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Abstract—We consider minimax signal detection in the sequence model. Working with certain
ellipsoids in the space of square-summable sequences of real numbers, with a ball of positive radius
removed, we obtain upper and lower bounds for the minimax separation radius in the non-asymptotic
framework, i.e., for a fixed value of the involved noise level. We use very weak assumptions on the
noise (i.e., fourth moments are assumed to be uniformly bounded). In particular, we do not use
any kind of Gaussian distribution or independence assumption on the noise. It is shown that the
established minimax separation rates are not faster than the ones obtained in the classical sequence
model (i.e., independent standard Gaussian noise) but, surprisingly, are of the same order as the
minimax estimation rates in the classical setting. Under an additional condition on the noise, the
classical minimax separation rates are also retrieved in benchmark well-posed and ill-posed inverse
problems.
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1. INTRODUCTION

We consider the following sequence model (SM),

yk = bkθk + ε ξk, k ∈ N , (1.1)

where N can be either N = {1, 2, . . .} or Nn = {1, . . . , n} for some n ≥ 1, b = (bk)k∈N is a known
positive sequence, θ = (θk)k∈N ∈ l2(N ) is the unknown signal of interest, ξ = (ξk)k∈N is a sequence
of random variables (the noise), and ε > 0 is a known parameter (the noise level). The observations are
given by the sequence y = {yk}k∈N from the SM (1.1) and their joint law is denoted by Pθ,ξ. Here, l2(N )
denotes the space of squared-summable sequence of real numbers, i.e.,

l2(N ) =
{

θ ∈ R
N : ‖θ‖2 :=

∑
k∈N

θ2
j < +∞

}
.

Let C > 0 be a known fixed constant. Concerning the noise, we will assume that ξ ∈ Ξ, where

Ξ := Ξ(C) =
{

ξ : E[ξk] = 0, E[ξ2
k] = 1 ∀k ∈ N and sup

k∈N
E[ξ4

k] ≤ C < +∞
}
. (1.2)

The SM (1.1) arises in many well-known situations. Consider for instance the stochastic differential
equation

dZε(t) = Af(t) + εdU(t), t ∈ [0, 1],
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where A is a known bounded linear operator acting on L2([0, 1]), f(·) ∈ L2([0, 1]) is the unknown
response function that one wants to detect or estimate, U(·) is a given stochastic process on [0, 1] and
ε > 0 is a known parameter (the noise level). For the sake of simplicity, we only consider the case when A
is injective (meaning that A has a trivial nullspace).

• Let U(·) = W (·) be the standard Wiener process. Then, if A is the identity operator, we can
retrieve the SM (1.1) in the Fourier domain with bk = 1 for all k ∈ N = N and the ξk, k ∈ N , are
independent standard Gaussian random variables (direct problem). If A is a self-adjoint operator
with an eigen-decomposition, we can retrieve the SM (1.1) where bk > b0 for some b0 > 0 for
all k ∈ N = N and the ξk, k ∈ N , are independent standard Gaussian random variables (well-
posed inverse problems). If A is a compact operator, we can retrieve the SM (1.1) where bk > 0
for all k ∈ N (since A is injective) with bk → 0 as k → +∞ and the ξk, k ∈ N , are independent
standard Gaussian random variables (ill-posed inverse problems). For more details regarding all
these models, we refer to, e.g., [5].

• Let U(·) = W−γ(·), γ ∈]0, 1/2[, be the truncated fractional Brownian motion and let A be the
identity operator. Then we can retrieve the SM (1.1) in the spline domain with bk = (πk)−2γ(1 +
o(1)) as k → +∞ and the ξk, k ∈ N , are (non-independent) standard Gaussian random variables.
For more details, we refer to, e.g., [10], [4].

The non-parametric inverse regression problem also provides observations of the form (1.1). Indeed,
consider the model

Zi = Af

(
i

n

)
+

1√
n

ηi, i ∈ {1, . . . , n},

where A is a known (injective) bounded linear operator acting on L2([0, 1]), f(·) ∈ L2([0, 1]) is the
unknown response function that one wants to detect or estimate, and ηi, i ∈ Nn, is a sequence of
independent and identically distributed random variables with zero mean, variance one and finite fourth
moment. Given any appropriate bases (or, even, a tight frame, see, e.g., [13], p. 126), we can retrieve the
SM (1.1) with bk = 1 for all k ∈ Nn when A is the identity operator, see, e.g., [16], Chapter 1. When A is
a compact operator, we can retrieve an approximation of the SM (1.1) where (bk)k∈Nn is a fixed sequence
that depends on A, see, e.g., [2].

Minimax signal detection has been considered in the literature over the last two decades. We refer
to, e.g., [1], [12], [8], [11], [7], [6], [14]. All these contributions consider the classical Gaussian sequence
model (1.1), i.e., where the ξk, k ∈ N , are independent standard Gaussian random variables. We refer
to [15] for a survey on available results and a discussion on the link between asymptotic (the noise level
is assumed to tend to zero) and non-asymptotic (the noise level is assumed to be fixed) approaches
to minimax signal detection. The aim of this work is to obtain upper and lower bounds on the minimax
separation radius in the non-asymptotic framework, for the general model (1.1) under weak assumptions
on the noise, i.e., when ξ ∈ Ξ, where the set Ξ has been introduced in (1.2). In particular, we do not use
any kind of Gaussian distribution or independence assumption on the noise. We prove that the minimax
separation rates are not faster than the ones obtained in the classical sequence model (see, e.g., [1],
[12], [8], [11], [7], [6], [14]) but, surprisingly, are of the same order as the minimax estimation rates in the
classical setting. Moreover, under additional conditions on the noise, we show that the classical minimax
separation rates can be retrieved in benchmark well-posed and ill-posed inverse problems.

Throughout the paper, we use the following notation. Given two sequences (ck)k∈N and (dk)k∈N
of real numbers, ck ∼ dk means that there exist 0 < κ0 ≤ κ1 < ∞ such that κ0 ≤ ck/dk ≤ κ1 for all
k ∈ N , while ck � dk (resp. ck � dk) means ck ≤ c0 dk (resp. ck ≥ c0 dk) for some c0 > 0 for all k ∈ N .
Also, x ∧ y := min(x, y) for all x, y ∈ R.
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2. MINIMAX SIGNAL DETECTION

Given observations from the SM (1.1), we consider the signal detection problem, i.e., our aim is to
test

H0 : θ = 0 versus H1 : θ ∈ Θa(rε). (2.1)

Given a non-decreasing sequence a = (ak)k∈N of positive real numbers with ak → +∞ as k → +∞
when N = N and a radius rε > 0, the set Θa(rε) is defined as

Θa(rε) =
{
θ ∈ Ea, ‖θ‖ ≥ rε

}
, (2.2)

where

Ea =
{

θ ∈ l2(N ),
∑
k∈N

a2
kθ

2
k ≤ 1

}
.

The set Ea can be viewed as a condition on the decay of θ. The cases where the sequence a increases
very fast correspond to the signal θ with small coefficients. In such a case, the corresponding signal
can be considered as being ‘smooth’. The sequence a being fixed, the main issue for the minimax signal
detection problem (2.1)–(2.2) is then to characterize the values of the radius rε > 0 for which both
hypotheses H0 (called the null hypothesis) and H1 (called the alternative hypothesis) are ‘separable’.

In the following, a (non-randomized) test Ψ := Ψ(y) will be defined as a measurable function of the
observation y = (yk)k∈N from the SM (1.1) having values in the set {0, 1}. By convention, H0 is rejected
if Ψ = 1 and H0 is not rejected if Ψ = 0. Then, given a test Ψ, we can investigate

• the type I (first kind) error probability defined as

sup
ξ∈Ξ

P0,ξ(Ψ = 1), (2.3)

which measures the worst probability of rejecting H0 when H0 is true (i.e., θ = 0, ξ ∈ Ξ, where Ξ
is defined in (1.2)); it is often constrained as being bounded by a prescribed level α ∈]0, 1[, and

• the type II (second kind) error probability defined as

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψ = 0), (2.4)

which measures the worst possible probability of not rejecting H0 when H0 is not true (i.e., when
θ ∈ Θa(rε) and ξ ∈ Ξ, where Ξ is defined in (1.2)); one would like to ensure that it is bounded by
a prescribed level β ∈]0, 1[.

We emphasize that in the classical minimax signal detection problem, the protection against all
possible noise distributions (i.e., supξ∈Ξ) is not required, since the noise distribution is completely
known. However, in the more general setting that we consider, in order to produce some kind of
robustness, we have adapted the definitions of type I and type II error probabilities to accommodate
the (possible) uncertainty on the noise.

Let α, β ∈]0, 1[ be given, and let Ψα be an α-level test, i.e., Ψα is such that supξ∈Ξ P0,ξ(Ψα = 1) ≤ α.

Definition 2.1. The separation radius of the α-level test Ψα over the class Ea is defined as

rε(Ea,Ψα, β) := inf
{

rε > 0: sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≤ β

}
.

In some sense, the separation radius rε(Ea,Ψα, β) corresponds to the smallest possible value of the
available signal ‖θ‖ for which H0 and H1 can be ‘separated’ by the α-level test Ψα with prescribed type I
and type II error probabilities, α and β, respectively.
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Definition 2.2. The minimax separation radius r̃ε := r̃ε(Ea, α, β) > 0 over the class Ea is defined as

r̃ε := inf
Ψ̃α

rε(Ea, Ψ̃α, β), (2.5)

where the infimum is taken over all α-level tests Ψ̃α.

The minimax separation radius r̃ε corresponds to the smallest radius rε > 0 such that there exists
some α-level test Ψ̃α for which the type II error probability is not greater than β.

It is worth mentioning that Definitions 2.1 and 2.2 are valid for any fixed ε > 0 (i.e., it is not required
that ε → 0). The performance of any given test Ψα is easy to handle in the sense that the type I error
probability is bounded by α (i.e., Ψα is an α-level test) and that the dependence of the minimax separation
radius r̃ε with respect to given α and β can be precisely described.

3. CONTROL OF THE UPPER AND LOWER BOUNDS

3.1. The Spectral Cut-Off Test and Control of the Upper Bound

We define below a spectral cut-off test for the SM model (1.1) with ξ ∈ Ξ, where Ξ is defined in (1.2).
First, we show that it is an α-level test and then we obtain an upper bound for its type II error probability.

Given a bandwidth D ∈ N and α ∈]0, 1[, we consider the following spectral cut-off test

Ψα,D := 1{TD≥t1−α,D}, (3.1)

where

TD =
D∑

k=1

b−2
k (y2

k − ε2)

and t1−α,D denotes a threshold depending on α and D. It is easily seen that, for all D ∈ N ,

Eθ,ξ[TD] =
D∑

k=1

θ2
k,

and

Var0,ξ(TD) = ε4
D∑

k=1

b−4
k E[(ξ2

k − 1)2]

︸ ︷︷ ︸
:=R0(D)

+ ε4
D∑

k,l=1
k �=l

b−2
k b−2

l E[(ξ2
k − 1)(ξ2

l − 1)]

︸ ︷︷ ︸
:=S0(D)

, (3.2)

where the assumption ξ ∈ Ξ guarantees that the above variance is finite for every D ∈ N .

Proposition 3.1. Let α ∈]0, 1[ be given. Consider the spectral cut-off test Ψα,D defined in (3.1).
Then, for all ε > 0,

sup
ξ∈Ξ

P0,ξ(Ψα,D = 1) ≤ α

as soon as

t1−α,D ≥ 1√
α

√
R0(D) + S0(D). (3.3)

The proof of this proposition is postponed to Section 7.1.
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Remarks:

• Using simple bounds, it is easily seen that

R0(D) + S0(D) ≤ C1ε
4

∑
1≤k≤D

b−4
k + C1ε

4
( ∑

1≤k≤D

b−2
k

)2
≤ 2C1ε

4
( ∑

1≤k≤D

b−2
k

)2
, (3.4)

where

C1 := sup
ξ∈Ξ

sup
k∈N

E[(ξ2
k − 1)2] < +∞, (3.5)

since
D∑

k=1

b−4
k ≤ ( max

1≤k≤D
b−2
k )

D∑
k=1

b−2
k ≤

( D∑
k=1

b−2
k

)2
.

Hence, the choice

t1−α,D = K1ε
2

D∑
k=1

b−2
k , where K1 =

√
2C1√
α

, (3.6)

ensures that (3.3) is satisfied and that the spectral cut-off test Ψα,D defined in (3.1) is an α-level
test.

• In the classical setting (i.e., independent Gaussian noise), the threshold t1−α,D can be chosen
as the (1 − α)-quantile of the variable TD under H0. This is no more the case here since only a
uniform bound on the fourth moment of the sequence ξk, k ∈ N , is available.

Proposition 3.2. Let α, β ∈]0, 1[ be given. Consider the spectral cut-off test Ψα,D defined in (3.1).
Select the threshold t1−α,D as in (3.6). Then, for all ε > 0,

sup
θ∈Θa(rε,D)

ξ∈Ξ

Pθ,ξ(Ψα,D = 0) ≤ β,

for any radius rε,D > 0 such that

rε,D ≥ Cβε2
D∑

k=1

b−2
k + a−2

D ,

where Cβ > 0 is the solution of the equation (7.11).

The proof of Proposition is postponed to Section 7.2.

Remark. For practical purposes, the solution Cβ > 0 of equation (7.11) can be chosen as Cβ = 8K2/β.
In particular, there exists some β0 > 0 such that 1 − K1C−1

β ≥ 1/2 for all β ≤ β0, hence ensuring that
(7.9) is satisfied for all β small enough.

3.2. Control of the Lower Bound
We propose below a lower bound on the minimax type II error probability for the SM (1.1) with

ξ ∈ Ξ, where Ξ is defined in (1.2). In the sequel, the term infΨα corresponds to an infimum taken over all
possible α-level tests.

Proposition 3.3. Let α ∈]0, 1[ and β ∈]0, 1 − α[ be fixed. Then, for all ε > 0

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ β,
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for all D ∈ N and rε > 0 such that

r2
ε ≤

(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D ,

where Cα,β = 1 + 4(1 − α − β)2.

The proof of Proposition 3.3 is postponed to Section 7.3. The main difficulty is to construct an
appropriate distribution for ξ that will allow one to obtain the largest possible lower bound.

4. MINIMAX SEPARATION RADIUS
The following theorem provides upper and lower bounds for the minimax separation radius r̃ε > 0 in

the SM (1.1) with ξ ∈ Ξ, where Ξ is defined in (1.2).

Theorem 4.1. Let α, β ∈ ]0, 1[ be given. Then, for all ε > 0, the minimax separation radius r̃ε > 0
satisfies

sup
D∈N

[(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D

]
≤ r̃2

ε ≤ inf
D∈N

[
Cβε2

D∑
k=1

b−2
k + a−2

D

]
, (4.1)

where Cβ > 0 is the solution of the equation (7.11) and Cα,β = 1 + 4(1 − α − β)2.

The proof of Theorem 4.1 is postponed to Section 7.4.

Remark. If both sequences a = (ak)k∈N and b−1 = (b−1
k )k∈N are non-decreasing and satisfy

a� ≤ aD−1

aD
≤ a� and b� ≤ bD−1

bD
≤ b� for all D ∈ N \ {1}, (4.2)

for some constants 0 < a� ≤ a� < ∞ and 0 < b� ≤ b� < ∞, then it is easily seen that both upper and
lower bounds on the minimax separation radius r̃ε > 0 established in Theorem 4.1 are of the same order.
This follows easily working along the same lines as in the proof of Proposition 4.1 in [15]. We note
also that condition (4.2) is satisfied for various combinations of interest, among them: (i) mildly ill-
posed inverse problems (bk � k−t, k ∈ N, for some t > 0) with ordinary smooth functions (ak � ks,
k ∈ N, for some s > 0), (ii) severely ill-posed inverse problems (bk � e−kt, k ∈ N, for some t > 0) with
ordinary smooth functions (ak � ks, k ∈ N, for some s > 0), and (iii) mildly ill-posed inverse problems
(bk � k−t, k ∈ N, for some t > 0) with super-smooth functions (ak � eks, k ∈ N, for some s > 0).
Among the possible situations where condition (4.2) is not satisfied, one can mention, for instance,
power-exponential behavior (ak � ekls, j ∈ N, for some s > 0 and l > 1, or bk � e−krt, k ∈ N, for some
t > 0 and r > 1). See also Remark 4.3 in [15].

Remark. Note that the upper and lower bounds on the minimax separation radius r̃ε > 0 established in
Theorem 4.1 are quite different from the classical minimax separation radii available in the literature,
obtained in the SM (1.1) with independent standard Gaussian noise (see, e.g., [15]). Although the
bias terms a−2

D coincide, the corresponding variance terms differ. In particular, in the SM (1.1) with
ξ ∈ Ξ, where Ξ is defined in (1.2), the variance term is of order ε2

∑D
k=1 b−2

k , while for the SM (1.1) with

independent standard Gausiian noise, the variance term is of order ε2
√∑D

k=1 b−4
k . We stress that the

term ε2
∑D

k=1 b−2
k is not greater than the term ε2

√∑D
k=1 b−4

k , which entails that the minimax separation
rates are not faster compared to the ones obtained in the classical model. It is also worth mentioning
that, surprisingly, the bias and variance terms in the SM (1.1) with ξ ∈ Ξ, where Ξ is defined in (1.2), are
of the same order as the corresponding terms in the classical minimax estimation setting. In particular,
the minimax separation rates in our general setting coincide with the minimax estimation rates obtained
in the classical estimation setting. For illustrative purposes, Table 1 (see also Table 1 in [5]) provides
these minimax separation rates for benchmark problems, i.e., well-posed, mildly ill-posed and severely
ill-posed problems for ellipsoids with ordinary smooth and super-smooth sequences.
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Table 1. Minimax separation rates for the SM (1.1) with ξ ∈ Ξ, where Ξ is defined in (1.2).

Minimax separation ordinary-smooth super-smooth

rate (r̃2
ε) ak ∼ ks ak ∼ exp{ks}

well-posed ε4s/(2s+1) ε2(log ε−1)

bk ∼ 1

mildly ill-posed ε4s/(2s+2t+1) ε2(log ε−1)2t+1

bk ∼ k−t

severely ill-posed (log ε−1)−2s ε4s/(2s+2t)

bk ∼ exp{−kt}

Remark. If the supremum over all possible noise distributions ξ ∈ Ξ is not considered in the definition
of type I and type II error probabilities, then it is easily seen that the upper bound on the type II
error probability obtained in Proposition 3.2 still holds true. However, the corresponding lower bound
obtained in Proposition 3.3 is only true under Gaussianity. This implies that the minimax separation
rates displayed in Table 1 are still valid in the SM (1.1) with non-independent standard Gaussian noise ξ.

5. AN ADDITIONAL CONDITION ON THE NOISE
TO OBTAIN THE CLASSICAL MINIMAX SEPARATION RATES

In this section, it is demonstrated that, under an additional condition on the noise ξ ∈ Ξ in the SM
(1.1), one is able to retrieve the classical minimax separation rates in benchmark well-posed and ill-
posed inverse problems.

Recall from equation (7.2), displayed in the proof of Proposition 3.2, that the variance of TD can be
written as

Varθ,ξ(TD) = Rθ(D) + Sθ(D),

where

Rθ(D) :=
D∑

k=1

b−4
k Varθ,ξ(y2

k − ε2)

and

Sθ(D) :=
D∑

k,l=1
k �=l

b−2
k b−2

l Covθ,ξ(y2
k − ε2, y2

l − ε2).

In the classical setting (i.e., independent standard Gaussian noise ξ), Sθ(D) = 0 for all θ ∈ l2(N ). Hence
in order to retrieve the classical minimax separation rates in the SM (1.1) with ξ ∈ Ξ, where Ξ is defined
in (1.2), Sθ(D) needs to be of the order of Rθ(D). We achieve this separately under the null and the
alternative hypotheses, for benchmark problems, such as well-posed, mildly ill-posed and severely ill-
posed inverse problems.

We stress that in this section we will only deal with upper bounds. Indeed, the lower bounds
established previously in the literature (see, e.g., [15], Theorem 4.1) for the independent standard
Gaussian noise are still valid in our set-up.

5.1. Well-Posed and Mildly Ill-Posed Inverse Problems

We assume that

bk ∼ k−t ∀k ∈ N

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 4 2017
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for some t ≥ 0 (t = 0 refers to well-posed inverse problems while t > 0 refers to mildly ill-posed inverse
problems). We start our discussion under the null hypothesis. Recall from (3.2) that

Var0,ξ(TD) = ε4
D∑

k=1

b−4
k E[(ξ2

k − 1)2] + ε4
D∑

k,l=1
k �=l

b−2
k b−2

l E[(ξ2
k − 1)(ξ2

l − 1)]

= ε4
D∑

k=1

b−4
k Var(ξ2

k) + ε4
D∑

k,l=1
k �=l

b−2
k b−2

l Cov(ξ2
k, ξ2

l )

:= R0(D) + S0(D).

Using simple calculations, we can see that

R0(D) ∼ ε4
D∑

k=1

k4t ∼ ε4D4t+1.

Our aim is to exhibit a condition for which S0(D) is (at least) of the same order as R0(D).

Assumption HD: Let ξ ∈ Ξ, where Ξ is defined in (1.2), and, for all k, l ∈ N , let (ξk, ξl)′ be a
bivariate Gaussian random vector. Moreover, there exists s > 0 such that

ρkl := |Cov(ξk, ξl)| � 1
|k − l|s ∀k, l ∈ N , k = l.

Due to the Isserlis Theorem (see, e.g., [9]), it can be seen that, thanks to Assumption HD, for all
k, l ∈ N with k = l,

Cov(ξ2
k, ξ2

l ) = 2Cov2(ξk, ξl) � 1
|k − l|2s

(5.1)

and

E[(ξ2
k − 1)ξl] = E[(ξ2

l − 1)ξk] = 0. (5.2)

These results allow us to propose a sharp control of the variance of TD under the null hypothesis.

Proposition 5.1. Assume that Assumption HD holds with s > 1/2. Then

S0(D) = o(R0(D)) as D → +∞.

The proof of Proposition 5.1 is postponed to Section 7.5.

Now, we propose a similar analysis under the alternative hypothesis.

Proposition 5.2. Assume that Assumption HD holds with s > 1/2. Then, for all γ ∈]0, 1[,

Varθ,ξ(TD) � (1 + γ−1)ε4
D∑

k=1

b−4
k + γ

( D∑
k=1

θ2
k

)2
.

The proof of Proposition 5.2 is postponed to Section 7.6.

Starting from (7.1) and using Propositions 5.1 and 5.2, we get

Pθ,ξ(Ψα,D = 0) ≤ Varθ,ξ(TD)(∑D
k=1 θ2

k − t1−α,D

)2

�
(1 + γ−1)ε4

∑D
k=1 b−4

k + γ
(∑D

k=1 θ2
k

)2
(∑D

k=1 θ2
k − ε4

∑D
k=1 b−4

k

)2 ≤ β
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provided

D∑
k=1

θ2
k � ε2

√√√√ D∑
k=1

b−4
k ,

which holds as soon as

‖θ‖2 � a−2
D + ε2

√√√√
D∑

k=1

b−4
k .

The last inequality provides a classical condition that has been already discussed in, e.g., [1], [7] and
[12], or in Theorem 4.1 of [15], in the specific case where the noise ξ in the SM (1.1) is assumed to be
independent standard Gaussian. This entails that the Assumption HD suffices to retrieve the classical
minimax separation rates for mildly ill-posed inverse problems.

5.2. Severely Ill-Posed Inverse Problems

We assume in this section that

bk ∼ e−kt ∀k ∈ N
for some t > 0. Since minimax estimation and minimax separation rates in the classical setting are of
the same order (see, e.g., Tables 2 and 3 in [7]), we stress that non-independence does not deteriorate the
classical minimax separation rates. In other words, the independent standard Gaussian assumption on
noise ξ is not needed to get the classical minimax separation rates for severely ill-posed inverse problems.

6. CONCLUDING REMARKS

We have established minimax separation rates in a general Gaussian sequence model, i.e., the noise
need neither to be independent nor standard Gaussian. These rates are not faster than the ones obtained
in the classical setting (i.e., independent standard Gaussian noise) but, surprisingly, are of the same
order as the minimax estimation rates in the classical setting. The involved spectral cut-off test depends
on the unknown smoothness parameter of the signal under the alternative hypothesis. It is therefore
of paramount importance in practical applications to provide minimax testing procedures that do not
explicitly depend on the associated smoothness parameter. This is, usually, referred to as the ‘adaptation’
problem. However, such an investigation needs careful attention that is beyond the scope of the present
work. In particular, the dependence of the involved constant with respect to the level α has a more
intricate form than the one involved in the classical setting.

7. APPENDIX

7.1. Proof of Proposition 3.1

Let ξ ∈ Ξ be fixed. Using the Markov inequality, we get

P0,ξ(Ψα,D = 1) = P0,ξ(TD ≥ t1−α,D) ≤ Var0,ξ(TD)
t21−α,D

≤ R0(D) + S0(D)
t21−α,D

≤ α

provided

t1−α,D ≥ 1√
α

√
R0(D) + S0(D).
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7.2. Proof of Proposition 3.2
Let ξ ∈ Ξ be fixed. Using the Markov inequality, we obtain

Pθ,ξ(Ψα,D = 0) = Pθ,ξ(TD < t1−α,D) = Pθ,ξ

(
TD − Eθ[TD] < t1−α,D −

D∑
k=1

θ2
k

)

≤ Pθ,ξ

(∣∣TD − Eθ[TD]
∣∣ ≥

D∑
k=1

θ2
k − t1−α,D

)

≤ Varθ,ξ(TD)(∑D
k=1 θ2

k − t1−α,D

)2 , (7.1)

where we have implicitly assumed that

D∑
k=1

θ2
k > t1−α,D.

Now, we need an upper bound for the variance term. First remark that

Varθ(TD) = Varθ,ξ

( D∑
k=1

b−2
k (y2

k − ε2)
)

=
D∑

k=1

b−4
k Varθ,ξ(y2

k − ε2)

︸ ︷︷ ︸
:=Rθ(D)

+
D∑

k,l=1
k �=l

b−2
k b−2

l Covθ,ξ(y2
k − ε2, y2

l − ε2)

︸ ︷︷ ︸
:=Sθ(D)

. (7.2)

Calculation of Rθ(D): Using simple algebra, we get, for all k ∈ N ,

Varθ(y2
k − ε2) = Varθ,ξ

[
(bkθk + ε)2 − ε2

]

= Varθ,ξ

[
b2
kθ

2
k + ε2ξ2

k + 2bkθkεξk − ε2
]

= Varθ,ξ

[
ε2(ξ2

k − 1) + 2bkθkεξk

]

= ε4
E[(ξ2

k − 1)2] + 4ε2b2
kθ

2
k + 4ε3bkθkE[ξ3

k].

Hence, using the last equality, we obtain

Rθ(D) ≤ C1ε
4

D∑
k=1

b−4
k + 4ε2

D∑
k=1

b−2
k θ2

k + 4C2ε
3

D∑
k=1

b−3
k |θk|

≤ C1ε
4

D∑
k=1

b−4
k + 4ε2( max

1≤k≤D
b−2
k )

D∑
k=1

θ2
k + 4C2ε

3
D∑

k=1

b−3
k |θk|, (7.3)

where the constant C1 has been introduced in (3.5) and

C2 := sup
ξ∈Ξ

sup
k∈N

|E[ξ3
k]| < +∞.

Note that, using first the Cauchy–Schwarz inequality and then the Peter-Paul inequality (see, e.g., [3],
p. 18), we get

ε3
D∑

k=1

b−3
k |θk| =

D∑
k=1

ε2b−2
k εb−1

k |θk| ≤

√√√√ε4

D∑
k=1

b−4
k

√√√√ε2

D∑
k=1

b−2
k θ2

k

≤ 1
2
ε4

D∑
k=1

b−4
k +

1
2
ε2

D∑
k=1

b−2
k θ2

k ≤ 1
2
ε4

D∑
k=1

b−4
k +

1
2
ε2( max

1≤k≤D
b−2
k )

D∑
k=1

θ2
k. (7.4)
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Combining inequalities (7.3) and (7.4), we obtain

Rθ(D) ≤ (C1 + 2C2)ε4
D∑

k=1

b−4
k + (4 + 2C2)ε2( max

1≤k≤D
b−2
k )

D∑
k=1

θ2
k. (7.5)

Calculation of Sθ(D): First, remark that for all k ∈ N , on noting that Eθ,ξ[(y2
k − ε2)] = b2

kθ
2
k and E[ξ2

k] =
1, we get

Covθ,ξ(y2
k − ε2, y2

l − ε2)

= Eθ,ξ

[
(y2

k − ε2 − b2
kθ

2
k) (y2

l − ε2 − b2
l θ

2
l )
]

= Eθ,ξ

[
((bkθk + εξk)2 − ε2 − b2

kθ
2
k) ((blθl + εξl)2 − ε2 − b2

l θ
2
l )
]

= ε4
E[(ξ2

k − 1)(ξ2
l − 1)] + 4ε2bkblθkθlE[ξkξl] + 2ε3blθlE[(ξ2

k − 1)ξl] + 2ε3bkθkE[(ξ2
l − 1)ξk].

Hence

Sθ(D) = 2ε4
D∑

k,l=1
k �=l

b−2
k b−2

l E[(ξ2
k − 1)(ξ2

l − 1)] + 8ε2
D∑

k,l=1
k �=l

b−1
k b−1

l θkθlE[ξkξl]

+ 4ε3
D∑

k,l=1
k �=l

b−2
k b−1

l θlE[(ξ2
k − 1)ξl] + 4ε3

D∑
k,l=1
k �=l

b−2
l b−1

k θkE[(ξ2
l − 1)ξk]. (7.6)

Using the Cauchy–Schwarz inequality in each expectation of the above expression we obtain

Sθ(D) ≤ 2C1ε
4
( D∑

k=1

b−2
k

)2
+ 8ε2

( D∑
k=1

b−1
k |θk|

)2
+ 8ε3C

1/2
1

( D∑
k=1

b−1
k |θk|

)( D∑
k=1

b−2
k

)
.

Then, using first the Peter-Paul inequality and then the Cauchy–Schwarz inequality, we get

Sθ(D) ≤ 2(C1 + 2C1/2
1 )ε4

( D∑
k=1

b−2
k

)2
+ 4(2 + C

1/2
1 )ε2

( D∑
k=1

b−1
k |θk|

)2

≤ 2(C1 + 2C1/2
1 )ε4

( D∑
k=1

b−2
k

)2
+ 4(2 + C

1/2
1 )ε2

D∑
k=1

b−2
k

D∑
k=1

θ2
k. (7.7)

Hence combining (7.2), (7.5) and (7.7) we obtain

Varθ,ξ(TD) ≤ (C1 + 2C2)ε4
D∑

k=1

b−4
k + 4(C1 + 2C1/2

1 )ε4
( D∑

k=1

b−2
k

)2

+ 2(10 + C2 + 4C1/2
1 )ε2

D∑
k=1

b−2
k

D∑
k=1

θ2
k.

For all γ ∈]0, 1[, using again the Peter-Paul inequality, we get

Varθ,ξ(TD) ≤ (C1 + 2C2)ε4
D∑

k=1

b−4
k + 4(C1 + 2C1/2

1 )ε4
( D∑

k=1

b−2
k

)2

+ γ−1(10 + C2 + 4C1/2
1 )ε4

( D∑
k=1

b−2
k

)2
+ γ(10 + C2 + 4C1/2

1 )
( D∑

k=1

θ2
k

)2
.

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 4 2017



MINIMAX SIGNAL DETECTION 293

Hence, since γ ∈]0, 1[, it is easily seen that

Varθ,ξ(TD) ≤ γ(10 + C2 + 4C1/2
1 )

( D∑
k=1

θ2
k

)2

+
{
(C1 + 2C2) + 4(C1 + 2C1/2

1 ) + γ−1(10 + C2 + 4C1/2
1 )

}
ε4
( D∑

k=1

b−2
k

)2

≤ γ(10 + C2 + 4C1/2
1 )

( D∑
k=1

θ2
k

)2
+ γ−1

{
10 + 5C1 + 2C2 + 12C1/2

1

}
ε4
( D∑

k=1

b−2
k

)2

≤ (10 + 5C1 + 2C2 + 12C1/2
1 )

{
γ
( D∑

k=1

θ2
k

)2
+ γ−1ε4

( D∑
k=1

b−2
k

)2
}

:= K2

{
γ
( D∑

k=1

θ2
k

)2
+ γ−1ε4

( D∑
k=1

b−2
k

)2
}

. (7.8)

Now, using (7.1) and (7.8) and choosing γ = C−1
β , we get

Pθ,ξ(Ψα,D = 0) ≤
K2

{
γ(
∑D

k=1 θ2
k)

2 + γ−1ε4(
∑D

k=1 b−2
k )2

}
(∑D

k=1 θ2
k − K1ε2

∑D
k=1 b−2

k

)2

≤
K2

{
γ + γ−1C−2

β

}
(
1 − K1C−1

β

)2 ≤
2K2C−1

β(
1 − K1C−1

β

)2 ≤ β, (7.9)

provided that

D∑
k=1

θ2
k ≥ Cβε2

D∑
k=1

b−2
k (7.10)

and Cβ is the solution of the equation

2K2C−1
β(

1 − K1C−1
β

)2 = β. (7.11)

To conclude the proof, since
∑

k>D θ2
k ≤ a−2

D , remark that inequality (7.10) is satisfied provided that

‖θ‖2 ≥ Cβε2
D∑

k=1

b−2
k + a−2

D .

7.3. Proof of Proposition 3.3

When ξ is Gaussian, we will write ΞG instead of Ξ and Pθ,Σ instead of Pθ,ξ, where Σ = (Σkl)k,l∈N
denotes the associated covariance matrix. We also define S = {Σ: Σkk = 1}. Below, Ψα refers to an
α-level test.

Let θ� ∈ Θa(rε), ξ� ∈ ΞG and Σ� ∈ S be fixed. Their values will be made precise later on. Then

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ inf
Ψα

sup
θ∈Θa(rε)

ξ∈ΞG

Pθ,ξ(Ψα = 0)

= inf
Ψα

sup
θ∈Θa(rε)

Σ̃∈S

Pθ,Σ̃(Ψα = 0) ≥ inf
Ψα

sup
θ∈Θa(rε)

Pθ,Σ�(Ψα = 0)
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≥ inf
Ψα

Pθ�,Σ�(Ψα = 0) ≥ 1 − α − 1
2
(
E0[L2

θ�,Σ�(Y )] − 1
)1/2

,

where Lθ�,Σ�(Y ) = dPθ�,Σ�(Y )/dP0,Σ�(Y ) is the likelihood ratio between the probability measures
Pθ�,Σ� and P0,Σ� (for the last inequality, we refer to, e.g., (3.1) in [15]). In particular, if we can find θ�

and Σ� such that

E0[L2
θ�,Σ�(Y )] ≤ Cα,β

for some β ∈]0, 1 − α[, then

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ β.

Let D ∈ N be fixed. Now, we impose the following conditions on θ� and Σ�:

θ�
k = 0 ∀k > D and Σ�

kl = 0 ∀k > D, l > D, k = l.

Let Σ�
D = (Σ�

kl)1≤k,l≤D be the remaining submatrix of Σ�. With a slight abuse of notation, we denote
below Y = (Y1, . . . , YD)′ and bθ� = (b1θ

�
1, . . . , bDθ�

D)′. Then, by simple algebra,

Lθ�,Σ�(Y ) =
exp

(
− 1

2ε2 (Y − bθ�)′(Σ�
D)−1(Y − bθ�)

)

exp
(
− 1

2ε2 Y ′(Σ�
D)−1Y

)

= exp
[ 1
2ε2

{
2(bθ�)′(Σ�

D)−1Y − (bθ�)′(Σ�
D)−1bθ�

}]
.

Hence

E0[L2
θ�,Σ�(Y )] = exp

(
− 1

ε2
(bθ�)′(Σ�

D)−1bθ�
)
E0

[
exp

( 2
ε2

(bθ�)′(Σ�
D)−1Y

)]
.

It is easily seen that

E0

[
exp

( 2
ε2

(bθ�)′(Σ�
D)−1Y

)]

=
1

(2πε2)D/2|Σ�
D|1/2

∫

RD

exp
( 2

ε2
(bθ�)′(Σ�

D)−1y
)

exp
(
− 1

2ε2
y′(Σ�

D)−1y
)

dy

=
1

(2πε2)D/2|Σ�
D|1/2

∫

RD

exp
(
− 1

2ε2

{
y′(Σ�

D)−1y − 4(bθ�)′(Σ�
D)−1y

})
dy

= exp
( 2

ε2
(bθ�)′(Σ�

D)−1bθ�
) 1

(2πε2)D/2|Σ�
D|1/2

∫

RD

exp
(
− 1

2ε2
(y − 2bθ�)′(Σ�

D)−1(y − 2bθ�)
)

dy

= exp
( 2

ε2
(bθ�)′(Σ�

D)−1bθ�
)
.

Hence

E0[L2
θ�,Σ�(Y )] = exp

( 1
ε2

(bθ�)′(Σ�
D)−1bθ�

)
.

Now, we select θ� as follows

θ�
k =

rεb
−1
k (Σ�

Dv)k
ρ

∀k ∈ {1, . . . ,D} and θ�
k = 0 ∀k > D,

where

ρ2 =
D∑

k=1

b−2
k (Σ�

Dv)2k and vk =
1√
D

∀k ∈ {1, . . . ,D}. (7.12)

Now, define v = (v1, . . . , vD)′ and note that ‖v‖ = 1. Then it is easily seen that

E0[L2
θ�,Σ�(Y )] = exp

( r2
ε

ε2ρ2
v′Σ�

Dv
)
. (7.13)
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We first construct a specific ξ� ∈ ΞG. Let

ξ�
k = dk η0 +

√
1 − d2

k ηk ∀k ∈ {1, . . . ,D} and ξ�
k = ηk ∀k > D, (7.14)

where (ηk)k∈N0 denotes a sequence of independent standard Gaussian random variables and d =
(dk)1≤k≤D is a real sequence such that 1/

√
2 ≤ dk < 1 for all 1 ≤ k ≤ D. Obviously, ξ� ∈ ΞG, since

ξ� is Gaussian,

E[ξ�
k] = 0, E[(ξ�

k)
2] = 1 ∀k ∈ N

and

max
1≤k≤D

E[(ξ�
k)4] ≤ max

1≤k≤D

[
8d4

kE[ξ4
0 ] + 8(1 − dk)2E[η4

k]
]
≤ 16E[ξ4

0 ] = C < +∞,

sup
k>D

E[(ξ�
k)4] = 3.

Now, we need to bound the expression in (7.13). Using (7.14), we get

Σ�
kl = E[ξ�

kξ�
l ] = dkdl ≥ 1/2 ∀k, l ∈ {1, . . . ,D} with k = l and Σkl = 0 ∀k, l > D, k = l.

Note also that, since v is a unit vector,

v′Σ�
Dv ≤ max

‖a‖=1
a′Σ�

Da ≤ D

since the largest eigenvalue of Σ�
D is smaller than D. Now, using (7.12), we get

ρ2 =
D∑

k=1

b−2
k (Σ�

Dv)2k =
D∑

k=1

( D∑
l=1

Σ�
klvl

)2
≥ 1

4
D

D∑
k=1

b−2
k

since Σ�
kl ≥ 1/2 for all k, l ∈ {1, . . . ,D}. Hence

E0[L2
θ�,Σ�(Y )] ≤ exp

(
4r2

ε

ε2

1∑D
k=1 b−2

k

)
≤ Cα,β

provided

‖θ‖2 = r2
ε ≤

(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k .

To conclude the proof, we need to ensure that the constructed θ� belongs to Ea. Remark that, since a is
an increasing sequence,

∑
k∈N

a2
k(θ

�
k)

2 =
D∑

k=1

a2
k(θ

�
k)

2 ≤ a2
D

D∑
k=1

a2
k(θ

�
k)

2 ≤ a2
Dr2

ε ≤ 1

provided r2
ε ≤ a−2

D . Hence

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ β

as soon as

r2
ε ≤

(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D .
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7.4. Proof of Theorem 4.1

In Proposition 3.2, we have proved that for all D ∈ N there exists an α-level test Ψα,D such that

sup
θ∈Θa(rε,D)

ξ∈Ξ

Pθ,ξ(Ψα,D = 0) ≤ β,

for any radius rε,D > 0 satisfying

r2
ε,D ≥ Cβε2

D∑
k=1

b−2
k + a−2

D .

Now, setting

D† = arg inf
D∈N

[
Cβε2

D∑
k=1

b−2
k + a−2

D

]

and denoting by Ψα,D† the associated α-level test, we get

sup
θ∈Θa(r�

ε )
ξ∈Ξ

Pθ,ξ(Ψα,D† = 0) ≤ β

for any radius r�
ε > 0 satisfying

(r�
ε)

2 ≥ inf
D∈N

[
Cβε2

D∑
k=1

b−2
k + a−2

D

]
.

Hence

r̃2
ε ≤ inf

D∈N

[
Cβε2

D∑
k=1

b−2
k + a−2

D

]
.

Similarly, using Proposition 3.3,

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ β

for any radius rε > 0 such that

r2
ε ≤

(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D .

This result occurs for all D ∈ N . Hence

inf
Ψα

sup
θ∈Θa(rε)

ξ∈Ξ

Pθ,ξ(Ψα = 0) ≥ β

for any radius rε > 0 such that

r2
ε ≤ sup

D∈N

[(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D

]
.

This entails that

r̃2
ε ≥ sup

D∈N

[(1
4

log(Cα,β)
)
ε2

D∑
k=1

b−2
k ∧ a−2

D

]
.
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7.5. Proof of Proposition 5.1
Remark that, under Assumption HD,

S0(D)
ε4

∼
D∑

k,l=1
k �=l

k2tl2t|k − l|−2s = 2
D∑

k=1

k2t
k−1∑
l=1

l2t

(k − l)2s
≤ 2

D∑
k=1

k4t
k−1∑
l=1

1
(k − l)2s

.

Then, for all k ∈ N ,
k−1∑
l=1

1
(k − l)2s

=
k−1∑
m=1

1
m2s

∼ k1−2s.

In particular, the above sum is finite whatever the value of k provided s > 1/2. Hence, under Assump-
tion HD, we get

S0(D) � ε4
D∑

k=1

k4tk1−2s ∼ ε4D4t−2s+2 = o(R0(D)) as D → +∞.

7.6. Proof of Proposition 5.2
Recall from (7.2) that

Varθ,ξ(TD) = Rθ(D) + Sθ(D),

where, using (7.5),

Rθ(D) =
D∑

k=1

b−4
k Varθ,ξ(y2

k − ε2) � ε4
D∑

k=1

b−4
k + ε2( max

1≤k≤D
b−2
k )

D∑
k=1

θ2
k.

Moreover, using (7.6),

Sθ(D) =
D∑

k,l=1
k �=l

b−2
k b−2

l Covθ,ξ(y2
k − ε2, y2

l − ε2)

= 2ε4
D∑

k,l=1
k �=l

b−2
k b−2

l E[(ξ2
k − 1)(ξ2

l − 1)] + 8ε2
D∑

k,l=1
k �=l

b−1
k b−1

l θkθlE[ξkξl]

+ 4ε3
D∑

k,l=1
k �=l

b−2
k b−1

l θlE[(ξ2
k − 1)ξl] + 4ε3

D∑
k,l=1
k �=l

b−2
l b−1

k θkE[(ξ2
l − 1)ξk]

:= R1 + R2 + R3 + R4.

Note that, using the above proposition, R1 = S0(D) = o(Rθ(D)) as D → +∞. Then, using (5.2), we
can immediately see that R3 = R4 = 0. In order to conclude, using the Cauchy–Schwarz and Peter-
Paul inequalities, we get, for any γ ∈]0, 1[,

R2 = 8ε2
D∑

k,l=1
k �=l

b−1
k b−1

l θkθlCov(ξk, ξl) � ε2
D∑

k,l=1
k �=l

b−1
k b−1

l |θk||θl|
1

|k − l|s

≤

√√√√√√ε4

D∑
k,l=1
k �=l

b−2
k b−2

l

1
|k − l|2s

√√√√√√
D∑

k,l=1
k �=l

θ2
kθ

2
l

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 4 2017



298 MARTEAU, SAPATINAS

≤ γ
( D∑

k=1

θ2
k

)2
+ γ−1ε4

D∑
k,l=1
k �=l

b−2
k b−2

l

1
|k − l|2s

∼ γ
( D∑

k=1

θ2
k

)2
+ γ−1R1.

Summarizing all the above computations, we obtain, for any γ ∈]0, 1[,

Varθ,ξ(TD) � (1 + γ−1)ε4
D∑

k=1

b−4
k + ε2( max

1≤k≤D
b−2
k )

D∑
k=1

θ2
k + γ

( D∑
k=1

θ2
k

)2

� (1 + γ−1)ε4
D∑

k=1

b−4
k + γ

( D∑
k=1

θ2
k

)2
,

where we have used again the Peter-Paul inequality (see, e.g., [3], p. 18).
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