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Abstract—We consider the detection problem of a two-dimensional function from noisy observa-
tions of its integrals over lines. We study both rate and sharp asymptotics for the error probabilities
in the minimax setup. By construction, the derived tests are non-adaptive. We also construct a
minimax rate-optimal adaptive test of rather simple structure.
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1. INTRODUCTION

The problem of tomography is to reconstruct a two-dimensional function (image) from its Radon
transform, i.e., from observations of its integrals over lines. This problem, and its extension to higher
dimensions, appears in different scientific fields such as radio astronomy and medical imaging (see, e.g.,
[7], [9], [20]). We consider the tomography problem from a statistical perspective that can be formulated
as a problem of reconstructing a two-dimensional function from its noisy Radon transform (see, e.g., [5],
[6], [15], [16]).

Despite some work on the minimax estimation problem of a two-dimensional function from its
noisy Radon transform (see [6], [16], [17]), to the best of our knowledge, there exist no work on the
corresponding minimax detection problem. The general statement of this problem is given in Section 2,
while some preliminaries and notation in the minimax signal detection framework are presented in
Section 3. Within this framework, in Section 4, we consider the detection problem of a two-dimensional
function from its noisy Radon transform and study both rate and sharp asymptotics for the error
probabilities. By construction, the derived tests are non-adaptive. A rate-optimal adaptive test of rather
simple structure is also constructed. The proofs are given in the Appendix.

2. FORMULATION OF THE PROBLEM

2.1. The Radon Transform

Denote by ‖ · ‖ the standard Euclidean norm in R
2, i.e., ‖x‖ = (x2

1 + x2
2)

1/2, x = (x1, x2) ∈ R
2. Let

H = {x ∈ R
2 : ‖x‖ ≤ 1} be the unit disk in R

2, and let μ denote the Lebesgue measure in R
2. Consider

the integrals of a function f : H �→ R over all lines that intersect H . The lines are parameterized by the
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348 INGSTER et al.

length u ∈ [0, 1] of the perpendicular from the origin to the line and by the orientation ϕ ∈ [0, 2π) of this
perpendicular. Suppose that f ∈ L1(H,μ) ∩ L2(H,μ). Define the Radon transform of the function f by

Rf(u, ϕ) =
π

2
√

1 − u2

√
1−u2∫

−
√

1−u2

f(u cos ϕ − t sin ϕ, u sin ϕ + t cos ϕ) dt, (u, ϕ) ∈ S, (2.1)

where

S =
{
(u, ϕ) : u ∈ [0, 1], ϕ ∈ [0, 2π)

}
.

Thus, the Radon transform Rf is π times the average of f over the line segment (parametrized by (u, ϕ))
that intersects H . It is natural to consider Rf as an element of L2(S, μ0), where μ0 is the measure on S
defined by

dμ0(u, ϕ) =
2
√

1 − u2

π
dϕ, (u, ϕ) ∈ S.

2.2. The Gaussian White Noise Model

Consider now the Gaussian white noise model

dYε(u, ϕ) = Rf(u, ϕ) du dϕ + ε dW (u, ϕ), (u, ϕ) ∈ S, (2.2)

where W is a standard Wiener sheet on S (i.e., the primitive of white noise on S) and ε > 0 is a small
parameter (the noise level). Although this model is continuous and real data are typically discretely
sampled, its versions have been extensively studied in the nonparametric literature and are considered
as idealized models that provide, subject to some limitations, approximations to many sampled-data
nonparametric models (see, e.g., [2], [4], [8], [21]).

The Gaussian white noise model (2.2) may also seem initially rather remote. One may, however, be
helped by the observation that what it really means is the following: for any function g ∈ L2(S, μ0), the
integral ∫∫

S

g(u, ϕ)Rf(u, ϕ) du dϕ

can be observed with Gaussian error having zero mean and variance equal to ε2
∫∫

S g2(u, ϕ) du dϕ (see,
e.g., [4]).

The Radon transform R is a compact operator and its singular value decomposition (SVD) is
well known (see, e.g., [20]). To introduce it, let N = {1, 2, . . .} be the set of positive integers, put
Z+ = N ∪ {0}, and define a set of double indices giving rise to the following lattice quadrant

Γ = {ν : ν = (j, l), j, l ∈ Z+}. (2.3)

An orthonormal complex-valued basis for L2(H,μ) is given by

φ̃ν(r, θ) = π−1/2(j + l + 1)1/2Z
|j−l|
j+l (r) exp{i(j − l)θ}, ν ∈ Γ, (2.4)

where x = (r cos θ, r sin θ) ∈ H, with Zb
a denoting the Zernike polynomial of degree a and order b, with

a, b ∈ Z+ (see, e.g., [7]). The corresponding orthonormal complex-valued basis in L2(S, μ0) is

ψ̃ν(u, ϕ) = π−1/2Uj+l(u) exp{i(j − l)ϕ}, ν ∈ Γ, (u, ϕ) ∈ S, (2.5)

where

Um(cos θ) =
sin((m + 1)θ)

sin θ
, m ∈ Z+, θ ∈ [0, 2π),

are the Chebyshev polynomials of the second kind. We then have (see, e.g., [6])

Rφ̃ν = bνψ̃ν
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with singular values

bν = π(j + l + 1)−1/2, ν ∈ Γ. (2.6)

Since we work with real-valued functions f , the complex-valued bases (2.4) and (2.5) are identified,
in standard fashion, with the equivalent real-valued orthonormal bases φν and ψν , ν ∈ Γ, respectively,
defined by

φν =

⎧⎪⎨
⎪⎩
√

2 Re(φ̃ν) if j > l,

φ̃ν if j = l,√
2 Im(φ̃ν) if j < l,

(2.7)

with an analogous expression for ψν , ν ∈ Γ.
Hence, by standard calculations (see, e.g., [6], [13]) and an application of the spectral theorem for

the self-adjoint compact operator R∗R (R∗ being the adjoint of R), the Gaussian white noise model
(2.2) generates the following equivalent discrete observational model in the Fourier domain, called the
Gaussian sequence model,

yν = bνθν + ε ξν , ν ∈ Γ, (2.8)

where yν = 〈Rf, ψν〉, ν ∈ Γ, are the “observations”, bν , ν ∈ Γ, are the singular values of the Radon
operator R given by (2.6), θν = 〈f, φν〉, ν ∈ Γ, are the Fourier coefficients of f with respect to φν given
by (2.7), and ξν , ν ∈ Γ, are independent and identically distributed (iid) standard Gaussian random

variables, i.e., ξν
iid∼ N (0, 1), ν ∈ Γ.

2.3. The Class of Functions

Crucial to the suggested detection methodology is the idea of considering minimax detection over
certain classes of functions in f ∈ L2(H,μ). Following [6], we consider a special class of functions with
polynomially decreasing coefficients θ = {θν}ν∈Γ, i.e., for some p > 0, L > 0,

F(p, L) =
{

f =
∑
ν∈Γ

θνφν : θ ∈ Θ̃(p, L)
}

(2.9)

with

Θ̃(p, L) =
{

θ ∈ l2 :
∑

ν∈Γ, ν �=(0,0)

(j + 1)2p(l + 1)2pθ2
ν ≤ L2

}
. (2.10)

It has been shown that F(p, L) can be identified with the set of functions f which have 2p weak
derivatives (provided 2p is an integer) that are square-integrable on H with respect to the modified
dominating measure

dμ2p+1(x) = (1 − ‖x‖2)2p dμ(x), x ∈ H.

This is weaker than the square-integrability with respect to μ assumed for the usual Sobolev spaces (see
Proposition 2.2 in [14]).

2.4. The Aim

The goal is to determine whether the two-dimensional function f corresponds to a known “etalon"
function f0 (i.e., to test the null hypothesis H0 : f = f0) or there exists a difference between f and f0 (i.e.,
against the alternative hypothesis H1 : f = f0 + Δf with Δf ∈ F(p, L), see (2.9)–(2.10)), based on the
observation of a trajectory {Yε = Yε(u, ϕ)}, (u, ϕ) ∈ S, from the Guassian white noise model (2.2).

From mathematical point of view, we can take f0 = 0 by passing to the observation Ỹε with dỸε =
dYε(u, φ) −Rf0 du dφ. For this reason, without loss of generality, we assume in the sequel that f0 = 0,
use f in place of Δf , and take the observation Yε. In order to avoid having a trivial power (see below),
our ultimate goal is to determine whether f satisfies (3.1) (see below), using only tests calibrated in such
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a way that if one had run them in the absence of an f ∈ F(p, L), a certain restriction of the significance
level (error probability) is met.

In the sequel, we elaborate on the set under the alternative hypothesis and the suggested test
statistics that provide a good quality of testing in the minimax framework. Before going into the
details, however, we give the necessary preliminaries on the minimax signal detection framework in the
standard Gaussian white noise model which provide the avenue for developing the suggested detection
methodology and deriving theoretical results for detecting a two-dimensional function from its noisy
Radon transform.

Hereafter, the relation Aε ∼ Bε means that Aε/Bε → 1 as ε → 0 while the relation Aε 
 Bε

means that there exist absolute constants 0 < c1 ≤ c2 < ∞ and ε0 > 0 small enough such that c1 ≤
Aε/Bε ≤ c2 for 0 < ε ≤ ε0.

3. SIGNAL DETECTION IN THE GAUSSIAN SEQUENCE MODEL:
THE MINIMAX FRAMEWORK

Consider the Gaussian sequence model (2.8). In order to avoid having a trivial minimax hypothesis
testing problem (i.e., trivial power), one usually needs to remove a neighborhood around the functional
parameter under the null hypothesis and to impose some additional constraints that are typically
expressed in the form of some regularity conditions, such as constraints on the derivatives of the
unknown functional parameter of interest (see, e.g., [11], Sections 1.3–1.4).

In view of the above observation, the main object of our study is the hypothesis testing problem

H0 : θ = 0 versus H1 :
∑
ν∈Γ

a2
νθ

2
ν ≤ 1,

∑
ν∈Γ

θ2
ν ≥ r2

ε , (3.1)

where θ = {θν}ν∈Γ ∈ l2, aν ≥ 0, ν ∈ Γ, and rε > 0, rε → 0, is a given family. It means that the
alternative set corresponds to an ellipsoid of semi-axes 1/aν , ν ∈ Γ, with an l2-ball of radius rε removed.
(Here, l2 = {ζ :

∑
ν∈Γ ζ2

ν < ∞} with Γ given by (2.3).)
Consider now the sequence η = {ην}ν∈Γ with elements ην = θν/σν , where we set σν = 1/bν , ν ∈ Γ.

In view of (2.6), the sequence η = {ην}ν∈Γ ∈ l2, and the Gaussian sequence model (2.8) takes the form

yν = ην + εξν , ν ∈ Γ. (3.2)

The hypothesis testing problem (3.1) can now be written in the following equivalent form

H0 : η = 0 versus H1 : η ∈ Θ(rε), (3.3)

where the alternative set, i.e., Θ(rε), is determined by the constraints

Θ =
{

η ∈ l2 :
∑
ν∈Γ

a2
νσ

2
νη

2
ν ≤ 1

}
, Θ(rε) =

{
η ∈ Θ:

∑
ν∈Γ

σ2
νη2

ν ≥ r2
ε

}
, (3.4)

i.e., the alternative set corresponds to an ellipsoid of semi-axes 1/(aνσν), ν ∈ Γ, with an ellipsoid of
semi-axes rε/σν , ν ∈ Γ, removed.

We are therefore interested in the minimax efficiency of the hypothesis testing problem (3.3)–(3.4) for
a given family of sets Θε = Θ(rε) ⊂ l2. It is characterized by asymptotics, as ε → 0, of the minimax error
probabilities in the problem at hand. Namely, for a (randomized) test ψ (i.e., a measurable function of
the observation y = {yν}ν∈Γ taking values in [0, 1]), the null hypothesis is rejected with probability ψ(y)
and is accepted with probability 1−ψ(y). Let Pε,η be the probability measure for the Gaussian sequence
model (3.2) and denote by Eε,η the expectation over this probability measure. Let αε(ψ) = Eε,0ψ be its
type I error probability, and let βε(Θε, ψ) = supη∈Θε

Eε,η(1 − ψ) be its maximal type II error probability.
We consider two criteria of asymptotic optimality:

(1) The first one corresponds to the classical Neyman–Pearson criterion. For α ∈ (0, 1), we set

βε(Θε, α) = inf
ψ : αε(ψ)≤α

βε(Θε, ψ).

We call a family of tests ψε,α asymptotically minimax if

αε(ψε,α) ≤ α + o(1), βε(Θε, ψε,α) = βε(Θε, α) + o(1),
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where o(1) is a family tending to zero; here and in what follows, all limits are taken as ε → 0 unless
otherwise stated.

(2) The second one corresponds to the total error probabilities. Let γε(Θε, ψ) be the sum of the type I
and the maximal type II error probabilities, and let γε(Θε) be the minimax total error probability, i.e.,

γε(Θε) = inf
ψ

γε(Θε, ψ),

where the infimum is taken over all possible tests. We call a family of tests ψε asymptotically minimax
if

γε(Θε, ψε) = γε(Θε) + o(1).

It is known that (see, e.g., [11], Chapter 2)

βε(Θε, α) ∈ [0, 1 − α], γε(Θε) = inf
α∈(0,1)

(α + βε(Θε, α)) ∈ [0, 1]. (3.5)

We consider the problems of rate and sharp asymptotics for the error probabilities in the minimax
setup. The rate optimality problem corresponds to the study of the conditions for which γε(Θε) → 1 or
γε(Θε) → 0 and, in the latter case, to the construction of asymptotically minimax consistent families
of tests ψε, i.e., such that γε(Θε, ψε) → 0.

We are interested in a set Θε of the form

Θε = Θ(rε) = {η ∈ Θ: |η| ≥ rε},

where Θ ⊂ l2 is a given set, | · | is some norm in l2 (not necessarily the standard l2-norm) and rε → 0
is a given positive-valued family. For this case, we use the notation γε(Θ(rε)) = γε(rε), βε(Θ(rε), α) =
βε(rε, α) and we are interested in the minimal decreasing rates for the sequence rε such that γε(rε) → 0.
Namely, we say that a positive sequence r∗ε → 0 is a separation rate, if

γε(rε) → 1 and βε(rε, α) → 1 − α for any α ∈ (0, 1) as rε/r
∗
ε → 0, (3.6)

and

γε(rε) → 0 and βε(rε, α) → 0 for any α ∈ (0, 1) as rε/r
∗
ε → ∞. (3.7)

In other words, it means that, for small ε, one can detect all sequences η ∈ Θ(rε) if the ratio rε/r
∗
ε is

large, whereas if this ratio is small then it is impossible to distinguish between the null and the alternative
hypotheses with small minimax total error probability. Hence the rate optimality problem corresponds to
finding the separation rates r∗ε and to constructing asymptotically minimax consistent families of tests.

On the other hand, the sharp optimality problem corresponds to the study of the asymptotics of the
quantities βε(Θε, α), γε(Θε) (up to vanishing terms) and to the construction of asymptotically minimax
families of tests ψε,α and ψε, respectively. Often, the sharp asymptotics are of Gaussian type, i.e.,

βε(Θε, α) = Φ(H(α) − uε) + o(1), γε(Θε) = 2Φ(−uε/2) + o(1), (3.8)

where Φ is the standard Gaussian distribution function, H(α) is its (1 − α)-quantile, i.e., Φ(H(α)) =
1 − α. The quantity uε = uε(rε) is the value of the specific extreme problem (4.1) on the sequence
space l2, and the extreme sequence of this problem determines the structure of the asymptot-
ically minimax families of tests ψε,α and ψε. Moreover, we shall see that if uε(rε) → ∞, then
γε(rε) → 0, βε(rε, α) → 0, and if uε(rε) → 0, then γε(rε) → 1, βε(rε, α) → 1 − α for any α ∈ (0, 1),
i.e., the family uε(rε) characterizes distinguishability in the testing problem. The separation rates r∗ε
are usually determined by the relation uε(r∗ε) 
 1 (see, e.g., [10], [11]). Hence sharp and rate optimality
problems correspond to the study of the extreme problem (4.1) and of the asymptotics of the family
uε(rε).

MATHEMATICAL METHODS OF STATISTICS Vol. 20 No. 4 2011
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4. MINIMAX IMAGE DETECTION FROM NOISY TOMOGRAPHIC DATA

4.1. A General Result: Rate and Sharp Asymptotics

Recall the Gaussian sequence model (3.2). We are interested in the hypothesis testing problem (3.3)
with the alternative set Θε = Θ(rε) given by (3.4).

Consider now the extreme problem

u2
ε = u2

ε(rε) =
1

2ε4
inf

η∈Θ(rε)

∑
ν∈Γ

η4
ν . (4.1)

Suppose that Θ(rε) �= ∅ and uε > 0, and let there exist an extreme sequence {η̃ν}ν∈Γ in the extreme
problem (4.1). (Observe the uniqueness of a nonnegative extreme sequence {η̃ν}ν∈Γ, because, by
passing to the sequence {zν}ν∈Γ with elements zν = η̃2

ν , ν ∈ Γ, we obtain the minimization problem
of a strictly convex function under linear constraints.) Denote

wν =
η̃2

ν√
2
∑

ν∈Γ η̃4
ν

, ν ∈ Γ, w0 = sup
ν∈Γ

wν , (4.2)

and consider the following families of test statistics and tests

tε =
∑
ν∈Γ

wν((yν/ε)2 − 1), ψε,H = 1{tε>H}, (4.3)

where 1{A} denotes the indicator function of a set A. (Note that the values of η̃ν , wν , ν ∈ Γ, and w0

depend on ε, i.e., η̃ν = η̃ν,ε, wν = wν,ε, ν ∈ Γ, and w0 = w0,ε.)

The key tool for the study of the above mentioned hypothesis testing problem is the following general
theorem. Its proof follows along the lines of the proof of Theorem 4.1 in [13]; hence it is omitted.

Theorem 4.1. Consider the Gaussian sequence model (3.2) and the hypothesis testing prob-
lem (3.3) with the alternative set given by (3.4). Let uε be determined by the extreme problem (4.1),
let the coefficients wν , ν ∈ Γ, and w0 be as in (4.2), and consider the family of tests ψε,H given
by (4.3). Then

(1) (a) If uε → 0, then βε(rε, α) → 1 − α for any α ∈ (0, 1) and γε(rε) → 1, i.e., minimax testing
is impossible. If uε = O(1), then lim inf βε(rε, α) > 0 for any α ∈ (0, 1) and lim inf γε(rε) > 0, i.e.,
minimax consistent testing is impossible.

(b) If uε 
 1 and w0 = o(1), then the tests ψε,H of the form (4.3) with H = H(α) and H = uε/2
are asymptotically minimax, i.e.,

αε(ψε,H(α)) ≤ α + o(1),

βε(Θ(rε), ψε,H(α)) = βε(rε, α) + o(1),

γε(Θ(rε), ψε,uε/2) = γε(rε) + o(1),

and the sharp asymptotics (3.8) hold true, i.e.,

βε(rε, α) = Φ(H(α) − uε) + o(1),
γε(rε) = 2Φ(−uε/2) + o(1).

(2) If uε → ∞, then the tests ψε,H of the form (4.3) with H = Tε are asymptotically minimax
consistent for any c ∈ (0, 1) and a family Tε ∼ cuε, i.e., γε(Θ(rε), ψε,Tε) → 0.

Theorem 4.1 shows that the asymptotics of the quality of testing is determined by the asymptotics of
values uε of the extreme problem (4.1). In order to make use of it, one needs to study the extreme problem
(4.1). This problem is studied by using Lagrange multipliers. Then, the extreme sequence in the above
mentioned extreme problem is of the form

η̃2
ν = z2

0σ2
ν(1 − Aa2

ν)+, ν ∈ Γ, (4.4)
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where (t)+ = max(t, 0), t ∈ R, and the quantities z0 = z0,ε and A = Aε are determined by the equations⎧⎨
⎩

∑
ν∈Γ σ2

ν η̃2
ν = r2

ε ,∑
ν∈Γ a2

νσ2
ν η̃

2
ν = 1.

(4.5)

The equations (4.5) are immediately rewritten in the form⎧⎨
⎩

r2
ε = z2

0J1,

1 = z2
0A

−1J2,
(4.6)

and, hence, the extreme problem (4.1) takes the form

u2
ε = ε−4z4

0J0/2, (4.7)

where

J1 =
∑
ν∈Γ

σ4
ν(1 − Aa2

ν)+, J2 = A
∑
ν∈Γ

a2
νσ

4
ν(1 − Aa2

ν)+, J0 = J1 − J2 =
∑
ν∈Γ

σ4
ν(1 − Aa2

ν)
2
+.

It is also convenient to rewrite (4.6) and (4.7) in the form

r2
ε = A

J1

J2
, u2

ε =
(

rε

ε

)4 J0

2J2
1

. (4.8)

Remark 4.1. Let uε = uε(rε) be the value of the extreme problem (4.1) with sequences a = {aν}ν∈Γ

and σ = {σν}ν∈Γ associated with the alternative set Θε = Θ(rε) given by (3.4), and let ũε = ũε(rε) be
the corresponding value of the extreme problem similar to (4.1) with sequences ã = Ca = {Caν}ν∈Γ

and σ̃ = Dσ = {Dσν}ν∈Γ in (3.4), for some constants C,D > 0. Then, it is easily seen that the relation
ũε(rε) = (CD)−2uε(Crε) holds true.

Remark 4.2. In order to obtain the corresponding rate and sharp asymptotics for the noisy tomographic
data, we need to study the asymptotics of the quantities Ji, i = 0, 1, 2, given above. We note, however,
that the methods used in [13] to study analogous asymptotics in a wide range of linear statistical ill-
posed inverse problems cannot be adapted to the problem at hand. The reason is that there does not exist
a common ordering for the sequences a = {aν}ν∈Γ and σ = {σν}ν∈Γ associated with the alternative set
Θε = Θ(rε) given by (3.4). The arguments and techniques used to prove Theorems 4.2 and 4.3 below
are specifically developed to tackle this problem.

4.2. Rate and Sharp Asymptotics for the Noisy Tomographic Data

According to (2.6) and (2.10), consider the double-index sequences

aν = L−1(j + 1)p(l + 1)p, ν ∈ Γ, (4.9)

σν = π−1(j + l + 1)1/2, ν ∈ Γ, (4.10)

for some p > 0 with Γ given by (2.3).

Theorem 4.2. Consider the Gaussian sequence model (3.2) and the hypothesis testing prob-
lem (3.3) with the alternative set given by (3.4). Let {aν}ν∈Γ and {σν}ν∈Γ be defined as in (4.9)
and (4.10), respectively. Then

(a) The sharp asymptotics (3.8) hold with the value uε of the extreme problem (4.1) determined
by

u2
ε ∼ π4L−3/pr4+3/p

ε ε−4 2p + 3
2B

(
3

4p + 3

)1+3/(2p)

, (4.11)

where B =
∑∞

m=1 m−3 = ζ(3) ≈ 1.202 with ζ(·) the Riemann’s zeta-function.
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(b) The asymptotically minimax family of tests ψε,H are determined by the family of test
statistics tε given by (4.3) with coefficients wν , ν ∈ Γ, and w0 as in (4.2), and with extreme sequence
{η̃ν}ν∈Γ satisfying (4.4) with A ∼ 3

4p+3r2
ε .

(c) The separation rates are of the form

r∗ε = ε4p/(4p+3). (4.12)

Remark 4.3. It is easily seen that the asymptotic results in Theorem 4.2 hold true uniformly over p ∈ Σ
for any compact set Σ ⊂ (0,∞).

Remark 4.4. Rate and sharp asymptotics in the corresponding minimax estimation problem under the
L2-risk have been obtained in [6]. In particular, the asymptotic (as ε → 0) minimax rates of estimation
are given by

R2
ε := inf

f̃
sup

f∈F(p,L)
E||f̃ − f ||2 
 ε4p/(2p+2),

where the infimum is taken over all possible estimators f̃ of f based on observations from the Gaussian
white noise model (2.2). (Here, we adopt the standard notation and write g1(ε) 
 g2(ε) to denote 0 <
lim inf(g1(ε)/g2(ε)) ≤ lim sup(g1(ε)/g2(ε)) < ∞ as ε → 0.) By comparing r∗ε with Rε, it is observed
that the asymptotic minimax rates of testing are faster than the corresponding asymptotic minimax
rates of estimation; this phenomenon is common in nonparametric statistical inference (see, e.g., [11],
Sections 2.10 and 3.5.1, [13]).

4.3. Adaptivity and Rate Optimality for the Noisy Tomographic Data

The family of tests considered in Section 4.2 depends on the parameter p that is usually unknown in
practice. Therefore, it is of paramount importance to construct families of tests that do not depend on the
unknown parameter p and, at the same time, provide the best possible asymptotic minimax efficiency.
Such families are called adaptive (to the parameter p), and the formal setting is as follows.

Let Σ be a compact set in (0,∞) and a family rε(p), p ∈ Σ, be given, where ε > 0 is small. Let the set
Θε(p, rε(p)) be determined by the constraints (3.4) with aν = aν(p), ν ∈ Γ, and rε = rε(p), and set

Θε(Σ) =
⋃
p∈Σ

Θε(p, rε(p)).

We are interested in the following hypothesis testing problem

H0 : η = 0, versus H1 : η ∈ Θε(Σ).

We aim at finding conditions for either γε(Θε(Σ)) → 1 or γε(Θε(Σ)) → 0, and to constructing
asymptotically minimax adaptive consistent families of tests ψad

ε such that γε(Θε(Σ), ψad
ε ) → 0 as

γε(Θε(Σ)) → 0.
Let uε(p) = uε(p, rε(p)) be the value of the extreme problem (4.1) for the set Θε = Θε(p, rε(p)). Put

uε(Σ) = inf
p∈Σ

uε(p).

We are interested in how large uε(Σ) should be in order to provide the relation γε(Θε(Σ)) → 0. We say
that the family uad

ε = uad
ε (Σ) → ∞ characterizes adaptive distinguishability if there exist constants

0 < d = d(Σ) ≤ D(Σ) = D < ∞ such that

γε(Θε(Σ)) → 1 as lim sup
p∈Σ

uε(p)/uad
ε < d,

γε(Θε(Σ)) → 0 as lim inf
p∈Σ

uε(p)/uad
ε > D.

Observe that it follows from the asymptotics (4.11) that, by making rε(p) larger or smaller, one can
increase or decrease uε(p, rε(p)) in order to get uε(p, rε(p)) ∼ uε, for all p ∈ Σ and any family uε > 0.
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We call a family rad
ε (p), p ∈ Σ, such that uad

ε 
 uε(p, rad
ε (p)), the family of adaptive separation

rates.
Note that the relation γε(Θε(Σ)) → 0 is possible if uε(Σ) → ∞. However this implication does not

hold for the tomography problem under consideration, as we show below. (A similar situation appears in
some ill-posed inverse problems, see [13].) Hence, hereafter, adaptive distinguishability conditions and
adaptive separation rates are sought for the tomography problem. In contrast to Theorem 4.2, there is
price to pay for the adaptation. We show below that

uad
ε =

√
log log ε−1, (4.13)

yielding a loss in the separation rates in terms of an extra factor 4
√

log log ε−1 in ε. Furthermore, the
derived families of tests are of simple structure. (A similar loss in the separation rates was first observed
in [22] and more recently in [13].)

Specifically, let p be unknown, p ∈ Σ, where Σ = [pmin, pmax], and let 0 < pmin < pmax < ∞ be a
compact interval in (0,∞). Let us also consider the collections

pk ∈ Σ, ck ∼ 2/rε(pk), k = 0, 1, . . . ,K, K = Kε 
 log(ε−1) log log(ε−1),

where p0 = pmax > p1 > . . . > pK = pmin (the collection pk, k = 1, 2, . . . ,K − 1, will be specified in the
proof) and collection of statistics tε,ck

of the form

tε,ck
=

∑
ν∈Cν,k

wν,k

(
(y2

ν/ε
2) − 1

)
, wν,k =

σ2
ν(

2
∑

ν∈Cν,k
σ4

ν

)1/2
,

∑
ν∈Cν,k

w2
ν,k =

1
2
, (4.14)

for ν ∈ Γ given by (2.3) and Cν,k = {ν : aν,pk
≤ ck}. Consider the following families of thresholds and

tests

Hε = 2
√

log(Kε), Yε = {y : tε,ck
≤ Hε, ∀ 0 ≤ k ≤ Kε}, ψε = 1Yε

, (4.15)

where Ā denotes the complement of a set A.
Denote also

φ(p) =
4

4p + 3
, φ(Σ) = {φ(p) : p ∈ Σ} ⊂ (0,∞). (4.16)

Theorem 4.3. Consider the Gaussian sequence model (3.2) and the hypothesis testing problem
(3.3) with the alternative set given by (3.4). Let {aν}ν∈Γ and {σν}ν∈Γ be defined as in (4.9) and
(4.10), respectively. Then

(a) (lower bounds) Let the set φ(Σ) given by (4.16) contains an interval [a, b], 0 < a < b <

4/3. There exists constant d = d(Σ) > 0 such that if lim supp∈Σ uε(p)/
√

log log(ε−1) ≤ d, then
γε(Θε(Σ)) → 1.

(b) (upper bounds) For the family of tests ψε given by (4.15), α(ψε) = o(1) and there exists
a constant D = D(Σ) > 0 such that if lim infp∈Σ uε(p)/

√
log log(ε−1) > D, then βε(Θε(Σ), ψε) =

o(1).
(c) (adaptive separation rates) The adaptive distinguishability family uad

ε is given by (4.13)
and the adaptive separation rates rad

ε (p), p ∈ Σ, are given by

rad
ε (p) =

(
ε 4
√

log log(ε−1)
)4p/(4p+3)

.

Remark 4.5. Rate and sharp adaptation in the corresponding minimax estimation problem under the
L2-risk have been obtained in [6]. In particular, it is shown in [6] that

R2
ε = ρε(p, L)(1 + o(1)),

where

ρε(p, L) =
1
2

(
π4p

3(p + 2)

)2p/(2p+2)

((2p + 2)L)2/(2p+2) ε4p/(2p+2),
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and an adaptive penalized blockwise Stein-type estimator f̂ was constructed (see [6], Eqs. (3.12)
and (5.8)) such that

lim
ε→0

sup
p∈[p1,p2], L∈[L1,L2]

sup
f∈F(p,L)

E||f̂ − f ||2
ρε(p, L)

= 1

for any 0 < p1 < p2 < ∞ and 0 < L1 < L2 < ∞. Note that, in contrast to adaptive minimax separation
rates, there is no price to pay for adaptation in the corresponding minimax estimation problem under
the L2-risk (i.e., a global measure). The unavoidable logarithmic factor for adaptivity that appears in the
minimax separation rates rad

ε (p) stated in Theorem 4.3 also appears in various other adaptivity problems,
such as minimax signal detection (see [13]) and minimax estimation under the L2-risk (see [24]) in
some ill-posed inverse problems. It also resembles the minimal price one needs to pay for adaptation in
minimax estimation under the l2-risk (i.e., a local or pointwise measure) that has been observed in [18],
[2], [19] and [23] in the case of Lipschitz and Sobolev balls and, more recently, in [3] and [1] in the case
of Besov balls.

5. APPENDIX: PROOFS

For simplicity in the calculations, we omit the factors L−1 and π−1 in (4.9) and (4.10), respectively.
In other words, from now on, we work with aν = (j + 1)p(l + 1)p and σν = (j + l + 1)1/2, p > 0, ν ∈ Γ.
The final results can be obtained on rescaling by using Remark 4.1.

5.1. Proof of Theorem 4.2

It follows from Theorem 4.1 that the efficiency in the detection problem under consideration is
determined by the asymptotics of the quantity

u2
ε =

(
rε

ε

)4 J0

2J2
1

,

where

J1 = J1(A) =
∑
ν∈Γ

σ4
ν(1 − Aa2

ν)+, J2 = J2(A) = A
∑
ν∈Γ

a2
νσ

4
ν(1 − Aa2

ν)+,

J0 = J0(A) =
∑
ν∈Γ

σ4
ν(1 − Aa2

ν)2+ = J1 − J2,

for ν ∈ Γ given by (2.3). Moreover, the quantity A = Aε → 0 is determined by the relation

r2
ε = A

J1

J2
. (5.1)

In order to study the asymptotics of uε, we are interested in the asymptotics of the functions Ji(A),
i = 0, 1, 2, as A → 0. We first, however, start with the asymptotics of the following function

I(A) =
∑

{ν : Aa2
ν≤1}

σ4
ν , ν ∈ Γ. (5.2)

Proposition 5.1. Let I(A) be defined as in (5.2). Then, as A → 0,

I(A) ∼ 2B
3

A−3/(2p), (5.3)

where B =
∑∞

m=1 m−3 = ζ(3) (cf. Theorem 4.2).
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Proof. Set j + 1 = m, l + 1 = n, H = [m−1A−1/(2p)] and H1 = [A−1/(4p)], where [t] is the integer part
of t. Consider the set

Cm,n,p,A =
{
(m,n) : m ≥ 1, n ≥ 1, (mn)2p ≤ A−1

}
.

Then, we have

I(A) =
∑

(m,n)∈Cm,n,p,A

(m + n − 1)2

= 2
H1∑

m=1

H∑
n=1

(m + n − 1)2 −
H1∑

m=1

H1∑
n=1

(m + n − 1)2

=
1
3

H1∑
m=1

(
(m − 1 + H)(m + H)(2m − 1 + 2H) − (m − 1)m(2m − 1)

)
+ O(A−1/p)

= 2
H1∑

m=1

(Hm2 + H2m − Hm − H2/2 + H3/3 + H/6) + O(A−1/p).

We now indicate the asymptotics of the terms in the last sum. Observe that

H =
1
m

A−1/(2p) + α(A,m), H1 = A−1/(4p) + β(A),

where α(A,m) ∈ [0, 1) and β(A) ∈ [0, 1). Thus, we have

H1∑
m=1

Hm2 =
H1∑

m=1

(A−1/(2p)m + α(A,m)m2) = A−1/p/2 + O(A−3/(4p)),

H1∑
m=1

H2m =
H1∑

m=1

(A−1/(2p)/m + α(A,m))2 m ∼ A−1/p log(A−1/(4p)) =
A−1/p log(A−1)

4p
,

H1∑
m=1

Hm =
H1∑

m=1

(A−1/(2p) + α(A,m)m) ∼ A−3/(4p),

H1∑
m=1

H2/2 =
1
2

H1∑
m=1

(A−1/(2p)/m + α(A,m))2 
 A−1/p,

H1∑
m=1

H3/3 =
A−3/(2p)

3

H1∑
m=1

m−3 + O(A−1/p),

H1∑
m=1

H/6 =
H1∑

m=1

(A−1/(2p)/m + α(A,m))/6 = o(A−1/p).

Therefore

I(A) =
2A−3/(2p)

3

H1∑
m=1

m−3 +
A−1/p log(A−1)

2p
+ O(A−1/p) ∼ 2B

3
A−3/(2p).

The proposition now follows.

Let us now return to the asymptotics of Ji(A), i = 0, 1, 2, as A → 0. Introduce the following function

F (t) = I(t−1) =
∑

(m,n)∈Cm,n,p,t−1

(m + n − 1)2, t ≥ 0, (5.4)
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and observe that F (0) = 0 and F (t) is nondecreasing in t ≥ 0. It follows from Proposition 5.1 that

F (t) ∼ 2B
3

t3/(2p), t → ∞. (5.5)

For T = A−1, the functions Ji(A), i = 0, 1, 2, could be rewritten in the form

J1(A) =

T∫
0

(1 − t/T ) dF (t), J2(A) =

T∫
0

(t/T − (t/T )2) dF (t),

J0(A) =

T∫
0

(1 − t/T )2 dF (t) = J1 − J2.

Integrating by parts, we get

J1(A) = T−1

T∫
0

F (t) dt.

In order to study the asymptotics of the above integral, we divide it into the following two parts

T∫
0

F (t) dt = S1 + S2, S1 =

T 1/2∫
0

F (t) dt, S2 =

T∫
T 1/2

F (t) dt.

Hence it suffices to check that S1 = o(S2) and to use the asymptotics (5.5) of the integrand in S2. It is
easily seen that

0 ≤ S1 ≤ F (T 1/2)T 1/2 
 T 3/(4p)+1/2

and that

S2 ∼
T∫

T 1/2

(
2B
3

t3/(2p))
)

dt ∼ 4Bp

3(2p + 3)
T 1+3/(2p).

Therefore we get

J1(A) ∼ 4Bp

3(2p + 3)
A−3/(2p). (5.6)

Similarly, for T = A−1, we get

J2(A) = T−1

T∫
0

t dF (t) − T−2

T∫
0

t2 dF (t) = 2T−2

T∫
0

tF (t) dt

− T−1

T∫
0

F (t) dt ∼ T 3/(2p)

(
8Bp

3(4p + 3)
− 4Bp

3(2p + 3)

)
=

4Bp

(4p + 3)(2p + 3)
A−3/(2p) (5.7)

and that

J0 = J1 − J2 ∼ 16Bp2

3(2p + 3)(4p + 3)
A−3/(2p). (5.8)

Thus, it follows from (5.1), (5.6), (5.7) and (5.8) that

A ∼ 3
4p + 3

r2
ε , u2

ε ∼ r4+3/p
ε ε−4 2p + 3

2B

(
3

4p + 3

)1+3/(2p)

. (5.9)
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Therefore the separation rates r∗ε are of the form

r∗ε = ε4p/(4p+3). (5.10)

In order to get the sharp asymptotics, in view of Theorem 4.1, it is enough to check the condition

w0 =
max{ν : a2

νA<1} σ2
ν(1 − Aa2

ν)√
2
∑

{ν : a2
νA<1} σ4

ν(1 − Aa2
ν)2

= o(1), ν ∈ Γ.

This condition follows directly from the relation

max
{ν : a2

νA<1}
σ4

ν = o(J0(A)). (5.11)

Indeed, for m = j + 1 ∈ N, n = l + 1 ∈ N, the last condition follows from (see (5.8))

σ4
ν = (m + n − 1)2 < 4A−1/p � A−3/2p 
 J0(A)

as A → 0, for ν = (m − 1, n − 1) such that a2
ν = (mn)2p ≤ A−1.

The theorem now follows.

5.2. Proof of Theorem 4.3

Let p be unknown and consider p ∈ Σ, where Σ = [pmin, pmax], 0 < pmin < pmax < ∞, is a compact
interval in (0,∞). Recall the expression φ(p) from (4.16) and that Z+ = N ∪ {0}.

We first obtain the lower bounds. Take a collection pk, k ∈ Z+, such that

φ(pk) = a + kδε, k = 0, 1, . . . ,K = Kε,

with

φ(pK) = b > a = φ(p0) > 0, δ = δε =
(b − a)

K
∼ log(2)

log(ε−1)
.

Therefore

pk ∈ [b−1 − 3/4, a−1 − 3/4] = Σ, b < 4/3,

and

δε = φ(pk) − φ(pk−1), pk−1 − pk = (4pk + 3)(4pk−1 + 3)δε/16 
 1
log(ε−1)

= o(1).

Assume without loss of generality that, uniformly in p ∈ Σ,

uε(p) ∼
√

d log log(ε−1), (5.12)

where the constant d > 0 will be specified below. This corresponds to taking, uniformly in p ∈ Σ,

rε(p) ∼
(
ε(d(p) log log(ε−1) )1/4

)φ(p)p
, (5.13)

where

d(p) = da(p), a(p) =
2B

2p + 3

(
3
4
φ(p)

)−(2p+3)/(2p)

.

Take

Tk ∼ (2rε(pk))−1/pk , k = 0, 1, . . . ,Kε.

By construction, we have

Tk − Tk−1 ∼ Tk−1

(
2p−1

k−1−p−1
k (ε 4

√
d log log(ε−1))−δε − 1

)
= Tk−1

(
exp(log(2)(1 + o(1))) − 1

)
∼ Tk−1.
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Observe that the function F (t) = Fp(t) defined by (5.4) depends on p. Also, by (5.5), we can write

F (t) = Fp(t) =
∑

{((i1+1)(i2+1))2p≤t, i1,i2∈Z+}
(i1 + i2 + 1)2

=
∑

{ν : a2
ν≤t}

σ4
ν = F1(t1/p) ∼ 2B

3
t3/(2p). (5.14)

Set

Δk =
{
ν0 = (j, l) ∈ Z+ × Z+ : Tk−1 < (j + 1)(l + 1) ≤ Tk

}
.

Take a collection zk > 0, vk,ν0 , ν0 ∈ Δk, k = 1, 2, . . . ,K, such that

vk,ν0 = zk

{
ξν0σν0 if ν0 ∈ Δk,

0 otherwise,

with ξν0 = ±1, ν0 ∈ Δk. We then have∑
ν0∈Δk

v2
k,ν0

σ2
ν0

= z2
k

∑
ν0∈Δk

σ4
ν0

= z2
k

(
F1(T 2

k ) − F1(T 2
k−1)

)
∼ 7B

12
z2
kT 3

k = 2r2
ε(pk) (5.15)

and ∑
ν0∈Δk

v2
k,ν0

σ2
ν0

a2
ν0,pk

= z2
k

∑
ν0∈Δk

σ4
ν0

a2
ν0,pk

≤ 2T 2pk
k r2

ε(pk)(1 + o(1)) =
1
2
(1 + o(1)) < 1. (5.16)

Furthermore, we have

u2
ε(pk) ∼ d log log(ε−1), d > 0, pk ∈ Σ.

Consider now the priors

πk =
∏

ν0∈Δk

(δzkσν0eν0
+ δ−zkσν0eν0

)/2, k = 1, 2, . . . ,K, π =
1
K

K∑
k=1

πk,

where {eν0}ν0∈Z+×Z+ is the standard basis in the space l2 that corresponds to sequences indexed by
ν0 ∈ Z+ × Z+, and δη is the Dirac mass at the point η ∈ l2. The relations (5.15) and (5.16) imply

πk

(
Θε(pk, rε(pk))

)
= 1, π(Θε(Σ)) = 1.

Let Pπk
= Eπk

Pε,η, Pπ = EπPε,η be the mixtures over the priors. It suffices to check that

Eε,0

(
(dPπ/dPε,0 − 1)2

)
= o(1). (5.17)

Using evaluations similar to Section 5.6 in [13], we have

Eε,0

(
(dPπ/dPε,0 − 1)2

)
=

1
K2

K∑
k=0

Eε,0

(
(dPπk

/dPε,0 − 1)2
)

=
1

K2

K∑
k=0

(
Eε,0(dPπk

/dPε,0)2 − 1
)

≤ 1
K2

K∑
k=0

(
exp

(
2

∑
ν0∈Δk

sinh2(z2
kσ2

ν0
/2ε2)

)
− 1

)
.

Note that σ2
ν0

= j + l + 1 < Tk if ν0 ∈ Δk. Therefore, uniformly over ν0 ∈ Δk, we have

z2
kσ2

ν0

ε2
<

z2
kTk

ε2

 rε(pk)2+2/pkε−2 
 ε2/(4pk+3)

(
log log(ε−1)

)(2pk+2)/(4pk+3) = o(1),
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and (since sinh2(z2
kσ2

ν0
/2ε2) ∼ z4

kσ
4
ν0

/4ε4)

2
∑

ν0∈Δk

sinh2(z2
kσ2

ν0
/2ε2) ∼ z2

kε−4r2
ε(pk) ∼

24
7B

23/pkr4+3/pk
ε (pk)ε−4

∼ 24
7B

23/pkda(pk) log log(ε−1).

One can take d > 0 such that, for any pk ∈ Σ,

d
24
7B

23/pka(pk) ≤ d
16
7

max
k=0,1,...,Kε

{
4pk + 3
2pk + 3

(
4(4pk + 3)

3

)3/(2pk)}
= d1 < 1.

Then we have

Eε,0

(
(dPπ/dPε,0 − 1)2

)
≤ 1

K2

K∑
k=0

(
exp

(
2

∑
ν0∈Δk

sinh2(z2
kσ2

ν0
/2ε2)

)
− 1

)

<
K logd1(ε−1)

K2

 logd1(ε−1)

log(ε−1)
= o(1).

We now obtain the upper bounds.
Similarly to the proof of the lower bounds, assume without loss of generality that uε(p) ∼√
D log log(ε−1), uniformly in p ∈ Σ, where the constant D > 0 will be specified below. This corresponds

to (5.13) with d replaced by D, uniformly in p ∈ Σ.
In order to evaluate the type I error probability, we consider a different grid with different K = Kε, i.e.,

φ(pk) = a + kδε, k = 0, 1, . . . ,K = Kε, φ(pK) = b > a > 0,

where

δ = δε =
(b − a)

Kε
∼ log(2)

log(ε−1) log log(ε−1)
.

Let us evaluate the exponential moments

Eε,0(exp(htε,ck
)), h > 0.

Recall that (yν/ε)
iid∼ N (0, 1), ν ∈ Γ, under P0. Recall the set Cν,k = {ν : aν,pk

≤ ck}, ν ∈ Γ, k =
0, 1, . . . ,K. Let the family h = hε be taken in such a way that

h max
ν∈Cν,k

wν,k = o(1).

Then we have

Eε,0(exp(htε,ck
)) =

∏
ν∈Cν,k

(
exp(−hwν,k)Eε,0 exp(hwν,kξ

2
ν)

)

= exp
( ∑

ν∈Cν,k

(−hwν,k − log(1 − 2hwν,k)/2)
)

= exp
( ∑

ν∈Cν,k

h2w2
ν,k(1 + O(hwν,k))

)
= exp(h2/2)(1 + o(1)). (5.18)

Let h = Hε. Then, for k = 0, 1, . . . ,Kε, we have

h max
ν∈Cν,k

wν,k = Hε

maxν∈Cν,k
σ2

ν(
2
∑

ν∈Cν,k
σ4

ν

)1/2
<

Hεc
1/pk

k(
4Bc

3/pk

k (1 + o(1))/3
)1/2


 Hεr
1/(2pk)
ε (pk) 
 ε2/(3+4pk)

(
log log(ε−1)

)2(1+pk)/(3+4pk) = o(1),
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and by (5.18), for any k = 0, 1, . . . ,Kε, we have

Pε,0(tε,ck
> Hε) ≤

Eε,0(exp(Hεtε,ck
))

exp(H2
ε )

∼ exp(H2
ε /2 − H2

ε ) = exp(−H2
ε /2) = K−2

ε .

This implies that, for the type I error probability,

α(ψε) ≤
Kε∑
k=0

Pε,0(tε,ck
> Hε) ≤ K−1

ε (1 + o(1)) → 0.

Let us evaluate the type II error probability for

η ∈ Θε(Σ) =
⋃
p∈Σ

Θε,p(rε(p)).

There exists p such that η ∈ Θε,p(rε(p)), pk ≤ p ≤ pk−1. Observe that

βε(η, ψε) ≤ min
0≤k≤Kε

Pε,η(tε,ck
≤ Hε).

Denote hε,ck
= Eε,η(tε,ck

). We then have

hε,ck
= ε−2

∑
ν∈Cν,k

wν,kη
2
ν ; Varε,η(tε,ck

) = 1 + 4ε−2
∑

ν∈Cν,k

w2
ν,kη

2
ν = 1 + O(hε,ck

). (5.19)

Let us now evaluate

hε,ck
=

1

ε2
√

2Fpk
(c2

k)

∑
ν∈Cν,k

σ2
νη

2
ν ,

where the function

Fp(c) =
∑

{ν : a2
ν,p≤c}

σ4
ν

is of the form (5.14) with asymptotics given by (5.14) as well. Observe that aν,pk
= a

pk/p
ν,p and hence,∑

ν∈Cν,k

σ2
νη

2
ν =

∑
ν∈Γ

σ2
νη

2
ν −

∑
{ν : aν,pk

>ck}
σ2

νη
2
ν ≥ r2

ε(p) − c
−2p/pk

k = r2
ε(p)

(
1 − 1

r2
ε(p)c2p/pk

k

)
.

Because a(p)pφ(p)/4 satisfy the Lipschitz continuity, we have by (5.13) with d replaced by D

rε(pk)
rε(p)

= (1 + O(δε)) exp
(
(pφ(p) − pkφ(pk))

(
log(ε−1) +

(
log(D−1) − log log log(ε−1)

)
/4

))
and

0 ≤ pφ(p) − pkφ(pk) =
3
4
(φ(pk) − φ(p)) ≤ 3

4
δε ∼

3 log(2)
4 log(ε−1) log log(ε−1)

.

We get

1 ≤ rε(pk)
rε(p)

≤ 23/(4 log log(ε−1))(1 + o(1)) = 1 + o(1), (5.20)

and, moreover, we have

p

pk
= 1 +

Δp

pk
, 0 ≤ p − pk = Δp ≤ pk−1 − pk 
 1

log(ε−1) log log(ε−1)
.

Thus we have

ck ≤ c
p/pk

k = ck · cΔp/pk

k = ck(1 + o(1)), rε(p)cp/pk

k = 2(1 + o(1)).
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These relations and (5.20) imply, for ε > 0 small enough,∑
ν∈Cν,k

σ2
νη

2
ν ≥ r2

ε(pk)
(
1 − 1/4(1 + o(1))

)
= r2

ε(pk)(3/4 + o(1)).

Therefore, for large enough D > 0, we have, for all k = 1, 2, . . . ,Kε,

hε,ck
≥ r2

ε(pk)(3/4 + o(1))

ε2
√

2Fpk
(c2

k)
∼ r2

ε(pk)

ε2c
3/(2pk)
k

(
3
√

3
8
√

B
+ o(1)

)

∼
(
Da(pk) log log(ε−1)

)1/22−3/(2pk)

(
3
√

3
8
√

B
+ o(1)

)
> 2Hε ∼ 4

√
log log(ε−1). (5.21)

It follows from (5.19) and (5.21) that, for k such that η ∈ Θε,p(rε(p)), pk ≤ p ≤ pk−1, one has

Pε,η(tε,ck
≤ Hε) = Pε,η

(
hε,ck

− tε,ck
≥ hε,ck

− Hε

)
≤ Varε,η(hε,ck

− tε,ck
)

(hε,ck
− Hε)2

<
4Varε,η(tε,ck

)
h2

ε,ck

=
4(1 + O(hε,ck

))
h2

ε,ck

<
1

4 log log(ε−1)
+ oη(1) = o(1). (5.22)

Hence for any η ∈ Θε(Σ), one has

βε(η, ψε) < 1/(4 log log(ε−1)) + oη(1) = o(1),

βε(Θε(Σ), ψε) = sup
η∈Θε(Σ)

βε(η, ψε) ≤
1

4 log log(ε−1)
+ sup

η∈Θε(Σ)
oη(1),

where, by (5.22), (4.14) and (5.19) for any η ∈ Θε(Σ)

oη(1) =
4ε−2

∑
ν∈Cν,k

w2
ν,kη

2
ν

(ε−2
∑

ν∈Cν,k
wν,kη2

ν)2
≤

4maxν∈Cν,k
wν,k

hε,ck

<
2

Hε
∼

(
log log(ε−1)

)−1/2
.

This completes the proof of part (b) of the theorem.
Part (c) of the theorem follows immediately from parts (a) and (b) of the theorem and (4.11). The

theorem now follows.
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