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Abstract—We consider an unknown response function f defined on Δ = [0, 1]d, 1 ≤ d ≤ ∞, taken
at n random uniform design points and observed with Gaussian noise of known variance. Given a
positive sequence rn → 0 as n → ∞ and a known function f0 ∈ L2(Δ), we propose, under general
conditions, a unified framework for goodness-of-fit testing the null hypothesis H0 : f = f0 against
the alternative H1 : f ∈ F , ‖f − f0‖ ≥ rn, where F is an ellipsoid in the Hilbert space L2(Δ) with
respect to the tensor product Fourier basis and ‖ · ‖ is the norm in L2(Δ). We obtain both rate and
sharp asymptotics for the error probabilities in the minimax setup. The derived tests are inherently
non-adaptive.
Several illustrative examples are presented. In particular, we consider functions belonging to ellip-
soids arising from the well-known multidimensional Sobolev and tensor product Sobolev norms as
well as from the less-known Sloan–Woźniakowski norm and a norm constructed from multivariable
analytic functions on the complex strip.
Some extensions of the suggested minimax goodness-of-fit testing methodology, covering the cases
of general design schemes with a known product probability density function, unknown variance,
other basis functions and adaptivity of the suggested tests, are also briefly discussed.
Key words: goodness-of-fit tests, hypotheses testing, minimax testing, nonparametric alternatives,
nonparametric regression, random design.
2000 Mathematics Subject Classification: 62G08, 62G10, 62G20.

DOI: 10.3103/S1066530709030041

1. INTRODUCTION

We consider the multivariate nonparametric regression model with a random uniform design. More
precisely, we observe

xi = f(ti) + ξi, i = 1, . . . , n, (1.1)

where ti are random design points, ti ∈ Δ = [0, 1]d, 1 ≤ d ≤ ∞. In particular, we assume that ti =
{tki } are (for k = 1, . . . , d and i = 1, . . . , n) independent and identically distributed (iid) random vari-

ables with uniform distribution, i.e., tki
iid∼ U(0, 1). Moreover, we assume that, conditionally on Tn =

{t1, . . . , tn}, ξi are iid Gaussian random variables with mean zero and variance τ2, i.e., ξi
iid∼ N (0, τ2),

where τ2 is assumed to be known with 0 < τ2 < ∞.
Given a positive sequence rn → 0 as n → ∞ and a known function f0 ∈ L2(Δ), where L2(Δ) is the

set of squared-integrable functions on Δ, we propose, under general conditions, a unified framework for
goodness-of-fit testing the null hypothesis

H0 : f = f0 (1.2)
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against the alternative

H1 : f ∈ F , ‖f − f0‖ ≥ rn, (1.3)

where F is an ellipsoid in the Hilbert space L2(Δ) with respect to the tensor product Fourier basis
and ‖ · ‖ is the norm in L2(Δ). (The set F corresponds to a “regularity constraint” on the response
function f .)

We are interested in both rate and sharp asymptotics for the error probabilities in the minimax setup,
i.e., we try to find the maximal rate of convergence of rn → 0 as n → ∞ which provides nontrivial
minimax testing, when certain constraints are imposed on the regularity of the response function f .

Although there is a plethora of research work in the literature on the estimation problem for response
functions f ∈ F in (both univariate and multivariate) nonparametric regression (under various design
schemes), much less attention has been paid to the hypotheses testing problem in this model, especially
in the multivariate case. This work is devoted to the goodness-of-fit testing problem (1.2)–(1.3) in the
nonparametric regression model (1.1).

Nonparametric goodness-of-fit testing was studied intensively during the last twenty years or so;
however, main results were obtained for detection of the response function f ∈ L2(Δ), with d = 1, in the
univariate Gaussian white noise model, i.e.,

dX(t) = f(t) dt + ε dW (t), t ∈ [0, 1], (1.4)

where W (t) is the standard Wiener process, with the noise level ε → 0. In particular, rate and sharp
asymptotics for the error probabilities in the minimax setup were obtained for various classes F of
nonparametric alternatives. Moreover, under periodicity, the sharp asymptotics are of Gaussian type
and are determined by a specific extremal problem (see, e.g., [7], [8], [14], [18]).

These results have been extended in part to the density, spectral density, nonparametric regression
and Poisson models for the univariate case (see, e.g., [8], [14], [17], [18]). Note that, under some
regularity constraints, one can formally deduce some results for the univariate density and nonparametric
regression models from those on the asymptotic equivalence (in Le Cam’s sense) of these models to the
univariate Gaussian white noise model (see, e.g., [2], [26]).

For the d-variable Gaussian white noise model, we have typically similar separation rates with
the smoothness parameter σ (associated with the “regularity constraint” on the response function f )
replaced by σ̃ = σ/d as well as sharp asymptotics of a similar type (see [19]). This leads to the “curse
of dimensionality" phenomenon when d is large (see [20]). It was recently shown that one can actually
lift the curse of dimensionality by using different type of regularity constraints, which are determined
by the so-called “Sloan–Woźniakowski” norm (see [20]). Although, analogously to the univariate case,
one can formally deduce, under some stronger regularity constraints, some results for the multivariate
nonparametric regression models from results on the asymptotic equivalence (in Le Cam’s sense) of
these models to the d-variable Gaussian white noise model (see, e.g., [3], [27]), one cannot apply
these results to the tensor product Sobolev or Sloan–Woźniakowski type spaces, because there are
no asymptotic equivalence results as yet for these spaces.

Rate asymptotics in d-variable parametric regression models were studied in, e.g., [9], [11], for testing
a parametric model against Lipschitz and Hölder classes F of alternatives, respectively. On the other
hand, rate asymptotics in the multivariate regression model, under equispaced design points, were
studied in [1] for the goodness-of-fit testing problem (1.2)–(1.3), under Besov balls F of alternatives.

The purpose of this paper is to extend some results on the goodness-of-fit testing of [7], [14], [18]–
[21] for the d-variable Gaussian white noise model to the goodness-of-fit testing problem (1.2)–(1.3)
for the multivariate nonparametric regression model (1.1), in a unified framework.

In our study, we use analytic results on an extremal problem for ellipsoids that were presented in
[14], [18]–[21] for the d-variable Gaussian white noise model. These lead to the asymptotic efficiency
results on testing for the multivariate nonparametric regression model (1.1) similar to the ones that
have earlier been obtained, in specific settings, for the d-variable Gaussian white noise model, under the
standard calibration ε = τ/

√
n. However, the machinery of reduction the hypothesis testing problems

to the extremal problem is different and, essentially, more difficult, especially for the study of the lower
bounds. The proposed tests are of different structure as well: they are based on U-statistics of increasing
dimension. Certainly, this reduction requires some assumptions on the basis functions and on the sample
size (compare with [6] for estimation problem). It is a typical situation for extending results from the
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Gaussian white noise model to other statistical models (e.g., density, spectral density, intensity of a
Poisson process and so on).

Several illustrative examples are presented. In particular, we consider functions belonging to the balls
under the well-known multidimensional Sobolev and tensor product Sobolev norms as well as from the
less-known Sloan–Woźniakowski norm and a norm constructed from multivariable analytic functions
on a complex strip. Some extensions of the suggested minimax goodness-of-fit testing methodology
covering the cases of general design schemes with a known product probability density function,
unknown variance, other basis functions and adaptivity of the suggested tests, are also briefly discussed.

2. PRELIMINARIES AND ASSUMPTIONS

2.1. Minimax Goodness-of-Fit Testing

Consider the multivariate nonparametric regression model (1.1). Given a known function f0 ∈
L2(Δ), we test the null hypothesis (1.2), i.e., we test H0 : f = f0. Given a positive sequence rn → 0
as n → ∞, let

F(rn) = {f ∈ F : ‖f − f0‖ ≥ rn},
where F is an ellipsoid in the Hilbert space L2(Δ) with respect to the tensor product Fourier basis and
‖ · ‖ is the norm in L2(Δ). Consider now the alternative hypothesis (1.3), i.e., consider H1 : f ∈ F(rn).
(In what follows, without loss of generality, we restrict ourselves to the cases f0 = 0 and τ = 1.)

Set Xn = {x1, . . . , xn} and recall that Tn = {t1, . . . , tn}. Let Pn,f be the probability measure that
corresponds to Zn = (Xn, Tn) and denote by En,f the expectation over this probability measure. Let ψ
be a (randomized) test, i.e., a measurable function of the observation Zn taking values in [0, 1]: the null
hypothesis is rejected with probability ψ(Zn) and is accepted with probability 1 − ψ(Zn). Let

α(ψ) = En,0ψ

be its type I error probability, and let

β(F , rn, ψ) = sup
f∈F(rn)

En,f (1 − ψ)

be its maximal type II error probability. We consider two criteria of asymptotic optimality:

[1] The first one corresponds to the classical Neyman–Pearson criterion. For α ∈ (0, 1) we set

β(F , rn, α) = inf
ψ : α(ψ)≤α

β(F , rn, ψ).

We call a sequence of tests ψn,α asymptotically minimax if

α(ψn,α) ≤ α + o(1), β(F , rn, ψn,α) = β(F , rn, α) + o(1),

where o(1) is a sequence tending to zero; here, and in what follows, unless otherwise stated, all limits are
taken as n → ∞.

[2] The second one corresponds to the total error probabilities. Let γ(F , rn, ψ) be the sum of the type I
and the maximal type II error probabilities, and let γ(F , rn) be the minimax total error probability, i.e.,

γ(F , rn) = inf
ψ

γ(F , rn, ψ),

where the infimum is taken over all possible tests. We call a sequence of tests ψn asymptotically
minimax if

γ(F , rn, ψn) = γ(F , rn) + o(1).

It is known (see, e.g., Chapter 2 of [18]) that

β(F , rn, α) ∈ [0, 1 − α], γ(F , rn) = inf
α∈(0,1)

(
α + β(F , rn, α)

)
∈ [0, 1].

We consider the problems of rate and sharp asymptotics for the error probabilities in the minimax
setup. The rate optimality problem corresponds to the study of the conditions for which γ(F , rn) → 1
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and γ(F , rn) → 0 and, under the conditions of the last relation, to the construction of asymptotically
minimax consistent sequences ψn, i.e, such that γ(F , rn, ψn) → 0. Often, these conditions correspond
to some minimal decreasing rates for the sequence rn. Namely, we say that a positive sequence r∗n =
r∗n(F), r∗n → 0, is a separation rate if

γ(F , rn) → 1 as rn/r∗n → 0

and

γ(F , rn) → 0 and β(F , rn, α) → 0 for any α ∈ (0, 1) as rn/r∗n → ∞.

In other words, it means that, for large n, one can detect all functions f ∈ F if the ratio rn/r∗n is large,
whereas, if this ratio is small, it is impossible to distinguish between the null and alternative hypotheses
with small minimax total error probability. Hence the rate optimality problem corresponds to finding
separation rates r∗n and to constructing asymptotically minimax consistent sequence of tests.

On the other hand, the sharp optimality problem corresponds to the study of the asymptotics of the
quantities β(F , rn, α), γ(F , rn) (up to vanishing terms) and to construction of asymptotically minimax
sequences ψn,α, ψn, respectively. Often, the sharp asymptotics are of Gaussian type, i.e.,

β(F , rn, α) = Φ(H(α) − un) + o(1), γ(F , rn) = 2Φ(−un) + o(1), (2.1)

where Φ is the standard Gaussian distribution function, H(α) is its (1−α)-quantile, i.e., Φ(H(α)) = 1−
α, and the sequence un = un(F , rn) characterizes distinguishability in the problem. The separation
rates r∗n are usually determined by the relation un(F , r∗n) 
 1 (see, e.g., [14], [18]). Hence the sharp
optimality problem corresponds to calculating the sequence un and to constructing asymptotically
minimax sequence of tests.

2.2. Assumptions
Let L2(Δ) = L2, L be a countable set, {φl}l∈L be an orthonormal system in L2, and LL

2 ⊂ L2 be
the closed linear hull of the system {φl}l∈L. For a function f ∈ LL

2 , let θ = {θl}l∈L be the “generalized”
Fourier coefficients with respect to this system, i.e., θl = 〈f, φl〉, l ∈ L, where 〈·, ·〉 denotes the inner
product in L2.

Let a collection of coefficients {cl}l∈L, cl ≥ 0, be given. The set of functions F ⊂ LL
2 under consider-

ation are the ellipsoids with respect to the orthonormal system {φl}l∈L with coefficients {cl}l∈L, l ∈ L,
i.e.,

F =
{
f : f(t) =

∑

l∈L
θlφl(t),

∑

l∈L
c2
l θ

2
l ≤ 1

}
.

Let

N (C) = {l ∈ L : cl < C}, N(C) = #N (C),

where # denotes the cardinality of a set.
Consider the following set of assumptions:

(A1) The set N (C) is finite, i.e.,

N(C) < ∞ ∀ C > 0.

(A2) The orthonormal system {φl}l∈L satisfies
∑

l∈N (C)

φ2
l (t) = N(C) ∀ C > 0, t ∈ Δ.

(A3) The functions f ∈ F are uniformly bounded in Lp(Δ)-norm for some p > 4, i.e.,

∃ p > 4 : sup
f∈F

∫

Δ

|f(t)|p < ∞.
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Remark 2.1. Note that Assumption (A3) follows from the following stronger condition,

sup
f∈F

‖f‖∞ < ∞, (2.2)

where ‖f‖∞ = supt∈Δ |f(t)|.

3. RATE OPTIMALITY
In what follows, the relation An ∼ Bn means that An/Bn tends to 1, while the relation An 
 Bn

means that there exist constants 0 < c1 ≤ c2 < ∞ and n0 large enough such that c1 ≤ An/Bn ≤ c2 for
n ≥ n0. Let also 1{A} be the indicator function of a set A.

For a sequence C = Cn, let N = N (Cn), N = N(Cn).
Let us introduce one more assumption.

(B1) N = o(n).

Theorem 1. Let rn → 0.
(i) [Lower bounds] Assume (A1)–(A2). Take Cn → ∞ such that lim sup(Cnrn) < 1 and (B1)

holds. Then

β(F , rn, α) ≥ Φ(H(α) − un) + o(1), γ(F , rn) ≥ 2Φ(−un) + o(1),

where

u2
n =

n2r4
n

2N
. (3.1)

(ii) [Upper bounds] Assume (A1)–(A3). Take Cn → ∞ such that (B1) holds. Consider the
sequence of tests ψH

n = 1{Un>H} based on the U-statistics

Un =
1
n

∑

1≤i<k≤n

Kn(zi, zk), (3.2)

where zi = (xi, ti), i = 1, . . . , n, are the observations, with the kernel

Kn(z
′
, z

′′
) = x

′
x

′′
Gn(t

′
, t

′′
), Gn(t

′
, t

′′
) =

√
2
N

∑

l∈N
φl(t

′
)φl(t

′′
). (3.3)

Set

hn(f) =
n√
2N

∑

l∈N
θ2
l . (3.4)

Then, uniformly over H = Hn ∈ R,

α(ψH
n ) ≤ 1 − Φ(H) + o(1),

and, for any c ∈ (0, 1), uniformly over f ∈ F and H = Hn such that hn(f) ≥ cHn,

β(F , rn, ψH
n ) ≤ Φ(H − hn(f)) + o(1).

Remark 3.1. We now give some intuition about the suggested U-statistics used in Theorem 1. For
testing the null hypothesis H0 : f = 0 in the Gaussian white noise model, a natural test statistic
is a centered and normalized (under H0) version of the quadratic functional

∑
l∈L θ̂2

l , where θ̂l =
∫
Δ φl(t) dX(t). The analog of θ̂l in the multivariate nonparametric regression model (1.1) is given by

θ̂l = n−1
∑n

i=1 φl(ti)xi, which leads to the quadratic functional

∑

l∈L
θ̂2
l =

1
n2

n∑

i,k=1

xixkG̃n(ti, tk), G̃n(t
′
, t

′′
) =

∑

l∈L
φl(t

′
)φl(t

′′
).

Suppressing now the terms with i = k, a centered and normalized version of this quadratic functional
corresponds to the U-statistic defined in (3.2) with the kernel defined in (3.3).
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Let the sequence C = Cn be determined by the “balance equation”

C4
nN(Cn) 
 n2. (3.5)

Observe that, in this case, under (A1), Cn → ∞ and, hence, N(Cn) → ∞.

Remark 3.2. Note that if rn satisfies Cnrn 
 1, then (3.5) corresponds to un 
 1 in (3.1). Corollaries 1
and 2 below show a motivation of (3.5).

Let us introduce an additional assumption.

(B2) For any B > 0, N(Cn) 
 N(BCn).

Note that we can obtain lower bounds for hn(f) from (3.4). Indeed, for f ∈ F(rn), we have

hn(f) =
n√
2N

(∑

l∈L
θ2
l −

∑

cl≥Cn

θ2
l

)
≥ n√

2N

(
r2
n − C−2

n

∑

cl≥Cn

c2
l θ

2
l

)

≥ n√
2N

(r2
n − C−2

n ) =
nr2

n√
2N

(
1 − (rnCn)−2

)
. (3.6)

Therefore, if Cnrn ≥ B > 1, we have from Theorem 1 (ii),

β(F , rn, ψH
n ) ≤ Φ

(
H − un(1 − B−2)

)
+ o(1),

with un determined by (3.1). This leads to

Corollary 1. Let rn → 0. Assume (A1)–(A3) and (B1)–(B2). Then
(i) The separation rates are of the form

r∗n 
 C−1
n ,

where the sequence C = Cn is determined by (3.5).
(ii) Moreover, let rn/r∗n → ∞. Then, there exists a sequence H = Hn → ∞ such that the

sequence of tests ψH
n = 1{Un>H} is asymptotically minimax consistent, i.e., γ(F , rn, ψH

n ) → 0.

We say that a function g(t), t > 0, is a slowly varying function if g(Bt)/g(t) tends to 1 as t → ∞,
for any B > 0.

This leads to the following assumption.

(B3) N(Cn) is a slowly varying function.

Corollary 2. Let rn → 0. Assume (A1)–(A3) and (B1)–(B3). Then
(i) The sharp asymptotics (2.1) hold, where un is defined by (3.1) with any N(Cn) determined

by (3.5).
(ii) Moreover, for any sequence Cn satisfying (3.5), there exists a sequence Bn → ∞ such that,

for the sequence Cn,1 = BnCn, the sequence of tests ψH(α)

n is asymptotically minimax under the

Neyman–Pearson criterion, and the sequence of tests ψ
un/2
n is asymptotically minimax under the

total error probability criterion.

Proof. In order to get the upper bounds, note that under (B3) one can take a sequence Bn → ∞ such
that N(BnCn) ∼ N(Cn). Applying Theorem 1 (ii) for the sequence Cn,1 = BnCn, and for H = H(α) and
H = un/2, and recalling (3.6), we obtain

inf
f∈F(rn)

hn(f) ≥ un(1 + o(1)).

By (3.4), Corollary 2 (ii) now follows.
In order to get the lower bounds, observe first that asymptotics of un do not depend on a sequence Cn

involved in (3.5). In fact, if Cn,0 is another sequence satisfying (3.5), then Cn,0 ∼ BnCn, Bn 
 1 and,
under (B3), we have N(Cn,0) ∼ N(Cn). Fix now a sequence Cn in (3.5). It suffices to consider the case
un 
 1, which corresponds to having rnCn ∼ An 
 1. By taking another sequence Cn,0 = BnCn, Bn ∼
(2An)−1, we get rnCn,0 ∼ 1/2. Applying Theorem 1 (i), Corollary 2 (i) now follows. This completes the
proof of Corollary 2.
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4. SHARP OPTIMALITY
4.1. Extremal Problem

In order to describe the sharp asymptotics similar to [14], [18], we have to consider an extremal
problem on the space of collections v = {vl}l∈L.

Assume that rn → 0. For b = bn 
 1, B = Bn 
 1, by arguments similar to those in Chapter 4 of [18]
we arrive at

u2
n(b,B) = inf

v∈Vn(b,B)

1
2

∑

l∈L
v4
l , (4.1)

Vn(b,B) =
{

v :
∑

l∈L
v2
l ≥ n(Brn)2,

∑

l∈L
c2
l v

2
l ≤ nb2

}
. (4.2)

Let un(B) = un(1, B) and un = un(1, 1). Proposition 2.8 of [18] implies that u2
n(b,B) is a convex

function in (b2, B2) and, from rescaling arguments, it is easily seen that u2
n(b,B) = b4u2

n(B/b).
By using Lagrange multipliers, the extremal collection vn = {vl,n}l∈L in (4.1) is of the form v2

l,n =
z2
0(1 − (cl/C)2)+, where a+ = max(0, a) for any real number a, and the quantities z0 = zn,0(b,B) > 0,

C = Cn(b,B) are determined by the equations
∑

l∈L
v2
l,n = z2

0

∑

cl<C

(1 − (cl/C)2) = n(Brn)2, (4.3)

∑

l∈L
c2
l v

2
l,n = z2

0

∑

cl<C

c2
l (1 − (cl/C)2) = nb2, (4.4)

while the value of the extremal problem is

u2
n(b,B) =

1
2

∑

l∈L
v4
l,n =

1
2
z4
0

∑

cl<C

(
1 − (cl/C)2

)2
. (4.5)

Let

I1 =
∑

l∈N
(1 − (cl/C)2), I0 =

∑

l∈N
(1 − (cl/C)2)2,

I2 =
∑

l∈N
(cl/C)2(1 − (cl/C)2).

It is easily seen that the equations (4.3)–(4.5) can be rewritten in the form

z2
0I1 = n(Brn)2, C2z2

0I2 = nb2, u2
n(b,B) =

1
2
z4
0I0 =

n2(Brn)4I0

2I2
1

. (4.6)

Observe that I1 = I0 + I2 ≥ I2 and

C2 =
b2I1

I2B2r2
n

≥ b2(Brn)−2 → ∞ as rn → 0.

Under (A1), this yields N → ∞. Moreover, one has

(3/4)N(C/2) ≤ I1 ≤ N(C), (3/4)2N(C/2) ≤ I0 ≤ N(C).

Hence, under (B2), these yield

I1 
 I0 
 N, z2
0 
 nr2

n

N
, u2

n(b,B) 
 n2r4
n

N
. (4.7)

Introduce the additional assumption

(C1) For all B = Bn 
 1, un(B) 
 un.

Note that, under Assumption (C1), we get

u2
n(b,B) ∼ u2

n as b = bn → 1, B = Bn → 1
(compare with Propositions 2.8 and 5.6 in [18]).
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4.2. Sharp Asymptotics

Theorem 2. Let rn → 0.
(i) [Lower bounds] Assume (A1)–(A2), (B1)–(B2) and (C1). Then

β(F , rn, α) ≥ Φ(H(α) − un) + o(1), γ(F , rn) ≥ 2Φ(−un/2) + o(1), (4.8)

where un is the value of the extremal problem (4.1), (4.2) for b = B = 1.

(ii) [Upper bounds] Assume (A1)–(A3) and (B1)–(B2). Let lim inf un > 0. Consider the sequence
of tests ψH

n = 1{Un>H} based on the U-statistics

Un =
1
n

∑

1≤i<k≤n

Kn(zi, zk),

where zi = (xi, ti), i = 1, . . . , n, are the observations, with the kernel

Kn(z
′
, z

′′
) = x

′
x

′′
Gn(t

′
, t

′′
), Gn(t

′
, t

′′
) =

∑

l∈N
wn,lφl(t

′
)φl(t

′′
), (4.9)

where wn,l = v2
l,n/un and {vl,n} is the extremal sequence of the extremal problem (4.1), (4.2) for

b = B = 1, or, equivalently,

wn,l = (1 − (cl/C)2)+/wn, w2
n =

1
2

∑

l∈N
(1 − (cl/C)2)2.

Then, uniformly over H = Hn ∈ R,

α(ψH
n ) ≤ 1 − Φ(H) + o(1),

and, for any c ∈ (0, 1), uniformly over H = Hn such that un ≥ cHn,

β(F , rn, ψH
n ) ≤ Φ(H − un) + o(1). (4.10)

Remark 4.1. Combining (4.8) and (4.10), we see that the sequence of tests ψH
n with H = H(α) is

asymptotically minimax under the Neyman–Pearson criterion, i.e.,

α(ψH(α)

n ) ≤ α + o(1), β(F , rn, ψH(α)

n ) = Φ(H(α) − un) + o(1),

and the sequence of tests ψH
n with H = un/2 is asymptotically minimax under the total error probability

criterion, i.e.,

γ(F , rn, ψun/2
n ) = 2Φ(−un/2) + o(1).

5. TENSOR PRODUCT FOURIER BASIS

Let Z
∞
∗ ⊂ Z

∞ consist of all sequences l = (l1, . . . , ld, . . .) with finitely many elements lj �= 0, and
consider the natural embedding Z

d ⊂ Z
∞
∗ : (l1, . . . , ld) → (l1, . . . , ld, 0, . . .). Let L be an infinite subset

of Z
∞
∗ .

Consider the tensor product Fourier basis {φl}l∈L in L2, i.e.,

φl(t) =
∏

k

φlk(tk), t = (t1, . . . td, . . .) ∈ Δ, l ∈ L, (5.1)

where φj(u), j ∈ Z, u ∈ [0, 1], is the standard Fourier basis in L2([0, 1]), i.e.,

φ0(u) = 1, φj(u) =
√

2 cos(2πju), φ−j(u) =
√

2 sin(2πju), j > 0.

Definition 5.1. A set L is called sign-symmetric if, for all l = (l1, . . . , ld, . . .) ∈ L, one has εl =
(ε1l1, . . . , εdld, . . .) ∈ L for all εj = ±1.
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Definition 5.2. The collection {hl}l∈L is called sign-symmetric if the set L is sign-symmetric and
hl = hεl for all l ∈ L and ε = (ε1, . . . , εd, . . .), εj = ±1.

(D1) The set L and the collection of coefficients {cl}l∈L are sign-symmetric.

Let us now show that, under Assumptions (A1) and (D1), Assumption (A2) holds true for the tensor
product Fourier basis (5.1). Since the set N is sign-symmetric, under Assumption (D1) this follows
from the following statement.

Lemma 5.1. Let M ⊂ Z
∞
∗ be a finite sign-symmetric set and let {φl}l∈L be the tensor product

Fourier basis (5.1). Then
∑

l∈M
φ2

l (t) = #(M) ∀ t ∈ Δ.

Proof. Consider the representation M = ∪uMu, where u ⊂ N and Mu consists of l ∈ M such that
#{j : lj �= 0} = m. It suffices to check that, for all u,

∑

l∈Mu

φ2
l (t) = #(Mu) ∀ t ∈ Δ.

Clearly, this holds for u = ∅. Without loss of generality, assume m = {1, . . . , d}, d ∈ N. Let M+
u = {l ∈

Mu : lj > 0 ∀ j ∈ u}. Since M is sign-symmetric, M+
u consists of all ε̄l, l ∈ M+

u , ε̄ = (ε1, . . . , εd),
εk = ±1 and #(Mu) = 2d#(M+

u ). It suffices then to check that, for each l ∈ M+
u ,

∑

ε̄

φ2
εl(t) = 2d.

Consider εk, k = 1, . . . , d, as iid Rademacher random variables, i.e., P (εk = 1) = P (εk = −1) = 1/2.
Then, by independence,

∑

ε̄

φ2
εl(t) = 2dEε̄

d∏

k=1

φ2
εklk

(tk) = 2d
d∏

k=1

Eεk
φ2

εklk
(tk) = 2d,

since Eεk
φ2

εklk
(tk) =

(
2 sin2(lktk) + 2 cos2(lktk)

)
/2 = 1. This completes the proof of Lemma 5.1.

Remark 5.1. Note that for the tensor product Fourier basis (5.1), condition (2.2) (and, hence, Assump-
tion (A3)) is fulfilled if

∑

l∈L
2J(l)c−2

l < ∞, J(l) = #{j : lj �= 0}. (5.2)

Indeed, we have supt∈Δ |φl(t)| = 2J(l)/2, and hence

‖f‖2
∞ ≤

(∑

l∈L
|θl| sup

t∈Δ
|φl(t)|

)2
≤

( ∑

l∈L
θ2
l c

2
l

)(∑

l∈L
2J(l)c−2

l

)
≤

∑

l∈L
2J(l)c−2

l .

6. EXAMPLES: RATE AND SHARP ASYMPTOTICS IN VARIOUS ELLIPSOIDS

Let us first give some more notation. For a function f =
∑

l∈L θlφl ∈ LL
2 , we set ‖f‖2

c =
∑

l∈L θ2
l c

2
l

and let LL
2,c = {f ∈ LL

2 : ‖f‖c < ∞} be the Hilbert space with the norm ‖ · ‖c. (Clearly the ellipsoid F is
the unit ball in LL

2,c.)

Consider the tensor product Fourier basis (5.1). In all examples below, Assumption (D1) holds true.
Hence, by Lemma 5.1, Assumption (A2) holds true. It is easily seen that Assumption (A1) is also fulfilled
in all examples below. The validity of Assumption (A3) is discussed in each example separately.

The first two examples are versions of the classical multidimensional Sobolev norm (see [19]).
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6.1. Multidimensional Sobolev Norms
Let Δ = [0, 1]d, d ∈ N, L = Z

d \ {0}, and let

c2
l =

d∑

k=1

|2πlk|2σ, l ∈ L, σ > 0. (6.1)

Then, for σ ∈ N, the norm ‖f‖c corresponds to the sum of σ-derivatives of a 1-periodic f over all
variables, i.e.,

‖f‖2
c =

d∑

k=1

‖∂σf/∂tσk‖2, (6.2)

where ‖ · ‖ is the norm in L2(Δ).
Assumption (A3) is fulfilled for σ > d/4 according to the so-called Sobolev embedding theorem (see

Eq. (3.2.20) of [5]).
Let now

c2
l =

(
d∑

k=1

(2πlk)2
)σ

, l ∈ L, σ > 0. (6.3)

Then, for σ ∈ N, the norm ‖f‖c corresponds to the sum of all the derivatives of a 1-periodic f of order σ,
i.e.,

‖f‖2
c =

d∑

i1=1

. . .

d∑

iσ=1

‖∂σf/∂ti1 . . . ∂tiσ‖2. (6.4)

Certainly, the norms (6.2) and (6.4) are equivalent for any fixed d since the ratio of coefficients in (6.1)
and (6.3) is bounded away from 0. Hence Assumption (A3) is fulfilled for σ > d/4.

It was shown in [19] that

N(C) ∼ Cd/σJk(d, σ), k = 1, 2,
(e.g., k = 1 corresponds to (6.1) and (6.2), and k = 2 corresponds to (6.3) and (6.4)), where

J1(d, σ) =
Γd(1 + 1/2σ)
πdΓ(1 + d/2σ)

, J2(d, σ) =
1

2dπd/2Γ(1 + d/2)
.

Using equation (3.5), these yield

C 
 n2σ/(4σ+d), N(C) 
 n2d/(4σ+d).

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for σ > d/4. Thus we obtain the
separation rates

r∗n = n−2σ/(4σ+d).

For the sharp asymptotics, it was shown that

u2
n ∼ Ck(d, σ)n2r4+d/σ

n , k = 1, 2,
where, for the norm (6.2),

C1(d, σ) =
πd(1 + 2σ/d)Γ(1 + d/2σ)

(1 + 4σ/d)1+d/2σΓd(1 + 1/2σ)
,

and for the norm (6.4),

C2(d, σ) =
πd(1 + 2σ/d)Γ(1 + d/2)
(1 + 4σ/d)1+d/2σΓd(3/2)

.

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).
The next two examples correspond to tensor product norms in ANOVA modeling. These spaces are

capable of dealing with interactions of all orders in a flexible way, thus vastly extending the classical
additive methodology in multivariate nonparametric regression inference (see [12], [25]).
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6.2. Tensor Product Sobolev Norm

Let Δ = [0, 1]d, d ∈ N, L = Z
d, and let

cl =
∏

k:lk �=0

|2πlk|σ, l ∈ L, c0,...,0 = 1. (6.5)

For a σ ∈ N, this corresponds to the following (see [25]). Let us consider the functional orthogonal
ANOVA expansion

f(t) =
∑

u

fu(tu),
∫

Δ

fu(tu)dtk = 0 ∀ k ∈ u, (6.6)

where the sum is taken over all subsets u = {j1, . . . jm} ⊂ {1, . . . , d}, 1 ≤ j1 < . . . < jm ≤ d} and
tu = {tj1 , . . . , tjm}; if u = ∅, then fu = constant =

∫
Δ f(t) dt. Then,

‖f‖2
c =

∑

u

‖fu‖2
c,u,

where ‖fu‖c,u is the norm of mixed mσ-derivatives of a 1-periodic fu, i.e.,

‖fu‖c,u = ‖∂mσf/∂tσj1 . . . ∂tσjm
‖. (6.7)

Assumption (A3) is fulfilled for σ > 1/4, using appropriate embedding properties (see Chapter III
of [30]).

It was shown in [21] that

N(C) ∼ C1/σ logd−1(C)
πdσd−1Γ(d)

. (6.8)

Using equation (3.5), this yields

C 

(

n2

logd−1(n)

)σ/(4σ+1)

.

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for σ > 1/4. Thus we obtain the
separation rates

r∗n =
(

logd−1(n)
n2

)σ/(4σ+1)

.

For the sharp asymptotics, it was shown that

u2
n ∼ C(d, σ)n2r

4+1/σ
n

logd−1(r−1
n )

, (6.9)

where

C(d, σ) =
2b(σ)Γ(d)(πσ)d

(1 + 4σ)b(σ)
, b(σ) =

2σ + 1
2σ

. (6.10)

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).

6.3. ANOVA Subspaces

Let Δ = [0, 1]d, d ∈ N. Taking m ∈ {0, 1, . . . , d}, let Ld
m be the set that consists of l ∈ Z

d such

that #{k : lk �= 0} = m, and Ld,m =
⊕m

j=0 Ld
j . Under (6.6), the spaces L

Ld
m

2 and LLd,m

2 consist of the
functions

f(t) =
∑

u : #(u)=m

fu(tu), f(t) =
∑

u : #(u)≤m

fu(tu),
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respectively, i.e., they consist of sums of functions of m variables or no more than m variables. If m = 0,
this corresponds to the constant function, while the case m = 1 corresponds to functions with an additive
structure. Take cl according to (6.5). Then we obtain

‖f‖2
c =

∑

u : #(u)=m

‖fu‖2
c,u, ‖f‖2

c =
∑

u : #(u)≤m

‖fu‖2
c,u,

respectively, where, for σ ∈ N, the norm ‖fu‖c,u of a 1-periodic fu is determined by (6.7) (see [25]).
Assumption (A3) is fulfilled for σ > 1/4, since the spaces presented here are subspaces of the tensor
product Sobolev spaces discussed in Section 6.3.

Take cl according to (6.5). Denote by Nd(C) the function N(C) for the tensor product Sobolev norms,
by Nd,m(C) the function N(C) for L = Ld,m, and by Nd

m(C) the function N(C) for L = Ld
m. Observe

that

Nd
m(C) =

(
d

m

)
Nm

m (C), Nd,m(C) =
m∑

j=0

(
d

j

)
Nd

j (C).

Set M =
( d
m

)
and note that M ≥ 1 for 0 ≤ m ≤ d. It was shown in [21] that, as C → ∞,

Nd,m(C) ∼ MNm
m (C) ∼ MNm(C) ∼ MC1/σ logm−1(C)

πmσm−1Γ(m)
, (6.11)

the last relation follows from (6.8). For both the cases Ld
m and Ld,m, using (3.5), we have

C 

(

ñ2

logm−1(ñ)

)σ/(4σ+1)

, ñ
Δ= n/

√
M.

Hence Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for σ > 1/4. Thus we obtain the
separation rates

r∗n =
(

logm−1(ñ)
ñ2

)σ/(4σ+1)

.

Let un,d be the quantities that determine the sharp asymptotics for the tensor product Sobolev norms
with sharp asymptotics (6.9). Using (6.11), we obtain, in both cases, the sharp asymptotics

u2
n ∼

u2
n,m

M
∼ C(m,σ)n2r

4+1/σ
n

M logm−1(r−1
n )

, (6.12)

where the constant C(m,σ) is defined by (6.10). (Note that (6.12) corresponds, in the case m < d,
to some loss of efficiency compared to (6.9), since the sample size n is now reduced by the factor
M−1/2 > 1.) Assumption (C1) is thus fulfilled. Hence, we arrive at (2.1).

The next example corresponds to classical multivariable analytic functions on a complex strip
(see [22], [24]).

6.4. Multivariable Analytic Functions on a Complex Strip

Let Δ = [0, 1]d, d ∈ N, L = Z
d and, for κ > 0, let

c2
l =

d∏

k=1

cosh(2πκlk), l ∈ L.

This corresponds to analytic functions f that provide periodic extensions to the complex d-dimensional
strip (t1 + iu1, . . . , td + iud), |uk| ≤ κ (i.e., of size 2κ), and

‖f‖2
c = 2−d

∑

ε̄

‖f(· + εkκ)‖2.
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This case is closely related to the case

c2
l = exp

(
2πκ

d∑

k=1

|lk|
)
, l ∈ L

(see [24]). Using e|x|/2 ≤ cosh(x) ≤ e|x|, condition (2.2) is fulfilled for any κ > 0 by Remark 5.1, since

∑

l∈L
2J(l)c−2

l ≤ 2d
∑

l∈L
c−2
l

(
1 + 2

∞∑

k=1

exp(2πκk)
)d

< ∞.

Thus, Assumption (A3) is fulfilled.
It was shown in [21] that

N(C) ∼ 2d logd(C)
(πκ)dΓ(d + 1)

.

Using equation (3.5), this yields

C 
 n1/2

(log(n))d/4
.

Hence Assumptions (B1), (B2) are fulfilled; moreover N(C) is a slowly varying function, i.e., Assump-
tion (B3) is also fulfilled. Thus we get the separation rates

r∗n =
(log(n))d/4

n1/2

and the sharp asymptotics

u2
n ∼ (πκ)dΓ(d + 1)n2r4

n

2 logd(n)
.

Assumption (C1) is thus fulfilled. Hence we arrive at (2.1).
The last example corresponds to an infinite-dimensional extension of the ANOVA decomposition,

that was first suggested to lift the curse of dimensionality in high-dimensional numerical integration
(see [23], [28], [32]).

6.5. Sloan–Woźniakowski Norm

Let Δ = [0, 1]∞, L = Z
∞
∗ . Taking σ > 0, s > 0, let

cl =
∏

j∈N : lj �=0

js|2πlj |σ, l ∈ L, s > 0, σ > 0, c0,...,0,... = 1.

This corresponds to an infinite tensor product of weighed Hilbert spaces. Under an infinite-dimensional
ANOVA expansion,

f(t) =
∑

u

fu(tu),
∫

Δ

fu(tu)dtk = 0 ∀ k ∈ u,

where the sum is taken over all finite subsets u ⊂ N, we obtain

‖f‖2
c =

∑

u

γ(u)‖fu‖2
c,u, γ(u) =

∏

k∈u

k2s,

and, for σ ∈ N, the norm ‖fu‖2
c,u of a 1-periodic fu is determined by (6.7) (see [20] and compare with

[23], [28], [32]).
Contrary to the previous examples, we are not aware of any embedding theorems for spaces of the

Sloan–Woźniakowski type, and hence we cannot verify Assumption (A3) under minimal smoothness
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conditions (like σ∗ Δ= min(σ, s) > 1/4). However, condition (2.2), which leads to Assumption (A3), is
fulfilled for σ∗ > 1/2. Indeed, let (xk,j), k ∈ Z, 1 ≤ j ≤ d, be a matrix. Applying the formula

∑

l̄∈Zd

d∏

j=1

x
lj ,j

=
d∏

j=1

∑

l∈Z

xk,j, l̄ = {l1, . . . , ld) ∈ Z
d,

to the matrix entries

xk,j =

{
1, k = 0,
2j−2s|2πk|−2σ , k �= 0,

and letting d → ∞, we get, for σ > 1/2 and s > 1/2,
∑

l∈L
2J(l)c−2

l =
∑

l∈L

∏

j∈N : lj �=0

2j−2s|2πlj |−2σ

=
∏

j∈N

(
1 + 2j−2s

∑

k∈Z̆

|2πk|−2σ

)
< ∞; Z̆ = Z \ {0}.

Thus, by Remark 5.1 Assumption (A3) is fulfilled for σ∗ > 1/2.

For simplicity, we consider below only the case σ �= s. It was shown in [20] that if 0 < σ < s, then

N(C) ∼ A1C
1/σ exp

(
A2(log C)σ/(σ+s)

)
(log C)−A2 ,

and that if 0 < s < σ, then

N(C) ∼ B1C
1/s exp

(
B2(log C)1/2

)
(log C)−B3 ,

where Ai, i = 1, 2, and Bi, i = 1, 2, 3, are positive constants, which only depend on σ, s. Recall that

σ∗ Δ= min(s, σ). Then, we get the following log-asymptotics

log(N(C)) ∼ log(C)
σ∗ ,

which correspond to the Sobolev norms for d = 1 and σ = σ∗.

It also follows that Assumption (B2) is fulfilled, while Assumption (B1) is fulfilled for σ∗ > 1/4. The
separation rates are of the following form. If 0 < σ < s, then

r∗n 
 n−2σ/(4σ+1) exp
(
C1(log(n))σ/(s+σ)

)
(log(n))−C2 ,

and if 0 < s < σ, then

r∗n 
 n−2s/(4s+1) exp
(
D1

√
log(n)

)
(log(n))−D2 .

These yield the following log-asymptotics:

log(r∗n) ∼ −2σ∗ log(n)
4σ∗ + 1

.

The sharp asymptotics are of the following form. If 0 < σ < s, then

u2
n ∼ C3n

2r4+1/σ
n exp

(
− C4(log r−1

n )σ/(s+σ)
)
(log r−1

n )C5 .

If 0 < s < σ, then

u2
n ∼ D3n

2r4+1/s
n exp

(
− D4

√
log r−1

n

)
(log r−1

n )3/4,

where Ci, i = 1, . . . , 5, and Di, i = 1, . . . , 4, are positive constants, which only depend on σ, s. Thus,
Assumption (C1) is fulfilled. Hence we arrive at (2.1).
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7. SOME GENERAL REMARKS
In this section, we discuss how the main results established in Theorems 1 and 2 (and, hence,

Corollaries 1 and 2) can be extended to more general settings, involving non-uniform design schemes
and unknown variances. Some remarks about adaptivity issues are also presented. We also present
other than the Fourier basis and its tensor product version, examples of basis functions that satisfy
Assumption (A2), and reveal how Assumption (A2) can be replaced by a weaker assumption at the cost
of replacing Assumption (B1) with a slightly stronger assumption.

7.1. General Random Design Schemes
The main results established in Theorems 1 and 2 are evidently extended to random design points

y = (y1, . . . , yd) ∈ R
d, d ≥ 1, with a known product probability density function, p(y) = p1(y1)× . . . ×

pd(yd), by applying the coordinate-wise Smirnov transform, i.e., y → F (y) = (F1(y1), . . . , Fd(yd)) ∈
Δ = [0, 1]d, where Fk is the cumulative distribution function corresponding to the probability density
function pk. Indeed, consider the goodness-of-fit testing the null hypothesis H0 : f = 0 against the
alternative H1 : f ∈ FP , ‖f‖2,P ≥ rn, where FP consists of functions defined on R

d which are of the
form g(y) = f(F (y)), y ∈ R

d, with g ∈ F and ‖f‖2,P = (
∫

Rd f2(y)p(y) d(y))1/2; note that, in this case,
‖f‖2,P = ‖g‖. The corresponding test statistics are now based on the kernels (3.3) and (4.9) with
t = (t1, . . . , td) replaced by F (y) = (F1(y1), . . . , Fd(yd)) (compare with [15]).

We conjecture that the main results established in Theorems 1 and 2, can be also extended, subject
to some additional constraints similar to [15], to unknown product probability density functions by
replacing F (y) = (F1(y1), . . . , Fd(yd)) with Fn(y) = (Fn,1(y1), . . . , Fn,d(yd)) in the appropriate test
statistics, where Fn,k is the empirical distribution function corresponding to Fk for the design points
yk
1 , . . . , yk

n; this development is, however, outside the scope of this paper.

7.2. Unknown Variance

The results obtained in Theorems 1 and 2 are evidently true when ξi
iid∼ N (0, 1) is replaced by

ξi
iid∼ N (0, τ2), where τ2 is a known variance with 0 < τ2 < ∞, by multiplying un by the factor τ−2

and multiplying r∗n by the factor τ , for the lower bounds, and by multiplying the kernels (3.3) and (4.9)
by the factor τ−2, for the upper bounds.

For an unknown variance τ2 with 0 < β1 ≤ τ2 ≤ β2 < ∞, we replace the multiplicative factor τ−2

appeared in the kernels (3.3) and (4.9) by τ−2
n , where τ2

n =
∑n

i=1 x2
i . It is easily seen that

En,fτ2
n = τ2 + ‖f‖2, Varn,f τ2

n =
1
n

(‖f‖4
4 − ‖f‖4 + 4τ2‖f‖2 + 2τ4) = o(1),

the latter being true by Assumption (A3). These yield τ2
n ∼ (τ2 + ‖f‖2), in Pn,f -probability, which

makes possible to repeat all the arguments presented in Appendix 2 (observe that, in Appendix 2,
‖f‖2 = o(1) for “least favorable” alternative functions f ∈ F).

The above observations indicate that the main results established in Theorems 1 and 2 still remain
true when the variance τ2 is either known or, when unknown, is replaced by an appropriate estimator as
the one considered above.

7.3. Adaptivity
Typically, the smoothness parameter (σ for Sobolev norms, κ for analytic functions, min(σ, s) for

Sloan–Woźniakowski norms) is unknown. This leads to the so-called problem of adaptivity: one
has to construct a test procedure that provides the best minimax efficiency (separation rates or sharp
asymptotics) for a wide range of values of the unknown smoothness parameter. This problem was first
studied in [29], and further developed in Chapter 7 of [18], for the univariate Gaussian white noise model.
The idea is to use the Bonferroni procedure, i.e., to combine a collection of tests for a suitable grid in a
region of the unknown smoothness parameter. It was shown in [18] and [29] that this procedure provides
an asymptotically minimax adaptive testing with a small loss (one gets an additional (but unavoidable)
log log(ε−1) factor in the separation rates). We conjecture that these ideas of adaptivity could be also
developed for the multivariate nonparametric regression models considered in this paper but the exact
details should be carefully addressed; this development is, however, outside the scope of this paper.
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7.4. Other Examples of Basis Functions Satisfying Assumption (A2)

(a) (Haar basis): Let φjk(t), j = 0, 1, . . ., k = 1, . . . , 2j , t ∈ [0, 1], be the standard Haar orthonormal
system on [0, 1] (see, e.g., Chapter 7 of [31]), where j is the scale parameter and k is the shift parameter.
Note that, in this case,

∑
k φ2

jk(t) = 2j , for each resolution j. Consider now the tensor product version of

the Haar basis on Δ = [0, 1]d, d ≥ 1, and consider coefficients cl = cj , l = ((j1, k1), . . . , (jd, kd)), which
only depend on the scale parameter j = (j1, . . . , jd) and not on the shift parameter k = (k1, . . . , kd).
Hence, by working along the lines of Section 5, it follows that the tensor product Haar basis functions
on Δ satisfy Assumption (A2).

(b) (Walsh basis): Let φj(t), j = 0, 1, . . ., t ∈ [0, 1], be the Walsh basis functions system on [0,1]; the
Walsh basis functions take actually sums and differences of the Haar basis functions to obtain a complete
orthonormal system (see, e.g., Chapter 7 of [31]). Note that, in this case, |φj(x)| = 1 for each j. Consider
now the tensor product version of the Walsh basis functions on Δ = [0, 1]d, d ≥ 1. Hence it follows
immediately that the tensor product Walsh basis functions on Δ satisfy Assumption (A2).

(c) (Orthonomal basis on a compact connected Riemannian manifold without boundary): Let S
be a compact connected Riemannian manifold without boundary and consider the orthonormal system
of eigenfunctions φjk(x), x ∈ S, associated with the Laplacian (Laplace–Beltrami operator) on S, for
different eigenvalues λj , λ1 < λ2 < . . ., with λj → ∞ as j → ∞ (see, e.g., [4]). For each j = 1, 2, . . .,

they satisfy the relation
∑kj

k=1(φ
2
j,k(x) − μ−1(S)) = 0, where kj < ∞ is the (algebraic) multiplicity of

the eigenvalue λj and μ is the invariant measure on S (see, e.g., formula (3.18), p. 127 of [6], or
the last line of p. 1256 of [4]). The above relation is a natural and deep extension of the classical
relation sin2(x) + cos2(x) = 1 for the one-dimensional circle. Similarly to (a), consider now coefficients
c(j,k) = cj or corresponding coefficients cl = cj for the tensor product basis functions on Sd, d ≥ 1.

Hence by working along the lines of Section 5, it follows that the tensor product basis functions on Sd

satisfy Assumption (A2). Therefore our general framework could be a platform to derive analogous
statements to the ones given in Theorems 1 and 2 for minimax goodness-of-fit testing in nonpara-
metric regression problems on compact connected Riemannian manifolds without boundary, S, or their
products, Sd, but the details in the derivation of these statements should be carefully addressed; this
development is, however, outside the scope of this paper.

7.5. Replacing Assumption (A2) by a Weaker Assumption

Assumption (A2) can be replaced by the weaker assumption

(A2a) sup
t∈Δ

∑

l∈N (C)

φ2
l (t) = O(N(C)) as C → ∞

(it covers the cosines orthonormal system, compactly supported (other than the Haar basis) orthonormal
wavelet systems, as well as their tensor product versions) by replacing Assumption (B1) with the slightly
stronger assumption

(B1a) N = o(n2/3).

Indeed, the only difference in the proofs of Theorems 1 and 2 is in relation (8.9). In particular, one
can use the Cauchy–Schwarz inequality which yields an additional factor N , and this is compensated
by Assumption (B1a).
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8. APPENDIX 1: PROOF OF LOWER BOUNDS
Let us start with some more notation. Recall first that Xn = {x1, . . . , xn}, Tn = {t1, . . . , tn}, Zn =

(Xn, Tn), and zi = (xi, ti), and that Pn,f is the probability measure that corresponds to Zn, whereas En,f

is the expectation over this probability measure. Denote also by Varn,f the corresponding variance. Let
Pn,T be the probability measure that corresponds to Tn and P T

n,f be the conditional probability measure

with respect to Tn. We denote by En,T and ET
n,f the expectations over these probability measures,

whereas Varn,T , VarT
n,f are the corresponding variances. (Clearly, En,f (·) = En,T ET

n,f(·).) Also, for a
function f =

∑
l θlφl, we denote the measure Pn,f by Pn,θ, with analogous notation for the expectations,

conditional expectations and variances. Let also ET,ξ
n and VarT,ξ

n be the expectation and variance of

the conditional probability measure with respect to Ξn = {ξ1, . . . , ξn}, where ξi
iid∼ N (0, 1). Certainly,

Pn,ξ = Pn,0.

8.1. Lower Bounds for Theorem 2
8.1.1. Priors. We use the constructions similar to [7] and follow, with necessary modifications, tech-
niques from [14]–[18]. It suffices to consider the case

u2
n 
 1. (8.1)

Take δ ∈ (0, 1), let al,n = vl,n(b,B) be the extremal collection for the extremal problem (4.1), (4.2) with
b = 1 − δ,B = 1 + δ, and let A = An be the diagonal matrix with diagonal elements al = al,n, l ∈ N .

Under (8.1), using (C1), (4.7), we have

u2
n(b,B) =

1
2

∑

l∈N
a4

l,n 
 1, Dn = N max
j∈N

a4
j,n ∼ z4

0N 
 1. (8.2)

Let v =
√

nθ and let πn(dv) be the Gaussian prior N (0, A2) on the parametric space consisting of
{vl}l∈L =

√
n{θl}l∈L, i.e., vl are independent in l and, for each l, vl ∼ N (0, a2

l ) for cl < C and vl = 0
for cl ≥ C, in πn-probability.

Note that, in the sequence space of the “generalized” Fourier coefficients θ = {θl}l∈L with respect to
the orthonormal system {φl}l∈L, the null hypothesis (1.2) (recall that f0 = 0) corresponds to H0 : θ = 0
and, assuming f ∈ F , the alternative hypothesis (1.3) corresponds to

H1 :
∑

l∈L
c2
l θ

2
l ≤ 1,

∑

l∈L
θ2
l ≥ r2

n. (8.3)

Let Vn = Vn(1, 1) be the set determined by (4.2) with B = b = 1; this corresponds to the alternative
set (8.3).

Lemma 8.1. For any δ ∈ (0, 1), one has πn(Vn) = 1 + o(1).

Proof. This follows from evaluations of πn-expectations and variances of the random variables H1(v) =∑
l∈N v2

l and H2 =
∑

l∈N c2
l v

2
l , and by using the Chebyshev inequality (compare with similar evalua-

tions in [14], [17], [18]).

Let β(Pn,0, Pπn , α) be the minimal type II error probability for a given level α ∈ (0, 1) and γ(Pn,0, Pπn)
be the minimal total error probability for testing the simple null hypothesis H0 : P = Pn,0 against
the simple Bayesian alternative H0 : P = Pπn for the mixture Pπn(A) =

∫
Pn,n−1/2v(A)πn(dv). By

Lemma 8.1 and using Proposition 2.11 in [18], we have

β(F , rn, α) ≥ β(Pn,0, Pπn , α) + o(1), γ(F , rn) ≥ γ(Pn,0, Pπn) + o(1).

Hence it suffices to show that

β(Pn,0, Pπn , α) ≥ Φ(H(α) − un) + o(1), γ(Pn,0, Pπn) ≥ 2Φ(−un/2) + o(1). (8.4)

In order to obtain (8.4), it suffices to verify that, in Pn,0-probability,

log(dPπn/dPn,0) = −u2
n/2 + unζn + ηn, ηn → 0, ζn → ζ ∼ N (0, 1) (8.5)

(see [18], Section 4.3.1, formula (4.72)).
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8.1.2. Likelihood ratio and correlation matrix. For f(t) =
∑

l∈N θlφl(t), the likelihood ratio is of the
form

dPn,θ

dPn,0
=

dP T
n,θ

dP T
n,0

= exp
(
− 1

2
v′Rv + 〈w, v〉s

)
, θ = {θl}l∈N , v =

√
nθ,

where w = {wl}l∈N , wl = wl,n = 1√
n

∑n
i=1 xiφl(ti), and R is the correlation matrix

R = Rn = {rjl}j,l∈N , rjl =
1
n

n∑

i=1

φj(ti)φl(ti);

here, and in Section 9.1.3, 〈·, ·〉s denotes the inner product in the sequence space.
Let Tr(·) be the trace of a square matrix.

Lemma 8.2. (i) The matrix R is symmetric and positive semidefinite. Moreover, En,T R = IN ,
where IN = {δjl}j,l∈N is the N × N identity matrix.

(ii) Under (2.2) and (B1), one has

En,T Tr(R2) ∼ N, (8.6)

En,T Tr((R − IN )2) = o(N), (8.7)

En,T Tr(R4) ∼ N. (8.8)

Proof. First, we prove statement (i). For any x̃ = {x̃j}j∈N , x̃j ∈ R, one has

∑

j,l∈N
x̃j x̃lrjl =

1
n

n∑

i=1

( ∑

j∈N
x̃jφj(ti)

)2
≥ 0.

Since {φl}l∈N is an orthonormal system,

En,T rjl =
∫

Δ

φj(t)φl(t)dt = δjl.

Thus, statement (i) follows.
Now, we prove statement (ii). Analogously, we have, using (A2), (B1),

En,T (rjl − δjl)2 = Varn,T rjl =
1
n

(∫

Δ

φ2
j (t)φ

2
l (t) dt − δ2

jl

)

=
1
n

∫

Δ

φ2
j (t)φ

2
l (t) dt − 1

n
δjl

and

En,T Tr((R − IN )2) =
∑

j,l∈N
En,T (rjl − δjl)2 ≤ 1

n

∫

Δ

∑

j,l∈N
φ2

j (t)φ
2
l (t) dt

=
1
n

∫

Δ

( ∑

j∈N
φ2

j (t)
)2

dt =
N2

n
= o(N),

which yields (8.7). We obtain (8.6) from (8.7) since Tr(R2) = Tr((R − IN )2) + Tr(IN ).

Let us now evaluate En,T Tr(R4). Let R2 = {bjl}j,l∈N ,

bjl =
∑

s∈N
rjsrsl =

1
n2

∑

s∈N

n∑

α,β=1

φj(tα)φs(tα)φs(tβ)φl(tβ).
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We have

Tr(R4) =
∑

j,l∈N
b2
jl =

1
n4

∑

l,j,s,r∈N

n∑

α,β,γ,δ=1

φj(tα)φs(tα)φs(tβ)φl(tβ)φj(tγ)φr(tγ)φr(tδ)φl(tδ).

Observe that
n∑

α,β,γ,δ=1

En,T{φj(tα)φs(tα)φs(tβ)φl(tβ)φj(tγ)φr(tγ)φr(tδ)φl(tδ)} := S4 + S3 + S2 + S1,

where S1, . . . , S4 correspond to the sums (we omit indices j, l, r, s in notation of S1, . . . , S4)

S4 = 24
∑

1≤α<β<γ<δ≤n

,

S3 = 6
( ∑

1≤α=β<γ<δ≤n

+
∑

1≤α<β=γ<δ≤n

+
∑

1≤α<β<γ=δ≤n

)
,

S2 = 2
( ∑

1≤α=β=γ<δ≤n

+
∑

1≤α<β=γ=δ≤n

+
∑

1≤α=β<γ=δ≤n

)
,

S1 =
∑

1≤α=β=γ=δ≤n

.

By independence of ti, and since {φl} is an orthonormal system, we have

S4 = C4(n)δjsδslδjrδrl,

S3 = C3(n)
{

δjrδlr

∫

Δ

φj(t)φ2
s(t)φl(t) dt + δjsδrl

∫

Δ

φs(t)φl(t)φj(t)φr(t) dt

+ δjsδsl

∫

Δ

φj(t)φ2
r(t)φl(t) dt

}
,

S2 = C2(n)
{

δrl

∫

Δ

φ2
j(t)φ

2
s(t)φl(t)φr(t) dt + δsj

∫

Δ

φ2
l (t)φ

2
r(t)φj(t)φs(t) dt

+
(∫

Δ

φj(t)φ2
s(t)φl(t) dt

)(∫

Δ

φj(u)φ2
r(u)φl(u) du

)}
,

S1 = n

∫

Δ

φ2
j(t)φ

2
s(t)φ

2
r(t)φ

2
l (t) dt,

where C4(n) ∼ n4, C3(n) 
 n3, C2(n) 
 n2. Therefore,

1
n4

∑

l,j,s,r∈N
S4 =

C4(n)
n4

∑

l,j,s,r∈N
δjsδslδjrδrl =

NC4(n)
n4

∼ N,

1
n4

∑

l,j,s,r∈N
S3 =

3C3(n)
n4

∑

j,s∈N

∫

Δ

φ2
j (t)φ

2
s(t) dt

=
3C3(n)

n4

∫

Δ

( ∑

j∈N
φ2

j (t)
)2

dt =
3N2C3(n)

n4
= O(N2/n),

1
n4

∑

l,j,s,r∈N
S1 =

n

n4

∑

l,j,s,r∈N

∫

Δ

φ2
j(t)φ

2
s(t)φ

2
r(t)φ

2
l (t) dt
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=
1
n3

∫

Δ

( ∑

j∈N
φ2

j (t)
)4

dt =
N4

n3
.

Analogously,
∑

l,j,s,r∈N
δrl

∫

Δ

φ2
j (t)φ

2
s(t)φl(t)φr(t) dt =

∫

Δ

( ∑

l,j,s∈N
φ2

j(t)φ
2
s(t)φ

2
l (t)

)
dt

=
∫

Δ

( ∑

l∈N
φ2

j (t)
)3

dt = N3

and
∑

l,j,s,r∈N

( ∫

Δ

φj(t)φ2
s(t)φl(t) dt

)(∫

Δ

φj(u)φ2
r(u)φl(u) du

)

=
∑

l,j∈N

(∫

Δ

φj(t)
( ∑

s∈N
φ2

s(t)
)
φl(t) dt

)(∫

Δ

φj(u)
( ∑

s∈N
φ2

r(u)
)
φl(u) du

)
(8.9)

= N2
∑

l,j∈N

( ∫

Δ

φj(t)φl(t) dt
)( ∫

Δ

φj(u)φl(u) du
)

= N2
∑

l,j∈N
δ2
jl = N3.

Thus,

1
n4

∑

l,j,s,r∈N
S2 = O(N3/n2).

Combining evaluations above and (B1) we get (8.8):

Tr(R4) ∼ N(1 + O
(
N/n + (N/n)2 + (N/n)3)

)
∼ N.

Thus, statement (ii) follows. This competes the proof of Lemma 8.2.

8.1.3. Bayesian Likelihood Ratio. Let us now study the Bayesian likelihood ratio. A direct calculation
gives

dPπn

dPn,0
= Eπn

dP T
n,θ

dP T
n,0

=
1√

detG
exp

(1
2
q′G−1q

)
, (8.10)

where q = Aw, G = Gn = IN + A′RA. Let τ̃l ≥ 0, l ∈ N , be the eigenvalues of the symmetric positive
semidefinite matrix D = A′RA = {ajalrjl}j,l∈N . Let el be the eigenvectors of the matrix D and let
ql = 〈q, el〉s, l ∈ L.

We can now rewrite (8.10) in the form

Ln = log
( dPπn

dPn,0

)
=

1
2

∑

l∈N

( q2
l

1 + τ̃l
− log(1 + τ̃l)

)
.

Let ‖Ã‖∞ = sup‖x‖≤1 ‖Ãx‖ for a generic matrix Ã. Observe that

‖D‖4
∞ = max

l∈N
τ̃4
l ≤

∑

l∈N
τ̃4
l = Tr(D4).

Using the standard relations

Tr(AC) = Tr(CA) and Tr(A′BA) ≤ ‖A‖2
∞ Tr(B),

for a symmetric positive semidefinite matrix B, we get the inequalities

Tr(D2) ≤ ‖A‖4
∞ Tr(R2) and Tr(D4) ≤ ‖A‖8

∞ Tr(R4).
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By (8.2),

‖A‖4
∞ = max

l∈N
a4

l ≤ Dn/N.

Jointly with (8.6) and (8.8), the above yields

En,T (Tr(D2)) = O(1), En,T (Tr(D4)) = O(N−1).

Hence

En,T

(
max
l∈N

|τ̃l|
)

= O(N−1/4).

Thus, in Pn,T -probability,

‖D‖∞ = max
l∈N

|τ̃l| = o(1). (8.11)

Using the well-known relations

(1 + y)−1 = 1 − y + o(y) and log(1 + y) − y + y2/2 = o(y2) as y → 0,

we get, with Pn,T -probability tending to 1, by (8.11),

Ln =
1
2

∑

l∈N

(
q2
l (1 − τ̃l) − τ̃l + τ̃2

l /2
)

+ o
( ∑

l∈N
q2
l τ̃l

)
+ o

( ∑

l∈N
τ̃2
l

)

=
1
2
(
Tr(Q) − Tr(D) − Tr(QD) + Tr(D2)/2

)
+ o

(
Tr(QD)

)
+ o

(
Tr(D2)

)

=
1
2
(
Tr(Q̂) − Tr(Q̂D) − Tr(D2)/2

)
+ o

(
Tr(Q̂D)

)
+ o

(
Tr(D2)

)
, (8.12)

where

Q = qq′ = Azz′A = {ajalzjzl}j,l∈N , Q̂ = Q − D = A(zz′ − R)A.

Let us now study the Pn,0-distribution of Ln.

Lemma 8.3. In Pn,0-probability,

Tr(Q̂D) = o(1), (8.13)

Tr(D2) = Tr(A4) + o(1), (8.14)

En,0 Tr(Q̂) = 0, (8.15)

Varn,0 Tr(Q̂) = 2Tr(A4) + o(1). (8.16)

Proof. Let Φ = n−1/2{φj(ti)}j∈N ,i=1,...,n be an N × n-matrix, and set ξ′ = (ξ1, . . . , ξn). Then, in Pn,0-
probability,

R = ΦΦ′, z = Φξ, z′z = ξ′Φ′Φξ, E(ξξ′) = IN .

Observe that

ET
n,0zz′ = Φ(ET

n,0ξξ
′)Φ′ = ΦΦ′ = R,

which yields

ET
n,0(Tr(Q̂)) = 0, ET

n,0(Tr(Q̂D)) = 0. (8.17)

Analogously, using the formula

Var(Tr(Bξξ′)) = 2Tr(BB′),

we get

VarT
n,0(Tr(Q̂D)) = VarT

n,0 Tr(AΦξξ′Φ′AD) = 2Tr(BB′),
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where B = Φ′A2ΦΦ′A2Φ. By Lemma 8.2 and (8.2), it is easily seen that

Tr(BB′) = Tr((ARA)4) ≤ ‖A‖8
∞ Tr(R4).

Using the formula

Varn,0(·) = VarT (ET
n,0(·)) + ET (VarT

n,0(·)),
we get

Varn,0(Tr(Q̂D)) = o(1),

which together with (8.17), yields (8.13).
To obtain (8.14), note that

Tr(D2) = Tr(D̂2) + 2Tr(A2D̂) + Tr(A4), D̂ = D − A2 = A(R − IN )A,

and observe that, by Lemma 8.2 and (8.2),

Tr(D̂2) ≤ ‖A‖4
∞ Tr((R − IN )2) = o(1), (Tr(A2D̂))2 ≤ Tr(A4)Tr(D̂2) = o(1).

Obviously, (8.15) follows from (8.17), and (8.16) follows from (8.14), since

VarT
n,0(Tr(Q̂)) = VarT

n,0(Tr(AΦξξ′Φ′A)) = 2Tr((AΦΦ′A)2) = 2Tr(D2).

This completes the proof of Lemma 8.3.

Let ζn = Tr(Q̂)/2un, u2
n = Tr(A4)/2. By Lemma 8.3, we rewrite (8.12) in the form

Ln = unζn − u2
n/2 + ηn, ηn

Pn,0→ 0.

Lemma 8.4. In Pn,0-probability, ζn → ζ ∼ N (0, 1).

Proof. Let us rewrite Tr(Q̂) in the form

1
2

Tr(Q̂) =
1
2

Tr
(
AΦ(ξξ′ − I)Φ′A

)
=

1
2

n∑

i=1

wii(ξ2
i − 1) +

∑

1≤i<k≤n

wikξiξj := An + Bn,

where

W = {wik}n
i,k=1 = Φ′A2Φ, wik =

1
n

∑

l∈N
a2

l φl(ti)φl(tk).

It is easily seen that ET,ξ
n An = 0, and by (A2), (8.2),

VarT,ξ
n (An) =

1
2

n∑

i=1

w2
ii =

1
2n2

n∑

i=1

( ∑

l∈N
a2

l φ
2
l (ti)

)2

≤ Dn

2n2N

n∑

i=1

( ∑

l∈N
φ2

l (ti)
)2

=
DnN

2n
= o(1).

Thus, An → 0 in L2(Pn,0) and in Pn,0-probability.
The term Bn is a degenerate U-statistic,

Bn =
1
n

∑

1≤i<k≤n

Wn(ri, rj), ri = (ξi, ti) are iid,

Wn(r
′
, r

′′
) = ξ

′
ξ
′′ ∑

l∈N
a2

l φl(t
′
)φl(t

′′
),

∫
Wn(r

′
, r

′′
)P (dr

′
) = 0 ∀r

′′
,

where P (dr) = N0,1(dξ) × UΔ(dt), i.e., ξ and t are independent, ξ ∼ N (0, 1), and t is uniformly
distributed on Δ.

The statement of Lemma 8.4 follows from the following proposition.
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Proposition 2. In Pn,0-probability, the statistics Bn are asymptotically N (0, u2
n).

Proof of Proposition 2. Clearly, EPn,0Bn = 0 and, for r1 = (ξ1, t1), r2 = (ξ2, t2),

VarPn,0(Bn) =
n(n − 1)

2n2

∫∫
W 2

n(r1, r2)P (dr1)P (dr2)

=
n(n − 1)

2n2
E(ξ2

1ξ2
2)

∫

Δ

∫

Δ

( ∑

l∈N
a2

l φl(t1)φl(t2)
)2

dt1 dt2

=
n(n − 1)

2n2

∑

j,l∈N
a2

ja
2
l

∫

Δ

∫

Δ

φj(t1)φj(t2)φl(t1)φl(t2) dt1 dt2

=
n(n − 1)

2n2

∑

l∈N
a4

l ∼ u2
n.

For r1 = (ξ1, t1), r2 = (ξ2, t2), r3 = (ξ3, t3), let

G̃n(r1, r2) =
∫

Wn(r1, r3)Wn(r2, r3)P (dr3),

Gn,2 =
∫∫

G̃2
n(r1, r2)P (dr1)P (dr2),

Wn,4 =
∫∫

W 4
n(r1, r2)P (dr1)P (dr2).

Using the asymptotic normality of degenerate U-statistics established in [10] together with Lemma 3.4
in [16], it suffices to verify the conditions

G̃n,2 = o(1), (8.18)

Wn,4 = o(n2). (8.19)

We have

G̃n(r1, r2) = EP (dξ3,dt3)

(
ξ1ξ2ξ

2
3

∑

l∈N
a2

l φl(t1)φl(t3)
∑

j∈N
a2

jφj(t2)φj(t3)
)

= ξ1ξ2

∑

j,l∈N
a2

l a
2
jφl(t1)φj(t2)

∫

Δ

φl(t3)φj(t3)dt3 = ξ1ξ2

∑

l∈N
a4

l φl(t1)φl(t2),

Gn,2 = E(ξ1ξ2)2
∫

Δ

∫

Δ

( ∑

l∈N
a4

l φl(t1)φl(t2)
)2

dt1 dt2 =
∑

l∈N
a8

l = O(N−1),

which yields (8.18). Next,

Wn,4 = E(ξ1ξ2)4
∫

Δ

∫

Δ

( ∑

l∈N
a2

l φl(t1)φl(t2)
)4

dt1 dt2

≤ 9 sup
t1,t2∈Δ

( ∑

l∈N
a2

l φl(t1)φl(t2)
)2

∫

Δ

∫

Δ

( ∑

l∈N
a2

l φl(t1)φl(t2)
)2

dt1 dt2 = O(N),

since, by (A2) and (8.2), we have

sup
t1,t2∈Δ

∣∣
∣
∑

l∈N
a2

l φl(t1)φl(t2)
∣∣
∣ = sup

t1∈Δ

∑

l∈N
a2

l φ
2
l (t1) ≤ max

l∈N
a2

l sup
t1∈Δ

∑

l∈N
φ2

l (t1) = O(N1/2).

This implies (8.19), which completes the proof of Proposition 2. Hence Lemma 8.4 follows.

Thus we obtain (8.5), which yields (8.4). Hence Theorem 2 (i) follows.
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8.2. Lower Bounds for Theorem 1

The same scheme as used in the proof of the lower bounds of Theorem 2 can be also employed here.

Let C2r2
n < (1 − δ), δ > 0. It suffices to assume u2

n = n2r4
n/2N = O(1). We take the Gaussian prior

πn = N (0, A2) that corresponds to the matrix A = anIN with a2
n = nr2

n(1 + δ)/N . Recall H1, H2 from
the proof of Lemma 8.1. Analogously to the proof of Lemma 8.1, we have

EπnH1 = a2
nN = nr2

n(1 + δ),

EπnH2 ≤ C2a2
nN < nC2r2

n(1 − δ) < n,

Varπn H1 = 2a4
nN = O(1),

Varπn H2 ≤ 2C4a4
nN = O(n2/N).

Since, by Chebyshev’s inequality, Varπn Hk = o((EπnHk)2), k = 1, 2, these yield πn(Vn) = 1 + o(1).

Observe that relations (8.2) hold true with z0 = an. Repeating the calculations in the proof of the
lower bounds of Theorem 2, we arrive at (8.4) with u2

n = Na4
n/2 = n2r4

n/2N(1 + δ)2. Since δ > 0 can
be taken arbitrarily small, this yields Theorem 1 (i).

9. APPENDIX 2: PROOF OF UPPER BOUNDS

9.1. Upper Bounds for Theorem 2

We consider the test sequence ψH
n = 1{Un>H} based on the U-statistics Un with the kernel

Kn(z1, z2) of the form (4.9).

9.1.1. Type I error. Observe that Kn(z1, z2) = u−1
n Wn(z1, z2), where Wn is the kernel of the U-

statistics mentioned in Proposition 2. Applying Proposition 2, we get

Un
Pn,0→ ζ ∼ N (0, 1).

This yields

En,0(ψH
n ) = Pn,0(Un ≤ −H) = 1 − Φ(H) + o(1). (9.1)

9.1.2. Minimax type II error. By (9.1) we have to verify that

sup
f∈F(rn)

En,f (1 − ψH
n ) = sup

f∈F(rn)
Pn,f (Un > H) = Φ(H − un) + o(1). (9.2)

For f =
∑

l∈L θlφl, let

vl =
√

nθl, hn(f) =
1
2

∑

l∈N
wn,lv

2
l .

Lemma 9.1. Uniformly over f ∈ F ,

En,fUn ∼ hn(f), (9.3)

Varn,f Un = 1 + O(‖f‖2 + ‖f‖4
4). (9.4)

Moreover, uniformly over f ∈ F such that

‖f‖ = o(1), ‖f‖4 = o(1), and hn(f) = O(1), (9.5)

the statistics Un − hn(f) are asymptotically N (0, 1) under Pn,f -probability.
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Remark 9.1. Using Hölder’s inequality and (A3) with p = 4 + 2δ, δ > 0, we get

‖f‖4
4 ≤ ‖f‖a‖f‖b

p, a = 2/(1 + 1/δ), b = p/(1 + δ); ‖f‖ ≤ ‖f‖p.

Therefore, under (A3), Lemma 9.1 yields

sup
f∈F

Varn,f Un = O(1) and Varn,f Un = 1 + O(‖f‖2 + ‖f‖a) (9.6)

uniformly over f ∈ F , and

Un = hn(f) + ζn, ζn → ζ ∼ N (0, 1),

uniformly over f ∈ F such that hn(f) = O(1) and ‖f‖ = o(1).

Proof of Lemma 9.1. Let f = n−1/2
∑

l∈L vlφl. Denote z = (x, t) with x = f(t) + ξ, ξ and t are inde-
pendent, ξ ∼ N (0, 1), and t is uniformly distributed on Δ. Since the terms of the sum in U-statistics are
identically distributed and uncorrelated, we have

En,fUn =
n − 1

2
En,fKn(z1, z2),

where z1 and z2 are independent and distributed as z,

En,fKn(z1, z2) = En,fx1x2Gn(t1, t2) = ET
n f(t1)f(t2)Gn(t1, t2)

=
∑

l∈N
wn,lE

T
n (f(t)φl(t))2 = n−1

∑

l∈N
wn,lv

2
l .

Hence (9.3) follows.
Let us now evaluate the variance. Rewrite the U-statistics in the form

Un = Un,0 + Un,1 + Un,2, (9.7)

where

Un,k =
1
n

∑

1≤i<j≤n

Kn,k(zi, zj)

are U-statistics with the kernels Kn,k(z1, z2) of the form

Kn,0 = ξ1ξ2Gn(t1, t2), Kn,1 = (ξ1f(t2) + ξ2f(t1))Gn(t1, t2),

Kn,2 = f(t1)f(t2)Gn(t1, t2), Gn(t1, t2) =
∑

l∈N
wn,lφl(t1)φl(t2),

and the terms Un,0, Un,1, and Un,2 are uncorrelated. Obviously,

En,fUn,0 = En,fUn,1 = 0,

En,fUn,2 =
n − 1

2

∑

l∈N
wn,l

(∫

Δ

f(t)φl(t) dt

)2

∼ hn(f).

Similarly to Proposition 2,

Varn,f Un,0 ∼ 1
2

∫

Δ

∫

Δ

G2
n(t1, t2) dt1 dt2 =

1
2

∑

l∈N
w2

n,l = 1.

Analogously, by (A2) and (4.7), and since maxl w
2
n,l = O(1/N),

Varn,f Un,1 ∼ 2
∫

Δ

∫

Δ

f2(t1)G2
n(t1, t2)dt1dt2

= 2
∫

Δ

(
f2(t)

∑

l∈N
w2

n,lφ
2
l (t)

)
dt = O(‖f‖2).
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Next,

Varn,f Un,2 ≤
∫

Δ

∫

Δ

f2(t1)f2(t2)G2
n(t1, t2) dt1 dt2 = An.

Let Gn be the integral operator in L2(Δ) associated with the symmetric positive semidefinite kernel
Gn(t1, t2), t1, t2 ∈ Δ, and

‖Gn‖∞ = sup
‖f‖≤1

‖Gnf‖ = max
l∈N

wn,l = O(N−1/2).

Observe that, by (A2) and (4.7),

G∗
n = sup

t∈Δ

∑

l∈N
wn,lφ

2
l (t) ≤ N‖Gn‖∞, G∗

n‖Gn‖∞ = O(1).

We have

An =
∑

l∈N
wn,l

∫

Δ

∫

Δ

φl(t1)φl(t2)f2(t1)f2(t2)Gn(t1, t2) dt1 dt2

=
∑

l∈N
wn,l〈f2φl,Gn(f2φl)〉 ≤ ‖Gn‖∞

∑

l∈N
wn,l‖f2φl‖2

= ‖Gn‖∞
∫

Δ

∑

l∈N
wn,lφ

2
l (t)f

4(t) dt

≤ ‖Gn‖∞ sup
t∈Δ

( ∑

l∈N
wn,lφ

2
l (t)

) ∫

Δ

f4(t) dt

= ‖Gn‖∞G∗
n‖f‖4

4 = O(‖f‖4
4).

Hence (9.4) follows.
Using (9.7) and an evaluation similar to the above under (9.5), we have

Un − hn(f) = Un,0 + Un,1 + Un,2 − hn(f),

where Un,1 → 0, Un,2 − hn(f) → 0 in Pn,f -probability. By Proposition 2, the statistics Un,0 are asymp-
totically Gaussian N (0, 1). This completes the proof of Lemma 9.1.

Let hn(f) = O(1). Let us now evaluate ‖f‖2, f ∈ F . We have

‖f‖2 =
∑

l∈L
θ2
l := A′

n + B′
n, A′

n =
∑

cl<C/2

θ2
l , B′

n =
∑

cl≥C/2

θ2
l .

The second sum is controlled by

B′
n ≤ 4C−2

∑

l∈L
c2
l θ

2
l ≤ 4C−2 = o(1).

The first sum is controlled by

A′
n ≤ (4/3)

∑

l∈N
(1 − (cl/C)2)θ2

l = (4/3)(wn/n)
∑

l∈N
wn,lv

2
n

= (4/3)(wn/n)hn(f) = o(hn(f)),

since, by (4.7) and (B1), we have wn/n = O(N1/2/n) = o(1). Therefore, by (9.6), we have in Pn,f -
probability,

Un = hn(f) + ζn, ζn → ζ ∼ N (0, 1),

uniformly as hn(f) = O(1).
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Lemma 9.2.

inf
f∈F(rn)

hn(f) = un.

Proof. It follows using general convexity arguments (see [14], Lemma 11 of [17], Proposition 4.1
of [18]).

Let us now evaluate type II errors for a sequence f = fn ∈ F(rn). First, let hn(fn) → ∞. Applying
Lemmas 9.1, 9.2, and (9.6), we have

En,f (1 − ψH
n ) = Pn,f (Un ≤ H)

= Pn,f (En,f − Un ≥ En,f − H)

≤ Varn,f (Un)/(En,f − H)2 = o(1).

Let hn(fn) = O(1) (by Lemma 9.2 this is only possible for un = O(1)). Applying Lemmas 9.1, 9.2,
and (9.6) once again, we have

En,f (1 − ψH
n ) = Pn,f (Un ≤ H)

= Pn,f (En,f − Un ≥ En,f − H)
= Pn,f (ζn ≥ hn(f) − H + o(1)) = Φ(H − hn(f)) + o(1).

Therefore,

sup
f∈F(rn)

En,f (1 − ψH
n ) = Φ

(
H − inf

f∈F(rn)
hn(f)

)
+ o(1) = Φ(H − un) + o(1).

This yields (9.2). Hence Theorem 2 (ii) follows.

This completes the proof of Theorem 2.

9.2. Upper Bounds for Theorem 1

Observe that the kernel (3.3) is of the form (4.9) with coefficients

wl,n = wn =
√

2/N, l ∈ N .

Hence Proposition 2 is applicable to the U-statistics Un with kernel (3.3) and yields asymptotic
normality N (0, 1) of Un under Pn,0. Thus we get (9.1). Analogously, we obtain Lemma 9.1 with

hn(f) =
n√
2N

∑

l∈N
θ2
l .

If hn(f) = O(1), f ∈ F , then ‖f‖ = o(1). In fact,

‖f‖2 =
∑

l∈L
θ2
l ≤

∑

l∈N
θ2
l + C−2

∑

cl≥C

c2
l θ

2
l

≤
√

2N
n

hn(f) + C−2 = o(1).

These yield (9.2) for f ∈ F such that hn(f) = O(1). If hn(f) → ∞, then it follows from Chebyshev’s
inequality and the boundedness of the variances that Pn,f (Un ≥ H) → 0 for H < chn(f), c ∈ (0, 1).
Hence Theorem 1 (ii) follows.

This completes the proof of Theorem 1.
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