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Abstract. We consider random functions defined in terms of members of an overcomplete
wavelet dictionary. The function is modelled as a sum of wavelet components at arbitrary po-
sitions and scales where the locations of the wavelet components and the magnitudes of their
coefficients are chosen with respect to a marked Poisson process model. The relationships
between the parameters of the model and the parameters of those Besov spaces within which
realizations will fall are investigated. The models allow functions with specified regularity
properties to be generated. They can potentially be used as priors in a Bayesian approach
to curve estimation, extending current standard wavelet methods to be free from the dyadic
positions and scales of the basis functions.

1. Introduction

1.1. Background

Wavelets have recently been of great interest in various statistical areas such as
nonparametric regression, density estimation, inverse problems, change point prob-
lems, and time series analysis. Surveys of wavelet applications in these and oth-
er related statistical areas can be found, for example, in Ogden (1997), Härdle,
Kerkyacharian, Picard & Tsybakov (1998), Antoniadis (1999), Silverman (1999),
Vidakovic (1999) and Abramovich, Bailey & Sapatinas (2000). An interesting de-
velopment, motivated by Bayesian approaches to curve estimation, is the modelling
of a function as an orthonormal wavelet expansion with random coefficients. Ab-
ramovich, Sapatinas & Silverman (1998) considered such models in detail, and
studied the Besov regularity properties of the functions produced by the models.
They consider the application of the models in a Bayesian context, and also give
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references to related work by other authors; the results obtained have generally
been very encouraging.

1.2. Abandoning dyadic constraints

Orthonormal wavelet bases have the disadvantage that the positions and the scales
of the basis functions are subject to dyadic constraints. In order to avoid these
constraints, this paper considers random functions defined by expansions in a con-
tinuous wavelet dictionary, where functions are built up from wavelet components
that may have arbitrary positions and scales. The models provide a constructive
method of simulating functions with varying degrees of regularity and spatial ho-
mogeneity, and our results give the explicit regularity properties of the functions
thus produced, in terms of Besov spaces.

Some users might wish to be able to simulate or construct functions with specif-
ic Besov parameters in mind. Others might wish to use the models to gain intuition
about the meaning of the Besov parameters, by generating functions that lie just
inside and just outside particular Besov spaces. The models lay open the possibility
of building a Bayesian curve estimation approach with the advantages of standard
wavelet methods, in that inhomogeneous functions can be modelled under the prior,
but without the artificial dyadic constraints on the positions and scales of the basis
functions. The improvement to standard wavelet thresholding methods obtained
by moving from the discrete (decimated) wavelet transform to the non-decimated
wavelet transform (see, for example, Coifman & Donoho, 1995; Nason & Silver-
man, 1995; Johnstone & Silverman, 1997) suggests that a Bayesian approach freed
from dyadic positions and scales may result in yet better wavelet shrinkage estima-
tors. The algorithmic details, probably involving modern Bayesian computational
methods, have yet to be worked out in detail, and this is an interesting topic for
further research.

1.3. Models in continuous wavelet dictionaries

For simplicity of exposition we work with functions periodic on [0,1]. Suppose
thatφ andψ are the compact-support scaling function and mother wavelet respec-
tively that correspond to anr-regular multiresolution analysis, for some integer
r > 0 (see, for example, Daubechies, 1992). Takea0 = 2j0, for some integerj0,
such thata0 is at least twice the length of the support ofψ . For indicesλ = (a, b)

with a > a0 and 0< b < 1 we defineψλ(t) = a1/2ψ(a(t − b)) wrappingψλ
periodically if necessary.

We model our function as the sum of a coarse-scale functionf0 and a fine-scale
functionf . The functionf0 is given by

f0(t) =
M∑
i=1

ηiφλi (t) (1)

for some finite set of indices(ai, bi), i = 1,2, . . . ,M, with ai ≤ a0, and some
real numbersηi . Hereφλ has an analogous definition toψλ. The functionf is
generated by a stochastic mechanism and is given by
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f (t) =
∑
λ∈S

ωλψλ(t) . (2)

The locations of the wavelet components and the magnitudes of their coefficients
are chosen with respect to a marked Poisson process model. Specifically, the set
3 of indicesλ = (a, b) is sampled from a Poisson processS on [a0,∞) × [0,1]
with intensityµ(λ). Conditional onS, the wavelet coefficientsωλ are assumed to
be independent normal random variables

ωλ | S ∼ N(0, τ2(λ)) . (3)

It is assumed that the varianceτ2(λ) and the intensityµ(λ) depend on the scalea
only, and are of the form

τ2
a ∝ a−δ and µa ∝ a−ζ , a ≥ 1 , (4)

whereδ, ζ ≥ 0, with δ + ζ > 0.
The stochastic wavelet expansions we consider allow intuitive notions about the

functions genuinely to be modelled. The parameterζ controls the relative rarity of
fine-scale wavelet components in the function, while the parameterδ controls the
size of the contribution of these components when they appear. For example, ifζ is
small andδ is large, there will be a considerable number of fine-scale components
but these will each have fairly low contribution, so one might expect the functions
to be reasonably smooth and homogeneous. On the other hand, ifζ is large andδ
is small, there will be occasional large fine-scale effects in the functions.

In the remainder of the paper, we investigate the regularity properties of the
random functions generated by the proposed model. We reveal relations between
the parametersδ and ζ of the model and the parameters of those Besov spaces
within which realizations from the model will fall.

2. Regularity properties of the random functions

An important tool in our argument will be the equivalence between the Besov norm
of the functionf on [0,1] and the corresponding sequence norm of its orthonormal
wavelet coefficients. For details of Besov spaces see, for example, Meyer (1992,
Chapter 6), Ḧardle, Kerkyacharian, Picard & Tsybakov (1998, Chapter 9).

For j ≥ j0, definewj to be the vector of orthonormal wavelet coefficients
wjk = 〈f,ψjk〉, 0 ≤ k ≤ 2j − 1. Define also the vectoruj0 to have elements
uj0k = 〈f, φj0k〉, 0 ≤ k ≤ 2j0 − 1. Let s′ = s + 1/2 − 1/p and define the norm
of the arrayw by

||w||bsp,q =



∞∑
j=j0

2js
′q ||wj ||qp




1/q

, 1 ≤ q < ∞ ,

||w||bsp,∞ = sup
j≥j0

{
2js

′ ||wj ||p
}
.
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Then, for 0< s < r, 1 ≤ p, q ≤ ∞, the Besov norm||f ||Bsp,q on [0,1] is equiv-

alent to the sequence space norm||uj0||p + ||w||bsp,q (see, for example, Donoho &
Johnstone, 1998, Theorem 2).

Becausef0 given by (1) is a finite linear combination of functionsφλ, it will
belong to the same Besov spaces as the scaling functions, including all those for
which 0< s < r. For these parameter values, we consider in detail the necessary
and sufficient conditions forf given by (2) to fall (with probability one) in any
particular Besov space.

Theorem 1. Let φ andψ be the compact-support scaling function and mother
wavelet respectively that correspond to anr-regular multiresolution analysis. Con-
sider a functionf as defined in (2), with the conditional variancesτ2

a ∝ a−δ and
the intensity of the Poisson processµa ∝ a−ζ . Assume thatδ ≥ 0, 0 ≤ ζ ≤ 1,
and thatδ+ ζ > 0. Assume also thatφ (and henceψ) are sufficiently regular that
2(r + ρ) > 1+ δ, whereρ ∈ (0,1) is the exponent of Ḧolder continuity of ther-th
derivative ofφ andψ . Then, for0< s < r, 1 ≤ p, q ≤ ∞

f ∈ Bsp,q almost surely

if and only if {
s + 1/2 − ζ/p − δ/2< 0 if 1 ≤ p < ∞
s + 1/2 − δ/2< 0 if p = ∞ .

Proof. Defineγ = ζ/p+ δ/2− s − 1/2 if 1 ≤ p < ∞ andγ = δ/2− s − 1/2 if
p = ∞.

2.1. Sufficiency: Case1 ≤ p < ∞

Consider the orthonormal wavelet coefficientswjk = 〈f,ψjk〉 and setλjk =
(2j ,2−j k). For resolution and spatial indicesj and k with j ≥ j0 and k =
0,1, . . . ,2j − 1 respectively, we then have

wjk =
∑
λ∈S

K(λ, λjk)ωλ , (5)

whereK(λ, λ′) = 〈ψλ,ψλ′ 〉.
We now explore some properties of the reproducing kernelK that we use

in subsequent calculations. Firstly, since
∫
ψ2
λ = 1 for all λ, we always have

K2(λ, λ′) ≤ 1.Now defineK0(u, v) = 〈ψ,ψuv〉. Letλ = (a, b) andλ′ = (a′, b′).
Simple calculus shows that

K(λ, λ′) = K0(a/a
′, a′(b − b′)) . (6)

In the particular case whereλ′ = λjk, we haveK(λ, λjk) = K0(2−j a,2j b−k). Let
[Lψ,Uψ ] be the support of the mother waveletψ . ThenK0(u, v) = 〈ψ,ψuv〉 6= 0
only if

Lψ − Uψ/u ≤ v ≤ Uψ − Lψ/u . (7)
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In what follows we useC to denote a generic positive constant, not necessarily the
same each time it is used. We have, from Daubechies (1992, p. 48),

|K0(u, v)| ≤ Cu−(r+ρ+1/2), uniformly in u ≥ 1 . (8)

Foru < 1, apply the symmetry ofK to show thatK0(u, v) = K0(1/u,−uv) and
hence

|K0(u, v)| ≤ Cu(r+ρ+1/2), uniformly in u ≤ 1 . (9)

We now study the moments of the orthonormal wavelet coefficientswjk. It follows
from (5) that, conditionally onS, the distribution ofwjk is normal with mean zero
and variance

σ 2
jk(S) =

∑
λ∈S

K2(λ, λjk)a
−δ , (10)

where, as usual,λ = (a, b). The unconditional distribution ofwjk will have finite
variance if the expectation ofσ 2

jk(S) overS is finite. If the sum in (10) is infinite
for a particularS, then, conditionally onS, the sum definingwjk cannot converge,
because it will not converge in distribution. More generally, forp > 0, thepth
absolute moment ofwjk will be given by

E|wjk|p = νpES

{∑
λ∈S

K2(λ, λjk)a
−δ

}p/2
, (11)

whereνp is thepth absolute moment of the standard normal distribution.
LetT0

jk be the set [a0,∞)× (2−j k − 1/2,2−j k + 1/2). By the definition of

a0 andj0, we may restrict attention in the sum (10) toS ∩ T0
jk since the support

of anyψλ with a > a0 will be of length at most12, and so the terms excluded
by restricting the sum will all be zero. Now letS′

j be a Poisson process on the

half-plane{(u, v) : u > 0,−∞ < v < ∞} of intensity 2−jζ u−ζ . Define the set
Tj = [2−j ,∞)× [−2j−1,2j−1].Consider the transformation ofλ = (a, b) given
by (u, v) = (2−j a,2j b − k). Applied to the processS ∩ T0

jk this gives a process
with the same distribution asS′

j ∩ Tj . In addition, for eachλ, we have from (6)
thatK(λ, λjk) = K0(u, v). It follows that

E|wjk|p = νp2−jδp/2E




∑
(u,v)∈S′

j∩Tj

K2
0(u, v)u

−δ



p/2

≤ νp2−jδp/2E




∑
(u,v)∈S′

j

K2
0(u, v)u

−δ



p/2

. (12)

To obtain a bound on the expectation in (12), define the random sum

Zj =
∑

(u,v)∈S′
j

K2
0(u, v)u

−δ . (13)
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The bounds (8) and (9) imply thatK2
0(u, v)u

−δ is bounded byCu2r+2ρ+1−δ for
0< u ≤ 1, and byCu−2r−2ρ−1−δ for u ≥ 1; hence it is uniformly bounded for all
u andv.

We now apply Corollary 1 in the Appendix to investigate the behaviour of
EZ

p/2
j . To verify the finiteness of the first integral in the corollary, it will be suffi-

cient to have finiteness of the integral∫ ∞

0

∫ ∞

−∞
K2

0(u, v)u
−δ−ζ dv du . (14)

The bounds (7) on the support of the integrand, and those stated above on its order
of magnitude, allow (14) to be dominated by

C

∫ 1

0
u2r+2ρ+1−δ−ζ (1 + 1/u)du+ C

∫ ∞

1
u−2r−2ρ−1−δ−ζ (1 + 1/u)du .

The assumptions of the theorem about the regularity of the wavelets imply that the
first integral is finite since

2r + 2ρ + 1 − δ − ζ > 2 − ζ > 1 − ζ ≥ 0 ,

while the second integral is clearly finite since 2r + 2ρ + δ + ζ > 0.
We now verify the finiteness of the second integral in the corollary. By similar

arguments to those just used,∫ ∞

0

∫ ∞

−∞
{K2

0(u, v)u
−δ}p/2u−ζ dv du

≤ C

∫ 1

0
u(2r+2ρ+1−δ)p/2−ζ−1du+ C

∫ ∞

1
u−(2r+2ρ+1+δ)p/2−ζ du .

The assumptions of the theorem about the regularity of the wavelets imply that
these integrals are both finite: the first integral is finite since

(2r + 2ρ + 1 − δ)p/2 − ζ > p − ζ ≥ 1 − ζ ≥ 0

and the second is finite since

(2r + 2ρ + 1 + δ)p/2 + ζ > (1 + δ)p + ζ > p ≥ 1 .

It now follows from Corollary 1 in the Appendix that, for each fixedp,

EZ
p/2
j = C2−jζ + o(2−jζ ) asj → ∞ . (15)

Now definewj to be the vector with elementswjk for k = 0, . . . ,2j − 1. Substi-
tuting (15) into (12) gives

E‖wj‖pp ≤ C2−j (δp/2+ζ−1) for all j . (16)
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By Jensen’s inequality and (16), we have

E||w||bsp,1 =
∞∑
j=j0

2js
′
E||wj ||p ≤

∞∑
j=j0

2js
′
(E||wj ||pp)1/p ≤ C

∞∑
j=j0

2−jγ ,

which is finite forγ > 0, and hence||w||bsp,1 is finite almost surely forγ > 0.
To complete the proof we use similar methods to show that the norm||uj0||p

is finite almost surely. For fixedk, let T′ be the range of indicesλ = (a, b) with
a > a0 = 2j0 for which the support ofψλ overlaps that ofφj0k for some fixedk.
Then

uj0k =
∑

λ∈S∩T′
W(λ, λj0k)ωλ , (17)

whereW(λ, λj0k) = 〈ψλ, φj0k〉 = W0(2−j0a,2j0(b − 2−j0k)) andW0(u, v) =
〈φ,ψuv〉. Note that forλ ∈ S ∩ T′, u ≥ 1. One can easily verify thatW0(u, v) =
〈ψ,ψuv〉 6= 0 only if

Lφ − Uψ/u ≤ v ≤ Uφ − Lψ/u , (18)

where [Lφ,Uφ ] and [Lψ,Uψ ] are the supports of the scaling functionφ and the
mother waveletψ respectively. From Daubechies (1992, p. 48) we have again

|W0(u, v)| ≤ Cu−(r+ρ+1/2), uniformly in u ≥ 1 . (19)

Exploiting (18), (19) and the fact thatu ≥ 1, the same techniques used for wavelet
coefficientsωjk show thatE||uj0||pp is finite, and hence||uj0||p is finite almost
surely.

By the equivalence of norms, we conclude thatf ∈ Bsp,1 almost surely, and
therefore, by the embedding properties of Besov spaces (see, for example, Härdle,
Kerkyacharian, Picard & Tsybakov, 1998, Corollary 9.2, p. 124),f ∈ Bsp,q almost
surely for all 1≤ q ≤ ∞, completing the proof for this case.

2.2. Sufficiency: Casep = ∞

For any positiveθ andc, Markov’s inequality implies that

P(|wjk| > c) ≤ 2e−θcE(eθwjk ) . (20)

To evaluate the expectation, we use the standard expression for the moment gener-
ating function of a normal distribution and Campbell’s theorem (see, for example,
Kingman, 1993, p. 28) applied to the random sum (10) to obtain

logE(eθwjk ) = logE{E(eθwjk |S)} = logE exp{θ2σ 2(S)/2}
=

∫
T0
jk

[exp{θ2K2(λ, λjk)a
−δ/2} − 1]a−ζ dλ

= 2−ζj
∫
Tj

[exp{θ2K2
0(u, v)2

−1−δj u−δ} − 1]u−ζ du dv
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by the usual change of variable. Now letM = sup{K2
0(u, v)u

−δ}, which was shown
earlier to be finite. Extending the integral to the whole of the half-planeu > 0, we
have, by the convexity of the exponential function,

logE(eθwjk ) ≤ C2−ζj exp(2−1−δj θ2M)

∫ ∞

0

∫ ∞

−∞
K2

0(u, v)u
−δ−ζ dv du

≤ C2−ζj exp(Mθ22−1−δj ) .

Suppose 2jδ/2c > 1. To obtain a bound forP(|wjk| > c), chooseθ2 = M−121+δj
log(2jδ/2c), and substitute into (20) to obtain, for positive constantsC1 andC2,

logP(|wjk| > c) ≤ log 2+ C12(δ/2−ζ )j c − C22δj/2c
√

log{2jδ/2c} .
Both s′ = s + 1/2 andγ are positive by the hypotheses of the theorem. Chooseε

such that 0< ε < γ and setc = 2−(s′+ε)j . Then 2jδ/2c = 2(γ−ε)j > 1. We now
have

logP(2(s
′+ε)j |wjk| > 1) ≤ log 2+ C12(γ−ε−ζ )j − C22(γ−ε)j

√
log 2(γ−ε)j

≤ −2(γ−ε)j ,

for sufficiently largej . Sincewj is of length 2j , it follows that, for sufficiently
largej ,

P(2s
′j ||wj ||∞ > 2−εj ) < 2j exp(−2(γ−ε)j ) .

This very rapidly decreasing bound on the tail probabilities implies that, with prob-
ability one, the sequence 2s

′j ||wj ||∞ is bounded by a multiple of 2−εj , and hence
||w||bs∞,1

is finite almost surely. The same arguments used in the case of finitep for
scaling coefficients show that||uj0||∞ is finite almost surely.

By the equivalence of norms, we conclude thatf ∈ Bs∞,1 almost surely and,
therefore, by the embedding properties of Besov spaces (see, for example, Härdle,
Kerkyacharian, Picard & Tsybakov, 1998, Corollary 9.2, p. 124),f ∈ Bs∞,q almost
surely for all 1≤ q ≤ ∞, completing the proof for this case, and hence we have
the sufficiency.

2.3. Necessity

Noting that the functionK0(u, v) is continuous and thatK0(1,0) = 1, choosec0
with 0 < c0 < 1 such thatK0(u, v) > 1/2 for all (u, v) with 1 ≤ u ≤ 1 + c0 and
0 ≤ v ≤ c0. Forj ≥ j0 andk = 0,1, . . . ,2j−1, define the nonoverlapping rectan-
glesIjk in the range of indices3 asIjk = [2j ,2j (1+c0)]× [2−j k,2−j (k+c0)].

Using (4), the expected number of wavelet componentsλ falling within Ijk

is then
∫
Ijk

a−ζ db da = c12−ζj for somec1 > 0, and hence the probability that

there is one or more wavelet components inIjk is at leastc22−ζj for somec2 > 0.
Now define

w′
jk =

∑
λ∈S∩Ijk

K(λ, λjk)ωλ
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and observe that thew′
jk are independent because theIjk are disjoint. It follows

from (6) thatK(λ, λjk) > 1/2 for λ in Ijk. Note also that from (3) and (4),
Var(ωλ | λ ∈ S ∩ Ijk) ≥ 4c32−jδ for somec3, so that Var(K(λ, λjk)ωλ | λ ∈
S ∩ Ijk) ≥ c32−jδ.

Forj ≥ j0 andk = 0,1, . . . ,2j −1, now define independent random variables
w0
jk to have the mixture distribution

w0
jk ∼ πjN(0, τ

2
j )+ (1 − πj )δ(0) ,

whereπj = c22−ζj andτ2
j = c32−jδ. For the orthonormal wavelet coefficients

wjk = 〈f,ψjk〉, it is obvious that|wjk| is stochastically larger than|w′
jk| which in

turn is stochastically larger than|w0
jk|. Hence, stochastically||w||bsp,q ≥ ||w′||bsp,q ≥

||w0||bsp,q for any 0< s < r, 1 ≤ p, q ≤ ∞.
The methods of Abramovich, Sapatinas & Silverman (1998) for independent or-

thonormal wavelet coefficientsw0
jk (see their Theorem 1) now show that if||w0||bsp,q

is finite almost surely, thenγ > 0. This completes the proof of necessity, and hence
that of the theorem as a whole.

3. Concluding remarks

Theorem 1 places an upper bound restriction on the value ofζ . In the caseζ > 1,
the intensityµa ∝ a−ζ is integrable over the range ofλ for which ψλ has sup-
port intersecting [0,1]. Therefore, the number of relevant terms in the stochastic
expansion off is finite almost surely. With probability one,f will belong to the
same Besov spaces as the mother waveletψ , namely those for which 0< s < r,
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.

The key conclusion of Theorem 1 we have proved is that, under suitable condi-
tions, the functionf falls inBsp,q if δ+ (2/p)ζ exceeds 2s+1. Since the fine-scale
content of model functions depends both on the intensity of fine-scale compo-
nents and on their size, it is not surprising that the smoothness as measured by the
parameters should depend on both parameters. The parameterp can be seen as
discouraging inhomogeneity, in that the larger the value ofp the more emphasis is
placed on the parameterδ. For largeδ, no matter how many fine-scale components
there are, they each make a relatively low contribution. On the other hand, ifp is
small, then there is a trade-off where large weights on fine-scale components (small
δ) can be tolerated if the corresponding components are relatively rare (largeζ ).

The constraints placed ons in the statistical literature, for example in the opti-
mality results of Donoho & Johnstone (1998), are often stronger than those we have
assumed. Typical conditions are max(0,1/p − 1/2) < s < r or 1/p < s < r.
These constraints ensure that the Besov spaces are function spaces rather than
spaces of more general distributions (see, for example, Meyer, 1992, Chapter 6).
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Appendix: Moments of sums of thinned Poisson processes

In this appendix we prove a lemma and corollary used in the proof of Theorem 1.
They are of interest in their own right.

Lemma 1. Letµ be a measure onR and letSε be a Poisson Process onR with
intensity measureεµ, whereε > 0. Assume that

∫ ∞

−∞
min (1, |x|) µ(dx) < ∞ and cl =

∫ ∞

−∞
|x|l µ(dx) < ∞ for somel > 0 .

(21)
DefineYε = ∑

X∈Sε X. Then

E|Yε|l = ε cl + o(ε) as ε → 0 . (22)

Proof. Applying Campbell’s Theorem (Kingman, 1993, p. 28), condition (21)
shows that the sum definingYε is absolutely convergent with probability one. For
anyδ > 0, defineBδ = R\[−δ, δ]. It follows from (21) thatµ(Bδ) < ∞; define
F(δ) = µ(Bδ). Now chooseδ < 1 to depend onε in such a way thatδ → 0 and
εF (δ) → 0 asε → 0. The dependence ofδ on ε will not be expressed explicitly.
Now define

Y (1)ε =
∑

X∈Sε
⋂
Bδ

X and Y (2)ε =
∑

X∈Sε
⋂

[−δ,δ]
X .

Consider, first, the asymptotic behaviour ofY (1)ε . The number ofX in Sε
⋂
Bδ is a

Poisson(εF (δ)) random variable and so

E|Y (1)ε |l =
∞∑
j=1

exp(−εF (δ))ε
jF (δ)j

j !
E|

j∑
i=1

Xi |l , (23)

whereX1, X2, . . . are independent and identically distributed random variables on
Bδ with distributionµ/F(δ). Let c(1)l = ∫

Bδ
|x|l µ(dx). Forj ≥ 2, we consider a

bound for the expectation in (23). Forl ≤ 1, we immediately see that

E(|
j∑
i=1

Xi |l ≤ E

j∑
i=1

|Xi |l = jE|Xi |l = jc
(1)
l

F (δ)
. (24)

For l > 1, using Jensen’s inequality, we have

E|
j∑
i=1

Xi |l ≤ j l−1E

j∑
i=1

|Xi |l = j lc
(1)
l

F (δ)
. (25)
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Hence, in either (24) or (25), we have from (23), separating the terms forj = 1
andj > 1,

E|Y (1)ε |l = ε c
(1)
l exp(−εF (δ))+ R(1)ε , (26)

where

R(1)ε ≤
∞∑
j=1

exp(−εF (δ))ε
jF (δ)j

j !

j (l∧1)c
(1)
l

F (δ)

= ε2c
(1)
l F (δ)

∞∑
k=0

exp(−εF (δ))ε
kF (δ)k

k!

(k + 2)(l−1)+

(k + 1)
. (27)

As ε → 0, the sum in (27) is a Poisson expectation that converges to 2(l−1)+ , since
εF (δ) → 0. It follows thatR(1)ε = o(ε) and hence, from (26), that, asε → 0:

ε−1E|Y (1)ε |l → cl , (28)

using the facts thatc(1)l → cl andεF (δ) → 0.

Now consider the asymptotic behaviour ofY (2)ε . For l ≤ 1, by Campbell’s
theorem applied to the Poisson processSε

⋂
[−δ, δ], we have

E|Y (2)ε |l ≤ E


 ∑
X∈Sε

⋂
[−δ,δ]

|X|


l

≤ E
∑

X∈Sε
⋂

[−δ,δ]
|X|l = ε

∫ δ

−δ
|x|l µ(dx) .

(29)
Therefore, we have from (29), asδ → 0, thatE|Y (2)ε |l = o(ε). Since|Yε|l ≤
|Y (1)ε |l + |Y (2)ε |l , it follows from (28) thatE|Yε|l = εcl + o(ε) asε → 0.

Finally, consider the casel > 1. DefineZε = ∑
X∈Sε

⋂
[−δ,δ] |X|. For −δ ≤

x ≤ δ, we have 0≤ e|x| − 1 ≤ δ−1(eδ − 1)|x|, and so, using (21),Iδ =∫ δ
−δ(e

|x| − 1) µ(dx) < ∞. It then follows (using equation (3.17) of Kingman,
1993), thatE exp(Zε) = exp(εIδ). Sincel > 1, there exists a constantkl such that
zl ≤ kl(e

z − 1) for all z ≥ 0. We then have

EZlε ≤ kl(E exp(Zε)− 1)

= kl(exp(εIδ)− 1)

= o(ε) asε → 0 , (30)

sinceIδ → 0 asδ → 0. Therefore, from (30), it follows at once thatE|Y (2)ε |l = o(ε)

asε → 0.
Using Minkowski’s inequality applied to the norm||X||l = (E|X|l )1/l we

have:

(E|Y (1)ε |l )1/l − (E|Y (2)ε |l )1/l ≤ (E|Yε|l )1/l ≤ (E|Y (1)ε |l )1/l + (E|Y (2)ε |l )1/l

and hence, sinceε−1E|Y (2)ε |l → 0, the limiting values ofε−1E|Y (1)ε |l andε−1E|Yε|l
are the same. It follows from (28) thatε−1E|Yε|l → cl , which gives (22), complet-
ing the proof of the lemma.
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Corollary 1. Letµ be a measure on a set�, and letg be a real-valued function
on�. LetSε be a Poisson Process on� with intensity measureεµ, whereε > 0.
Assume that the induced measureµ(g−1(A)) is non-atomic for every measurable
setA ⊆ R, and assume that∫

�

min (1, |g(x)|) µ(dx) < ∞ and

cl =
∫
�

|g(x)|l µ(dx) < ∞ for somel > 0 .

DefineYε = ∑
X∈Sε g(X). Then

E|Yε|l = ε cl + o(ε) as ε → 0 .

Proof. Define a measure onR by µg(A) = µ(g−1(A)) and letZ = g(X). Then,
appealing to the Mapping theorem for Poisson processes (see, for example, King-
man, 1993, p. 18),Z is a Poisson process onR with intensity measureεµg and
Yε = ∑

X∈Sε Z. The proof of the corollary is completed by applying Lemma 1 to
Z andµg.
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