Minimax Goodness-of-Fit Testing in Multivariate Nonparametric Regression

Yu. I. Ingster ${ }^{1 *}$ and T. Sapatinas ${ }^{2 * *}$
${ }^{1}$ Dept. of Math. II, St.Petersburg State Electrotechnical Univ., Russia
${ }^{2}$ Dept. of Math. and Statist., Univ. of Cyprus, Cyprus
Received April 1, 2009; in final form, June 23, 2009

Abstract

We consider an unknown response function f defined on $\Delta=[0,1]^{d}, 1 \leq d \leq \infty$, taken at n random uniform design points and observed with Gaussian noise of known variance. Given a positive sequence $r_{n} \rightarrow 0$ as $n \rightarrow \infty$ and a known function $f_{0} \in L_{2}(\Delta)$, we propose, under general conditions, a unified framework for goodness-of-fit testing the null hypothesis $H_{0}: f=f_{0}$ against the alternative $H_{1}: f \in \mathcal{F},\left\|f-f_{0}\right\| \geq r_{n}$, where \mathcal{F} is an ellipsoid in the Hilbert space $L_{2}(\Delta)$ with respect to the tensor product Fourier basis and $\|\cdot\|$ is the norm in $L_{2}(\Delta)$. We obtain both rate and sharp asymptotics for the error probabilities in the minimax setup. The derived tests are inherently non-adaptive. Several illustrative examples are presented. In particular, we consider functions belonging to ellipsoids arising from the well-known multidimensional Sobolev and tensor product Sobolev norms as well as from the less-known Sloan-Woźniakowski norm and a norm constructed from multivariable analytic functions on the complex strip. Some extensions of the suggested minimax goodness-of-fit testing methodology, covering the cases of general design schemes with a known product probability density function, unknown variance, other basis functions and adaptivity of the suggested tests, are also briefly discussed.

Key words: goodness-of-fit tests, hypotheses testing, minimax testing, nonparametric alternatives, nonparametric regression, random design.
2000 Mathematics Subject Classification: 62G08, 62G10, 62G20.
DOI: $10.3103 /$ S1066530709030041

1. INTRODUCTION

We consider the multivariate nonparametric regression model with a random uniform design. More precisely, we observe

$$
\begin{equation*}
x_{i}=f\left(t_{i}\right)+\xi_{i}, \quad i=1, \ldots, n, \tag{1.1}
\end{equation*}
$$

where t_{i} are random design points, $t_{i} \in \Delta=[0,1]^{d}, 1 \leq d \leq \infty$. In particular, we assume that $t_{i}=$ $\left\{t_{i}^{k}\right\}$ are (for $k=1, \ldots, d$ and $i=1, \ldots, n$) independent and identically distributed (iid) random variables with uniform distribution, i.e., $t_{i}^{k} \stackrel{i i d}{\sim} \mathcal{U}(0,1)$. Moreover, we assume that, conditionally on $T_{n}=$ $\left\{t_{1}, \ldots, t_{n}\right\}, \xi_{i}$ are iid Gaussian random variables with mean zero and variance τ^{2}, i.e., $\xi_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \tau^{2}\right)$, where τ^{2} is assumed to be known with $0<\tau^{2}<\infty$.

Given a positive sequence $r_{n} \rightarrow 0$ as $n \rightarrow \infty$ and a known function $f_{0} \in L_{2}(\Delta)$, where $L_{2}(\Delta)$ is the set of squared-integrable functions on Δ, we propose, under general conditions, a unified framework for goodness-of-fit testing the null hypothesis

$$
\begin{equation*}
H_{0}: f=f_{0} \tag{1.2}
\end{equation*}
$$

[^0]against the alternative
\[

$$
\begin{equation*}
H_{1}: f \in \mathcal{F},\left\|f-f_{0}\right\| \geq r_{n} \tag{1.3}
\end{equation*}
$$

\]

where \mathcal{F} is an ellipsoid in the Hilbert space $L_{2}(\Delta)$ with respect to the tensor product Fourier basis and $\|\cdot\|$ is the norm in $L_{2}(\Delta)$. (The set \mathcal{F} corresponds to a "regularity constraint" on the response function f.)

We are interested in both rate and sharp asymptotics for the error probabilities in the minimax setup, i.e., we try to find the maximal rate of convergence of $r_{n} \rightarrow 0$ as $n \rightarrow \infty$ which provides nontrivial minimax testing, when certain constraints are imposed on the regularity of the response function f.

Although there is a plethora of research work in the literature on the estimation problem for response functions $f \in \mathcal{F}$ in (both univariate and multivariate) nonparametric regression (under various design schemes), much less attention has been paid to the hypotheses testing problem in this model, especially in the multivariate case. This work is devoted to the goodness-of-fit testing problem (1.2)-(1.3) in the nonparametric regression model (1.1).

Nonparametric goodness-of-fit testing was studied intensively during the last twenty years or so; however, main results were obtained for detection of the response function $f \in L_{2}(\Delta)$, with $d=1$, in the univariate Gaussian white noise model, i.e.,

$$
\begin{equation*}
d X(t)=f(t) d t+\varepsilon d W(t), \quad t \in[0,1] \tag{1.4}
\end{equation*}
$$

where $W(t)$ is the standard Wiener process, with the noise level $\varepsilon \rightarrow 0$. In particular, rate and sharp asymptotics for the error probabilities in the minimax setup were obtained for various classes \mathcal{F} of nonparametric alternatives. Moreover, under periodicity, the sharp asymptotics are of Gaussian type and are determined by a specific extremal problem (see, e.g., [7], [8], [14], [18]).

These results have been extended in part to the density, spectral density, nonparametric regression and Poisson models for the univariate case (see, e.g., [8], [14], [17], [18]). Note that, under some regularity constraints, one can formally deduce some results for the univariate density and nonparametric regression models from those on the asymptotic equivalence (in Le Cam's sense) of these models to the univariate Gaussian white noise model (see, e.g., [2], [26]).

For the d-variable Gaussian white noise model, we have typically similar separation rates with the smoothness parameter σ (associated with the "regularity constraint" on the response function f) replaced by $\tilde{\sigma}=\sigma / d$ as well as sharp asymptotics of a similar type (see [19]). This leads to the "curse of dimensionality" phenomenon when d is large (see [20]). It was recently shown that one can actually lift the curse of dimensionality by using different type of regularity constraints, which are determined by the so-called "Sloan-Woźniakowski" norm (see [20]). Although, analogously to the univariate case, one can formally deduce, under some stronger regularity constraints, some results for the multivariate nonparametric regression models from results on the asymptotic equivalence (in Le Cam's sense) of these models to the d-variable Gaussian white noise model (see, e.g., [3], [27]), one cannot apply these results to the tensor product Sobolev or Sloan-Woźniakowski type spaces, because there are no asymptotic equivalence results as yet for these spaces.

Rate asymptotics in d-variable parametric regression models were studied in, e.g., [9], [11], for testing a parametric model against Lipschitz and Hölder classes \mathcal{F} of alternatives, respectively. On the other hand, rate asymptotics in the multivariate regression model, under equispaced design points, were studied in [1] for the goodness-of-fit testing problem (1.2)-(1.3), under Besov balls \mathcal{F} of alternatives.

The purpose of this paper is to extend some results on the goodness-of-fit testing of [7], [14], [18][21] for the d-variable Gaussian white noise model to the goodness-of-fit testing problem (1.2)-(1.3) for the multivariate nonparametric regression model (1.1), in a unified framework.

In our study, we use analytic results on an extremal problem for ellipsoids that were presented in [14], [18]-[21] for the d-variable Gaussian white noise model. These lead to the asymptotic efficiency results on testing for the multivariate nonparametric regression model (1.1) similar to the ones that have earlier been obtained, in specific settings, for the d-variable Gaussian white noise model, under the standard calibration $\varepsilon=\tau / \sqrt{n}$. However, the machinery of reduction the hypothesis testing problems to the extremal problem is different and, essentially, more difficult, especially for the study of the lower bounds. The proposed tests are of different structure as well: they are based on U-statistics of increasing dimension. Certainly, this reduction requires some assumptions on the basis functions and on the sample size (compare with [6] for estimation problem). It is a typical situation for extending results from the

Gaussian white noise model to other statistical models (e.g., density, spectral density, intensity of a Poisson process and so on).

Several illustrative examples are presented. In particular, we consider functions belonging to the balls under the well-known multidimensional Sobolev and tensor product Sobolev norms as well as from the less-known Sloan-Woźniakowski norm and a norm constructed from multivariable analytic functions on a complex strip. Some extensions of the suggested minimax goodness-of-fit testing methodology covering the cases of general design schemes with a known product probability density function, unknown variance, other basis functions and adaptivity of the suggested tests, are also briefly discussed.

2. PRELIMINARIES AND ASSUMPTIONS

2.1. Minimax Goodness-of-Fit Testing

Consider the multivariate nonparametric regression model (1.1). Given a known function $f_{0} \in$ $L_{2}(\Delta)$, we test the null hypothesis (1.2), i.e., we test $H_{0}: f=f_{0}$. Given a positive sequence $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, let

$$
\mathcal{F}\left(r_{n}\right)=\left\{f \in \mathcal{F}:\left\|f-f_{0}\right\| \geq r_{n}\right\},
$$

where \mathcal{F} is an ellipsoid in the Hilbert space $L_{2}(\Delta)$ with respect to the tensor product Fourier basis and $\|\cdot\|$ is the norm in $L_{2}(\Delta)$. Consider now the alternative hypothesis (1.3), i.e., consider $H_{1}: f \in \mathcal{F}\left(r_{n}\right)$. (In what follows, without loss of generality, we restrict ourselves to the cases $f_{0}=0$ and $\tau=1$.)

Set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ and recall that $T_{n}=\left\{t_{1}, \ldots, t_{n}\right\}$. Let $P_{n, f}$ be the probability measure that corresponds to $Z_{n}=\left(X_{n}, T_{n}\right)$ and denote by $E_{n, f}$ the expectation over this probability measure. Let ψ be a (randomized) test, i.e., a measurable function of the observation Z_{n} taking values in $[0,1]$: the null hypothesis is rejected with probability $\psi\left(Z_{n}\right)$ and is accepted with probability $1-\psi\left(Z_{n}\right)$. Let

$$
\alpha(\psi)=E_{n, 0} \psi
$$

be its type I error probability, and let

$$
\beta\left(\mathcal{F}, r_{n}, \psi\right)=\sup _{f \in \mathcal{F}\left(r_{n}\right)} E_{n, f}(1-\psi)
$$

be its maximal type II error probability. We consider two criteria of asymptotic optimality:
[1] The first one corresponds to the classical Neyman-Pearson criterion. For $\alpha \in(0,1)$ we set

$$
\beta\left(\mathcal{F}, r_{n}, \alpha\right)=\inf _{\psi: \alpha(\psi) \leq \alpha} \beta\left(\mathcal{F}, r_{n}, \psi\right) .
$$

We call a sequence of tests $\psi_{n, \alpha}$ asymptotically minimax if

$$
\alpha\left(\psi_{n, \alpha}\right) \leq \alpha+o(1), \quad \beta\left(\mathcal{F}, r_{n}, \psi_{n, \alpha}\right)=\beta\left(\mathcal{F}, r_{n}, \alpha\right)+o(1),
$$

where $o(1)$ is a sequence tending to zero; here, and in what follows, unless otherwise stated, all limits are taken as $n \rightarrow \infty$.
[2] The second one corresponds to the total error probabilities. Let $\gamma\left(\mathcal{F}, r_{n}, \psi\right)$ be the sum of the type I and the maximal type II error probabilities, and let $\gamma\left(\mathcal{F}, r_{n}\right)$ be the minimax total error probability, i.e.,

$$
\gamma\left(\mathcal{F}, r_{n}\right)=\inf _{\psi} \gamma\left(\mathcal{F}, r_{n}, \psi\right),
$$

where the infimum is taken over all possible tests. We call a sequence of tests ψ_{n} asymptotically minimax if

$$
\gamma\left(\mathcal{F}, r_{n}, \psi_{n}\right)=\gamma\left(\mathcal{F}, r_{n}\right)+o(1) .
$$

It is known (see, e.g., Chapter 2 of [18]) that

$$
\beta\left(\mathcal{F}, r_{n}, \alpha\right) \in[0,1-\alpha], \quad \gamma\left(\mathcal{F}, r_{n}\right)=\inf _{\alpha \in(0,1)}\left(\alpha+\beta\left(\mathcal{F}, r_{n}, \alpha\right)\right) \in[0,1] .
$$

We consider the problems of rate and sharp asymptotics for the error probabilities in the minimax setup. The rate optimality problem corresponds to the study of the conditions for which $\gamma\left(\mathcal{F}, r_{n}\right) \rightarrow 1$
and $\gamma\left(\mathcal{F}, r_{n}\right) \rightarrow 0$ and, under the conditions of the last relation, to the construction of asymptotically minimax consistent sequences ψ_{n}, i.e, such that $\gamma\left(\mathcal{F}, r_{n}, \psi_{n}\right) \rightarrow 0$. Often, these conditions correspond to some minimal decreasing rates for the sequence r_{n}. Namely, we say that a positive sequence $r_{n}^{*}=$ $r_{n}^{*}(\mathcal{F}), r_{n}^{*} \rightarrow 0$, is a separation rate if

$$
\gamma\left(\mathcal{F}, r_{n}\right) \rightarrow 1 \quad \text { as } \quad r_{n} / r_{n}^{*} \rightarrow 0
$$

and

$$
\gamma\left(\mathcal{F}, r_{n}\right) \rightarrow 0 \quad \text { and } \quad \beta\left(\mathcal{F}, r_{n}, \alpha\right) \rightarrow 0 \quad \text { for any } \quad \alpha \in(0,1) \quad \text { as } \quad r_{n} / r_{n}^{*} \rightarrow \infty .
$$

In other words, it means that, for large n, one can detect all functions $f \in \mathcal{F}$ if the ratio r_{n} / r_{n}^{*} is large, whereas, if this ratio is small, it is impossible to distinguish between the null and alternative hypotheses with small minimax total error probability. Hence the rate optimality problem corresponds to finding separation rates r_{n}^{*} and to constructing asymptotically minimax consistent sequence of tests.

On the other hand, the sharp optimality problem corresponds to the study of the asymptotics of the quantities $\beta\left(\mathcal{F}, r_{n}, \alpha\right), \gamma\left(\mathcal{F}, r_{n}\right)$ (up to vanishing terms) and to construction of asymptotically minimax sequences $\psi_{n, \alpha}, \psi_{n}$, respectively. Often, the sharp asymptotics are of Gaussian type, i.e.,

$$
\begin{equation*}
\beta\left(\mathcal{F}, r_{n}, \alpha\right)=\Phi\left(H^{(\alpha)}-u_{n}\right)+o(1), \quad \gamma\left(\mathcal{F}, r_{n}\right)=2 \Phi\left(-u_{n}\right)+o(1) \tag{2.1}
\end{equation*}
$$

where Φ is the standard Gaussian distribution function, $H^{(\alpha)}$ is its $(1-\alpha)$-quantile, i.e., $\Phi\left(H^{(\alpha)}\right)=1-$ α, and the sequence $u_{n}=u_{n}\left(\mathcal{F}, r_{n}\right)$ characterizes distinguishability in the problem. The separation rates r_{n}^{*} are usually determined by the relation $u_{n}\left(\mathcal{F}, r_{n}^{*}\right) \asymp 1$ (see, e.g., [14], [18]). Hence the sharp optimality problem corresponds to calculating the sequence u_{n} and to constructing asymptotically minimax sequence of tests.

2.2. Assumptions

Let $L_{2}(\Delta)=L_{2}, \mathcal{L}$ be a countable set, $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$ be an orthonormal system in L_{2}, and $L_{2}^{\mathcal{L}} \subset L_{2}$ be the closed linear hull of the system $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$. For a function $f \in L_{2}^{\mathcal{L}}$, let $\theta=\left\{\theta_{l}\right\}_{l \in \mathcal{L}}$ be the "generalized" Fourier coefficients with respect to this system, i.e., $\theta_{l}=\left\langle f, \phi_{l}\right\rangle, l \in \mathcal{L}$, where $\langle\cdot, \cdot\rangle$ denotes the inner product in L_{2}.

Let a collection of coefficients $\left\{c_{l}\right\}_{l \in \mathcal{L}}, c_{l} \geq 0$, be given. The set of functions $\mathcal{F} \subset L_{2}^{\mathcal{L}}$ under consideration are the ellipsoids with respect to the orthonormal system $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$ with coefficients $\left\{c_{l}\right\}_{l \in \mathcal{L}}, l \in \mathcal{L}$, i.e.,

$$
\mathcal{F}=\left\{f: f(t)=\sum_{l \in \mathcal{L}} \theta_{l} \phi_{l}(t), \sum_{l \in \mathcal{L}} c_{l}^{2} \theta_{l}^{2} \leq 1\right\} .
$$

Let

$$
\mathcal{N}(C)=\left\{l \in \mathcal{L}: c_{l}<C\right\}, \quad N(C)=\# \mathcal{N}(C),
$$

where \# denotes the cardinality of a set.
Consider the following set of assumptions:
(A1) The set $\mathcal{N}(C)$ is finite, i.e.,

$$
N(C)<\infty \quad \forall C>0
$$

(A2) The orthonormal system $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$ satisfies

$$
\sum_{l \in \mathcal{N}(C)} \phi_{l}^{2}(t)=N(C) \quad \forall C>0, \quad t \in \Delta .
$$

(A3) The functions $f \in \mathcal{F}$ are uniformly bounded in $L_{p}(\Delta)$-norm for some $p>4$, i.e.,

$$
\exists p>4: \quad \sup _{f \in \mathcal{F}} \int_{\Delta}|f(t)|^{p}<\infty .
$$

Remark 2.1. Note that Assumption (A3) follows from the following stronger condition,

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\|f\|_{\infty}<\infty \tag{2.2}
\end{equation*}
$$

where $\|f\|_{\infty}=\sup _{t \in \Delta}|f(t)|$.

3. RATE OPTIMALITY

In what follows, the relation $A_{n} \sim B_{n}$ means that A_{n} / B_{n} tends to 1 , while the relation $A_{n} \asymp B_{n}$ means that there exist constants $0<c_{1} \leq c_{2}<\infty$ and n_{0} large enough such that $c_{1} \leq A_{n} / B_{n} \leq c_{2}$ for $n \geq n_{0}$. Let also $\mathbf{1}_{\{A\}}$ be the indicator function of a set A.

For a sequence $C=C_{n}$, let $\mathcal{N}=\mathcal{N}\left(C_{n}\right), N=N\left(C_{n}\right)$.
Let us introduce one more assumption.
(B1) $\quad N=o(n)$.
Theorem 1. Let $r_{n} \rightarrow 0$.
(i) [Lower bounds] Assume (A1)-(A2). Take $C_{n} \rightarrow \infty$ such that $\lim \sup \left(C_{n} r_{n}\right)<1$ and (B1) holds. Then

$$
\beta\left(\mathcal{F}, r_{n}, \alpha\right) \geq \Phi\left(H^{(\alpha)}-u_{n}\right)+o(1), \quad \gamma\left(\mathcal{F}, r_{n}\right) \geq 2 \Phi\left(-u_{n}\right)+o(1),
$$

where

$$
\begin{equation*}
u_{n}^{2}=\frac{n^{2} r_{n}^{4}}{2 N} \tag{3.1}
\end{equation*}
$$

(ii) [Upper bounds] Assume (A1)-(A3). Take $C_{n} \rightarrow \infty$ such that (B1) holds. Consider the sequence of tests $\psi_{n}^{H}=\mathbf{1}_{\left\{U_{n}>H\right\}}$ based on the U-statistics

$$
\begin{equation*}
U_{n}=\frac{1}{n} \sum_{1 \leq i<k \leq n} K_{n}\left(z_{i}, z_{k}\right) \tag{3.2}
\end{equation*}
$$

where $z_{i}=\left(x_{i}, t_{i}\right), i=1, \ldots, n$, are the observations, with the kernel

$$
\begin{equation*}
K_{n}\left(z^{\prime}, z^{\prime \prime}\right)=x^{\prime} x^{\prime \prime} G_{n}\left(t^{\prime}, t^{\prime \prime}\right), \quad G_{n}\left(t^{\prime}, t^{\prime \prime}\right)=\sqrt{\frac{2}{N}} \sum_{l \in \mathcal{N}} \phi_{l}\left(t^{\prime}\right) \phi_{l}\left(t^{\prime \prime}\right) \tag{3.3}
\end{equation*}
$$

Set

$$
\begin{equation*}
h_{n}(f)=\frac{n}{\sqrt{2 N}} \sum_{l \in \mathcal{N}} \theta_{l}^{2} . \tag{3.4}
\end{equation*}
$$

Then, uniformly over $H=H_{n} \in \mathbb{R}$,

$$
\alpha\left(\psi_{n}^{H}\right) \leq 1-\Phi(H)+o(1)
$$

and, for any $c \in(0,1)$, uniformly over $f \in \mathcal{F}$ and $H=H_{n}$ such that $h_{n}(f) \geq c H_{n}$,

$$
\beta\left(\mathcal{F}, r_{n}, \psi_{n}^{H}\right) \leq \Phi\left(H-h_{n}(f)\right)+o(1) .
$$

Remark 3.1. We now give some intuition about the suggested U-statistics used in Theorem 1. For testing the null hypothesis $H_{0}: f=0$ in the Gaussian white noise model, a natural test statistic is a centered and normalized (under H_{0}) version of the quadratic functional $\sum_{l \in \mathcal{L}} \hat{\theta}_{l}^{2}$, where $\hat{\theta}_{l}=$ $\int_{\Delta} \phi_{l}(t) d X(t)$. The analog of $\hat{\theta}_{l}$ in the multivariate nonparametric regression model (1.1) is given by $\hat{\theta}_{l}=n^{-1} \sum_{i=1}^{n} \phi_{l}\left(t_{i}\right) x_{i}$, which leads to the quadratic functional

$$
\sum_{l \in \mathcal{L}} \hat{\theta}_{l}^{2}=\frac{1}{n^{2}} \sum_{i, k=1}^{n} x_{i} x_{k} \widetilde{G}_{n}\left(t_{i}, t_{k}\right), \quad \widetilde{G}_{n}\left(t^{\prime}, t^{\prime \prime}\right)=\sum_{l \in \mathcal{L}} \phi_{l}\left(t^{\prime}\right) \phi_{l}\left(t^{\prime \prime}\right)
$$

Suppressing now the terms with $i=k$, a centered and normalized version of this quadratic functional corresponds to the U-statistic defined in (3.2) with the kernel defined in (3.3).

Let the sequence $C=C_{n}$ be determined by the "balance equation"

$$
\begin{equation*}
C_{n}^{4} N\left(C_{n}\right) \asymp n^{2} . \tag{3.5}
\end{equation*}
$$

Observe that, in this case, under (A1), $C_{n} \rightarrow \infty$ and, hence, $N\left(C_{n}\right) \rightarrow \infty$.
Remark 3.2. Note that if r_{n} satisfies $C_{n} r_{n} \asymp 1$, then (3.5) corresponds to $u_{n} \asymp 1$ in (3.1). Corollaries 1 and 2 below show a motivation of (3.5).

Let us introduce an additional assumption.
(B2) For any $B>0, N\left(C_{n}\right) \asymp N\left(B C_{n}\right)$.
Note that we can obtain lower bounds for $h_{n}(f)$ from (3.4). Indeed, for $f \in \mathcal{F}\left(r_{n}\right)$, we have

$$
\begin{align*}
h_{n}(f) & =\frac{n}{\sqrt{2 N}}\left(\sum_{l \in \mathcal{L}} \theta_{l}^{2}-\sum_{c_{l} \geq C_{n}} \theta_{l}^{2}\right) \geq \frac{n}{\sqrt{2 N}}\left(r_{n}^{2}-C_{n}^{-2} \sum_{c_{l} \geq C_{n}} c_{l}^{2} \theta_{l}^{2}\right) \\
& \geq \frac{n}{\sqrt{2 N}}\left(r_{n}^{2}-C_{n}^{-2}\right)=\frac{n r_{n}^{2}}{\sqrt{2 N}}\left(1-\left(r_{n} C_{n}\right)^{-2}\right) . \tag{3.6}
\end{align*}
$$

Therefore, if $C_{n} r_{n} \geq B>1$, we have from Theorem 1 (ii),

$$
\beta\left(\mathcal{F}, r_{n}, \psi_{n}^{H}\right) \leq \Phi\left(H-u_{n}\left(1-B^{-2}\right)\right)+o(1),
$$

with u_{n} determined by (3.1). This leads to
Corollary 1. Let $r_{n} \rightarrow 0$. Assume (A1)-(A3) and (B1)-(B2). Then
(i) The separation rates are of the form

$$
r_{n}^{*} \asymp C_{n}^{-1}
$$

where the sequence $C=C_{n}$ is determined by (3.5).
(ii) Moreover, let $r_{n} / r_{n}^{*} \rightarrow \infty$. Then, there exists a sequence $H=H_{n} \rightarrow \infty$ such that the sequence of tests $\psi_{n}^{H}=\mathbf{1}_{\left\{U_{n}>H\right\}}$ is asymptotically minimax consistent, i.e., $\gamma\left(\mathcal{F}, r_{n}, \psi_{n}^{H}\right) \rightarrow 0$.

We say that a function $g(t), t>0$, is a slowly varying function if $g(B t) / g(t)$ tends to 1 as $t \rightarrow \infty$, for any $B>0$.

This leads to the following assumption.
(B3) $N\left(C_{n}\right)$ is a slowly varying function.
Corollary 2. Let $r_{n} \rightarrow 0$. Assume (A1)-(A3) and (B1)-(B3). Then
(i) The sharp asymptotics (2.1) hold, where u_{n} is defined by (3.1) with any $N\left(C_{n}\right)$ determined by (3.5).
(ii) Moreover, for any sequence C_{n} satisfying (3.5), there exists a sequence $B_{n} \rightarrow \infty$ such that, for the sequence $C_{n, 1}=B_{n} C_{n}$, the sequence of tests $\psi_{n}^{H^{(\alpha)}}$ is asymptotically minimax under the Neyman-Pearson criterion, and the sequence of tests $\psi_{n}^{u_{n} / 2}$ is asymptotically minimax under the total error probability criterion.

Proof. In order to get the upper bounds, note that under (B3) one can take a sequence $B_{n} \rightarrow \infty$ such that $N\left(B_{n} C_{n}\right) \sim N\left(C_{n}\right)$. Applying Theorem 1 (ii) for the sequence $C_{n, 1}=B_{n} C_{n}$, and for $H=H^{(\alpha)}$ and $H=u_{n} / 2$, and recalling (3.6), we obtain

$$
\inf _{f \in \mathcal{F}\left(r_{n}\right)} h_{n}(f) \geq u_{n}(1+o(1)) .
$$

By (3.4), Corollary 2 (ii) now follows.
In order to get the lower bounds, observe first that asymptotics of u_{n} do not depend on a sequence C_{n} involved in (3.5). In fact, if $C_{n, 0}$ is another sequence satisfying (3.5), then $C_{n, 0} \sim B_{n} C_{n}, B_{n} \asymp 1$ and, under (B3), we have $N\left(C_{n, 0}\right) \sim N\left(C_{n}\right)$. Fix now a sequence C_{n} in (3.5). It suffices to consider the case $u_{n} \asymp 1$, which corresponds to having $r_{n} C_{n} \sim A_{n} \asymp 1$. By taking another sequence $C_{n, 0}=B_{n} C_{n}, B_{n} \sim$ $\left(2 A_{n}\right)^{-1}$, we get $r_{n} C_{n, 0} \sim 1 / 2$. Applying Theorem 1 (i), Corollary 2 (i) now follows. This completes the proof of Corollary 2.

4. SHARP OPTIMALITY

4.1. Extremal Problem

In order to describe the sharp asymptotics similar to [14], [18], we have to consider an extremal problem on the space of collections $v=\left\{v_{l}\right\}_{l \in \mathcal{L}}$.

Assume that $r_{n} \rightarrow 0$. For $b=b_{n} \asymp 1, B=B_{n} \asymp 1$, by arguments similar to those in Chapter 4 of [18] we arrive at

$$
\begin{align*}
& u_{n}^{2}(b, B)=\inf _{v \in V_{n}(b, B)} \frac{1}{2} \sum_{l \in \mathcal{L}} v_{l}^{4} \tag{4.1}\\
& V_{n}(b, B)=\left\{v: \sum_{l \in \mathcal{L}} v_{l}^{2} \geq n\left(B r_{n}\right)^{2}, \sum_{l \in \mathcal{L}} c_{l}^{2} v_{l}^{2} \leq n b^{2}\right\} \tag{4.2}
\end{align*}
$$

Let $u_{n}(B)=u_{n}(1, B)$ and $u_{n}=u_{n}(1,1)$. Proposition 2.8 of [18] implies that $u_{n}^{2}(b, B)$ is a convex function in $\left(b^{2}, B^{2}\right)$ and, from rescaling arguments, it is easily seen that $u_{n}^{2}(b, B)=b^{4} u_{n}^{2}(B / b)$.

By using Lagrange multipliers, the extremal collection $v_{n}=\left\{v_{l, n}\right\}_{l \in \mathcal{L}}$ in (4.1) is of the form $v_{l, n}^{2}=$ $z_{0}^{2}\left(1-\left(c_{l} / C\right)^{2}\right)_{+}$, where $a_{+}=\max (0, a)$ for any real number a, and the quantities $z_{0}=z_{n, 0}(b, B)>0$, $C=C_{n}(b, B)$ are determined by the equations

$$
\begin{align*}
\sum_{l \in \mathcal{L}} v_{l, n}^{2} & =z_{0}^{2} \sum_{c_{l}<C}\left(1-\left(c_{l} / C\right)^{2}\right)=n\left(B r_{n}\right)^{2} \tag{4.3}\\
\sum_{l \in \mathcal{L}} c_{l}^{2} v_{l, n}^{2} & =z_{0}^{2} \sum_{c_{l}<C} c_{l}^{2}\left(1-\left(c_{l} / C\right)^{2}\right)=n b^{2} \tag{4.4}
\end{align*}
$$

while the value of the extremal problem is

$$
\begin{equation*}
u_{n}^{2}(b, B)=\frac{1}{2} \sum_{l \in \mathcal{L}} v_{l, n}^{4}=\frac{1}{2} z_{0}^{4} \sum_{c_{l}<C}\left(1-\left(c_{l} / C\right)^{2}\right)^{2} \tag{4.5}
\end{equation*}
$$

Let

$$
\begin{aligned}
& I_{1}=\sum_{l \in \mathcal{N}}\left(1-\left(c_{l} / C\right)^{2}\right), \quad I_{0}=\sum_{l \in \mathcal{N}}\left(1-\left(c_{l} / C\right)^{2}\right)^{2}, \\
& I_{2}=\sum_{l \in \mathcal{N}}\left(c_{l} / C\right)^{2}\left(1-\left(c_{l} / C\right)^{2}\right) .
\end{aligned}
$$

It is easily seen that the equations (4.3)-(4.5) can be rewritten in the form

$$
\begin{equation*}
z_{0}^{2} I_{1}=n\left(B r_{n}\right)^{2}, \quad C^{2} z_{0}^{2} I_{2}=n b^{2}, \quad u_{n}^{2}(b, B)=\frac{1}{2} z_{0}^{4} I_{0}=\frac{n^{2}\left(B r_{n}\right)^{4} I_{0}}{2 I_{1}^{2}} \tag{4.6}
\end{equation*}
$$

Observe that $I_{1}=I_{0}+I_{2} \geq I_{2}$ and

$$
C^{2}=\frac{b^{2} I_{1}}{I_{2} B^{2} r_{n}^{2}} \geq b^{2}\left(B r_{n}\right)^{-2} \rightarrow \infty \quad \text { as } \quad r_{n} \rightarrow 0
$$

Under (A1), this yields $N \rightarrow \infty$. Moreover, one has

$$
(3 / 4) N(C / 2) \leq I_{1} \leq N(C), \quad(3 / 4)^{2} N(C / 2) \leq I_{0} \leq N(C)
$$

Hence, under (B2), these yield

$$
\begin{equation*}
I_{1} \asymp I_{0} \asymp N, \quad z_{0}^{2} \asymp \frac{n r_{n}^{2}}{N}, \quad u_{n}^{2}(b, B) \asymp \frac{n^{2} r_{n}^{4}}{N} \tag{4.7}
\end{equation*}
$$

Introduce the additional assumption
(C 1) For all $B=B_{n} \asymp 1, u_{n}(B) \asymp u_{n}$.
Note that, under Assumption (C1), we get

$$
u_{n}^{2}(b, B) \sim u_{n}^{2} \quad \text { as } \quad b=b_{n} \rightarrow 1, B=B_{n} \rightarrow 1
$$

(compare with Propositions 2.8 and 5.6 in [18]).

Theorem 2. Let $r_{n} \rightarrow 0$.
(i) [Lower bounds] Assume (A1)-(A2), (B1)-(B2) and (C1). Then

$$
\begin{equation*}
\beta\left(\mathcal{F}, r_{n}, \alpha\right) \geq \Phi\left(H^{(\alpha)}-u_{n}\right)+o(1), \quad \gamma\left(\mathcal{F}, r_{n}\right) \geq 2 \Phi\left(-u_{n} / 2\right)+o(1) \tag{4.8}
\end{equation*}
$$

where u_{n} is the value of the extremal problem (4.1), (4.2) for $b=B=1$.
(ii) [Upper bounds] Assume (A1)-(A3) and (B1)-(B2). Let $\lim \inf u_{n}>0$. Consider the sequence of tests $\psi_{n}^{H}=\mathbf{1}_{\left\{U_{n}>H\right\}}$ based on the U-statistics

$$
U_{n}=\frac{1}{n} \sum_{1 \leq i<k \leq n} K_{n}\left(z_{i}, z_{k}\right),
$$

where $z_{i}=\left(x_{i}, t_{i}\right), i=1, \ldots, n$, are the observations, with the kernel

$$
\begin{equation*}
K_{n}\left(z^{\prime}, z^{\prime \prime}\right)=x^{\prime} x^{\prime \prime} G_{n}\left(t^{\prime}, t^{\prime \prime}\right), \quad G_{n}\left(t^{\prime}, t^{\prime \prime}\right)=\sum_{l \in \mathcal{N}} w_{n, l} \phi_{l}\left(t^{\prime}\right) \phi_{l}\left(t^{\prime \prime}\right), \tag{4.9}
\end{equation*}
$$

where $w_{n, l}=v_{l, n}^{2} / u_{n}$ and $\left\{v_{l, n}\right\}$ is the extremal sequence of the extremal problem (4.1), (4.2) for $b=B=1$, or, equivalently,

$$
w_{n, l}=\left(1-\left(c_{l} / C\right)^{2}\right)_{+} / w_{n}, \quad w_{n}^{2}=\frac{1}{2} \sum_{l \in \mathcal{N}}\left(1-\left(c_{l} / C\right)^{2}\right)^{2} .
$$

Then, uniformly over $H=H_{n} \in \mathbb{R}$,

$$
\alpha\left(\psi_{n}^{H}\right) \leq 1-\Phi(H)+o(1),
$$

and, for any $c \in(0,1)$, uniformly over $H=H_{n}$ such that $u_{n} \geq c H_{n}$,

$$
\begin{equation*}
\beta\left(\mathcal{F}, r_{n}, \psi_{n}^{H}\right) \leq \Phi\left(H-u_{n}\right)+o(1) . \tag{4.10}
\end{equation*}
$$

Remark 4.1. Combining (4.8) and (4.10), we see that the sequence of tests ψ_{n}^{H} with $H=H^{(\alpha)}$ is asymptotically minimax under the Neyman-Pearson criterion, i.e.,

$$
\alpha\left(\psi_{n}^{H^{(\alpha)}}\right) \leq \alpha+o(1), \quad \beta\left(\mathcal{F}, r_{n}, \psi_{n}^{H^{(\alpha)}}\right)=\Phi\left(H^{(\alpha)}-u_{n}\right)+o(1)
$$

and the sequence of tests ψ_{n}^{H} with $H=u_{n} / 2$ is asymptotically minimax under the total error probability criterion, i.e.,

$$
\gamma\left(\mathcal{F}, r_{n}, \psi_{n}^{u_{n} / 2}\right)=2 \Phi\left(-u_{n} / 2\right)+o(1) .
$$

5. TENSOR PRODUCT FOURIER BASIS

Let $\mathbb{Z}_{*}^{\infty} \subset \mathbb{Z}^{\infty}$ consist of all sequences $l=\left(l_{1}, \ldots, l_{d}, \ldots\right)$ with finitely many elements $l_{j} \neq 0$, and consider the natural embedding $\mathbb{Z}^{d} \subset \mathbb{Z}_{*}^{\infty}:\left(l_{1}, \ldots, l_{d}\right) \rightarrow\left(l_{1}, \ldots, l_{d}, 0, \ldots\right)$. Let \mathcal{L} be an infinite subset of \mathbb{Z}_{*}^{∞}.

Consider the tensor product Fourier basis $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$ in L_{2}, i.e.,

$$
\begin{equation*}
\phi_{l}(t)=\prod_{k} \phi_{l_{k}}\left(t^{k}\right), \quad t=\left(t^{1}, \ldots t^{d}, \ldots\right) \in \Delta, \quad l \in \mathcal{L}, \tag{5.1}
\end{equation*}
$$

where $\phi_{j}(u), j \in \mathbb{Z}, u \in[0,1]$, is the standard Fourier basis in $L_{2}([0,1])$, i.e.,

$$
\phi_{0}(u)=1, \quad \phi_{j}(u)=\sqrt{2} \cos (2 \pi j u), \quad \phi_{-j}(u)=\sqrt{2} \sin (2 \pi j u), \quad j>0 .
$$

Definition 5.1. A set \mathcal{L} is called sign-symmetric if, for all $l=\left(l_{1}, \ldots, l_{d}, \ldots\right) \in \mathcal{L}$, one has $\varepsilon l=$ $\left(\varepsilon_{1} l_{1}, \ldots, \varepsilon_{d} l_{d}, \ldots\right) \in \mathcal{L}$ for all $\varepsilon_{j}= \pm 1$.

Definition 5.2. The collection $\left\{h_{l}\right\}_{l \in \mathcal{L}}$ is called sign-symmetric if the set \mathcal{L} is sign-symmetric and $h_{l}=h_{\varepsilon l}$ for all $l \in \mathcal{L}$ and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}, \ldots\right), \varepsilon_{j}= \pm 1$.
(D1) The set \mathcal{L} and the collection of coefficients $\left\{c_{l}\right\}_{l \in \mathcal{L}}$ are sign-symmetric.
Let us now show that, under Assumptions (A1) and (D1), Assumption (A2) holds true for the tensor product Fourier basis (5.1). Since the set \mathcal{N} is sign-symmetric, under Assumption (D1) this follows from the following statement.

Lemma 5.1. Let $\mathcal{M} \subset \mathbb{Z}_{*}^{\infty}$ be a finite sign-symmetric set and let $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$ be the tensor product Fourier basis (5.1). Then

$$
\sum_{l \in \mathcal{M}} \phi_{l}^{2}(t)=\#(\mathcal{M}) \quad \forall t \in \Delta
$$

Proof. Consider the representation $\mathcal{M}=\cup_{u} \mathcal{M}_{u}$, where $u \subset \mathbb{N}$ and \mathcal{M}_{u} consists of $l \in \mathcal{M}$ such that $\#\left\{j: l_{j} \neq 0\right\}=m$. It suffices to check that, for all u,

$$
\sum_{l \in \mathcal{M}_{u}} \phi_{l}^{2}(t)=\#\left(\mathcal{M}_{u}\right) \quad \forall t \in \Delta .
$$

Clearly, this holds for $u=\emptyset$. Without loss of generality, assume $m=\{1, \ldots, d\}, d \in \mathbb{N}$. Let $\mathcal{M}_{u}^{+}=\{l \in$ $\left.\mathcal{M}_{u}: l_{j}>0 \forall j \in u\right\}$. Since \mathcal{M} is sign-symmetric, \mathcal{M}_{u}^{+}consists of all $\bar{\varepsilon} l, l \in \mathcal{M}_{u}^{+}, \bar{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$, $\varepsilon_{k}= \pm 1$ and $\#\left(\mathcal{M}_{u}\right)=2^{d} \#\left(\mathcal{M}_{u}^{+}\right)$. It suffices then to check that, for each $l \in \mathcal{M}_{u}^{+}$,

$$
\sum_{\bar{\varepsilon}} \phi_{\varepsilon l}^{2}(t)=2^{d} .
$$

Consider $\varepsilon_{k}, k=1, \ldots, d$, as iid Rademacher random variables, i.e., $P\left(\varepsilon_{k}=1\right)=P\left(\varepsilon_{k}=-1\right)=1 / 2$. Then, by independence,

$$
\sum_{\bar{\varepsilon}} \phi_{\varepsilon l}^{2}(t)=2^{d} E_{\bar{\varepsilon}} \prod_{k=1}^{d} \phi_{\varepsilon_{k} l_{k}}^{2}\left(t^{k}\right)=2^{d} \prod_{k=1}^{d} E_{\varepsilon_{k}} \phi_{\varepsilon_{k} l_{k}}^{2}\left(t^{k}\right)=2^{d}
$$

since $E_{\varepsilon_{k}} \phi_{\varepsilon_{k} l_{k}}^{2}\left(t^{k}\right)=\left(2 \sin ^{2}\left(l_{k} t^{k}\right)+2 \cos ^{2}\left(l_{k} t^{k}\right)\right) / 2=1$. This completes the proof of Lemma 5.1.
Remark 5.1. Note that for the tensor product Fourier basis (5.1), condition (2.2) (and, hence, Assumption (A3)) is fulfilled if

$$
\begin{equation*}
\sum_{l \in \mathcal{L}} 2^{J(l)} c_{l}^{-2}<\infty, \quad J(l)=\#\left\{j: l_{j} \neq 0\right\} \tag{5.2}
\end{equation*}
$$

Indeed, we have $\sup _{t \in \Delta}\left|\phi_{l}(t)\right|=2^{J(l) / 2}$, and hence

$$
\|f\|_{\infty}^{2} \leq\left(\sum_{l \in \mathcal{L}}\left|\theta_{l}\right| \sup _{t \in \Delta}\left|\phi_{l}(t)\right|\right)^{2} \leq\left(\sum_{l \in \mathcal{L}} \theta_{l}^{2} c_{l}^{2}\right)\left(\sum_{l \in \mathcal{L}} 2^{J(l)} c_{l}^{-2}\right) \leq \sum_{l \in \mathcal{L}} 2^{J(l)} c_{l}^{-2}
$$

6. EXAMPLES: RATE AND SHARP ASYMPTOTICS IN VARIOUS ELLIPSOIDS

Let us first give some more notation. For a function $f=\sum_{l \in \mathcal{L}} \theta_{l} \phi_{l} \in L_{2}^{\mathcal{L}}$, we set $\|f\|_{c}^{2}=\sum_{l \in \mathcal{L}} \theta_{l}^{2} c_{l}^{2}$ and let $L_{2, c}^{\mathcal{L}}=\left\{f \in L_{2}^{\mathcal{L}}:\|f\|_{c}<\infty\right\}$ be the Hilbert space with the norm $\|\cdot\|_{c}$. (Clearly the ellipsoid \mathcal{F} is the unit ball in $L_{2, c^{*}}^{\mathcal{L}}$.)

Consider the tensor product Fourier basis (5.1). In all examples below, Assumption (D1) holds true. Hence, by Lemma 5.1, Assumption (A2) holds true. It is easily seen that Assumption (A1) is also fulfilled in all examples below. The validity of Assumption (A3) is discussed in each example separately.

The first two examples are versions of the classical multidimensional Sobolev norm (see [19]).

6.1. Multidimensional Sobolev Norms

Let $\Delta=[0,1]^{d}, d \in \mathbb{N}, \mathcal{L}=\mathbb{Z}^{d} \backslash\{0\}$, and let

$$
\begin{equation*}
c_{l}^{2}=\sum_{k=1}^{d}\left|2 \pi l_{k}\right|^{2 \sigma}, \quad l \in \mathcal{L}, \quad \sigma>0 . \tag{6.1}
\end{equation*}
$$

Then, for $\sigma \in \mathbb{N}$, the norm $\|f\|_{c}$ corresponds to the sum of σ-derivatives of a 1-periodic f over all variables, i.e.,

$$
\begin{equation*}
\|f\|_{c}^{2}=\sum_{k=1}^{d}\left\|\partial^{\sigma} f / \partial t_{k}^{\sigma}\right\|^{2} \tag{6.2}
\end{equation*}
$$

where $\|\cdot\|$ is the norm in $L_{2}(\Delta)$.
Assumption (A3) is fulfilled for $\sigma>d / 4$ according to the so-called Sobolev embedding theorem (see Eq. (3.2.20) of [5]).

Let now

$$
\begin{equation*}
c_{l}^{2}=\left(\sum_{k=1}^{d}\left(2 \pi l_{k}\right)^{2}\right)^{\sigma}, \quad l \in \mathcal{L}, \quad \sigma>0 \tag{6.3}
\end{equation*}
$$

Then, for $\sigma \in \mathbb{N}$, the norm $\|f\|_{c}$ corresponds to the sum of all the derivatives of a 1-periodic f of order σ, i.e.,

$$
\begin{equation*}
\|f\|_{c}^{2}=\sum_{i_{1}=1}^{d} \ldots \sum_{i_{\sigma}=1}^{d}\left\|\partial^{\sigma} f / \partial t_{i_{1}} \ldots \partial t_{i_{\sigma}}\right\|^{2} \tag{6.4}
\end{equation*}
$$

Certainly, the norms (6.2) and (6.4) are equivalent for any fixed d since the ratio of coefficients in (6.1) and (6.3) is bounded away from 0 . Hence Assumption (A3) is fulfilled for $\sigma>d / 4$.

It was shown in [19] that

$$
N(C) \sim C^{d / \sigma} J_{k}(d, \sigma), \quad k=1,2,
$$

(e.g., $k=1$ corresponds to (6.1) and (6.2), and $k=2$ corresponds to (6.3) and (6.4)), where

$$
J_{1}(d, \sigma)=\frac{\Gamma^{d}(1+1 / 2 \sigma)}{\pi^{d} \Gamma(1+d / 2 \sigma)}, \quad J_{2}(d, \sigma)=\frac{1}{2^{d} \pi^{d / 2} \Gamma(1+d / 2)}
$$

Using equation (3.5), these yield

$$
C \asymp n^{2 \sigma /(4 \sigma+d)}, \quad N(C) \asymp n^{2 d /(4 \sigma+d)} .
$$

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for $\sigma>d / 4$. Thus we obtain the separation rates

$$
r_{n}^{*}=n^{-2 \sigma /(4 \sigma+d)} .
$$

For the sharp asymptotics, it was shown that

$$
u_{n}^{2} \sim C_{k}(d, \sigma) n^{2} r_{n}^{4+d / \sigma}, \quad k=1,2,
$$

where, for the norm (6.2),

$$
C_{1}(d, \sigma)=\frac{\pi^{d}(1+2 \sigma / d) \Gamma(1+d / 2 \sigma)}{(1+4 \sigma / d)^{1+d / 2 \sigma} \Gamma^{d}(1+1 / 2 \sigma)},
$$

and for the norm (6.4),

$$
C_{2}(d, \sigma)=\frac{\pi^{d}(1+2 \sigma / d) \Gamma(1+d / 2)}{(1+4 \sigma / d)^{1+d / 2 \sigma} \Gamma^{d}(3 / 2)} .
$$

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).
The next two examples correspond to tensor product norms in ANOVA modeling. These spaces are capable of dealing with interactions of all orders in a flexible way, thus vastly extending the classical additive methodology in multivariate nonparametric regression inference (see [12], [25]).

6.2. Tensor Product Sobolev Norm

Let $\Delta=[0,1]^{d}, d \in \mathbb{N}, \mathcal{L}=\mathbb{Z}^{d}$, and let

$$
\begin{equation*}
c_{l}=\prod_{k: l_{k} \neq 0}\left|2 \pi l_{k}\right|^{\sigma}, \quad l \in \mathcal{L}, \quad c_{0, \ldots, 0}=1 \tag{6.5}
\end{equation*}
$$

For a $\sigma \in \mathbb{N}$, this corresponds to the following (see [25]). Let us consider the functional orthogonal ANOVA expansion

$$
\begin{equation*}
f(t)=\sum_{u} f_{u}\left(t_{u}\right), \quad \int_{\Delta} f_{u}\left(t_{u}\right) d t_{k}=0 \quad \forall k \in u \tag{6.6}
\end{equation*}
$$

where the sum is taken over all subsets $\left.u=\left\{j_{1}, \ldots j_{m}\right\} \subset\{1, \ldots, d\}, 1 \leq j_{1}<\ldots<j_{m} \leq d\right\}$ and $t_{u}=\left\{t_{j_{1}}, \ldots, t_{j_{m}}\right\}$; if $u=\emptyset$, then $f_{u}=$ constant $=\int_{\Delta} f(t) d t$. Then,

$$
\|f\|_{c}^{2}=\sum_{u}\left\|f_{u}\right\|_{c, u}^{2}
$$

where $\left\|f_{u}\right\|_{c, u}$ is the norm of mixed $m \sigma$-derivatives of a 1-periodic f_{u}, i.e.,

$$
\begin{equation*}
\left\|f_{u}\right\|_{c, u}=\left\|\partial^{m \sigma} f / \partial t_{j_{1}}^{\sigma} \ldots \partial t_{j_{m}}^{\sigma}\right\| \tag{6.7}
\end{equation*}
$$

Assumption (A3) is fulfilled for $\sigma>1 / 4$, using appropriate embedding properties (see Chapter III of [30]).

It was shown in [21] that

$$
\begin{equation*}
N(C) \sim \frac{C^{1 / \sigma} \log ^{d-1}(C)}{\pi^{d} \sigma^{d-1} \Gamma(d)} \tag{6.8}
\end{equation*}
$$

Using equation (3.5), this yields

$$
C \asymp\left(\frac{n^{2}}{\log ^{d-1}(n)}\right)^{\sigma /(4 \sigma+1)}
$$

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for $\sigma>1 / 4$. Thus we obtain the separation rates

$$
r_{n}^{*}=\left(\frac{\log ^{d-1}(n)}{n^{2}}\right)^{\sigma /(4 \sigma+1)}
$$

For the sharp asymptotics, it was shown that

$$
\begin{equation*}
u_{n}^{2} \sim \frac{C(d, \sigma) n^{2} r_{n}^{4+1 / \sigma}}{\log ^{d-1}\left(r_{n}^{-1}\right)} \tag{6.9}
\end{equation*}
$$

where

$$
\begin{equation*}
C(d, \sigma)=\frac{2 b(\sigma) \Gamma(d)(\pi \sigma)^{d}}{(1+4 \sigma)^{b(\sigma)}}, \quad b(\sigma)=\frac{2 \sigma+1}{2 \sigma} \tag{6.10}
\end{equation*}
$$

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).

6.3. ANOVA Subspaces

Let $\Delta=[0,1]^{d}, d \in \mathbb{N}$. Taking $m \in\{0,1, \ldots, d\}$, let \mathcal{L}_{m}^{d} be the set that consists of $l \in \mathbb{Z}^{d}$ such that $\#\left\{k: l_{k} \neq 0\right\}=m$, and $\mathcal{L}^{d, m}=\bigoplus_{j=0}^{m} \mathcal{L}_{j}^{d}$. Under (6.6), the spaces $L_{2}^{\mathcal{L}_{m}^{d}}$ and $L_{2}^{\mathcal{L}^{d, m}}$ consist of the functions

$$
f(t)=\sum_{u: \#(u)=m} f_{u}\left(t_{u}\right), \quad f(t)=\sum_{u: \#(u) \leq m} f_{u}\left(t_{u}\right)
$$

respectively, i.e., they consist of sums of functions of m variables or no more than m variables. If $m=0$, this corresponds to the constant function, while the case $m=1$ corresponds to functions with an additive structure. Take c_{l} according to (6.5). Then we obtain

$$
\|f\|_{c}^{2}=\sum_{u: \#(u)=m}\left\|f_{u}\right\|_{c, u}^{2}, \quad\|f\|_{c}^{2}=\sum_{u: \#(u) \leq m}\left\|f_{u}\right\|_{c, u}^{2},
$$

respectively, where, for $\sigma \in \mathbb{N}$, the norm $\left\|f_{u}\right\|_{c, u}$ of a 1 -periodic f_{u} is determined by (6.7) (see [25]). Assumption (A3) is fulfilled for $\sigma>1 / 4$, since the spaces presented here are subspaces of the tensor product Sobolev spaces discussed in Section 6.3.

Take c_{l} according to (6.5). Denote by $N_{d}(C)$ the function $N(C)$ for the tensor product Sobolev norms, by $N_{d, m}(C)$ the function $N(C)$ for $\mathcal{L}=\mathcal{L}^{d, m}$, and by $N_{m}^{d}(C)$ the function $N(C)$ for $\mathcal{L}=\mathcal{L}_{m}^{d}$. Observe that

$$
N_{m}^{d}(C)=\binom{d}{m} N_{m}^{m}(C), \quad N_{d, m}(C)=\sum_{j=0}^{m}\binom{d}{j} N_{j}^{d}(C) .
$$

Set $M=\binom{d}{m}$ and note that $M \geq 1$ for $0 \leq m \leq d$. It was shown in [21] that, as $C \rightarrow \infty$,

$$
\begin{equation*}
N_{d, m}(C) \sim M N_{m}^{m}(C) \sim M N_{m}(C) \sim \frac{M C^{1 / \sigma} \log ^{m-1}(C)}{\pi^{m} \sigma^{m-1} \Gamma(m)} \tag{6.11}
\end{equation*}
$$

the last relation follows from (6.8). For both the cases \mathcal{L}_{m}^{d} and $\mathcal{L}^{d, m}$, using (3.5), we have

$$
C \asymp\left(\frac{\tilde{n}^{2}}{\log ^{m-1}(\tilde{n})}\right)^{\sigma /(4 \sigma+1)}, \quad \tilde{n} \triangleq n / \sqrt{M}
$$

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for $\sigma>1 / 4$. Thus we obtain the separation rates

$$
r_{n}^{*}=\left(\frac{\log ^{m-1}(\tilde{n})}{\tilde{n}^{2}}\right)^{\sigma /(4 \sigma+1)}
$$

Let $u_{n, d}$ be the quantities that determine the sharp asymptotics for the tensor product Sobolev norms with sharp asymptotics (6.9). Using (6.11), we obtain, in both cases, the sharp asymptotics

$$
\begin{equation*}
u_{n}^{2} \sim \frac{u_{n, m}^{2}}{M} \sim \frac{C(m, \sigma) n^{2} r_{n}^{4+1 / \sigma}}{M \log ^{m-1}\left(r_{n}^{-1}\right)} \tag{6.12}
\end{equation*}
$$

where the constant $C(m, \sigma)$ is defined by (6.10). (Note that (6.12) corresponds, in the case $m<d$, to some loss of efficiency compared to (6.9), since the sample size n is now reduced by the factor $M^{-1 / 2}>1$.) Assumption (C1) is thus fulfilled. Hence, we arrive at (2.1).

The next example corresponds to classical multivariable analytic functions on a complex strip (see [22], [24]).

6.4. Multivariable Analytic Functions on a Complex Strip

Let $\Delta=[0,1]^{d}, d \in \mathbb{N}, \mathcal{L}=\mathbb{Z}^{d}$ and, for $\kappa>0$, let

$$
c_{l}^{2}=\prod_{k=1}^{d} \cosh \left(2 \pi \kappa l_{k}\right), \quad l \in \mathcal{L}
$$

This corresponds to analytic functions f that provide periodic extensions to the complex d-dimensional strip $\left(t_{1}+i u_{1}, \ldots, t_{d}+i u_{d}\right),\left|u_{k}\right| \leq \kappa$ (i.e., of size 2κ), and

$$
\|f\|_{c}^{2}=2^{-d} \sum_{\bar{\varepsilon}}\left\|f\left(\cdot+\varepsilon_{k} \kappa\right)\right\|^{2} .
$$

This case is closely related to the case

$$
c_{l}^{2}=\exp \left(2 \pi \kappa \sum_{k=1}^{d}\left|l_{k}\right|\right), \quad l \in \mathcal{L}
$$

(see [24]). Using $e^{|x|} / 2 \leq \cosh (x) \leq e^{|x|}$, condition (2.2) is fulfilled for any $\kappa>0$ by Remark 5.1 , since

$$
\sum_{l \in \mathcal{L}} 2^{J(l)} c_{l}^{-2} \leq 2^{d} \sum_{l \in \mathcal{L}} c_{l}^{-2}\left(1+2 \sum_{k=1}^{\infty} \exp (2 \pi \kappa k)\right)^{d}<\infty
$$

Thus, Assumption (A3) is fulfilled.
It was shown in [21] that

$$
N(C) \sim \frac{2^{d} \log ^{d}(C)}{(\pi \kappa)^{d} \Gamma(d+1)}
$$

Using equation (3.5), this yields

$$
C \asymp \frac{n^{1 / 2}}{(\log (n))^{d / 4}}
$$

Hence Assumptions (B1), (B2) are fulfilled; moreover $N(C)$ is a slowly varying function, i.e., Assumption (B3) is also fulfilled. Thus we get the separation rates

$$
r_{n}^{*}=\frac{(\log (n))^{d / 4}}{n^{1 / 2}}
$$

and the sharp asymptotics

$$
u_{n}^{2} \sim \frac{(\pi \kappa)^{d} \Gamma(d+1) n^{2} r_{n}^{4}}{2 \log ^{d}(n)}
$$

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).
The last example corresponds to an infinite-dimensional extension of the ANOVA decomposition, that was first suggested to lift the curse of dimensionality in high-dimensional numerical integration (see [23], [28], [32]).

6.5. Sloan-Woźniakowski Norm

Let $\Delta=[0,1]^{\infty}, \mathcal{L}=\mathbb{Z}_{*}^{\infty}$. Taking $\sigma>0, s>0$, let

$$
c_{l}=\prod_{j \in \mathbb{N}: l_{j} \neq 0} j^{s}\left|2 \pi l_{j}\right|^{\sigma}, \quad l \in \mathcal{L}, \quad s>0, \quad \sigma>0, \quad c_{0, \ldots, 0, \ldots}=1
$$

This corresponds to an infinite tensor product of weighed Hilbert spaces. Under an infinite-dimensional ANOVA expansion,

$$
f(t)=\sum_{u} f_{u}\left(t_{u}\right), \quad \int_{\Delta} f_{u}\left(t_{u}\right) d t_{k}=0 \quad \forall k \in u
$$

where the sum is taken over all finite subsets $u \subset \mathbb{N}$, we obtain

$$
\|f\|_{c}^{2}=\sum_{u} \gamma(u)\left\|f_{u}\right\|_{c, u}^{2}, \quad \gamma(u)=\prod_{k \in u} k^{2 s}
$$

and, for $\sigma \in \mathbb{N}$, the norm $\left\|f_{u}\right\|_{c, u}^{2}$ of a 1 -periodic f_{u} is determined by (6.7) (see [20] and compare with [23], [28], [32]).

Contrary to the previous examples, we are not aware of any embedding theorems for spaces of the Sloan-Woźniakowski type, and hence we cannot verify Assumption (A3) under minimal smoothness
conditions (like $\sigma^{*} \triangleq \min (\sigma, s)>1 / 4$). However, condition (2.2), which leads to Assumption (A3), is fulfilled for $\sigma^{*}>1 / 2$. Indeed, let $\left(x_{k, j}\right), k \in \mathbb{Z}, 1 \leq j \leq d$, be a matrix. Applying the formula

$$
\sum_{\bar{l} \in \mathbb{Z}^{d}} \prod_{j=1}^{d} x_{l_{j}, j}=\prod_{j=1}^{d} \sum_{l \in \mathbb{Z}} x_{k, j}, \quad \bar{l}=\left\{l_{1}, \ldots, l_{d}\right) \in \mathbb{Z}^{d},
$$

to the matrix entries

$$
x_{k, j}= \begin{cases}1, & k=0 \\ 2 j^{-2 s}|2 \pi k|^{-2 \sigma}, & k \neq 0\end{cases}
$$

and letting $d \rightarrow \infty$, we get, for $\sigma>1 / 2$ and $s>1 / 2$,

$$
\begin{aligned}
\sum_{l \in \mathcal{L}} 2^{J(l)} c_{l}^{-2} & =\sum_{l \in \mathcal{L}} \prod_{j \in \mathbb{N}: l_{j} \neq 0} 2 j^{-2 s}\left|2 \pi l_{j}\right|^{-2 \sigma} \\
& =\prod_{j \in \mathbb{N}}\left(1+2 j^{-2 s} \sum_{k \in \breve{\mathbb{Z}}}|2 \pi k|^{-2 \sigma}\right)<\infty ; \quad \breve{\mathbb{Z}}=\mathbb{Z} \backslash\{0\} .
\end{aligned}
$$

Thus, by Remark 5.1 Assumption (A3) is fulfilled for $\sigma^{*}>1 / 2$.
For simplicity, we consider below only the case $\sigma \neq s$. It was shown in [20] that if $0<\sigma<s$, then

$$
N(C) \sim A_{1} C^{1 / \sigma} \exp \left(A_{2}(\log C)^{\sigma /(\sigma+s)}\right)(\log C)^{-A_{2}}
$$

and that if $0<s<\sigma$, then

$$
N(C) \sim B_{1} C^{1 / s} \exp \left(B_{2}(\log C)^{1 / 2}\right)(\log C)^{-B_{3}},
$$

where $A_{i}, i=1,2$, and $B_{i}, i=1,2,3$, are positive constants, which only depend on σ, s. Recall that $\sigma^{*} \triangleq \min (s, \sigma)$. Then, we get the following log-asymptotics

$$
\log (N(C)) \sim \frac{\log (C)}{\sigma^{*}}
$$

which correspond to the Sobolev norms for $d=1$ and $\sigma=\sigma^{*}$.
It also follows that Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for $\sigma^{*}>1 / 4$. The separation rates are of the following form. If $0<\sigma<s$, then

$$
r_{n}^{*} \asymp n^{-2 \sigma /(4 \sigma+1)} \exp \left(C_{1}(\log (n))^{\sigma /(s+\sigma)}\right)(\log (n))^{-C_{2}},
$$

and if $0<s<\sigma$, then

$$
r_{n}^{*} \asymp n^{-2 s /(4 s+1)} \exp \left(D_{1} \sqrt{\log (n)}\right)(\log (n))^{-D_{2}} .
$$

These yield the following log-asymptotics:

$$
\log \left(r_{n}^{*}\right) \sim-\frac{2 \sigma^{*} \log (n)}{4 \sigma^{*}+1}
$$

The sharp asymptotics are of the following form. If $0<\sigma<s$, then

$$
u_{n}^{2} \sim C_{3} n^{2} r_{n}^{4+1 / \sigma} \exp \left(-C_{4}\left(\log r_{n}^{-1}\right)^{\sigma /(s+\sigma)}\right)\left(\log r_{n}^{-1}\right)^{C_{5}}
$$

If $0<s<\sigma$, then

$$
u_{n}^{2} \sim D_{3} n^{2} r_{n}^{4+1 / s} \exp \left(-D_{4} \sqrt{\log r_{n}^{-1}}\right)\left(\log r_{n}^{-1}\right)^{3 / 4}
$$

where $C_{i}, i=1, \ldots, 5$, and $D_{i}, i=1, \ldots, 4$, are positive constants, which only depend on σ, s. Thus, Assumption (C1) is fulfilled. Hence we arrive at (2.1).

7. SOME GENERAL REMARKS

In this section, we discuss how the main results established in Theorems 1 and 2 (and, hence, Corollaries 1 and 2) can be extended to more general settings, involving non-uniform design schemes and unknown variances. Some remarks about adaptivity issues are also presented. We also present other than the Fourier basis and its tensor product version, examples of basis functions that satisfy Assumption (A2), and reveal how Assumption (A2) can be replaced by a weaker assumption at the cost of replacing Assumption (B1) with a slightly stronger assumption.

7.1. General Random Design Schemes

The main results established in Theorems 1 and 2 are evidently extended to random design points $y=\left(y^{1}, \ldots, y^{d}\right) \in \mathbb{R}^{d}, d \geq 1$, with a known product probability density function, $p(y)=p_{1}\left(y^{1}\right) \times \ldots \times$ $p_{d}\left(y^{d}\right)$, by applying the coordinate-wise Smirnov transform, i.e., $y \rightarrow F(y)=\left(F_{1}\left(y^{1}\right), \ldots, F_{d}\left(y^{d}\right)\right) \in$ $\Delta=[0,1]^{d}$, where F_{k} is the cumulative distribution function corresponding to the probability density function p_{k}. Indeed, consider the goodness-of-fit testing the null hypothesis $H_{0}: f=0$ against the alternative $H_{1}: f \in \mathcal{F}_{P},\|f\|_{2, P} \geq r_{n}$, where \mathcal{F}_{P} consists of functions defined on \mathbb{R}^{d} which are of the form $g(y)=f(F(y)), y \in \mathbb{R}^{d}$, with $g \in \mathcal{F}$ and $\|f\|_{2, P}=\left(\int_{\mathbb{R}^{d}} f^{2}(y) p(y) d(y)\right)^{1 / 2}$; note that, in this case, $\|f\|_{2, P}=\|g\|$. The corresponding test statistics are now based on the kernels (3.3) and (4.9) with $t=\left(t^{1}, \ldots, t^{d}\right)$ replaced by $F(y)=\left(F_{1}\left(y^{1}\right), \ldots, F_{d}\left(y^{d}\right)\right)$ (compare with [15]).

We conjecture that the main results established in Theorems 1 and 2, can be also extended, subject to some additional constraints similar to [15], to unknown product probability density functions by replacing $F(y)=\left(F_{1}\left(y^{1}\right), \ldots, F_{d}\left(y^{d}\right)\right)$ with $F_{n}(y)=\left(F_{n, 1}\left(y^{1}\right), \ldots, F_{n, d}\left(y^{d}\right)\right)$ in the appropriate test statistics, where $F_{n, k}$ is the empirical distribution function corresponding to F_{k} for the design points $y_{1}^{k}, \ldots, y_{n}^{k}$; this development is, however, outside the scope of this paper.

7.2. Unknown Variance

The results obtained in Theorems 1 and 2 are evidently true when $\xi_{i} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$ is replaced by $\xi_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \tau^{2}\right)$, where τ^{2} is a known variance with $0<\tau^{2}<\infty$, by multiplying u_{n} by the factor τ^{-2} and multiplying r_{n}^{*} by the factor τ, for the lower bounds, and by multiplying the kernels (3.3) and (4.9) by the factor τ^{-2}, for the upper bounds.

For an unknown variance τ^{2} with $0<\beta_{1} \leq \tau^{2} \leq \beta_{2}<\infty$, we replace the multiplicative factor τ^{-2} appeared in the kernels (3.3) and (4.9) by τ_{n}^{-2}, where $\tau_{n}^{2}=\sum_{i=1}^{n} x_{i}^{2}$. It is easily seen that

$$
E_{n, f} \tau_{n}^{2}=\tau^{2}+\|f\|^{2}, \quad \operatorname{Var}_{n, f} \tau_{n}^{2}=\frac{1}{n}\left(\|f\|_{4}^{4}-\|f\|^{4}+4 \tau^{2}\|f\|^{2}+2 \tau^{4}\right)=o(1)
$$

the latter being true by Assumption (A3). These yield $\tau_{n}^{2} \sim\left(\tau^{2}+\|f\|^{2}\right)$, in $P_{n, f}$-probability, which makes possible to repeat all the arguments presented in Appendix 2 (observe that, in Appendix 2, $\|f\|^{2}=o(1)$ for "least favorable" alternative functions $f \in \mathcal{F}$).

The above observations indicate that the main results established in Theorems 1 and 2 still remain true when the variance τ^{2} is either known or, when unknown, is replaced by an appropriate estimator as the one considered above.

7.3. Adaptivity

Typically, the smoothness parameter (σ for Sobolev norms, κ for analytic functions, $\min (\sigma, s)$ for Sloan-Woźniakowski norms) is unknown. This leads to the so-called problem of adaptivity: one has to construct a test procedure that provides the best minimax efficiency (separation rates or sharp asymptotics) for a wide range of values of the unknown smoothness parameter. This problem was first studied in [29], and further developed in Chapter 7 of [18], for the univariate Gaussian white noise model. The idea is to use the Bonferroni procedure, i.e., to combine a collection of tests for a suitable grid in a region of the unknown smoothness parameter. It was shown in [18] and [29] that this procedure provides an asymptotically minimax adaptive testing with a small loss (one gets an additional (but unavoidable) $\log \log \left(\varepsilon^{-1}\right)$ factor in the separation rates). We conjecture that these ideas of adaptivity could be also developed for the multivariate nonparametric regression models considered in this paper but the exact details should be carefully addressed; this development is, however, outside the scope of this paper.

7.4. Other Examples of Basis Functions Satisfying Assumption (A2)

(a) (Haar basis): Let $\phi_{j k}(t), j=0,1, \ldots, k=1, \ldots, 2^{j}, t \in[0,1]$, be the standard Haar orthonormal system on $[0,1]$ (see, e.g., Chapter 7 of $[31]$), where j is the scale parameter and k is the shift parameter. Note that, in this case, $\sum_{k} \phi_{j k}^{2}(t)=2^{j}$, for each resolution j. Consider now the tensor product version of the Haar basis on $\Delta=[0,1]^{d}, d \geq 1$, and consider coefficients $c_{l}=c_{j}, l=\left(\left(j_{1}, k_{1}\right), \ldots,\left(j_{d}, k_{d}\right)\right)$, which only depend on the scale parameter $j=\left(j_{1}, \ldots, j_{d}\right)$ and not on the shift parameter $k=\left(k_{1}, \ldots, k_{d}\right)$. Hence, by working along the lines of Section 5, it follows that the tensor product Haar basis functions on Δ satisfy Assumption (A2).
(b) (Walsh basis): Let $\phi_{j}(t), j=0,1, \ldots, t \in[0,1]$, be the Walsh basis functions system on [0,1]; the Walsh basis functions take actually sums and differences of the Haar basis functions to obtain a complete orthonormal system (see, e.g., Chapter 7 of [31]). Note that, in this case, $\left|\phi_{j}(x)\right|=1$ for each j. Consider now the tensor product version of the Walsh basis functions on $\Delta=[0,1]^{d}, d \geq 1$. Hence it follows immediately that the tensor product Walsh basis functions on Δ satisfy Assumption (A2).
(c) (Orthonomal basis on a compact connected Riemannian manifold without boundary): Let S be a compact connected Riemannian manifold without boundary and consider the orthonormal system of eigenfunctions $\phi_{j k}(x), x \in S$, associated with the Laplacian (Laplace-Beltrami operator) on S, for different eigenvalues $\lambda_{j}, \lambda_{1}<\lambda_{2}<\ldots$, with $\lambda_{j} \rightarrow \infty$ as $j \rightarrow \infty$ (see, e.g., [4]). For each $j=1,2, \ldots$, they satisfy the relation $\sum_{k=1}^{k_{j}}\left(\phi_{j, k}^{2}(x)-\mu^{-1}(S)\right)=0$, where $k_{j}<\infty$ is the (algebraic) multiplicity of the eigenvalue λ_{j} and μ is the invariant measure on S (see, e.g., formula (3.18), p. 127 of [6], or the last line of p. 1256 of [4]). The above relation is a natural and deep extension of the classical relation $\sin ^{2}(x)+\cos ^{2}(x)=1$ for the one-dimensional circle. Similarly to (a), consider now coefficients $c_{(j, k)}=c_{j}$ or corresponding coefficients $c_{l}=c_{j}$ for the tensor product basis functions on $S^{d}, d \geq 1$. Hence by working along the lines of Section 5 , it follows that the tensor product basis functions on S^{d} satisfy Assumption (A2). Therefore our general framework could be a platform to derive analogous statements to the ones given in Theorems 1 and 2 for minimax goodness-of-fit testing in nonparametric regression problems on compact connected Riemannian manifolds without boundary, S, or their products, S^{d}, but the details in the derivation of these statements should be carefully addressed; this development is, however, outside the scope of this paper.

7.5. Replacing Assumption (A2) by a Weaker Assumption

Assumption (A2) can be replaced by the weaker assumption
(A2a) $\quad \sup _{t \in \Delta} \sum_{l \in \mathcal{N}(C)} \phi_{l}^{2}(t)=O(N(C)) \quad$ as $\quad C \rightarrow \infty$
(it covers the cosines orthonormal system, compactly supported (other than the Haar basis) orthonormal wavelet systems, as well as their tensor product versions) by replacing Assumption (B1) with the slightly stronger assumption
(B1a) $\quad N=o\left(n^{2 / 3}\right)$.

Indeed, the only difference in the proofs of Theorems 1 and 2 is in relation (8.9). In particular, one can use the Cauchy-Schwarz inequality which yields an additional factor N, and this is compensated by Assumption (Bla).

8. APPENDIX 1: PROOF OF LOWER BOUNDS

Let us start with some more notation. Recall first that $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}, T_{n}=\left\{t_{1}, \ldots, t_{n}\right\}, Z_{n}=$ $\left(X_{n}, T_{n}\right)$, and $z_{i}=\left(x_{i}, t_{i}\right)$, and that $P_{n, f}$ is the probability measure that corresponds to Z_{n}, whereas $E_{n, f}$ is the expectation over this probability measure. Denote also by $\operatorname{Var}_{n, f}$ the corresponding variance. Let $P_{n, T}$ be the probability measure that corresponds to T_{n} and $P_{n, f}^{T}$ be the conditional probability measure with respect to T_{n}. We denote by $E_{n, T}$ and $E_{n, f}^{T}$ the expectations over these probability measures, whereas $\operatorname{Var}_{n, T}$, $\operatorname{Var}_{n, f}^{T}$ are the corresponding variances. (Clearly, $E_{n, f}(\cdot)=E_{n, T} E_{n, f}^{T}(\cdot)$.) Also, for a function $f=\sum_{l} \theta_{l} \phi_{l}$, we denote the measure $P_{n, f}$ by $P_{n, \theta}$, with analogous notation for the expectations, conditional expectations and variances. Let also $E_{n}^{T, \xi}$ and $\operatorname{Var}_{n}^{T, \xi}$ be the expectation and variance of the conditional probability measure with respect to $\Xi_{n}=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$, where $\xi_{i} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$. Certainly, $P_{n, \xi}=P_{n, 0}$.

8.1. Lower Bounds for Theorem 2

8.1.1. Priors. We use the constructions similar to [7] and follow, with necessary modifications, techniques from [14]-[18]. It suffices to consider the case

$$
\begin{equation*}
u_{n}^{2} \asymp 1 \tag{8.1}
\end{equation*}
$$

Take $\delta \in(0,1)$, let $a_{l, n}=v_{l, n}(b, B)$ be the extremal collection for the extremal problem (4.1), (4.2) with $b=1-\delta, B=1+\delta$, and let $A=A_{n}$ be the diagonal matrix with diagonal elements $a_{l}=a_{l, n}, l \in \mathcal{N}$.

Under (8.1), using (C1), (4.7), we have

$$
\begin{equation*}
u_{n}^{2}(b, B)=\frac{1}{2} \sum_{l \in \mathcal{N}} a_{l, n}^{4} \asymp 1, \quad D_{n}=N \max _{j \in \mathcal{N}} a_{j, n}^{4} \sim z_{0}^{4} N \asymp 1 \tag{8.2}
\end{equation*}
$$

Let $v=\sqrt{n} \theta$ and let $\pi_{n}(d v)$ be the Gaussian prior $\mathcal{N}\left(0, A^{2}\right)$ on the parametric space consisting of $\left\{v_{l}\right\}_{l \in \mathcal{L}}=\sqrt{n}\left\{\theta_{l}\right\}_{l \in \mathcal{L}}$, i.e., v_{l} are independent in l and, for each $l, v_{l} \sim \mathcal{N}\left(0, a_{l}^{2}\right)$ for $c_{l}<C$ and $v_{l}=0$ for $c_{l} \geq C$, in π_{n}-probability.

Note that, in the sequence space of the "generalized" Fourier coefficients $\theta=\left\{\theta_{l}\right\}_{l \in \mathcal{L}}$ with respect to the orthonormal system $\left\{\phi_{l}\right\}_{l \in \mathcal{L}}$, the null hypothesis (1.2) (recall that $f_{0}=0$) corresponds to $H_{0}: \theta=0$ and, assuming $f \in \mathcal{F}$, the alternative hypothesis (1.3) corresponds to

$$
\begin{equation*}
H_{1}: \sum_{l \in \mathcal{L}} c_{l}^{2} \theta_{l}^{2} \leq 1, \quad \sum_{l \in \mathcal{L}} \theta_{l}^{2} \geq r_{n}^{2} \tag{8.3}
\end{equation*}
$$

Let $V_{n}=V_{n}(1,1)$ be the set determined by (4.2) with $B=b=1$; this corresponds to the alternative set (8.3).
Lemma 8.1. For any $\delta \in(0,1)$, one has $\pi_{n}\left(V_{n}\right)=1+o(1)$.
Proof. This follows from evaluations of π_{n}-expectations and variances of the random variables $\mathcal{H}_{1}(v)=$ $\sum_{l \in \mathcal{N}} v_{l}^{2}$ and $\mathcal{H}_{2}=\sum_{l \in \mathcal{N}} c_{l}^{2} v_{l}^{2}$, and by using the Chebyshev inequality (compare with similar evaluations in [14], [17], [18]).

Let $\beta\left(P_{n, 0}, P_{\pi_{n}}, \alpha\right)$ be the minimal type II error probability for a given level $\alpha \in(0,1)$ and $\gamma\left(P_{n, 0}, P_{\pi_{n}}\right)$ be the minimal total error probability for testing the simple null hypothesis $H_{0}: P=P_{n, 0}$ against the simple Bayesian alternative $H_{0}: P=P_{\pi_{n}}$ for the mixture $P_{\pi_{n}}(A)=\int P_{n, n^{-1 / 2} v}(A) \pi_{n}(d v)$. By Lemma 8.1 and using Proposition 2.11 in [18], we have

$$
\beta\left(\mathcal{F}, r_{n}, \alpha\right) \geq \beta\left(P_{n, 0}, P_{\pi_{n}}, \alpha\right)+o(1), \quad \gamma\left(\mathcal{F}, r_{n}\right) \geq \gamma\left(P_{n, 0}, P_{\pi_{n}}\right)+o(1)
$$

Hence it suffices to show that

$$
\begin{equation*}
\beta\left(P_{n, 0}, P_{\pi_{n}}, \alpha\right) \geq \Phi\left(H^{(\alpha)}-u_{n}\right)+o(1), \quad \gamma\left(P_{n, 0}, P_{\pi_{n}}\right) \geq 2 \Phi\left(-u_{n} / 2\right)+o(1) \tag{8.4}
\end{equation*}
$$

In order to obtain (8.4), it suffices to verify that, in $P_{n, 0}$-probability,

$$
\begin{equation*}
\log \left(d P_{\pi_{n}} / d P_{n, 0}\right)=-u_{n}^{2} / 2+u_{n} \zeta_{n}+\eta_{n}, \quad \eta_{n} \rightarrow 0, \quad \zeta_{n} \rightarrow \zeta \sim \mathcal{N}(0,1) \tag{8.5}
\end{equation*}
$$

(see [18], Section 4.3.1, formula (4.72)).
8.1.2. Likelihood ratio and correlation matrix. For $f(t)=\sum_{l \in \mathcal{N}} \theta_{l} \phi_{l}(t)$, the likelihood ratio is of the form

$$
\frac{d P_{n, \theta}}{d P_{n, 0}}=\frac{d P_{n, \theta}^{T}}{d P_{n, 0}^{T}}=\exp \left(-\frac{1}{2} v^{\prime} R v+\langle w, v\rangle_{s}\right), \quad \theta=\left\{\theta_{l}\right\}_{l \in \mathcal{N}}, \quad v=\sqrt{n} \theta
$$

where $w=\left\{w_{l}\right\}_{l \in \mathcal{N}}, w_{l}=w_{l, n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i} \phi_{l}\left(t_{i}\right)$, and R is the correlation matrix

$$
R=R_{n}=\left\{r_{j l}\right\}_{j, l \in \mathcal{N}}, \quad r_{j l}=\frac{1}{n} \sum_{i=1}^{n} \phi_{j}\left(t_{i}\right) \phi_{l}\left(t_{i}\right) ;
$$

here, and in Section 9.1.3, $\langle\cdot, \cdot\rangle_{s}$ denotes the inner product in the sequence space.
Let $\operatorname{Tr}(\cdot)$ be the trace of a square matrix.
Lemma 8.2. (i) The matrix R is symmetric and positive semidefinite. Moreover, $E_{n, T} R=I_{N}$, where $I_{N}=\left\{\delta_{j l}\right\}_{j, l \in \mathcal{N}}$ is the $N \times N$ identity matrix.
(ii) Under (2.2) and (B1), one has

$$
\begin{align*}
E_{n, T} \operatorname{Tr}\left(R^{2}\right) & \sim N, \tag{8.6}\\
E_{n, T} \operatorname{Tr}\left(\left(R-I_{N}\right)^{2}\right) & =o(N), \tag{8.7}\\
E_{n, T} \operatorname{Tr}\left(R^{4}\right) & \sim N . \tag{8.8}
\end{align*}
$$

Proof. First, we prove statement (i). For any $\tilde{x}=\left\{\tilde{x}_{j}\right\}_{j \in \mathcal{N}}, \tilde{x}_{j} \in \mathbb{R}$, one has

$$
\sum_{j, l \in \mathcal{N}} \tilde{x}_{j} \tilde{x}_{l} r_{j l}=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j \in \mathcal{N}} \tilde{x}_{j} \phi_{j}\left(t_{i}\right)\right)^{2} \geq 0 .
$$

Since $\left\{\phi_{l}\right\}_{l \in \mathcal{N}}$ is an orthonormal system,

$$
E_{n, T} r_{j l}=\int_{\Delta} \phi_{j}(t) \phi_{l}(t) d t=\delta_{j l}
$$

Thus, statement (i) follows.
Now, we prove statement (ii). Analogously, we have, using (A2), (B1),

$$
\begin{aligned}
E_{n, T}\left(r_{j l}-\delta_{j l}\right)^{2} & =\operatorname{Var}_{n, T} r_{j l}=\frac{1}{n}\left(\int_{\Delta} \phi_{j}^{2}(t) \phi_{l}^{2}(t) d t-\delta_{j l}^{2}\right) \\
& =\frac{1}{n} \int_{\Delta} \phi_{j}^{2}(t) \phi_{l}^{2}(t) d t-\frac{1}{n} \delta_{j l}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{n, T} \operatorname{Tr}\left(\left(R-I_{N}\right)^{2}\right) & =\sum_{j, l \in \mathcal{N}} E_{n, T}\left(r_{j l}-\delta_{j l}\right)^{2} \leq \frac{1}{n} \int_{\Delta} \sum_{j, l \in \mathcal{N}} \phi_{j}^{2}(t) \phi_{l}^{2}(t) d t \\
& =\frac{1}{n} \int_{\Delta}\left(\sum_{j \in \mathcal{N}} \phi_{j}^{2}(t)\right)^{2} d t=\frac{N^{2}}{n}=o(N)
\end{aligned}
$$

which yields (8.7). We obtain (8.6) from (8.7) since $\operatorname{Tr}\left(R^{2}\right)=\operatorname{Tr}\left(\left(R-I_{N}\right)^{2}\right)+\operatorname{Tr}\left(I_{N}\right)$.
Let us now evaluate $E_{n, T} \operatorname{Tr}\left(R^{4}\right)$. Let $R^{2}=\left\{b_{j l}\right\}_{j, l \in \mathcal{N}}$,

$$
b_{j l}=\sum_{s \in \mathcal{N}} r_{j s} r_{s l}=\frac{1}{n^{2}} \sum_{s \in \mathcal{N}} \sum_{\alpha, \beta=1}^{n} \phi_{j}\left(t_{\alpha}\right) \phi_{s}\left(t_{\alpha}\right) \phi_{s}\left(t_{\beta}\right) \phi_{l}\left(t_{\beta}\right) .
$$

We have

$$
\operatorname{Tr}\left(R^{4}\right)=\sum_{j, l \in \mathcal{N}} b_{j l}^{2}=\frac{1}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} \sum_{\alpha, \beta, \gamma, \delta=1}^{n} \phi_{j}\left(t_{\alpha}\right) \phi_{s}\left(t_{\alpha}\right) \phi_{s}\left(t_{\beta}\right) \phi_{l}\left(t_{\beta}\right) \phi_{j}\left(t_{\gamma}\right) \phi_{r}\left(t_{\gamma}\right) \phi_{r}\left(t_{\delta}\right) \phi_{l}\left(t_{\delta}\right) .
$$

Observe that

$$
\sum_{\alpha, \beta, \gamma, \delta=1}^{n} E_{n, T}\left\{\phi_{j}\left(t_{\alpha}\right) \phi_{s}\left(t_{\alpha}\right) \phi_{s}\left(t_{\beta}\right) \phi_{l}\left(t_{\beta}\right) \phi_{j}\left(t_{\gamma}\right) \phi_{r}\left(t_{\gamma}\right) \phi_{r}\left(t_{\delta}\right) \phi_{l}\left(t_{\delta}\right)\right\}:=S_{4}+S_{3}+S_{2}+S_{1}
$$

where S_{1}, \ldots, S_{4} correspond to the sums (we omit indices j, l, r, s in notation of S_{1}, \ldots, S_{4})

$$
\begin{aligned}
& S_{4}=24 \sum_{1 \leq \alpha<\beta<\gamma<\delta \leq n} \\
& S_{3}=6\left(\sum_{1 \leq \alpha=\beta<\gamma<\delta \leq n}+\sum_{1 \leq \alpha<\beta=\gamma<\delta \leq n}+\sum_{1 \leq \alpha<\beta<\gamma=\delta \leq n}\right) \\
& S_{2}=2\left(\sum_{1 \leq \alpha=\beta=\gamma<\delta \leq n}+\sum_{1 \leq \alpha<\beta=\gamma=\delta \leq n}+\sum_{1 \leq \alpha=\beta<\gamma=\delta \leq n}\right) \\
& S_{1}=\sum_{1 \leq \alpha=\beta=\gamma=\delta \leq n}
\end{aligned}
$$

By independence of t_{i}, and since $\left\{\phi_{l}\right\}$ is an orthonormal system, we have

$$
\begin{aligned}
S_{4}= & C_{4}(n) \delta_{j s} \delta_{s l} \delta_{j r} \delta_{r l}, \\
S_{3}= & C_{3}(n)\left\{\delta_{j r} \delta_{l r} \int_{\Delta} \phi_{j}(t) \phi_{s}^{2}(t) \phi_{l}(t) d t+\delta_{j s} \delta_{r l} \int_{\Delta} \phi_{s}(t) \phi_{l}(t) \phi_{j}(t) \phi_{r}(t) d t\right. \\
& \left.+\delta_{j s} \delta_{s l} \int_{\Delta} \phi_{j}(t) \phi_{r}^{2}(t) \phi_{l}(t) d t\right\}, \\
S_{2}= & C_{2}(n)\left\{\delta_{r l} \int_{\Delta} \phi_{j}^{2}(t) \phi_{s}^{2}(t) \phi_{l}(t) \phi_{r}(t) d t+\delta_{s j} \int_{\Delta} \phi_{l}^{2}(t) \phi_{r}^{2}(t) \phi_{j}(t) \phi_{s}(t) d t\right. \\
& \left.+\left(\int_{\Delta} \phi_{j}(t) \phi_{s}^{2}(t) \phi_{l}(t) d t\right)\left(\int_{\Delta} \phi_{j}(u) \phi_{r}^{2}(u) \phi_{l}(u) d u\right)\right\}, \\
S_{1}= & n \int_{\Delta} \phi_{j}^{2}(t) \phi_{s}^{2}(t) \phi_{r}^{2}(t) \phi_{l}^{2}(t) d t,
\end{aligned}
$$

where $C_{4}(n) \sim n^{4}, C_{3}(n) \asymp n^{3}, C_{2}(n) \asymp n^{2}$. Therefore,

$$
\begin{aligned}
\frac{1}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} S_{4} & =\frac{C_{4}(n)}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} \delta_{j s} \delta_{s l} \delta_{j r} \delta_{r l}=\frac{N C_{4}(n)}{n^{4}} \sim N \\
\frac{1}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} S_{3} & =\frac{3 C_{3}(n)}{n^{4}} \sum_{j, s \in \mathcal{N}} \int_{\Delta} \phi_{j}^{2}(t) \phi_{s}^{2}(t) d t \\
& =\frac{3 C_{3}(n)}{n^{4}} \int_{\Delta}\left(\sum_{j \in \mathcal{N}} \phi_{j}^{2}(t)\right)^{2} d t=\frac{3 N^{2} C_{3}(n)}{n^{4}}=O\left(N^{2} / n\right), \\
\frac{1}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} S_{1} & =\frac{n}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} \int_{\Delta} \phi_{j}^{2}(t) \phi_{s}^{2}(t) \phi_{r}^{2}(t) \phi_{l}^{2}(t) d t
\end{aligned}
$$

$$
=\frac{1}{n^{3}} \int_{\Delta}\left(\sum_{j \in \mathcal{N}} \phi_{j}^{2}(t)\right)^{4} d t=\frac{N^{4}}{n^{3}} .
$$

Analogously,

$$
\begin{aligned}
\sum_{l, j, s, r \in \mathcal{N}} \delta_{r l} \int_{\Delta} \phi_{j}^{2}(t) \phi_{s}^{2}(t) \phi_{l}(t) \phi_{r}(t) d t & =\int_{\Delta}\left(\sum_{l, j, s \in \mathcal{N}} \phi_{j}^{2}(t) \phi_{s}^{2}(t) \phi_{l}^{2}(t)\right) d t \\
& =\int_{\Delta}\left(\sum_{l \in \mathcal{N}} \phi_{j}^{2}(t)\right)^{3} d t=N^{3}
\end{aligned}
$$

and

$$
\begin{align*}
& \sum_{l, j, s, r \in \mathcal{N}}\left(\int_{\Delta} \phi_{j}(t) \phi_{s}^{2}(t) \phi_{l}(t) d t\right)\left(\int_{\Delta} \phi_{j}(u) \phi_{r}^{2}(u) \phi_{l}(u) d u\right) \\
&= \sum_{l, j \in \mathcal{N}}\left(\int_{\Delta} \phi_{j}(t)\left(\sum_{s \in \mathcal{N}} \phi_{s}^{2}(t)\right) \phi_{l}(t) d t\right)\left(\int_{\Delta} \phi_{j}(u)\left(\sum_{s \in \mathcal{N}} \phi_{r}^{2}(u)\right) \phi_{l}(u) d u\right) \tag{8.9}\\
&= N^{2} \sum_{l, j \in \mathcal{N}}\left(\int_{\Delta} \phi_{j}(t) \phi_{l}(t) d t\right)\left(\int_{\Delta} \phi_{j}(u) \phi_{l}(u) d u\right)=N^{2} \sum_{l, j \in \mathcal{N}} \delta_{j l}^{2}=N^{3} .
\end{align*}
$$

Thus,

$$
\frac{1}{n^{4}} \sum_{l, j, s, r \in \mathcal{N}} S_{2}=O\left(N^{3} / n^{2}\right)
$$

Combining evaluations above and (B1) we get (8.8):

$$
\operatorname{Tr}\left(R^{4}\right) \sim N\left(1+O\left(N / n+(N / n)^{2}+(N / n)^{3}\right)\right) \sim N .
$$

Thus, statement (ii) follows. This competes the proof of Lemma 8.2.
8.1.3. Bayesian Likelihood Ratio. Let us now study the Bayesian likelihood ratio. A direct calculation gives

$$
\begin{equation*}
\frac{d P_{\pi_{n}}}{d P_{n, 0}}=E_{\pi_{n}} \frac{d P_{n, \theta}^{T}}{d P_{n, 0}^{T}}=\frac{1}{\sqrt{\operatorname{det} G}} \exp \left(\frac{1}{2} q^{\prime} G^{-1} q\right) \tag{8.10}
\end{equation*}
$$

where $q=A w, G=G_{n}=I_{N}+A^{\prime} R A$. Let $\tilde{\tau}_{l} \geq 0, l \in \mathcal{N}$, be the eigenvalues of the symmetric positive semidefinite matrix $D=A^{\prime} R A=\left\{a_{j} a_{l} r_{j l}\right\}_{j, l \in \mathcal{N}}$. Let e_{l} be the eigenvectors of the matrix D and let $q_{l}=\left\langle q, e_{l}\right\rangle_{s}, l \in \mathcal{L}$.

We can now rewrite (8.10) in the form

$$
L_{n}=\log \left(\frac{d P_{\pi_{n}}}{d P_{n, 0}}\right)=\frac{1}{2} \sum_{l \in \mathcal{N}}\left(\frac{q_{l}^{2}}{1+\tilde{\tau}_{l}}-\log \left(1+\tilde{\tau}_{l}\right)\right) .
$$

Let $\|\tilde{A}\|_{\infty}=\sup _{\|x\| \leq 1}\|\tilde{A} x\|$ for a generic matrix \tilde{A}. Observe that

$$
\|D\|_{\infty}^{4}=\max _{l \in \mathcal{N}} \tilde{\tau}_{l}^{4} \leq \sum_{l \in \mathcal{N}} \tilde{\tau}_{l}^{4}=\operatorname{Tr}\left(D^{4}\right) .
$$

Using the standard relations

$$
\operatorname{Tr}(A C)=\operatorname{Tr}(C A) \quad \text { and } \quad \operatorname{Tr}\left(A^{\prime} B A\right) \leq\|A\|_{\infty}^{2} \operatorname{Tr}(B)
$$

for a symmetric positive semidefinite matrix B, we get the inequalities

$$
\operatorname{Tr}\left(D^{2}\right) \leq\|A\|_{\infty}^{4} \operatorname{Tr}\left(R^{2}\right) \quad \text { and } \quad \operatorname{Tr}\left(D^{4}\right) \leq\|A\|_{\infty}^{8} \operatorname{Tr}\left(R^{4}\right) .
$$

By (8.2),

$$
\|A\|_{\infty}^{4}=\max _{l \in \mathcal{N}} a_{l}^{4} \leq D_{n} / N
$$

Jointly with (8.6) and (8.8), the above yields

$$
E_{n, T}\left(\operatorname{Tr}\left(D^{2}\right)\right)=O(1), \quad E_{n, T}\left(\operatorname{Tr}\left(D^{4}\right)\right)=O\left(N^{-1}\right)
$$

Hence

$$
E_{n, T}\left(\max _{l \in \mathcal{N}}\left|\tilde{\tau}_{l}\right|\right)=O\left(N^{-1 / 4}\right)
$$

Thus, in $P_{n, T}$-probability,

$$
\begin{equation*}
\|D\|_{\infty}=\max _{l \in \mathcal{N}}\left|\tilde{\tau}_{l}\right|=o(1) \tag{8.11}
\end{equation*}
$$

Using the well-known relations

$$
(1+y)^{-1}=1-y+o(y) \quad \text { and } \quad \log (1+y)-y+y^{2} / 2=o\left(y^{2}\right) \quad \text { as } \quad y \rightarrow 0
$$

we get, with $P_{n, T}$-probability tending to 1 , by (8.11),

$$
\begin{align*}
L_{n} & =\frac{1}{2} \sum_{l \in \mathcal{N}}\left(q_{l}^{2}\left(1-\tilde{\tau}_{l}\right)-\tilde{\tau}_{l}+\tilde{\tau}_{l}^{2} / 2\right)+o\left(\sum_{l \in \mathcal{N}} q_{l}^{2} \tilde{\tau}_{l}\right)+o\left(\sum_{l \in \mathcal{N}} \tilde{\tau}_{l}^{2}\right) \\
& =\frac{1}{2}\left(\operatorname{Tr}(Q)-\operatorname{Tr}(D)-\operatorname{Tr}(Q D)+\operatorname{Tr}\left(D^{2}\right) / 2\right)+o(\operatorname{Tr}(Q D))+o\left(\operatorname{Tr}\left(D^{2}\right)\right) \\
& =\frac{1}{2}\left(\operatorname{Tr}(\hat{Q})-\operatorname{Tr}(\hat{Q} D)-\operatorname{Tr}\left(D^{2}\right) / 2\right)+o(\operatorname{Tr}(\hat{Q} D))+o\left(\operatorname{Tr}\left(D^{2}\right)\right) \tag{8.12}
\end{align*}
$$

where

$$
Q=q q^{\prime}=A z z^{\prime} A=\left\{a_{j} a_{l} z_{j} z_{l}\right\}_{j, l \in \mathcal{N}}, \quad \hat{Q}=Q-D=A\left(z z^{\prime}-R\right) A
$$

Let us now study the $P_{n, 0}$-distribution of L_{n}.
Lemma 8.3. In $P_{n, 0^{-}}$probability,

$$
\begin{align*}
\operatorname{Tr}(\hat{Q} D) & =o(1) \tag{8.13}\\
\operatorname{Tr}\left(D^{2}\right) & =\operatorname{Tr}\left(A^{4}\right)+o(1) \tag{8.14}\\
E_{n, 0} \operatorname{Tr}(\hat{Q}) & =0 \tag{8.15}\\
\operatorname{Var}_{n, 0} \operatorname{Tr}(\hat{Q}) & =2 \operatorname{Tr}\left(A^{4}\right)+o(1) \tag{8.16}
\end{align*}
$$

Proof. Let $\Phi=n^{-1 / 2}\left\{\phi_{j}\left(t_{i}\right)\right\}_{j \in \mathcal{N}, i=1, \ldots, n}$ be an $N \times n$-matrix, and set $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n}\right)$. Then, in $P_{n, 0^{-}}$ probability,

$$
R=\Phi \Phi^{\prime}, \quad z=\Phi \xi, \quad z^{\prime} z=\xi^{\prime} \Phi^{\prime} \Phi \xi, \quad E\left(\xi \xi^{\prime}\right)=I_{N}
$$

Observe that

$$
E_{n, 0}^{T} z z^{\prime}=\Phi\left(E_{n, 0}^{T} \xi \xi^{\prime}\right) \Phi^{\prime}=\Phi \Phi^{\prime}=R
$$

which yields

$$
\begin{equation*}
E_{n, 0}^{T}(\operatorname{Tr}(\hat{Q}))=0, \quad E_{n, 0}^{T}(\operatorname{Tr}(\hat{Q} D))=0 \tag{8.17}
\end{equation*}
$$

Analogously, using the formula

$$
\operatorname{Var}\left(\operatorname{Tr}\left(B \xi \xi^{\prime}\right)\right)=2 \operatorname{Tr}\left(B B^{\prime}\right)
$$

we get

$$
\operatorname{Var}_{n, 0}^{T}(\operatorname{Tr}(\hat{Q} D))=\operatorname{Var}_{n, 0}^{T} \operatorname{Tr}\left(A \Phi \xi \xi^{\prime} \Phi^{\prime} A D\right)=2 \operatorname{Tr}\left(B B^{\prime}\right)
$$

where $B=\Phi^{\prime} A^{2} \Phi \Phi^{\prime} A^{2} \Phi$. By Lemma 8.2 and (8.2), it is easily seen that

$$
\operatorname{Tr}\left(B B^{\prime}\right)=\operatorname{Tr}\left((A R A)^{4}\right) \leq\|A\|_{\infty}^{8} \operatorname{Tr}\left(R^{4}\right) .
$$

Using the formula

$$
\operatorname{Var}_{n, 0}(\cdot)=\operatorname{Var}_{T}\left(E_{n, 0}^{T}(\cdot)\right)+E_{T}\left(\operatorname{Var}_{n, 0}^{T}(\cdot)\right),
$$

we get

$$
\operatorname{Var}_{n, 0}(\operatorname{Tr}(\hat{Q} D))=o(1),
$$

which together with (8.17), yields (8.13).
To obtain (8.14), note that

$$
\operatorname{Tr}\left(D^{2}\right)=\operatorname{Tr}\left(\hat{D}^{2}\right)+2 \operatorname{Tr}\left(A^{2} \hat{D}\right)+\operatorname{Tr}\left(A^{4}\right), \quad \hat{D}=D-A^{2}=A\left(R-I_{N}\right) A
$$

and observe that, by Lemma 8.2 and (8.2),

$$
\operatorname{Tr}\left(\hat{D}^{2}\right) \leq\|A\|_{\infty}^{4} \operatorname{Tr}\left(\left(R-I_{N}\right)^{2}\right)=o(1), \quad\left(\operatorname{Tr}\left(A^{2} \hat{D}\right)\right)^{2} \leq \operatorname{Tr}\left(A^{4}\right) \operatorname{Tr}\left(\hat{D}^{2}\right)=o(1)
$$

Obviously, (8.15) follows from (8.17), and (8.16) follows from (8.14), since

$$
\operatorname{Var}_{n, 0}^{T}(\operatorname{Tr}(\hat{Q}))=\operatorname{Var}_{n, 0}^{T}\left(\operatorname{Tr}\left(A \Phi \xi \xi^{\prime} \Phi^{\prime} A\right)\right)=2 \operatorname{Tr}\left(\left(A \Phi \Phi^{\prime} A\right)^{2}\right)=2 \operatorname{Tr}\left(D^{2}\right)
$$

This completes the proof of Lemma 8.3.
Let $\zeta_{n}=\operatorname{Tr}(\hat{Q}) / 2 u_{n}, u_{n}^{2}=\operatorname{Tr}\left(A^{4}\right) / 2$. By Lemma 8.3, we rewrite (8.12) in the form

$$
L_{n}=u_{n} \zeta_{n}-u_{n}^{2} / 2+\eta_{n}, \quad \eta_{n} \xrightarrow{P_{n, 0}} 0 .
$$

Lemma 8.4. In $P_{n, 0}$-probability, $\zeta_{n} \rightarrow \zeta \sim \mathcal{N}(0,1)$.
Proof. Let us rewrite $\operatorname{Tr}(\hat{Q})$ in the form

$$
\frac{1}{2} \operatorname{Tr}(\hat{Q})=\frac{1}{2} \operatorname{Tr}\left(A \Phi\left(\xi \xi^{\prime}-I\right) \Phi^{\prime} A\right)=\frac{1}{2} \sum_{i=1}^{n} w_{i i}\left(\xi_{i}^{2}-1\right)+\sum_{1 \leq i<k \leq n} w_{i k} \xi_{i} \xi_{j}:=A_{n}+B_{n},
$$

where

$$
W=\left\{w_{i k}\right\}_{i, k=1}^{n}=\Phi^{\prime} A^{2} \Phi, \quad w_{i k}=\frac{1}{n} \sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{i}\right) \phi_{l}\left(t_{k}\right) .
$$

It is easily seen that $E_{n}^{T, \xi} A_{n}=0$, and by (A2), (8.2),

$$
\begin{aligned}
\operatorname{Var}_{n}^{T, \xi}\left(A_{n}\right) & =\frac{1}{2} \sum_{i=1}^{n} w_{i i}^{2}=\frac{1}{2 n^{2}} \sum_{i=1}^{n}\left(\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}^{2}\left(t_{i}\right)\right)^{2} \\
& \leq \frac{D_{n}}{2 n^{2} N} \sum_{i=1}^{n}\left(\sum_{l \in \mathcal{N}} \phi_{l}^{2}\left(t_{i}\right)\right)^{2}=\frac{D_{n} N}{2 n}=o(1) .
\end{aligned}
$$

Thus, $A_{n} \rightarrow 0$ in $L_{2}\left(P_{n, 0}\right)$ and in $P_{n, 0}$-probability.
The term B_{n} is a degenerate U-statistic,

$$
\begin{aligned}
& B_{n}=\frac{1}{n} \sum_{1 \leq i<k \leq n} W_{n}\left(r_{i}, r_{j}\right), \quad r_{i}=\left(\xi_{i}, t_{i}\right) \quad \text { are iid, } \\
& W_{n}\left(r^{\prime}, r^{\prime \prime}\right)=\xi^{\prime} \xi^{\prime \prime} \sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t^{\prime}\right) \phi_{l}\left(t^{\prime \prime}\right), \quad \int W_{n}\left(r^{\prime}, r^{\prime \prime}\right) P\left(d r^{\prime}\right)=0 \quad \forall r^{\prime \prime},
\end{aligned}
$$

where $P(d r)=\mathcal{N}_{0,1}(d \xi) \times U_{\Delta}(d t)$, i.e., ξ and t are independent, $\xi \sim \mathcal{N}(0,1)$, and t is uniformly distributed on Δ.

The statement of Lemma 8.4 follows from the following proposition.

Proposition 2. In $P_{n, 0}$-probability, the statistics B_{n} are asymptotically $\mathcal{N}\left(0, u_{n}^{2}\right)$.
Proof of Proposition 2. Clearly, $E_{P_{n, 0}} B_{n}=0$ and, for $r_{1}=\left(\xi_{1}, t_{1}\right), r_{2}=\left(\xi_{2}, t_{2}\right)$,

$$
\begin{aligned}
\operatorname{Var}_{P_{n, 0}}\left(B_{n}\right) & =\frac{n(n-1)}{2 n^{2}} \iint W_{n}^{2}\left(r_{1}, r_{2}\right) P\left(d r_{1}\right) P\left(d r_{2}\right) \\
& =\frac{n(n-1)}{2 n^{2}} E\left(\xi_{1}^{2} \xi_{2}^{2}\right) \int_{\Delta} \int_{\Delta}\left(\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2} \\
& =\frac{n(n-1)}{2 n^{2}} \sum_{j, l \in \mathcal{N}} a_{j}^{2} a_{l}^{2} \int_{\Delta} \int_{\Delta} \phi_{j}\left(t_{1}\right) \phi_{j}\left(t_{2}\right) \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right) d t_{1} d t_{2} \\
& =\frac{n(n-1)}{2 n^{2}} \sum_{l \in \mathcal{N}} a_{l}^{4} \sim u_{n}^{2}
\end{aligned}
$$

For $r_{1}=\left(\xi_{1}, t_{1}\right), r_{2}=\left(\xi_{2}, t_{2}\right), r_{3}=\left(\xi_{3}, t_{3}\right)$, let

$$
\begin{aligned}
\widetilde{G}_{n}\left(r_{1}, r_{2}\right) & =\int W_{n}\left(r_{1}, r_{3}\right) W_{n}\left(r_{2}, r_{3}\right) P\left(d r_{3}\right) \\
G_{n, 2} & =\iint \widetilde{G}_{n}^{2}\left(r_{1}, r_{2}\right) P\left(d r_{1}\right) P\left(d r_{2}\right) \\
W_{n, 4} & =\iint W_{n}^{4}\left(r_{1}, r_{2}\right) P\left(d r_{1}\right) P\left(d r_{2}\right)
\end{aligned}
$$

Using the asymptotic normality of degenerate U-statistics established in [10] together with Lemma 3.4 in [16], it suffices to verify the conditions

$$
\begin{align*}
\widetilde{G}_{n, 2} & =o(1) \tag{8.18}\\
W_{n, 4} & =o\left(n^{2}\right) \tag{8.19}
\end{align*}
$$

We have

$$
\begin{aligned}
\widetilde{G}_{n}\left(r_{1}, r_{2}\right) & =E_{P\left(d \xi_{3}, d t_{3}\right)}\left(\xi_{1} \xi_{2} \xi_{3}^{2} \sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{3}\right) \sum_{j \in \mathcal{N}} a_{j}^{2} \phi_{j}\left(t_{2}\right) \phi_{j}\left(t_{3}\right)\right) \\
& =\xi_{1} \xi_{2} \sum_{j, l \in \mathcal{N}} a_{l}^{2} a_{j}^{2} \phi_{l}\left(t_{1}\right) \phi_{j}\left(t_{2}\right) \int_{\Delta} \phi_{l}\left(t_{3}\right) \phi_{j}\left(t_{3}\right) d t_{3}=\xi_{1} \xi_{2} \sum_{l \in \mathcal{N}} a_{l}^{4} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right), \\
G_{n, 2} & =E\left(\xi_{1} \xi_{2}\right)^{2} \int_{\Delta} \int_{\Delta}\left(\sum_{l \in \mathcal{N}} a_{l}^{4} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}=\sum_{l \in \mathcal{N}} a_{l}^{8}=O\left(N^{-1}\right)
\end{aligned}
$$

which yields (8.18). Next,

$$
\begin{aligned}
W_{n, 4} & =E\left(\xi_{1} \xi_{2}\right)^{4} \int_{\Delta} \int_{\Delta}\left(\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right)^{4} d t_{1} d t_{2} \\
& \leq 9 \sup _{t_{1}, t_{2} \in \Delta}\left(\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right)^{2} \int_{\Delta} \int_{\Delta}\left(\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right)^{2} d t_{1} d t_{2}=O(N)
\end{aligned}
$$

since, by (A2) and (8.2), we have

$$
\sup _{t_{1}, t_{2} \in \Delta}\left|\sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right)\right|=\sup _{t_{1} \in \Delta} \sum_{l \in \mathcal{N}} a_{l}^{2} \phi_{l}^{2}\left(t_{1}\right) \leq \max _{l \in \mathcal{N}} a_{l}^{2} \sup _{t_{1} \in \Delta} \sum_{l \in \mathcal{N}} \phi_{l}^{2}\left(t_{1}\right)=O\left(N^{1 / 2}\right)
$$

This implies (8.19), which completes the proof of Proposition 2. Hence Lemma 8.4 follows.
Thus we obtain (8.5), which yields (8.4). Hence Theorem 2 (i) follows.

8.2. Lower Bounds for Theorem 1

The same scheme as used in the proof of the lower bounds of Theorem 2 can be also employed here.
Let $C^{2} r_{n}^{2}<(1-\delta), \delta>0$. It suffices to assume $u_{n}^{2}=n^{2} r_{n}^{4} / 2 N=O(1)$. We take the Gaussian prior $\pi_{n}=\mathcal{N}\left(0, A^{2}\right)$ that corresponds to the matrix $A=a_{n} I_{N}$ with $a_{n}^{2}=n r_{n}^{2}(1+\delta) / N$. Recall $\mathcal{H}_{1}, \mathcal{H}_{2}$ from the proof of Lemma 8.1. Analogously to the proof of Lemma 8.1, we have

$$
\begin{aligned}
E_{\pi_{n}} \mathcal{H}_{1} & =a_{n}^{2} N=n r_{n}^{2}(1+\delta), \\
E_{\pi_{n}} \mathcal{H}_{2} & \leq C^{2} a_{n}^{2} N<n C^{2} r_{n}^{2}(1-\delta)<n, \\
\operatorname{Var}_{\pi_{n}} \mathcal{H}_{1} & =2 a_{n}^{4} N=O(1), \\
\operatorname{Var}_{\pi_{n}} \mathcal{H}_{2} & \leq 2 C^{4} a_{n}^{4} N=O\left(n^{2} / N\right) .
\end{aligned}
$$

Since, by Chebyshev's inequality, $\operatorname{Var}_{\pi_{n}} \mathcal{H}_{k}=o\left(\left(E_{\pi_{n}} \mathcal{H}_{k}\right)^{2}\right), k=1,2$, these yield $\pi_{n}\left(V_{n}\right)=1+o(1)$.
Observe that relations (8.2) hold true with $z_{0}=a_{n}$. Repeating the calculations in the proof of the lower bounds of Theorem 2, we arrive at (8.4) with $u_{n}^{2}=N a_{n}^{4} / 2=n^{2} r_{n}^{4} / 2 N(1+\delta)^{2}$. Since $\delta>0$ can be taken arbitrarily small, this yields Theorem 1 (i).

9. APPENDIX 2: PROOF OF UPPER BOUNDS
 9.1. Upper Bounds for Theorem 2

We consider the test sequence $\psi_{n}^{H}=\mathbf{1}_{\left\{U_{n}>H\right\}}$ based on the U-statistics U_{n} with the kernel $K_{n}\left(z_{1}, z_{2}\right)$ of the form (4.9).
9.1.1. Type I error. Observe that $K_{n}\left(z_{1}, z_{2}\right)=u_{n}^{-1} W_{n}\left(z_{1}, z_{2}\right)$, where W_{n} is the kernel of the U statistics mentioned in Proposition 2. Applying Proposition 2, we get

$$
U_{n} \xrightarrow{P_{n, 0}} \zeta \sim \mathcal{N}(0,1) .
$$

This yields

$$
\begin{equation*}
E_{n, 0}\left(\psi_{n}^{H}\right)=P_{n, 0}\left(U_{n} \leq-H\right)=1-\Phi(H)+o(1) . \tag{9.1}
\end{equation*}
$$

9.1.2. Minimax type II error. By (9.1) we have to verify that

$$
\begin{equation*}
\sup _{f \in \mathcal{F}\left(r_{n}\right)} E_{n, f}\left(1-\psi_{n}^{H}\right)=\sup _{f \in \mathcal{F}\left(r_{n}\right)} P_{n, f}\left(U_{n}>H\right)=\Phi\left(H-u_{n}\right)+o(1) . \tag{9.2}
\end{equation*}
$$

For $f=\sum_{l \in \mathcal{L}} \theta_{l} \phi_{l}$, let

$$
v_{l}=\sqrt{n} \theta_{l}, \quad h_{n}(f)=\frac{1}{2} \sum_{l \in \mathcal{N}} w_{n, l} v_{l}^{2} .
$$

Lemma 9.1. Uniformly over $f \in \mathcal{F}$,

$$
\begin{align*}
E_{n, f} U_{n} & \sim h_{n}(f), \tag{9.3}\\
\operatorname{Var}_{n, f} U_{n} & =1+O\left(\|f\|^{2}+\|f\|_{4}^{4}\right) . \tag{9.4}
\end{align*}
$$

Moreover, uniformly over $f \in \mathcal{F}$ such that

$$
\begin{equation*}
\|f\|=o(1), \quad\|f\|_{4}=o(1), \quad \text { and } \quad h_{n}(f)=O(1) \tag{9.5}
\end{equation*}
$$

the statistics $U_{n}-h_{n}(f)$ are asymptotically $\mathcal{N}(0,1)$ under $P_{n, f}$-probability.

Remark 9.1. Using Hölder's inequality and (A3) with $p=4+2 \delta, \delta>0$, we get

$$
\|f\|_{4}^{4} \leq\|f\|^{a}\|f\|_{p}^{b}, \quad a=2 /(1+1 / \delta), \quad b=p /(1+\delta) ; \quad\|f\| \leq\|f\|_{p}
$$

Therefore, under (A3), Lemma 9.1 yields

$$
\begin{equation*}
\sup _{f \in \mathcal{F}} \operatorname{Var}_{n, f} U_{n}=O(1) \quad \text { and } \quad \operatorname{Var}_{n, f} U_{n}=1+O\left(\|f\|^{2}+\|f\|^{a}\right) \tag{9.6}
\end{equation*}
$$

uniformly over $f \in \mathcal{F}$, and

$$
U_{n}=h_{n}(f)+\zeta_{n}, \quad \zeta_{n} \rightarrow \zeta \sim \mathcal{N}(0,1)
$$

uniformly over $f \in \mathcal{F}$ such that $h_{n}(f)=O(1)$ and $\|f\|=o(1)$.
Proof of Lemma 9.1. Let $f=n^{-1 / 2} \sum_{l \in \mathcal{L}} v_{l} \phi_{l}$. Denote $z=(x, t)$ with $x=f(t)+\xi, \xi$ and t are independent, $\xi \sim \mathcal{N}(0,1)$, and t is uniformly distributed on Δ. Since the terms of the sum in U-statistics are identically distributed and uncorrelated, we have

$$
E_{n, f} U_{n}=\frac{n-1}{2} E_{n, f} K_{n}\left(z_{1}, z_{2}\right),
$$

where z_{1} and z_{2} are independent and distributed as z,

$$
\begin{aligned}
E_{n, f} K_{n}\left(z_{1}, z_{2}\right) & =E_{n, f} x_{1} x_{2} G_{n}\left(t_{1}, t_{2}\right)=E_{n}^{T} f\left(t_{1}\right) f\left(t_{2}\right) G_{n}\left(t_{1}, t_{2}\right) \\
& =\sum_{l \in \mathcal{N}} w_{n, l} E_{n}^{T}\left(f(t) \phi_{l}(t)\right)^{2}=n^{-1} \sum_{l \in \mathcal{N}} w_{n, l} v_{l}^{2} .
\end{aligned}
$$

Hence (9.3) follows.
Let us now evaluate the variance. Rewrite the U-statistics in the form

$$
\begin{equation*}
U_{n}=U_{n, 0}+U_{n, 1}+U_{n, 2}, \tag{9.7}
\end{equation*}
$$

where

$$
U_{n, k}=\frac{1}{n} \sum_{1 \leq i<j \leq n} K_{n, k}\left(z_{i}, z_{j}\right)
$$

are U-statistics with the kernels $K_{n, k}\left(z_{1}, z_{2}\right)$ of the form

$$
\begin{aligned}
& K_{n, 0}=\xi_{1} \xi_{2} G_{n}\left(t_{1}, t_{2}\right), \quad K_{n, 1}=\left(\xi_{1} f\left(t_{2}\right)+\xi_{2} f\left(t_{1}\right)\right) G_{n}\left(t_{1}, t_{2}\right), \\
& K_{n, 2}=f\left(t_{1}\right) f\left(t_{2}\right) G_{n}\left(t_{1}, t_{2}\right), \quad G_{n}\left(t_{1}, t_{2}\right)=\sum_{l \in \mathcal{N}} w_{n, l} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right),
\end{aligned}
$$

and the terms $U_{n, 0}, U_{n, 1}$, and $U_{n, 2}$ are uncorrelated. Obviously,

$$
\begin{aligned}
& E_{n, f} U_{n, 0}=E_{n, f} U_{n, 1}=0, \\
& E_{n, f} U_{n, 2}=\frac{n-1}{2} \sum_{l \in \mathcal{N}} w_{n, l}\left(\int_{\Delta} f(t) \phi_{l}(t) d t\right)^{2} \sim h_{n}(f) .
\end{aligned}
$$

Similarly to Proposition 2,

$$
\operatorname{Var}_{n, f} U_{n, 0} \sim \frac{1}{2} \int_{\Delta} \int_{\Delta} G_{n}^{2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\frac{1}{2} \sum_{l \in \mathcal{N}} w_{n, l}^{2}=1
$$

Analogously, by (A2) and (4.7), and since $\max _{l} w_{n, l}^{2}=O(1 / N)$,

$$
\begin{aligned}
\operatorname{Var}_{n, f} U_{n, 1} & \sim 2 \int_{\Delta} \int_{\Delta} f^{2}\left(t_{1}\right) G_{n}^{2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
& =2 \int_{\Delta}\left(f^{2}(t) \sum_{l \in \mathcal{N}} w_{n, l}^{2} \phi_{l}^{2}(t)\right) d t=O\left(\|f\|^{2}\right)
\end{aligned}
$$

Next,

$$
\operatorname{Var}_{n, f} U_{n, 2} \leq \int_{\Delta} \int_{\Delta} f^{2}\left(t_{1}\right) f^{2}\left(t_{2}\right) G_{n}^{2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=A_{n}
$$

Let \mathbf{G}_{n} be the integral operator in $L_{2}(\Delta)$ associated with the symmetric positive semidefinite kernel $G_{n}\left(t_{1}, t_{2}\right), t_{1}, t_{2} \in \Delta$, and

$$
\left\|\mathbf{G}_{n}\right\|_{\infty}=\sup _{\|f\| \leq 1}\left\|\mathbf{G}_{n} f\right\|=\max _{l \in \mathcal{N}} w_{n, l}=O\left(N^{-1 / 2}\right) .
$$

Observe that, by (A2) and (4.7),

$$
\mathbf{G}_{n}^{*}=\sup _{t \in \Delta} \sum_{l \in \mathcal{N}} w_{n, l} \phi_{l}^{2}(t) \leq N\left\|\mathbf{G}_{n}\right\|_{\infty}, \quad \mathbf{G}_{n}^{*}\left\|\mathbf{G}_{n}\right\|_{\infty}=O(1) .
$$

We have

$$
\begin{aligned}
A_{n} & =\sum_{l \in \mathcal{N}} w_{n, l} \int_{\Delta} \int_{\Delta} \phi_{l}\left(t_{1}\right) \phi_{l}\left(t_{2}\right) f^{2}\left(t_{1}\right) f^{2}\left(t_{2}\right) G_{n}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
& =\sum_{l \in \mathcal{N}} w_{n, l}\left\langle f^{2} \phi_{l}, \mathbf{G}_{n}\left(f^{2} \phi_{l}\right)\right\rangle \leq\left\|\mathbf{G}_{n}\right\|_{\infty} \sum_{l \in \mathcal{N}} w_{n, l}\left\|f^{2} \phi_{l}\right\|^{2} \\
& =\left\|\mathbf{G}_{n}\right\|_{\infty} \int_{\Delta} \sum_{l \in \mathcal{N}} w_{n, l} \phi_{l}^{2}(t) f^{4}(t) d t \\
& \leq\left\|\mathbf{G}_{n}\right\|_{\infty} \sup _{t \in \Delta}\left(\sum_{l \in \mathcal{N}} w_{n, l} \phi_{l}^{2}(t)\right) \int_{\Delta} f^{4}(t) d t \\
& =\left\|\mathbf{G}_{n}\right\|_{\infty} \mathbf{G}_{n}^{*}\|f\|_{4}^{4}=O\left(\|f\|_{4}^{4}\right) .
\end{aligned}
$$

Hence (9.4) follows.
Using (9.7) and an evaluation similar to the above under (9.5), we have

$$
U_{n}-h_{n}(f)=U_{n, 0}+U_{n, 1}+U_{n, 2}-h_{n}(f),
$$

where $U_{n, 1} \rightarrow 0, U_{n, 2}-h_{n}(f) \rightarrow 0$ in $P_{n, f}$-probability. By Proposition 2, the statistics $U_{n, 0}$ are asymptotically Gaussian $\mathcal{N}(0,1)$. This completes the proof of Lemma 9.1.

Let $h_{n}(f)=O(1)$. Let us now evaluate $\|f\|^{2}, f \in \mathcal{F}$. We have

$$
\|f\|^{2}=\sum_{l \in \mathcal{L}} \theta_{l}^{2}:=A_{n}^{\prime}+B_{n}^{\prime}, \quad A_{n}^{\prime}=\sum_{c_{l}<C / 2} \theta_{l}^{2}, \quad B_{n}^{\prime}=\sum_{c_{l} \geq C / 2} \theta_{l}^{2} .
$$

The second sum is controlled by

$$
B_{n}^{\prime} \leq 4 C^{-2} \sum_{l \in \mathcal{L}} c_{l}^{2} \theta_{l}^{2} \leq 4 C^{-2}=o(1) .
$$

The first sum is controlled by

$$
\begin{aligned}
A_{n}^{\prime} & \leq(4 / 3) \sum_{l \in \mathcal{N}}\left(1-\left(c_{l} / C\right)^{2}\right) \theta_{l}^{2}=(4 / 3)\left(w_{n} / n\right) \sum_{l \in \mathcal{N}} w_{n, l} v_{n}^{2} \\
& =(4 / 3)\left(w_{n} / n\right) h_{n}(f)=o\left(h_{n}(f)\right),
\end{aligned}
$$

since, by (4.7) and (B1), we have $w_{n} / n=O\left(N^{1 / 2} / n\right)=o(1)$. Therefore, by (9.6), we have in $P_{n, f^{-}}$ probability,

$$
U_{n}=h_{n}(f)+\zeta_{n}, \quad \zeta_{n} \rightarrow \zeta \sim \mathcal{N}(0,1)
$$

uniformly as $h_{n}(f)=O(1)$.

Lemma 9.2.

$$
\inf _{f \in \mathcal{F}\left(r_{n}\right)} h_{n}(f)=u_{n}
$$

Proof. It follows using general convexity arguments (see [14], Lemma 11 of [17], Proposition 4.1 of [18]).

Let us now evaluate type II errors for a sequence $f=f_{n} \in \mathcal{F}\left(r_{n}\right)$. First, let $h_{n}\left(f_{n}\right) \rightarrow \infty$. Applying Lemmas 9.1, 9.2, and (9.6), we have

$$
\begin{aligned}
E_{n, f}\left(1-\psi_{n}^{H}\right) & =P_{n, f}\left(U_{n} \leq H\right) \\
& =P_{n, f}\left(E_{n, f}-U_{n} \geq E_{n, f}-H\right) \\
& \leq \operatorname{Var}_{n, f}\left(U_{n}\right) /\left(E_{n, f}-H\right)^{2}=o(1)
\end{aligned}
$$

Let $h_{n}\left(f_{n}\right)=O(1)$ (by Lemma 9.2 this is only possible for $u_{n}=O(1)$). Applying Lemmas 9.1, 9.2, and (9.6) once again, we have

$$
\begin{aligned}
E_{n, f}\left(1-\psi_{n}^{H}\right) & =P_{n, f}\left(U_{n} \leq H\right) \\
& =P_{n, f}\left(E_{n, f}-U_{n} \geq E_{n, f}-H\right) \\
& =P_{n, f}\left(\zeta_{n} \geq h_{n}(f)-H+o(1)\right)=\Phi\left(H-h_{n}(f)\right)+o(1) .
\end{aligned}
$$

Therefore,

$$
\sup _{f \in \mathcal{F}\left(r_{n}\right)} E_{n, f}\left(1-\psi_{n}^{H}\right)=\Phi\left(H-\inf _{f \in \mathcal{F}\left(r_{n}\right)} h_{n}(f)\right)+o(1)=\Phi\left(H-u_{n}\right)+o(1) .
$$

This yields (9.2). Hence Theorem 2 (ii) follows.
This completes the proof of Theorem 2.

9.2. Upper Bounds for Theorem I

Observe that the kernel (3.3) is of the form (4.9) with coefficients

$$
w_{l, n}=w_{n}=\sqrt{2 / N}, \quad l \in \mathcal{N}
$$

Hence Proposition 2 is applicable to the U-statistics U_{n} with kernel (3.3) and yields asymptotic normality $\mathcal{N}(0,1)$ of U_{n} under $P_{n, 0}$. Thus we get (9.1). Analogously, we obtain Lemma 9.1 with

$$
h_{n}(f)=\frac{n}{\sqrt{2 N}} \sum_{l \in \mathcal{N}} \theta_{l}^{2} .
$$

If $h_{n}(f)=O(1), f \in \mathcal{F}$, then $\|f\|=o(1)$. In fact,

$$
\begin{aligned}
\|f\|^{2} & =\sum_{l \in \mathcal{L}} \theta_{l}^{2} \leq \sum_{l \in \mathcal{N}} \theta_{l}^{2}+C^{-2} \sum_{c_{l} \geq C} c_{l}^{2} \theta_{l}^{2} \\
& \leq \frac{\sqrt{2 N}}{n} h_{n}(f)+C^{-2}=o(1) .
\end{aligned}
$$

These yield (9.2) for $f \in \mathcal{F}$ such that $h_{n}(f)=O(1)$. If $h_{n}(f) \rightarrow \infty$, then it follows from Chebyshev's inequality and the boundedness of the variances that $P_{n, f}\left(U_{n} \geq H\right) \rightarrow 0$ for $H<c h_{n}(f), c \in(0,1)$. Hence Theorem 1 (ii) follows.

This completes the proof of Theorem 1.

ACKNOWLEDGMENTS

The research was partially supported by Russian Foundation for Basic Research (under grant 08-01-00692-a) and by the Program for Supporting Leading Scientific Schools (under grant NSh638.2008.1).

REFERENCES

1. F. Abramovich, I. De Feis, and T. Sapatinas, "Optimal Testing for Additivity in Multiple Nonparametric Regression", Ann. Inst. Statist. Math. 61, 691-714 (2009).
2. L. D. Brown and M. G. Low, "Asymptotic Equivalence of Nonparametric Regression and White Noise", Ann. Statist. 24, 2384-2398 (1996).
3. A. Carter, "A Continuous Gaussian Process Approximation to a Nonparametric Regression in Two Dimensions", Bernoulli 12, 143-156 (2006).
4. E. M. Giné, "Invariant Tests for Uniformity on Compact Riemannian Manifolds Based on Sobolev Norms", Ann. Statist. 3, 1243-1266 (1975).
5. A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, Amsterdam, 2003).
6. S. Efromovich, "On Sharp Adaptive Estimation of Multivariate Curves", Math. Methods Statist. 9, 117-139 (2000).
7. M. S. Ermakov, "Minimax Detection of a Signal in a Gaussian White Noise", Theory Probab. Appl. 35, 667-679 (1990).
8. M. S. Ermakov, "On Asymptotic Minimaxity of Kernel-Based Tests", ESAIM: Probab. Statist. 7, 277-310 (2003).
9. E. Guerre and P. Lavergne, "Optimal Minimax Rates for Nonparametric Specification Testing in Regression Models", Econometric Theory 18, 1139-1171 (2002).
10. P. Hall, "Central Limit Theorem for Integrated Squared Error for Multivariate Nonparametric Density Estimators", J. Multivar. Anal. 14, 1-16 (1984).
11. J. L. Horowitz and V. G. Spokoiny, "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Non-Parametric Alternative", Econometrica 69, 599-631 (2001).
12. J. Z. Huang, "Projection Estimation in Multiple Regression with Application to Functional ANOVA Models", Ann. Statist. 26, 242-272 (1998).
13. Yu. I. Ingster, "Minimax Nonparametric Detection of Signals in White Gaussian Noise", Problems Inform. Transmission 18, 130-140 (1982).
14. Yu. I. Ingster, "Asymptotically Minimax Hypothesis Testing for Nonparametric Alternatives. I, II, III", Math. Methods Statist. 2, 85-114, 171-189, 249-268 (1993).
15. Yu. I. Ingster, "Minimax Testing of the Hypothesis of Independence for Ellipsoids in l_{p} ", Zapiski Nauchn. Sem. POMI 207, 77-97 (1993) [in Russian, translated in J. Math. Sci. 81, 2406-2420 (1996)].
16. Yu. I. Ingster, "Minimax Hypotheses Testing on a Probability Density for Ellipsoids in l_{p} ", Theory Probab. Appl. 39, 530-553 (1994).
17. Yu. I. Ingster and Yu. A. Kutoyants, "Nonparametric Hypothesis Testing for an Intensity of Poisson Process", Math. Methods Statist. 16, 217-245 (2007).
18. Yu. I. Ingster and I. A. Suslina, Nonparametric Goodness-of-Fit Testing under Gaussian Model, in Lecture Notes in Statistics, Vol. 169 (Springer, New York, 2002).
19. Yu. I. Ingster and I. A. Suslina, "On Estimation and Detection of Smooth Functions of Many Variables", Math. Methods Statist. 14, 299-331 (2005).
20. Yu. I. Ingster and I. A. Suslina, "Estimation and Detection of High-Variable Function from SloanWoźniakowski Space", Math. Methods Statist. 16, 318-353 (2007).
21. Yu. I. Ingster and I. A. Suslina, "On Estimation and Detection of a Function from Tensor Product Spaces", Zapiski Nauchn. Sem. POMI 351, 180-218 (2007) [in Russian, translated in J. Math. Sci. 152, 897-920 (2008)].
22. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed. (Wadsworth \& Brooks/Cole, Belmont, 1992).
23. F. Y. Kuo and J. H. Sloan, "Lifting the Curse of Dimensionality", Notices of AMS 52, 1320-1329 (2005).
24. B. Levit and N. Stepanova, "Efficient Estimation of Multivariate Analytic Functions in Cube-Like Domains", Math. Methods Statist. 13, 253-281 (2004).
25. Y. Lin, "Tensor Product Space ANOVA Model", Ann. Statist. 28, 734-755 (2000).
26. M. Nussbaum, "Asymptotic Equivalence of Density Estimation and Gaussian White Noise", Ann. Statist. 24, 2399-2430 (1996).
27. M. Reiss, "Asymptotic Equivalence for Nonparametric Regression with Multivariate and Random Design", Ann. Statist. 36, 1957-1982 (2007).
28. I. H. Sloan and H. Woz̀niakowski, "When are Quazi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?", J. Complexity 14, 1-33 (1998).
29. V. G. Spokoiny, "Adaptive Hypothesis Testing Using Wavelets", Ann. Statist. 24, 2477-2498 (1996).
30. V. N. Temlyakov, Approximation of Periodic Functions (Nova Science Publishers, New York, 1993).
31. G. G. Walter, Wavelets and Other Orthogonal Systems with Applications (CRC Press, Boca Raton, 1994).
32. H. Woz̀niakowski, "Tractability of Multivariate Problems for Weighted Spaces of Functions", in: Appoximation and Probability, Banach Center Publications (Institute of Mathematics, Polish Academy of Science, Warszawa, 2006), Vol. 72.

[^0]: *E-mail: yurii_ingster@mail.ru
 ${ }^{* *}$ E-mail: fanis@ucy.ac.cy

