(t),

where, for some (fixed) primary resolution level L ≥ 0,

φLk(t) = 2L/2φ(2Lt − k),

ψjk(t) = 2j/2ψ(2jt − k),

θ̃k =

∫ +∞

−∞
φLk(t)f(t)dt,

and θ̃jk =

∫ +∞

−∞
ψjk(t)f(t)dt.

Here, φ is the scaling function, ψ is a corresponding wavelet function, and
KL−1 is the set of indices for which the scaling function φLk is defined. (Note
that, for the standard wavelet transform with boundary corrections, KL−1 =
{0, 1, . . . , 2L−1}.) For suitable choices of φ and ψ, and appropriate boundary
treatments, the corresponding set of φLk’s and ψjk’s is an orthonormal set
in L2[0, 1] (see, e.g., Cohen et al., 1993; Johnstone and Silverman, 2004).

Application of the (boundary corrected) discrete wavelet transform (DWT)
to (2.1) yields

Uk = uk + εk, k ∈ KL−1,

Wjk = wjk + εjk, j = L, L + 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1,

where J = log2(n) and εk, εjk are uncorrelated random variables due to
the unitary property of the DWT. Denote θk = uk/

√
n and θjk = wjk/

√
n

and recall that θ̃k ≈ θk and θ̃jk ≈ θjk (see, e.g., Vidakovic, 1999). In the
Appendix, we provide a more detailed treatment of this relationship for
the boundary coiflets {φ, ψ}, a particular case of a wavelet system used to
establish the pointwise optimality results given in subsequent sections (see
Lemma A.4). In this case, there will be 2L−2(S−s−1) scaling coefficients at
the primary resolution level L, with KL−1 = {0, 1, . . . , s−1, S−1, S, . . . , 2L−
S, 2L − s, 2L − s+1, . . . , 2L −1} (see Johnstone and Silverman, 2004, p. 83).

We use the Bayesian framework to construct estimators θ̂k of θk (based
on Uk) and θ̂jk of θjk (based on Wjk) in order to estimate the unknown
response function f . Since the wavelet representations of a vast majority
of functions contain only a few non-negligible wavelet coefficients in their
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expansions, similar to the priors used previously in the Bayesian wavelet re-
gression literature, we place the following prior on the wavelet coefficient wjk

wjk ∼ πj,nτj,nh(τj,n·)+ (1−πj,n)δ(0), j = L, L+1, . . . , k = 0, 1, . . . , 2j − 1,
(2.2)

where 0 ≤ πj,n ≤ 1 for L ≤ j ≤ J − 1 and πj,n = 0 for j ≥ J , τj,n > 0, δ(0)
is a point mass at zero, and wjk are independent random variables. For the
prior model h, we consider not only the standard normal probability density
function (pdf) but also the double-exponential pdf with scale parameter
1. To complete the prior specification of f , we place noninformative priors
(e.g., the uniform density on R = (−∞,∞)) on the scaling coefficients uk,
k ∈ KL−1.

According to the prior model (2.2), wjk is either zero with probability
1 − πj,n, or with probability πj,n is distributed with the pdf h with scale
parameter τj,n. The proportion πj,n indicates whether a value is small or
large and can be used to ‘control’ the trade-off between sparse and dense
sequences. In what follows, we impose all conditions on the prior odds ratio

βj,n = (1 − πj,n)/πj,n.

Note that we allow dependence of πj,n (and hence of βj,n) not only on the
resolution level j but also on n. It is most natural since the proportion of
wavelet coefficients we are intending to keep depends not only on the function
f itself but also on the amount of data available. When n is large, the
estimators of wavelet coefficients become more reliable, and hence, smaller
wavelet coefficients can be distinguished from pure noise. Consequently, for
larger n, one can keep larger number of wavelet coefficients at a particular
resolution level j, which leads to a larger value of πj,n.

Consider the distribution of the errors εjk’s. It follows from (2.1) that

εjk ≈ n−1/22j/2
n

∑

i=1

ψ(2ji/n − k)Zi.

If the Zi’s are iid random variables with E(Z4
1 ) < ∞, it is not difficult to see

that the sequence {n−1/22j/2ψ(2ji/n−k)Zi} satisfies the Lyapunov condition
(see, e.g., Billingsley, 1995, p. 362) provided that 2j/n → 0 as n → ∞.
Hence, if the resolution level is reasonably small (j ≤ J0, where J −J0 → ∞
as n → ∞), the errors εjk are asymptotically N(0, σ2) distributed and thus
asymptotically independent. For a more detailed treatment of asymptotic
normality, the interested reader is referred to, e.g., Neumann and von Sachs
(1995).
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We assume that the distribution of the errors εjk is level-dependent

εjk ∼ ϕj(·), L ≤ j ≤ J − 1,

with the pdf ϕj having exponential descents, i.e.,

ϕj(x) = cj exp{−(|x|/σj)
β}, 0 < σ ≤ σj ≤ σ̄ < ∞, cj > 0, β > 0. (2.3)

(For the distribution of errors of the scaling coefficients, εk, we only assume
that it has a finite variance σ2

L−1.) As we shall show later, one does not need
the knowledge of the true distribution of the errors εjk, and can achieve
pointwise optimality with the choice (2.3) with either β=2 (normal) or β=1
(double-exponential). To keep the exposition simple, we do not consider
any heavier-tailed pdf’s (e.g., Student-t distributions) for both ϕj and h.
In Section 3, we provide some further explanation about the considered
choice of error and prior distributions, the choice being combinations of the
commonly used distributions of exponential descents, namely normal and
double-exponential.

In what follows, we conduct Bayesian inference for each wavelet coeffi-
cient separately. Denote

djk = Wjk/
√

n and νj =
√

nτj,n. (2.4)

Taking into account the relation between wjk and θjk and (2.2)–(2.4), we
derive that the posterior pdf of θjk given djk is of the form

p(θjk | djk) =

√
n ϕj(

√
n(θjk − djk)) νjh(νjθjk) + βj,n

√
n ϕj(

√
ndjk)δ(0)

∫ +∞
−∞

√
n ϕj(

√
n(x − djk))νjh(νjx)dx + βj,n

√
n ϕj(

√
ndjk)

.

The Bayes factor estimator of θjk is derived as follows (see Vidakovic, 1998):
after observing djk, we test the hypothesis

H0 : θjk = 0 versus H1 : θjk 6= 0.

If the hypothesis H0 is rejected, θjk is estimated by djk, otherwise θjk = 0,

so that the estimator θ̂jk is given by

θ̂jk = djk I

(

P(H1 | djk)

P(H0 | djk)
> 1

)

,

where I(A) denotes the indicator function of set A. Observe that the poste-
rior odds ratio can be rewritten as

P(H1 | djk)

P(H0 | djk)
=

ζj,n(djk)

βj,n
,
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where
ζj,n(djk) = Ij(djk)/

[√
n ϕj(

√
ndjk)

]

(2.5)

and

Ij(djk) =

∫ +∞

−∞

√
n ϕj [

√
n(x − djk)] νjh(νjx)dx. (2.6)

Rewriting θ̂jk in view of (2.5), we obtain

θ̂jk = djk I(ζj,n(djk) > βj,n). (2.7)

It is easy to check that ζj,n(djk)’s are even functions of djk. If, moreover,
the functions ζj,n(djk)’s are strictly increasing in djk for djk > 0, then

ζj,n(djk) > βj,n if and only if |djk| > tj,n = ζ−1
j,n(βj,n).

Hence, (2.7) is a hard thresholding rule with the threshold tj,n, i.e.,

θ̂jk = djk I(|djk| > tj,n). (2.8)

Indeed, in the majority of practical cases, it is true that (2.7) gives rise to a
hard thresholding rule as confirmed by the following statement.

Proposition 2.1. If ϕj is normal or double-exponential pdf and h is a
symmetric at zero pdf on R, then ζj,n(djk) is strictly increasing in djk for
djk > 0.

Note that under the considered error model, the noninformative priors for
the scaling coefficients uk’s result in their posterior distributions being proper
and their estimates being the corresponding empirical scaling coefficients Uk.
Thus θ̂k = Uk/

√
n, k ∈ KL−1. Since we assumed that πj,n = 0 if j ≥ J ,

k = 0, 1, . . . , 2j − 1, it implies that θ̂jk = 0 as j ≥ J , k = 0, 1, . . . , 2j − 1, and

therefore the estimator f̂ of f is of the form

f̂(t) =
∑

k∈KL−1

θ̂kφLk(t) +
J−1
∑

j=L

2j−1
∑

k=0

θ̂jkψjk(t). (2.9)

Coefficients θ̂jk are found using formula (2.7), where the function ζj,n(djk)
is defined by (2.5) and (2.6).

In the following section, we give the explicit formulae for the thresholds
of the proposed Bayes factor estimators for the combinations of error and
prior distributions considered in this paper.
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3 Thresholds

In practice, it may be useful to have the formulae for the threshold tjn of
the Bayes factor estimator (2.8), particularly if an empirical Bayes approach
is employed. These formulae may also be useful to the study of theoretical
properties of the Bayes factor estimator. In this section, we give the formulae
for the threshold tj,n under the specified choices of pdf’s ϕj and h.

1. (Normal ϕj , h) In this case, the threshold tj,n is given by

tj,n =
σj

√
2√

n

√

1 +
σ2

j ν
2
j

n



log





βj,n

√

n + ν2
j σ2

j

νjσj









1/2

× I







βj,n

√

n + ν2
j σ2

j

νjσj
> 1







(see Abramovich et al., 2004).

2. (Normal ϕj , double-exponential h) In this case, the threshold tj,n is
the non-negative solution of the equation

Φ
(

− σj√
n
(tj,n + ξj,n)

)

ϕ
(

− σj√
n
(tj,n + ξj,n)

) +
Φ

(

σj√
n
(tj,n − ξj,n)

)

ϕ
(

σj√
n
(tj,n − ξj,n)

) =
2βj,n

√
n

νjσj
,

where ξj,n =
νjσ2

j

n , and Φ(x) and ϕ(x) are respectively the distribution
function and pdf of the standard normal distribution. If the equation
has only a negative solution, then tj,n = 0.

3. (Double-exponential ϕj , h) In this case, the threshold tj,n is given by

tj,n = max



0,
log

(

1 + βj,n(q2
j,n − 1)

)

− log (qj,n)

νj (qj,n − 1)



 ,

where qj,n =
√

2n
σjνj

.

The last two formulae follow from the formula for the posterior odds ratio
in the considered cases given in Theorem 3.2 and Theorem 3.4 respectively
in Bochkina and Sapatinas (2005) (see Section A.4).
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4 Pointwise Optimality of Bayes Factor Estimators

To complete the construction of the estimator f̂ given in (2.9), we need to
specify the error model ϕj , the prior model h, and to choose the values of the
parameters νj and βj,n so that this estimator achieves the optimal pointwise
convergence rate over a variety of Besov spaces. This is the objective of this
section.

4.1. Assumptions. Now we formulate conditions on the wavelet system
{φ, ψ} and the pdf’s h and ϕj as well as on the parameters νj and βj,n.

(S1) Let φ and ψ be the boundary coiflets introduced in Johnstone and
Silverman (2004) possessing s continuous derivatives and s− 1 vanish-
ing moments (s ≥ 2), and based on orthonormal coiflets supported in
[−S + 1, S], S > s. Let also L ≥ log2(6S − 6).

The pdf’s ϕj and h considered here are defined on R, symmetric at
zero, positive-valued and unimodal, and have finite (uniformly bounded over
j in the case of ϕj) moments of every (polynomial) order. In addition,
we consider only those combinations of pdf’s which satisfy the following
condition

(A1) |ϕj(x)/h(x)| ≤ Ch,ϕ.

Note that the constant Ch,ϕ is assumed to be independent of j, which requires
some kind of uniformity for the pdf’s ϕj . The consequence of this restriction
is that the asymptotic expressions for the thresholds tj,n’s will depend on
the resolution level j rather than on the particular form of ϕj .

In the subsequent development, we consider the following combinations
of error ϕj and prior h

normal ϕj − normal h, (4.1)

normal ϕj − double-exponential h, (4.2)

double-exponential ϕj − double-exponential h. (4.3)

We do not consider the case double-exponential ϕj – normal h, since as-
sumption (A1) does not hold in this case.

Denote

j1 =
1

2(r − 1/p + 1/2)
log2(n). (4.4)
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We assume that the parameter νj is of the form

νj = Cν 2jm(j) , where m(j) =

{

m1, L ≤ j ≤ j1,
m2, j1 < j ≤ J − 1,

(4.5)

and choose βj,n such that

βj,n = (νj/
√

n)a(j) , where a(j) =

{

a1, L ≤ j ≤ j1,
a2, j1 < j ≤ J − 1.

(4.6)

(Note that we allow both hyperparameters m(j) and a(j) to vary with res-
olution level j.) We refer to L ≤ j ≤ j1 and j1 < j ≤ J − 1 as low and
high resolution levels, respectively.

The Bayesian model considered here does not include the Bayesian model
of Abramovich et al. (2007) as a particular case. This is because of the
fact that in our model, the parameter πj,n depends simultaneously on the
sample size n and the resolution level j: if πj,n is independent of n (i.e.,
a(j) = 0 for all j), then it is also independent of j, see definition (4.6).
However, unlike Abramovich et al. (2007), we allow for different behaviour
of the hyperparameters at low and high resolution levels. As we shall see
below, under some restrictions on our model, the considered Bayes factor
estimators achieve pointwise optimality without the extra logarithmic factor
that appeared in the results of Abramovich et al. (2007).

The choices of error and prior models given in (4.1), (4.2) and (4.3) are
motivated by the repeated use of these distributions in some practical appli-
cations, as well as the asymptotic behaviour of the risk when the pointwise
convergence rate is not optimal. For example, as shown in Pensky and Sap-
atinas (2007), who studied convergence rates of Bayes factor estimators with
respect to the L2-loss function, for distributions having exponential descent
the deviation from the optimal behaviour is a factor which grows as a power
of the logarithm of the sample size, whereas in the case of the distributions
having polynomial descent the deviation is much larger, with a factor that
is a power of the sample size. Note also that, when the prior model h has
faster descent at ±∞ than ϕj (i.e., when the assumption (A1) does not hold),
sub-optimal convergence rates arise with respect to the L2-loss function due
to the slow convergence of the bias when, e.g., the posterior mean is used
as an estimator (see Pensky, 2006). Since we expect to see these types of
behaviour for the convergence rates of Bayes factor estimators with respect
to the l2-loss function, in what follows, we restrict ourselves to study the
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pointwise optimality of Bayes factor estimators only for the combination of
error and prior models given in (4.1), (4.2) and (4.3).

4.2. Optimal pointwise convergence rate over Besov spaces. Let r > 0
and 1 ≤ p, q ≤ ∞. A function f belongs to Besov ball Br

p,q(A) of radius

A > 0 if and only if its scaling coefficients, θ̃k, and wavelet coefficients, θ̃jk,
satisfy the following condition





∑

k∈KL−1

|θ̃k|p




1/p

+







∞
∑

j=L

2j(r+1/2−1/p)q





2j−1
∑

k=0

|θ̃jk|p




q/p






1/q

≤ A, (4.7)

with respective sum(s) replaced by maximum if p = ∞ or q = ∞.

For any possible estimator f̃ of f based on n observations from model
(2.1), define the maximal pointwise risk, with respect to the l2-loss function,
over a function space F defined on the unit interval [0, 1], as

Rn(t0,F , f̃) = sup
f∈F

E

(

f̃(t0) − f(t0)
)2

for any fixed t0 ∈ (0, 1). Using the convexity of a Besov ball for 1 ≤ p, q ≤ ∞,
Lemma 3 in Donoho and Low (1992), and the optimal pointwise convergence
rates obtained by Cai (1993) in the Gaussian white noise model, it easily
follows that when the Zi’s in the model (2.1) are iid normal random variables
with E(Z1) = 0 and V(Z1) = σ2 < ∞, and when f belongs to a ball Br

p,q(A)
of radius A > 0 in the Besov space Br

p,q[0, 1], then, provided that r > 1/p
and 1 ≤ p, q ≤ ∞,

inf
f̃

Rn(t0, B
r
p,q(A), f̃) ³ n

− 2(r−1/p)
2(r−1/p)+1 as n → ∞, (4.8)

where the infimum is taken over all estimators f̃ of f . (Here, we write
g1(n) ³ g2(n) to denote 0 < liminf(g1(n)/g2(n)) ≤ limsup(g1(n)/g2(n)) < ∞
as n → ∞.)

Unlike the global maximal risk with respect to the L2-loss function (see
Donoho and Johnstone, 1998), the pointwise maximal risk with respect to the
l2-loss function depends not only on the smoothness index r, but also on the
parameter p. Moreover, it converges at a rate slower than the corresponding
global rate.
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Since for the majority of resolution levels (j ≤ J0 where J − J0 → ∞ as
n → ∞) the errors εjk’s asymptotically follow the normal distribution, we
expect that the pointwise convergence rate over these levels for an arbitrary
distribution of errors, satisfying the assumptions stated in Section 2, is not
faster than the optimal pointwise convergence rate under the normal errors.
As we shall see from the proof of Theorem 4.1, the pointwise convergence rate
over the resolution levels j ≤ j1 cannot be slower than the rate (4.8) as n →
∞ (since we can take J0 > j1). Therefore, we can expect that the pointwise
convergence rate for the considered choices of the error distributions ϕj to
be at least not slower than the pointwise convergence rate (4.8) as n → ∞,
which is optimal for normal errors.

4.3. Pointwise optimality of Bayes factor estimators in Besov spaces.
The following theorem states under which conditions the considered Bayes
factor estimators achieve the optimal pointwise convergence rate under the
l2-loss function.

Theorem 4.1. Let the assumptions in Section 4.1 hold, and let f ∈
Br

p,q(A) with 1 ≤ p, q ≤ ∞ and 1/p < r < s. Assume that the following
restrictions hold for m1 and m2

m1 < r − 1/p + 1/2, m2 > r − 1/p + 1/2, (4.9)

and that the following restrictions hold for a1, a2 and ϕj.

(1) a1 ≥ 1;

(2) if ϕj is double-exponential, we have a2 > 0;

(3) if ϕj is normal, we have a2 >
2(r − 1/p)

(r − 1/p + 1/2)(2m2 − 1)
.

Then, for any t0 ∈ (0, 1),

Rn(t0, B
r
p,q(A), f̂) = O

(

n
− 2(r−1/p)

2(r−1/p)+1

)

as n → ∞.

Remark 4.1. The assumption on the hyperparameter a2 for the double-
exponential ϕj is weaker than the corresponding one for the normal ϕj .
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Remark 4.2. For values of a1 or a2 violating the assumptions of Theo-
rem 4.1, the pointwise rate of convergence is no longer the exactly optimal
rate. Following the arguments in the proof of Theorem 4.1, one can show
that, for any t0 ∈ (0, 1),

Rn(t0, B
r
p,q(A), f̃) = O

(

n
− 2(r−1/p)

2(r−1/p)+1 (log n)∆
)

as n → ∞,

with (i) ∆ = 1/2 if a1 ≥ 1 and a2 = 2(r−1/p)
(r−1/p+1/2)(2m2−1) ,

(ii) ∆ = 1 if a1 < 1 and ϕj is normal, and

(iii) ∆ = 2 if a1 < 1 and ϕj is double-exponential.

As it is evident from Theorem 4.1, under some restrictions on our model,
the considered Bayes factor estimators achieve pointwise optimality without
the extra logarithmic factor that appeared in the results of Abramovich et
al. (2007). This result is due to the flexibility of our model with respect to
allowing the hyperparameters a(j) and m(j) to be different for low and high
resolution levels, and the dependence of the prior odds βj,n on the sample size
n. As one can see from the proof of Theorem 4.1 (see Appendix), the most
crucial assumption which allows to achieve pointwise optimality without a
logarithmic factor is the separation between low and high resolution levels
at the “boundary” level j1 defined by (4.4).

Remark 4.3. To make the prior model more flexible, we can divide the
low resolution levels into low {L, . . . , j0} and medium {j0 +1, . . . , j1} levels,
with j0 = κ log2(n) for arbitrary κ ∈ (0, 1/[2(r + 1/2 − 1/p)]), and consider
different values of hyperparameters (a0, m0) and (a1, m1). Then, to satisfy
Theorem 4.1, hyperparameters (a1, m1) should yield the assumptions of the
theorem, and the only additional restriction on the hyperparameters for the
low resolution levels is m0 < (2κ)−1. Thus, the restrictions on a1 and m1 are
crucial only for the levels adjacent to the “boundary” level j1 rather than
for all resolution levels coarser than j1.

5 Conclusions

We investigated the theoretical performance of Bayes factor estimators
at a single point in wavelet regression models with independent and iden-
tically distributed errors that are not necessarily normally distributed. We
compared these estimators in terms of their frequentist pointwise optimality
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(in the minimax sense) in Besov spaces for some combinations of error and
prior distributions. The characteristic of the Bayes factor estimator is that
it leads to a hard thresholding rule, unlike the recently studied posterior
mean and posterior median estimators, which lead to nonlinear shrinkage
and soft thresholding rules respectively. Moreover, the Bayes factor estima-
tor is much easier to evaluate in the majority of cases unlike posterior mean
or posterior median estimators.

We extended the normality assumption about the distribution of errors
in the standard nonparametric regression model, to include the double-
exponential distribution of errors in the wavelet domain. Furthermore, we
showed that optimality can be achieved for different error distributions im-
plying that it is not necessary to know the exact error distribution to achieve
pointwise optimality. Moreover, as we demonstrated, the use of a more flexi-
ble Bayesian hierarchical model, under certain conditions, achieved pointwise
optimality without the extra logarithmic factor that appeared in the results
of Abramovich et al. (2007).

We conclude this section with some comments on adaptation. Adaptive
estimation has become an important part of nonparametric function estima-
tion problems. Adaptation to unknown smoothness is essential because the
smoothness parameters of the underlying functions are unknown in virtu-
ally all practical situations. In the Gaussian white noise model, Cai (2003)
considered adaptation under pointwise risk over Besov spaces; sharp lower
bounds on the cost of adaptation were obtained (the minimum cost for adap-
tation is at least a logarithmic factor) and are shown to be attainable by a
(soft-thresholding) wavelet estimator. We have not considered adaptation
in our nonparametric regression setup, i.e., to construct a Bayes factor esti-
mator without the knowledge of the parameters of the Besov ball, attaining
the adaptive optimal pointwise convergence rate. This is beyond the scope
of this article but presents avenues for further research that hopefully will
be addressed in the future.

Appendix

Throughout the proof of Theorem 4.1, we use C to denote a generic
positive constant, not necessarily the same each time it is used, even within
a single equation. (Auxiliary results with proofs are given in the following
sections.)
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A.1. Proof of Theorem 4.1. Since the wavelet basis is orthonormal, for
any fixed t0 ∈ (0, 1),

Rn(t0, B
r
p,q(A), f̂) = E[f̂(t0)−f(t0)]

2

= E





∑

k∈KL−1

(θ̂k−θ̃k)φLk(t0) +
∞

∑

j=L

2j−1
∑

k=0

(θ̂jk−θ̃jk)ψjk(t0)





2

.

Now, we can decompose the risk above into the following terms

Rn(t0, B
r
p,q(A), f̂) = E





∑

k∈KL−1

(θ̂k−θk)φLk(t0) +
∑

k∈KL−1

(θk−θ̃k)φLk(t0)

+
J−1
∑

j=L

2j−1
∑

k=0

(θ̂jk−θjk)ψjk(t0) +
J−1
∑

j=L

2j−1
∑

k=0

(θjk−θ̃jk)ψjk(t0)

+
∞

∑

j=J

2j−1
∑

k=0

θ̃jkψjk(t0)





2

.

Now, we can apply the elementary inequality

E

(

n
∑

i=1

Xi

)2

≤
[

n
∑

i=1

(E|Xi|2)1/2

]2

to bound the risk

Rn(t0, B
r
p,q(A), f̂)

≤





∑

k∈KL−1(t0)

2L/2[E(θ̂k − θk)
2]1/2||φ||∞ +

∑

k∈KL−1(t0)

2L/2|θ̃k − θk| ||φ||∞

+
J−1
∑

j=L

∑

k∈Kj(t0)

2j/2[E(θ̂jk − θjk)
2]1/2||ψ||∞

+
J−1
∑

j=L

∑

k∈Kj(t0)

2j/2|θ̃jk − θjk| ||ψ||∞ +
∞

∑

j=J

∑

k∈Kj(t0)

2j/2|θ̃jk| ||ψ||∞





2

= [Q11 + Q12 + Q21 + Q22 + Q3]
2, (A.1)

where, for any function g, ||g||∞ = supx |g(x)| and Kj(t0) = {k : 0 ≤
k ≤ 2j − 1 and ψjk(t0) 6= 0}, for j ≥ J , with KL−1(t0) = {k : k ∈
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KL−1 and φLk(t0) 6= 0}. For the boundary coiflets stated in assumption
(S1), the cardinality of Kj(t0) is less than or equal to 2S − 1, j ≥ L − 1,
which is independent of j (see Johnstone and Silverman, 2004). Note also
that, by construction, φ and ψ are bounded functions, i.e., φ, ψ ∈ L∞[0, 1].

The term Q11 + Q12 in (A.1) is bounded by

C
∑

k∈KL−1

2L/2[V(θ̂k)]
1/2 + C

∑

k∈KL−1

2L/2|θ̃k − θk|

≤ Cn−1/2σL−1 + Cn−r

= O
(

n−1/2
)

+ o
(

n−(r−1/p)
)

= o

(

n
− (r−1/p)

2(r−1/p)+1

)

,

due to (A.15) and the fact that V(θ̂k) = O(n−1).

On the other hand, the term Q3 in (A.1) is bounded by

C
∞

∑

j=J

∑

k∈Kj(t0)

2j/2|θ̃jk| ≤ C
∞

∑

j=J

2j/22−j(r−1/p+1/2) = O
(

2−J(r−1/p)
)

= O
(

n−(r−1/p)
)

= o

(

n
− (r−1/p)

2(r−1/p)+1

)

,

due to (A.17). By Lemma A.4, the term Q22 in (A.1) is dominated by
C n−(r−1/p). Therefore, now we need to evaluate the contribution to
Rn(t0, B

r
p,q(A), f̂) made by term Q21 in (A.1)

Q21 = ||ψ||∞
J−1
∑

j=L

∑

k∈Kj(t0)

2j/2[E(θ̂jk − θjk)
2]1/2 =: ||ψ||∞(R1 + R2), (A.2)

with terms

R1 =

j1
∑

j=L

∑

k∈Kj(t0)

2j/2[E(θ̂jk − θjk)
2]1/2, (A.3)

R2 =
J−1
∑

j=j1+1

∑

k∈Kj(t0)

2j/2[E(θ̂jk − θjk)
2]1/2,

corresponding to low and high resolution levels, respectively. Let us now
construct an asymptotic upper bound for each of the terms.
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Low resolution levels. We can use Lemma A.3 to bound R1 from above

R1 ≤
√

2

j1
∑

j=L

∑

k∈Kj(t0)

2j/2 min(tj,n, |θjk|) + O(2j1/2n−1/2), (A.4)

since κ2,j =
∫ +∞
−∞ x2ϕj(x)dx = cjσ

3
j

∫ +∞
−∞ z2e−|z|βdz ≤ C, due to σj being

bounded (see (2.3)). The last term achieves the optimal pointwise conver-
gence rate: n−1/22j1/2 = n−(r−1/p)/(2(r−1/p)+1), so we need to study the
behaviour of the first term.

To bound tj,n from above, we apply the last statement of Lemma A.2.
To use Lemma A.2, we need to check the assumption that νj/

√
n → 0, as

n → ∞. Note that,

νj/
√

n = Cν2
jm1n−1/2 ≤ Cν2

j1m1n−1/2 = Cνn
(m1/(r−1/p+1/2)−1)/2 → 0

as n → ∞, since j ≤ j1 and, according to assumption (4.9), m1/(r + 1/2 −
1/p)−1 < 0. Therefore, the assumption of the last statement of Lemma A.2
is satisfied for the low resolution levels.

According to Lemma A.2, for the low resolution levels with a1 ≥ 1,
the threshold tj,n is bounded by Cn−1/2, therefore the first term of R1 is
bounded by

√
2

j1
∑

j=L

∑

k∈Kj(t0)

2j/2 min(tj,n, |θjk|)

≤ C

j1
∑

j=L

min
(

2j/2n−1/2, 2j/22−j(r+1/2−1/p)
)

= O
(

min
(

n−1/22j1/2, 2−L(r−1/p)
))

= O
(

n−(r−1/p)/(2(r−1/p)+1)
)

.

High resolution levels. For high resolution levels, first note that

E(θ̂jk − θjk)
2 = E(djk − θjk)

2
I(|djk| > tj,n) + θ2

jkP(|djk| ≤ tj,n)

≤ E(djk − θjk)
2
I(|djk| > tj,n) + θ2

jk.
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Therefore,

R2 ≤
J−1
∑

j=j1+1

∑

k∈Kj(t0)

2j/2|θjk|

+
J−1
∑

j=j1+1

∑

k∈Kj(t0)

2j/2[E(djk − θjk)
2
I(|djk| > tj,n)]1/2.

According to Lemma A.4, the first term is bounded by

C
J−1
∑

j=j1+1

2j/22−j(r−1/p+1/2) = C
J−1
∑

j=j1+1

2−j(r−1/p) = O
(

n−(r−1/p)/(2(r−1/p)+1)
)

.

Now we consider the second term separately for normal and double-
exponential pdf’s ϕj . Note that at high resolutions levels j1 +1 ≤ j ≤ J −1,
due to assumption (4.9), we get

νj/
√

n = Cν2
jm2n−1/2 > Cν2

j1m2n−1/2 = Cνn
m2/2(r−1/p+1/2)−1/2 → ∞.

If ϕj is the double-exponential pdf and a2 > 0, then βj,n =
(

νj√
n

)a2

→ ∞,

and thus, by Lemma A.1, we have

ζj,n(x) =

∫ +∞
−∞

√
nϕj(

√
n(x − y))νjh(νjy)dy

√
nϕj(

√
nx)

=

√
nϕj(

√
nx)(1 + o(1))√

nϕj(
√

nx)
= 1 + o(1) < βj,n,

implying that I(|djk| > tj,n) = I(ζj,n(djk) > βj,n) = 0. Note that the
assumption of Lemma A.1 that the parameter λj of the double exponential
distribution is bounded above uniformly over j ≥ L holds here since we
assumed in Section 2 that the variance σ2

j = 2/λ2
j of ϕj is uniformly bounded

from below (see (2.3)). Hence, in this case, the second term in the upper
bound for R2 is zero, and the Bayes factor estimator achieves the optimal
pointwise rate of convergence.

Now, if ϕj is the normal pdf, then

E(djk−θjk)
2
I(|djk|>tj,n)=

√
n

∫

|x|>tj,n

(x−θjk)
2ϕj(

√
n(x−θjk))dx (A.5)

= n−1

∫

|w+
√

nθjk|>
√

ntj,n

w2ϕj(w)dw.
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For j ≥ j1 + 1, by Lemma A.4,

√
n|θjk| ≤ C

√
n2−j(r−1/p+1/2) ≤ C

√
n2−j1(r−1/p+1/2) = O(1). (A.6)

If
√

ntj,n ≤ C, then the integral above is a constant, implying that (A.5) is
bounded by Cn−1, and the corresponding sum is bounded by

Cn−1/2
J−1
∑

j=j1+1

∑

k∈Kj(t0)

2j/2 = O
(

n−1/22J/2
)

= O(1),

i.e., it does not tend to zero, and thus it is slower than the optimal pointwise
convergence rate. To achieve pointwise optimality, we consider only the cases
where

√
ntj,n → ∞, which is achieved if a2 > 0, i.e.,

√
ntj,n ≥ σj

√

log(βj,n) = σj

√

a2 log(νj/
√

n) → ∞,

since νj/
√

n → ∞ for j1 + 1 ≤ j ≤ J − 1. For
√

ntj,n → ∞, |θjk|/tj,n → 0
due to (A.6) for j ≥ j1 + 1. Therefore we can write

n−1

∫

|w+
√

nθjk|>
√

ntj,n

w2ϕj(w)dw ≤ Cn−1(tj,n
√

n)3ϕj(tj,n
√

n),

which, according to the first statement of Lemma A.2 and due to the de-
creasing nature of x3ϕj(x) for large positive x, is bounded by

Cn−1(tj,n
√

n)3ϕj(tj,n
√

n)

≤ Cn−1 [log(βj,n)]3/2 cj exp

{

−
[

(

log(βj,n)
)1/2

]2
}

= Cn−1
[

a2 log(Cν2
jm2/

√
n)

]3/2
β−1

j,n ≤ C(log n)3/2n−1+a2/22−a2m2j .

Now, by substituting this bound into the sum R2, we get

R2 ≤ O
(

n−(r−1/p)/(2(r−1/p)+1)
)

+Cn−1/2+a2/4(log n)3/4
J−1
∑

j=j1+1

2j(1−m2a2)/2
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= O
(

n−(r−1/p)/(2(r−1/p)+1)
)

+











C(log n)3/4 n
−1/2+a2/4+

1−m2a2
4(r−1/p+1/2) , if 1 − m2a2 < 0,

C(log n)1+3/4n−1/2+a2/4, if 1 − m2a2 = 0,

C(log n)3/4 na2/4−m2a2/2, if 1 − m2a2 > 0,

= O
(

n−(r−1/p)/(2(r−1/p)+1)
)

+















C(log n)3/4 n
−1/2+ 1

4(r−1/p)+2
+

a2
4

(

1− m2
(r−1/p+1/2)

)

, if a2 > 1/m2,

C(log n)1+3/4n−1/2+1/4m2 , if a2 = 1/m2,

C(log n)3/4 na2(1/2−m2)/2, if a2 < 1/m2.

For a2 > 1/m2, 1 − m2/(r − 1/p + 1/2) is negative since m2 > r − 1/p
+1/2 by assumption (4.9), and thus the rate O(n−(r−1/p)/(2(r−1/p)+1)) is
achieved. For a2 = 1/m2, the convergence rate is also faster than the rate
O(n−(r−1/p)/(2(r−1/p)+1)), since −1 + 1/2m2 < −1 + 1/(2(r − 1/p) + 1).

For a2 <1/m2, the convergence rate is faster than O(n−(r−1/p)/(2(r−1/p)+1))
if a2(1/2 − m2) < −1 + 1/[2(r − 1/p) + 1], i.e., if a2 > (1 − 1/(2(r − 1/p) +
1))/(m2 − 1/2) since 1/2 − m2 < 1/2 − (r − 1/p + 1/2) = −(r − 1/p) < 0.
These conditions on a2 are compatible if and only if (1 − 1/(2(r − 1/p) +
1))/(m2−1/2) < 1/m2, which holds under the assumptions of Theorem 4.1,
since

1 − 1/(2(r − 1/p) + 1)

m2 − 1/2
− 1

m2
=

m2 − m2/(2(r − 1/p) + 1) − m2 + 1/2

m2(m2 − 1/2)

=
r − 1/p + 1/2 − m2

m2(2m2 − 1)(r − 1/p + 1/2)
< 0.

Therefore, by combining all the cases, we have that R2 achieves the rate
O(n−(r−1/p)/(2(r−1/p)+1)) if a2 > r−1/p

(m2−1/2)(r−1/p+1/2) .

Combining all the terms, we have that Q11 + Q12 + Q21 + Q22 + Q3 =
O(n−(r−1/p)/(2(r−1/p)+1)), and, thus, using (A.1), the optimal pointwise con-
vergence rate O(n−2(r−1/p)/(2(r−1/p)+1)) is achieved. This completes the
proof. 2

A.2. The Bayes factor estimator as a thresholding rule. Proposition 2.1
is part of Lemma 1 in Pensky and Sapatinas (2007). For completeness, we
provide below a sketch of the proof for this result.
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Proof of Proposition 2.1. For the sake of convenience, we drop
the indices in ζj,n(djk), Ij(djk), νj and ϕj . Denote F (x) = log(ζ(x)) and
observe that

F ′(x) =
n

I(x)

∫ +∞

−∞

[

ϕ′(
√

n(x − θ))

ϕ(
√

n(x − θ))
− ϕ′(

√
nx)

ϕ(
√

nx)

]

ϕ(
√

n(x − θ))νh(νθ)dθ.

(A.7)
If ϕ is the N(0, σ2) pdf, then the expression in the square brackets in (A.7)
is equal to

√
nθ/σ2, so that the integral is positive for x > 0. Hence,

both F (x) and ζ(x) are strictly increasing for x > 0. Similarly, if ϕ(x) =
(2σ)−1 exp(−|x|/σ), then the expression in square brackets in (A.7) is equal
to 2I(θ ≥ x)/σ, and F ′(x) > 0. This completes the proof. 2

A.3. Asymptotics of the thresholds. To prove Theorem 4.1, we used the
following lemmas. Lemmas A.1 and A.2 can be established by working along
the same lines of the proofs in Lemma A.2 in Pensky (2006) and Lemmas 2,
4 and 5 in Pensky and Sapatinas (2007). However, to keep the exposition
self-contained, we provide below a sketch of proofs for these results.

Lemma A.1. The following statements hold.

(i) If ϕj is the double-exponential pdf with parameter λj, λj ≤ λ̄ < ∞ for
all j ≥ L, and h is a pdf on R which is symmetric at zero with finite
moments of every (polynomial) order, then

Ij(x) =
√

n ϕj(
√

nx)
[

1 + O
(

nν−2
j

)]

as
√

n/νj → 0, (A.8)

uniformly over all j ≥ L and all x ∈ R.

(ii) If h is the double-exponential pdf and ϕj is a symmetric at zero pdf
on R with uniformly (over j) bounded moments of every (polynomial)
order, then, for any x ∈ R and for any j ≥ L,

Ij(x) ≥ νjh(νjx)

[

1 + σ2
j

ν2
j

2n

]

as νj/
√

n → 0. (A.9)
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Proof of Lemma A.1. (i) Using a Taylor series expansion for arbi-
trary x and a change of variables, we obtain

Ij(x) =

∫ +∞

−∞

√
nϕj

(√
nx −

√
n

νj
y

)

h(y)dy

=
√

n

∫ +∞

−∞

[

ϕj(
√

nx) −
√

n

νj
yϕ′

j(
√

nx) +
n

2ν2
j

y2ϕ′′
j (
√

nx)

− n
√

n

6ν3
j

y3ϕ′′′
j (

√
nx) + · · ·

]

h(y)dy

=
√

nϕj(
√

nx)

[

1 + λ2
j

n

2ν2
j

∫ +∞

−∞
y2h(y)dy + o

(

n

ν2
j

)]

, (A.10)

since h is a symmetric at zero pdf on R and ϕ′′
j (x) = λ2

jϕj(x). Note that
since ϕj is double exponential, the expression in brackets in the last equation
does not depend on x. Since we assumed that λj is bounded from above,
(A.8) holds uniformly for all j ≥ L, thus completing the proof of the first
statement.

(ii) Similarly to the above case, we can write the following

Ij(x) = νjh(νjx)

[

1 +
ν2

j

2n

∫ +∞

−∞
y2ϕj(y)dy + o

(

ν2
j

n

)]

,

since the double-exponential pdf h has a fixed parameter (equivalent to λj in
(i)). Since ϕj has uniformly (over j) bounded moments of every (polynomial)
order, its variance is finite and all the elements in the remainder of the
above expansion are non-negative and finite. Hence, we obtain the second
statement of Lemma 1, and thus the proof is complete. 2

Lemma A.2. The following statements hold

(i) If ϕj is the pdf of the form (2.3), then

√
n tj,n ≥ σj max

{

[

log

(

ϕj(0)βj,n
√

n

h(0)νj

)]1/β

, [log (βj,n)]1/β

}

.

(ii) Let the assumption (A1) hold. If ϕj is the pdf of the form (2.3) with
β = 1 or 2 (i.e., ϕj is normal or double-exponential) and νj/

√
n → 0,

then

√
n tj,n ≤ σj

[

2 log
(

C1βj,n
√

n
νj

)]1/β
I(a(j) ≤ 1), (A.11)
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for some constant C1 > 0.

Note that since the threshold tj,n is non-negative, the last statement of
Lemma A.2 implies that tj,n = 0 for a(j) > 1.

Proof of Lemma A.2. (i) Note that the symmetry and unimodality
of ϕj implies that ϕj(x) ≤ ϕj(0) for any x. Therefore, the equation for the
threshold tj,n (see expression above (2.8)) can be rewritten as follows

βj,n = ζj,n(tj,n) =

∫ +∞
−∞

√
n ϕj(

√
n(tj,n − x))νjh(νjx)dx

√
nϕj(

√
ntj,n)

≤
∫ +∞
−∞

√
n ϕj(0)νjh(νjx)dx

√
n ϕj(

√
ntj,n)

=
ϕj(0)

ϕj(
√

ntj,n)
.

Similarly, by symmetry and unimodality of h, we have

βj,n = ζj,n(tj,n) =

∫ +∞
−∞

√
n ϕj(

√
nx)νjh(νj(tj,n − x))dx

√
n ϕj(

√
ntj,n)

≤
∫ +∞
−∞

√
n ϕj(

√
nx)νjh(0)dx

√
n ϕj(

√
ntj,n)

=
νjh(0)√

n ϕj(
√

ntj,n)
.

Rearranging the terms, we have

ϕj(
√

ntj,n) ≤ min
{

β−1
j,nϕj(0), β−1

j,nh(0)νj/
√

n
}

. (A.12)

Substituting the power exponential function ϕj given in (2.3) into (A.12),
we obtain the first statement.

(ii) When h and ϕj are the standard normal pdfs, then (see Abramovich
et al., 2004)

√
n tj,n = σj

√
2

√

1 +
σ2

j ν
2
j

n



log





βj,n

√

n + ν2
j σ2

j

νjσj









1/2

× I





βj,n

√

n + ν2
j σ2

j

νjσj
> 1



 , (A.13)

so that (A.11) is valid. On the other hand, if h is double-exponential, then
by Lemma A.1 (ii) as νj/

√
n → 0 and for any x,

ζj,n(x) ≥ νj√
n

h(νjx)

ϕj(
√

nx)
(1 + C̃j) ≥

νj√
n

h(νjx)

ϕj(
√

nx)
,
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since C̃j > 0. Taking into account assumption (A1), we derive that

ζj,n(x) ≥ C−1
h,ϕ

νj√
n

ϕj(νjx)

ϕj(
√

nx)
≥ C1

νj√
n

exp

{[

1 −
(

νj√
n

)β
]

∣

∣

∣

∣

x
√

n

σj

∣

∣

∣

∣

β
}

,

for some constant C1 > 0 independent of j and n, where β = 1 (ϕj – double-
exponential) or β = 2 (ϕj – normal). Note that since νj/

√
n → 0, we have

1 − νj/
√

n ≥ 1/2, so that

ζj,n(x)
√

n/νj ≥ C1 exp

{

1

2

∣

∣

∣

∣

x
√

n

σj

∣

∣

∣

∣

β
}

.

Now take x = tj,n. Since the right hand side is bounded from below by
C1 > 0, if βj,n

√
n/νj = (νj/

√
n)a(j)−1 → 0 (i.e., a(j) > 1), then tj,n = 0. If

a(j) ≤ 1, and thus βj,n
√

n/νj = 1 (a(j) = 1) or βj,n
√

n/νj → ∞ (a(j) < 1),
then tj,n is of the form (A.11). This proves the second statement. 2

Lemma A.3. Assume that djk ∼ √
nϕj(

√
n(x−θjk)) and θ̂jk = djkI(|djk|

> tj,n) for some tj,n ≥ 0. Then, for any m > 0 such that κm,j < ∞, the
following inequality holds

E|θ̂jk − θjk|m ≤ γm

(

min
{

tmj,n, |θjk|m
}

+ κm,jn
−m/2

)

, (A.14)

where κm,j =
∫ +∞
−∞ |x|mϕj(x)dx, and γm = 1 if 0 < m ≤ 1 and γm = 2m−1

if m > 1.

Proof of Lemma A.3. By definition of θ̂jk, we have

E|θ̂jk − θjk|m = E|djk − θjk|mI(|djk| > tj,n) + |θjk|mP(|djk| ≤ tj,n)

≤
∫

R

√
n|x|mϕj(x

√
n)dx + |θjk|m = n−m/2κm,j + |θjk|m.

On the other hand, by first representing θ̂jk−θjk as a sum of θ̂jk−djk and

djk−θjk, and then applying the definition of θ̂jk together with the elementary
inequality (a + b)m ≤ γm(am + bm) for a, b ≥ 0, γm = 1 if 0 < m ≤ 1 and
γm = 2m−1 if m > 1, we get

E|θ̂jk − θjk|m ≤ γm

{

E|θ̂jk − djk|m + E|djk − θjk|m
}

= γm

{

E|djk|mI(|djk| ≤ tj,n) + κm,jn
−m/2

}

≤ γm

{

tmj,n + κm,jn
−m/2

}

.
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Combining these two inequalities together, we obtain (A.14). This completes
the proof. 2

Lemma A.4. Let {φ, ψ, s, L} be as in assumption (S1), and let 1 ≤ p, q ≤
∞ and 1/p < r < s. If f ∈ Br

p,q(A), then for some constants A0, A1,
A2, A3 > 0, we have

∑

k∈KL−1(t0)

|θ̃k − θk| ≤ A0 n−r, (A.15)

J−1
∑

j=L

∑

k∈Kj(t0)

2j/2|θ̃jk − θjk| ≤ A1 n−(r−1/p), (A.16)

and, for L ≤ j ≤ J − 1,

∑

k∈Kj(t0)

|θ̃jk| ≤ A2 2−j(r−1/p+1/2), (A.17)

∑

k∈Kj(t0)

|θjk| ≤ A3 2−j(r−1/p+1/2), (A.18)

where Kj(t0) = {k : 0 ≤ k ≤ 2j − 1 and ψjk(t0) 6= 0}, L ≤ j ≤ J − 1, and
KL−1(t0) = {k : k ∈ KL−1 and φLk(t0) 6= 0}.

Proof of Lemma A.4. First, we consider the case q = ∞. Under the
conditions of the lemma, using the equivalence between the Besov norm of
the function f on [0, 1] and the corresponding sequence norm of its wavelet
coefficients, and Proposition 5 of Johnstone and Silverman (2004), we obtain

2j(r−1/p+1/2)





2j−1
∑

k=0

|θ̃jk−θjk|p




1/p

≤ A C(φ, ψ, p, r)2−r(J−j), L−1 ≤ j ≤ J−1,

which implies that

2j−1
∑

k=0

|θ̃jk − θjk|p ≤
(

A C(φ, ψ, p, r)2−j(1/2−1/p)n−r
)p

, L − 1 ≤ j ≤ J − 1.

(Here, we abused notation and j = L − 1 refers to replacing ψL−1,k by φLk,
so that θ̃L−1,k = θ̃k and θL−1,k = θk.) Due to the embedding properties of
Besov spaces (i.e., Br

p,q(A) ⊂ Br
p,∞(A), for 1 ≤ q ≤ ∞), these bounds also

hold for all 1 ≤ q ≤ ∞.
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Applying Hölder’s inequality, we obtain

∑

k∈Kj(t0)

|θ̃jk − θjk| ≤





2j−1
∑

k=0

|θ̃jk − θjk|p




1/p

K
1−1/p
j

≤ A C(φ, ψ, p, r)K
1−1/p
j 2−j(1/2−1/p)n−r,

where Kj = Card(Kj(t0)) is the cardinality of Kj(t0) (see also the discussion
after (A.1)). For j ≥ L, i.e., for the wavelet functions, cardinality is the same:
Kj = K, and for j = L − 1, i.e., for the scaling function, the cardinality
is different. Taking j = L − 1, i.e., considering the scaling coefficients, the
inequality above implies that

∑

k∈KL−1(t0)

|θ̃k − θk| ≤ A0n
−r.

Thus we obtain the first statement.

On the other hand, if we sum the corresponding terms over j with factor
2j/2, we obtain the following

J−1
∑

j=L

∑

k∈Kj(t0)

2j/2|θ̃jk − θjk| ≤ C2n
−r

J−1
∑

j=L

2j/22−j(1/2−1/p) = A1n
−rn1/p.

Hence the second statement is proved.

To prove the third statement of the lemma, we use again the above men-
tioned embedding properties of Besov spaces, the equivalence between the
Besov norm of the function f on [0, 1] and the corresponding sequence norm
of its wavelet coefficients. Using equation (20) of Johnstone and Silverman
(2004), we have

∑

k∈Kj(t0)

|θ̃jk| ≤ K1−1/p





2j−1
∑

k=0

|θ̃jk|p




1/p

≤ AK1−1/p 2−j(r−1/p+1/2)

= A22
−j(r−1/p+1/2), L ≤ j ≤ J−1.

This completes the proof of the third statement.
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To prove the last statement of the lemma, note that from the above
we get

∑

k∈Kj(t0)

|θjk| ≤
∑

k∈Kj(t0)

|θ̃jk − θjk| +
∑

k∈Kj(t0)

|θ̃jk|

≤ AC(φ, ψ, p, r)K1−1/p2−j(1/2−1/p)n−r + A22
−j(r−1/p+1/2)

≤ A32
−j(r−1/p+1/2), L ≤ j ≤ J − 1.

Thus the last statement is proved. 2

A.4. Derivation of thresholds. We derive below the thresholds for the
Bayes factor estimator stated in Section 3 in the two latter cases.

2. (Normal ϕj – double-exponential h). The posterior odds in this case
are given in Theorem 3.2 in Bochkina and Sapatinas (2005) with a = νj and
σ2 = σ2

j /n. Specifically,

ζj,n(y)

βj,n
= νjσjn

−1/2e−(νjσj)
2/2n ×

[

eνjyΦ(−y
√

n/σj − νjσj/
√

n)

2βj,nϕ(y
√

n/σj)

+
e−νjyΦ(y

√
n/σj − νjσj/

√
n)

2βj,nϕ(y
√

n/σj)

]

=
νjσj

2βj,n
√

n

[

Φ(−y
√

n/σj − νjσj/
√

n)

ϕ(−y
√

n/σj − νjσj/
√

n)
+

Φ(y
√

n/σj − νjσj/
√

n)

ϕ(y
√

n/σj − νjσj/
√

n)

]

,

with ϕ being the pdf of the standard normal distribution. The threshold
tj,n is the non-negative solution of equation ζj,n(y)/βj,n = 1, which can be
rewritten as

Φ(−tj,n
√

n/σj − νjσj/
√

n)

ϕ(−tj,n
√

n/σj − νjσj/
√

n)
+

Φ(tj,n
√

n/σj − νjσj/
√

n)

ϕ(tj,n
√

n/σj − νjσj/
√

n)
=

2βj,n
√

n

νjσj
.

Note that if ζj,n(y)/βj,n > 1 for all y > 0 then, according to (2.7), θ̂jk = 0
for any observed y which corresponds to the case tj,n = 0.

3. (Double-exponential ϕj , h). The posterior odds in this case are
given in Theorem 3.4 in Bochkina and Sapatinas (2005) with ν = νj and
µ =

√
2n/σj . Specifically,

ζj,n(y)

βj,n
= β−1

j,n

{

1 −
√

2n(σjνj)
−1e−(νj−

√
2n/σj)y

1 − 2n(σjνj)−2

}

.
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Denote qj,n =
√

2n
σjνj

. Thus, the threshold tj,n is the non-negative solution of

1 = β−1
j,n

{

1 − qj,ne−νj(1−qj,n)tj,n

1 − q2
j,n

}

,

implying that

tj,n =
1

νj(qj,n − 1)
log

{

1

qj,n

[

1 + βj,n

(

q2
j,n − 1

)]

}

.

If this value is negative, then the value of the threshold is zero.
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