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ORIGINAL ARTICLE

TESTING EQUALITY OF AUTOCOVARIANCE OPERATORS FOR
FUNCTIONAL TIME SERIES

DIMITRIOS PILAVAKIS,a EFSTATHIOS PAPARODITISa AND THEOFANIS SAPATINASa*

a Department of Mathematics and Statistics University of Cyprus Nicosia, Cyprus

We consider strictly stationary stochastic processes of Hilbert space-valued random variables and focus on fully functional
tests for the equality of the lag-zero autocovariance operators of several independent functional time series. A moving block
bootstrap (MBB)-based testing procedure is proposed which generates pseudo random elements that satisfy the null hypothesis
of interest. It is based on directly bootstrapping the time series of tensor products which overcomessome common difficulties
associated with applications of the bootstrap to related testing problems. The suggested methodology can be potentially applied
to a broad range of test statistics of the hypotheses of interest. As an example, we establish validity for approximating the
distribution under the null of a test statistic based on the Hilbert–Schmidt distance of the corresponding sample lag-zero
autocovariance operators, and show consistency under the alternative. As a prerequisite, we prove a central limit theorem for
the MBB procedure applied to the sample autocovariance operator which is of interest on its own. The finite sample size and
power performance of the suggested MBB-based testing procedure is illustrated through simulations and an application to a
real-life dataset is discussed.
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1. INTRODUCTION

Functional data analysis deals with random variables which are curves or images and can be expressed as func-
tions in appropriate spaces. In this paper, we consider functional time series 𝕏n = {X1,X2,… ,Xn} steming from
a strictly stationary stochastic process 𝕏 = (Xt, t ∈ ℤ) of Hilbert space-valued random functions Xt(𝜏), 𝜏 ∈ 
(where  is a compact interval on ℝ), which are assumed to be L4-m-approximable, a dependence assumption
which is satisfied by large classes of commonly used functional time series models; see, for e.g., Hörmann and
Kokoszka (2010). We would like to infer properties of a group of K independent functional processes based on
observed stretches from each group. In particular, we focus on the problem of testing whether the lag-zero autoco-
variance operators of the K processes are equal and consider fully functional test statistics which evaluate the dif-
ference between the corresponding sample lag-zero autocovariance operators using appropriate distance measures.

As it is common in the statistical analysis of functional data, the limiting distribution of such statistics depends,
in a complicated way, on difficult to estimate characteristics of the underlying functional stochastic processes
like, for instance, its entire fourth order temporal dependence structure. Therefore, and in order to implement the
testing approach proposed, we apply a moving block bootstrap (MBB) procedure which is used to estimate the
distribution of the test statistic of interest under the null. Notice that for testing problems related to the equality of
second order characteristics of several independent groups, in the finite or infinite dimensional setting, applications
of the bootstrap to approximate the distribution of a test statistic of interest are commonly based on the generation
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of pseudo random observations obtained by resampling from the pooled (mixed) sample consisting of all available
observations. Such implementations lead to the problem that the generated pseudo observations have not only
identical second order characteristics but also identical distributions. This may affect the power and the conditions
needed for bootstrap consistency in that it may restrict its validity to specific situations only; see Lele and Carlstein
(1990) for an overview for the case of independent and identically distributed (i.i.d.) real-valued random variables
and Remark 3.2 in Section 3 for more details in the functional setting.

To overcome such problems, we use a different approach which is based on the observation that the lag-zero
autocovariance operator 0 = 𝔼(Xt − 𝜇) ⊗ (Xt − 𝜇) is the expected value of the tensor product process
{t = (Xt − 𝜇)⊗ (Xt − 𝜇), t ∈ ℤ}, where 𝜇 = 𝔼Xt denotes the expectation of Xt. Therefore, the testing problem
of interest can also be viewed as testing for the equality of expected values (mean functions) of the associated
processes of tensor products. The suggested MBB procedure works by first generating functional pseudo random
elements via resampling from the time series of tensor products of the same group and then adjusting the mean
function of the generated pseudo random elements in each group so that the null hypothesis of interest is satisfied.
We stress here the fact that the proposed method is not designed having any particular test statistic in mind and it
is, therefore, potentially applicable to a wide range of different test statistics. As an example, we establish in this
article validity of the proposed MBB-based testing procedure in estimating the distribution of a particular fully
functional test statistic under the null, which is based on the Hilbert–Schmidt norm between the sample lag-zero
autocovariance operators, and show its consistency under the alternative. By fully functionals tests, we mean tests
which exploit the entire infinite dimensionality structure of the underlying stochastic process and do not attempt
to reduce dimensionality by projecting on finite dimensional subspaces. The idea of block bootstrapping from
blocks is not new and have been previously investigated by Künsch (1989) for a fixed number of blocks and by
Politis and Romano (1992) in a more general context where the number of blocks is allowed to increase to infinity
with the sample size n. Furthermore, by considering the aforementioned tensor products, the problem of testing
for differences in the autocovariance operators becomes similar to the functional analysis of variance (ANOVA)
problem; see Cuevas et al. (2004), Zhang (2013), Horváth and Rice (2015), and Hörmann et al. (2018).

As a prerequisite, to our theoretical derivations, we first prove a central limit theorem for the MBB proce-
dure applied to the sample version of the autocovariance operator h = 𝔼(Xt − 𝜇) ⊗ (Xt+h − 𝜇), h ∈ ℤ, of
an L4-m-approximable stochastic process, which is of interest on its own. Our results imply that the suggested
MBB-based testing procedure is not restricted to the case of testing for equality of the lag-zero autocovariance
operator only but it can be adapted to tests dealing with the equality of any (finite number of) autocovariance
operators h for lags h different from zero.

Asymptotic and bootstrap based inference procedures for covariance operators for two or more populations of
i.i.d. functional data have been extensively discussed in the literature; see, for example, Panaretos et al. (2010),
Fremdt et al. (2013) for tests based on finite-dimensional projections, Pigoli et al. (2014) for permutation tests
based on distance measures and Paparoditis and Sapatinas (2016) for fully functional tests. Notice that testing
for the equality of the lag-zero autocovariance operators is an important problem for functional time series since
the associated covariance kernel c0(u, v) = Cov(Xt(u),Xt(v)) of the lag-zero autocovariance operator 0 describes,
for (u, v) ∈  × , the entire covariance structure of the random function Xt. Despite its importance, this testing
problem has been considered, to the best of our knowledge, only recently by Zhang and Shao (2015). To tackle the
aforementioned problems associated with the implementability of limiting distributions, Zhang and Shao (2015)
considered tests based on projections on finite dimensional spaces of the differences of the estimated lag-zero
autocovariance operators. Notice that similar directional tests have previously been considered for i.i.d. functional
data; see Panaretos et al. (2010) and Fremdt et al. (2013). Although projection-based tests have the advantage
that they lead to manageable limiting distributions, and can be powerful when the deviations from the null are
captured by the finite-dimensional space projected, such tests have no power for alternatives which are orthogonal
to the projection space. Moreover, and apart from being free from the choice of testing parameters, like the choice
of the dimension of the projection space, and from being consistent for a broader class of alternatives, the fully
functional tests considered in this article also allow for a nice interpretation of the test results obtained; we refer
to Section 4 for an example.
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The article is organized as follows. In Section 2, the basic assumptions on the underlying stochastic process
𝕏 are stated and the asymptotic validity of the MBB procedure applied to estimate the distribution of the sample
autocovariance operator is established. In Section 3, the proposed MBB-based procedure for testing equality of
the lag-zero autocovariance operators for several independent functional time series is introduced. Theoretical
justifications for approximating the null distribution of a particular fully functional test statistic are given and
consistency under the alternative is obtained. Numerical simulations are presented in Section 4 in which the finite
sample behavior of the proposed MBB-based testing methodology is investigated. A Cyprus daily temperature
data example is also discussed in this section. Auxiliary results and proofs of the main results are deferred to
Appendix A and to the Supporting information.

2. BOOTSTRAPPING THE AUTOCOVARIANCE OPERATOR

2.1. Preliminaries and Assumptions

We consider a strictly stationary stochastic process 𝕏 = {Xt, t ∈ ℤ}, where the random variables Xt are random
functions Xt(𝜔, 𝜏), 𝜏 ∈ , 𝜔 ∈ Ω, t ∈ ℤ, defined on a probability space (Ω,A,P) and take values in the separable
Hilbert space of squared-integrable ℝ-valued functions on , denoted by L2(). The expectation function of Xt,
𝔼Xt ∈ L2(), is independent of t, and it is denoted by 𝜇. We define ⟨f , g⟩ = ∫ f (𝜏)g(𝜏)d𝜏, ‖f‖2 = ⟨f , f ⟩ and the
tensor product between f and g by f ⊗ g(⋅) = ⟨f , ⋅⟩g. For two Hilbert–Schmidt operators Ψ1 and Ψ2, we denote
by ⟨Ψ1,Ψ2⟩HS =

∑∞
i=1⟨Ψ1(ei),Ψ2(ei)⟩ the inner product which generates the Hilbert Schmidt norm ‖Ψ1‖HS =∑∞

i=1 ‖Ψ1(ei)‖2, where {ei, i = 1, 2,…} is any orthonormal basis of L2(). IfΨ1 andΨ2 are Hilbert Schmidt integral
operators with kernels 𝜓1(u, v) and 𝜓2(u, v) respectively, then ⟨Ψ1,Ψ2⟩HS = ∫ ∫ 𝜓1(u, v)𝜓2(u, v)dudv. We also
define the tensor product between the operators Ψ1 and Ψ2 analogous to the tensor product of two functions, that
is, Ψ1 ⊗ Ψ2(⋅) = ⟨Ψ1, ⋅⟩HSΨ2. Note that Ψ1 ⊗ Ψ2 is an operator acting on the space of Hilbert Schmidt operators.
Without loss of generality, we assume that  = [0, 1] (the unit interval) and, for simplicity, integral signs without
the limits of integration imply integration over the interval . We finally write L2 instead of L2(), for simplicity.
For more details, we refer to Horváth and Kokoszka (2012, Chapter 2).

To describe more precisely the dependence structure of the stochastic process 𝕏, we use the notion of
Lp-m-approximability; see Hörmann and Kokoszka (2010). A stochastic process 𝕏 = {Xt, t ∈ ℤ} with Xt taking
values in L2, is called L4-m-approximable if the following conditions are satisfied:

(i) Xt admits the representation

Xt = f (𝛿t, 𝛿t−1, 𝛿t−2,…) (1)

for some measurable function f ∶ S∞ → L2, where {𝛿t, t ∈ ℤ} is a sequence of i.i.d. elements in L2.
(ii) 𝔼‖X0‖4 < ∞ and ∑

m≥1

(
𝔼‖Xt − Xt,m‖4

)1∕4
< ∞, (2)

where Xt,m = f (𝛿t, 𝛿t−1,… , 𝛿t−m+1, 𝛿
(m)
t,t−m, 𝛿

(m)
t,t−m−1,…) and, for each t and k, 𝛿(m)

t,k is an independent copy of 𝛿t.

The rational behind this concept of weak dependence is that the function f in (1) is such that the effect of
the innovations 𝛿i far back in the past becomes negligible, that is, these innovations can be replaced by other,
independent, innovations. For the stochastic process 𝕏 considered in this paper, we somehow strengthen (2) to the
following assumption.

Assumption 1. 𝕏 is L4-m-approximable and satisfies

lim
m→∞

m
(
𝔼‖Xt − Xt,m‖4

)1∕4 = 0.
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Since 𝔼‖Xt‖2 <∞, the autocovariance operator at lag h ∈ ℤ exists and is defined by

h = 𝔼[(Xt − 𝜇)⊗ (Xt+h − 𝜇)].

Having an observed stretch X1,X2,… ,Xn, the operator h is commonly estimated by the corresponding sample
autocovariance operator, which is given by

̂h =
⎧⎪⎨⎪⎩

n−1 ∑n−h
t=1 (Xt − Xn)⊗ (Xt+h − Xn), if 0 ≤ h < n,

n−1 ∑n+h
t=1 (Xt−h − Xn)⊗ (Xt − Xn), if − n < h < 0,

0, otherwise,

where Xn = (1∕n)
∑n

t=1 Xt is the sample mean function. The limiting distribution of
√

n
(̂h − h

)
can be derived

using the same arguments to those applied in Kokoszka and Reimherr (2013) to investigate the limiting distribution
of

√
n
(̂0 − 0

)
. More precisely, it can be shown that, for any (fixed) lag h, h ∈ ℤ, under L4-approximability

conditions,
√

n
(̂h − h

)
⇒ h, where h is a Gaussian Hilbert-Schmidt operator with covariance operator Γh

given by

Γh =
∞∑

s=−∞
𝔼[((X1 − 𝜇)⊗ (X1+h − 𝜇) − h)⊗ ((X1+s − 𝜇)⊗ (X1+h+s − 𝜇) − h)];

see also Mas (2002) for a related result if 𝕏 is a Hilbertian linear processes.

2.2. A Bootstrap Central Limit Theorem for the Empirical Autocovariance Operator

In this section, we formulate and prove consistency of the MBB for estimating the distribution of
√

n
(̂h − h

)
for any (fixed) lag h, h ∈ ℤ, in the case of weakly dependent Hilbert space-valued random variables satisfy-
ing the L4-approximability condition stated in Assumption 1. The MBB procedure was originally proposed for
real-valued time series by Künsch (1989) and Liu and Singh (1992). Adopted to the functional set-up, this resam-
pling procedure first divides the functional time series at hand into the collection of all possible overlapping blocks
of functions of length b. That is, the first block consists of the functional observations 1 to b, the second block
consists of the functional observations 2 to b + 1, and so on. Then, a bootstrap sample is obtained by independent
sampling, with replacement, from these blocks of functions and joining the blocks together in the order selected
to form a new set of functional pseudo observations.

However, to deal with the problem of estimating the distribution of the sample autocovariance operator ̂h,
we modify the above basic idea and apply the MBB directly to the set of random elements 𝕐n−h = {̂t,h, t =
1, 2,… , n−h}, where ̂t,h = (Xt −Xn)⊗ (Xt+h −Xn). As mentioned in the Introduction, this has certain advantages
in the testing context which will be discussed in the next section. The MBB procedure applied to generate the
pseudo random elements ∗

1,h,∗
2,h,… ,∗

n−h,h is described by the following steps.

Step 1 : Let b = b(n), 1 ≤ b < n − h, be an integer and denote by Bt = {̂t,h, ̂t+1,h,… , ̂t+b−1,h} the block of

length b starting from the tensor operator ̂t, where t = 1, 2,… ,N and N = n − h − b + 1 is the total
number of such blocks available.

Step 2 : Let k be a positive integer satisfying b(k − 1) < n − h and bk ≥ n − h and define k i.i.d. integer-valued
random variables I1, I2,… , Ik selected from a discrete uniform distribution which assigns probability
1∕N to each element of the set {1, 2,… ,N}.

Step 3 : Let B∗
i = BIi

, i = 1, 2,… , k, and denote by {∗
(i−1)b+1,h,∗

(i−1)b+2,h,… ,∗
ib,h} the elements of B∗

i . Join the
k blocks in the order B∗

1,B
∗
2,… ,B∗

k together to obtain a new set of functional pseudo observations. The
MBB generated sample of pseudo random elements consists then of the set ∗

1,h,∗
2,h,… ,∗

n−h,h.
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Note that if we are interested in the distribution of the sample autocovariance operator ̂h for some (fixed) lag h,
−n < h < 0, then the above algorithm can be applied to the time series of operators 𝕐n+h = {̂t,h, t = h + 1, h +
2,… , n}, where ̂t,h = (Xt−h −Xn)⊗ (Xt −Xn), t = h+1, h+2,… , n, with minor changes. Hence, below, we only
focus on the case of 0 ≤ h < n.

Given a stretch ∗
1,h,∗

2,h,… ,∗
n−h,h of pseudo random elements generated by the above MBB procedure, a

bootstrap estimator of the autocovariance operator is given by the sample mean

̂∗
h = 1

n

n−h∑
t=1

∗
t,h.

The proposal is then to estimate the distribution of
√

n(̂h−h) by the distribution of the bootstrap analog
√

n(̂∗
h −

𝔼∗(̂∗
h )), where 𝔼∗(̂∗

h ) is (conditionally on 𝕏n) the expected value of ̂∗
h .Assuming, for simplicity, that n−h = kb,

straightforward calculations yield

𝔼∗(̂∗
h ) =

1
N

n − h
n

[
n−h∑
t=1

̂t,h −
b−1∑
j=1

(
1 −

j

b

)
(̂j,h + ̂n−h−j+1,h)

]
. (3)

The following theorem establishes validity of the MBB procedure suggested for approximating the distribution
of

√
n(Ĉh − Ch).

Theorem 2.1. Suppose that the stochastic process 𝕏 satisfies Assumption 1. For 0 ≤ h < n, let
∗

1,h,∗
2,h,… ,∗

n−h,h be a stretch of functional pseudo random elements generated as in Steps 1-3 of the MBB
procedure and assume that the block size b = b(n) satisfies b−1 + bn−1∕3 = o(1) as n → ∞. Then, as n → ∞,

d((√n(̂∗
h − 𝔼∗(̂∗

h )) ∣ 𝕏n), (√n(̂h − h))) → 0, in probability,

where d is any metric metrizing weak convergence on the space of Hilbert–Schmidt operators acting on L2 and
(Z) denotes the law of the random element Z belonging to this operator space.

3. TESTING EQUALITY OF LAG-ZERO AUTOCOVARIANCE OPERATORS

We consider the problem of testing the equality of the lag-zero autocovariance operators for a finite number of
functional time series and use a modified version of the propopsed MBB procedure. This modification leads to a
MBB-based testing procedure which generates functional pseudo observations that satisfy the null hypothesis that
all lag-zero autocovariance operators are equal. Since this procedure is designed without having any particular
statistic in mind, it can potentially be applied to a broad range of possible test statistics which are appropriate for
the particular testing problem considered.

To make things specific, consider K independent, L4-m-approximable functional time series, denoted in the
following by 𝕏K,M = {Xi,t, i = 1, 2… ,K, t = 1, 2,… , ni}, where K denotes the number of time series and M =∑K

i=1 ni the total number of observations, with ni denoting the length of the i time series. Let i,0, i = 1, 2… ,K,
be the lag-zero autocovariance operator of the ith functional time series, that is, i,0 = 𝔼[(Xi,t − 𝜇i)⊗ (Xi,t − 𝜇i)],
where 𝜇i = EXi,t. The null hypothesis of interest is then

H0 ∶ 1,0 = 2,0 = · · · = K,0 (4)

and the alternative hypothesis is

H1 ∶ ∃ k,m ∈ {1, 2,… ,K} with k ≠ m such that ‖k,0 − m,0‖HS > 0.
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By considering the operator processes {i,t = (Xi,t − 𝜇i) ⊗ (Xi,t − 𝜇i), t ∈ ℤ}, i = 1, 2… ,K, and denoting by
𝜇

i = 𝔼i,t the expectation of i,t, the null hypothesis of interest can be equivalently written as

H0 ∶ 𝜇

1 = 𝜇

2 = · · · = 𝜇
K (5)

and the alternative hypothesis as

H1 ∶ ∃ k,m ∈ {1, 2,… ,K} with k ≠ m such that ‖𝜇
k − 𝜇

m‖HS > 0.

Consequently, the aim of the bootstrap is to generate a set of K pseudo random elements 𝕐 ∗
K,M = {∗

i,t, i =
1, 2… ,K, t = 1, 2,… , ni}which satisfy the null hypothesis (5), that is, the expectations E∗(∗

i,t) should be identical
for all i = 1, 2,… ,K. This leads to the MBB-based testing procedure described in the next section.

3.1. The MBB-based Testing Procedure

Suppose that, to test the null hypothesis (5), we use a real-valued test statistic TM , where, for simplicity, we
assume that large values of TM argue against the null hypothesis. Since we focus on the tensor operators i,t, t =
1, 2,… , ni, i = 1, 2… ,K, it is natural to assume that the test statistic TM is based on the tensor product of the
centered observed functions, that is on ̂i,t = (Xi,t − Xi,ni

) ⊗ (Xi,t − Xi,ni
), i = 1, 2… ,K, t = 1, 2,… , ni, where

Xi,ni
is the sample mean function of the ith population, i.e, Xi,ni

= (1∕ni)
∑ni

t=1 Xi,t. Suppose next, without los of
generality, that the null hypothesis (5) is rejected if TM > dM,𝛼 , where, for 𝛼 ∈ (0, 1), dM,𝛼 denotes the upper
𝛼-percentage point of the distribution of TM under H0. We propose to approximate the distribution of TM under H0

by the distribution of the bootstrap quantity T∗
M , where the latter is obtained through the following steps.

Step 1 : Calculate the pooled mean

M = 1
M

K∑
i=1

ni∑
t=1

̂i,t.

Step 2 : For i = 1, 2,… ,K, let bi = bi(n) ∈ {1, 2,… , n − 1} be the block size used for the ith functional time
series and let Ni = ni − bi + 1. Calculate

̃i,𝜉 =
1
Ni

Ni+𝜉−1∑
t=𝜉

̂i,t, 𝜉 = 1, 2,… , bi

Step 3 : For simplicity assume that ni = kibi and for i = 1, 2,… ,K, let qi
1, q

i
2,… , qi

ki
be i.i.d. integers selected

from a discrete probability distribution which assigns the probability 1∕Ni to each element of the set
{1, 2,… ,Ni}. Generate bootstrap functional pseudo observations ∗

i,t, t = 1, 2,… , ni, i = 1, 2,… ,K, as

∗
i,t = M + ̂∗

i,t − ̃i,𝜉 , 𝜉 = bi if t mod bi = 0 and 𝜉 = t mod bi otherwise,

where ̂∗
i,𝜉+(s−1)bi

= ̂i,qi
s+𝜉−1, s = 1, 2… , ki and 𝜉 = 1, 2,… , bi

Step 4 : Let T∗
M be the same statistic as TM but calculated using, instead of the ̂i,t’s the bootstrap pseudo random

elements ∗
i,t, t = 1, 2,… , ni, i = 1, 2,… ,K. Given 𝕏K,M , denote by D∗

M,T the distribution of T∗
M . Then

for 𝛼 ∈ (0, 1), the null hypothesis H0 is rejected if

TM > d∗
M,𝛼 ,

where d∗
M,𝛼 denotes the upper 𝛼-percentage point of the distribution of T∗

M , that is, ℙ(T∗
M > d∗

M,𝛼) = 𝛼.
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Notice that the distribution D∗
M,T is unknown but it can be evaluated by Monte Carlo.

Before establishing validity of the described MBB procedure some remarks are in order. Observe that the mean
̃i,𝜉 calculated in Step 2, is the (conditional on 𝕏K,M) expected value of ̂∗

i,qi
s+𝜉−1

for 𝜉 = bi if t mod bi = 0 and

𝜉 = t mod bi otherwise. This motivates the definition

∗
i,t = M + ̂∗

i,t − ̃i,𝜉 , t = 1, 2,… , ni, i = 1, 2,… ,K,

used in Step 3 of the MBB algorithm. This definition ensures that the generated pseudo random elements ∗
i,t, t =

1, 2,… , ni, i = 1, 2,… ,K, satisfy the null hypothesis (5). In fact, it is easily seen that the pseudo random elements
∗

i,t have (conditional on 𝕏K,M) an expected value which is equal to M , that is E∗(∗
i,t) = M for all t = 1,… , ni

and i = 1,… ,K.

3.2. Validity of the MBB-based Testing Procedure

Although the proposed MBB-based testing procedure is not designed having any specific test statistic in mind,
establishing its validity requires the consideration of a specific class of statistics. In the following, and for sim-
plicity, we focus on the case of two independent population, that is, K = 2. In this case, a natural approach to test
equality of the lag-zero autocovariance operators is to consider a fully functional test statistic which evaluates the
difference between the empirical lag-zero autocovariance operators, for instance, to use the test statistic

TM =
n1n2

M
‖̂1,0 − ̂2,0‖2

HS =
n1n2

M
‖1,n1

− 2,n2
‖2

HS,

where  i,ni
= (1∕ni)

∑ni

t=1 ̂i,t, i = 1, 2, and M = n1 + n2. Lemma 3.1 delivers the asymptotic distribution of TM

under H0.

Lemma 3.1. Let H0 hold true, Assumption 1 be satisfied and assume that, as min{n1, n2} → ∞, n1∕M → 𝜃 ∈
(0, 1). Then,

TM

d
→ ‖0‖2

HS

where 0 =
√

1 − 𝜃1,0 −
√
𝜃2,0 and i,0, i = 1, 2, are two independent mean zero Gaussian Hilbert–Schmidt

operators with covariance operators Γi,0, i = 1, 2, given by

Γi,0 = 𝔼[((Xi,1 − 𝜇i)⊗ (Xi,1 − 𝜇i) − i,0)⊗ ((Xi,1 − 𝜇i)⊗ (Xi,1 − 𝜇i) − i,0)]

+ 2
∞∑

s=2

𝔼[((Xi,1 − 𝜇i)⊗ (Xi,1 − 𝜇i) − i,0)⊗ ((Xi,s − 𝜇i)⊗ (Xi,s − 𝜇i) − i,0)].

As it is seen from the above lemma, the limiting distribution of TM depends on the difficult to estimate covariance
operators Γi,0, i = 1, 2, which describe the entire fourth order structure of the underlying functional processes
𝕏i. This makes the implementation of the derived asymptotic result for calculating critical values of the TM test a
difficult task. Theorem 3.1 below shows that the MMB-based testing procedure estimates consistently the limiting
distribution ‖0‖2

HS of the TM test and, consequently, that it can be applied to estimate the critical values of interest.
For this, we apply the MBB-based testing procedure introduced in Section 3.1 to generate {∗

i,t, t = 1, 2,… .ni},
i ∈ {1, 2}, and use the bootstrap pseudo statistic

T∗
M =

n1n2

M
‖∗

1,n1
− ∗

2,n2
‖2

HS,

where ∗
i,ni

= (1∕ni)
∑ni

t=1 ∗
i,t, i = 1, 2. We then have the following result.
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Theorem 3.1. Let Assumption 1 be satisfied and assume that min{n1, n2} → ∞, n1∕M → 𝜃 ∈ (0, 1). Also, for
i ∈ {1, 2}, let the block size bi = bi(n) satisfies b−1

i + bin
−1∕3
i = o(1), as ni → ∞. Then,

sup
x∈ℝ

||P(T∗
M ≤ x ∣ 𝕏K,M) − PH0

(TM ≤ x)|| → 0, in probability,

where PH0
(X ≤ ⋅) denotes the distribution function of the random variable X when H0 is true.

Remark 3.1. If H1 is true, that is if ‖1,0 − 2,0‖HS = ‖𝔼1,t − 𝔼2,t‖HS > 0, then it is easily seen that TM → ∞
under the conditions on n1 and n2 stated in Lemma 3.1. This, together with Theorem 3.1 and Slutsky’s theorem,
imply consistency of the TM test based on bootstrap critical values obtained using the distribution of T∗

M , that is,
the power of the test approaches unity, as n1, n2 → ∞.

Remark 3.2. The advantage of our approach to translate the testing problem considered to a testing problem of
equality of mean functions and to apply the bootstrap to the time series of tensor operators i,t, t = 1, 2,… , ni,
i = 1,… ,K, is manifested in the generality under which validity of the MBB-based testing procedure is established
in Theorem 3.1. To elaborate, a MBB approach which would select blocks from the pooled (mixed) set of functional
time series to generate bootstrap pseudo elements which satisfy the null hypothesis, will lead to the generation of
K new functional pseudo time series, which asymptotically will imitate correctly the pooled second and the fourth
order moment structure of the underlying functional processes. As a consequence, the limiting distribution of TM

as stated in Lemma 3.1 and that of the corresponding MBB analog will coincide only if Γ1 = Γ2. This obviously
restricts the class of processes for which the MBB procedure is consistent. In the more simple i.i.d. case, a similar
limitation exists by the condition 1 = 2 imposed in Theorem 1 of Paparoditis and Sapatinas (2016). Notice that
this limitation can be resolved by applying also in the i.i.d. case the basic bootstrap idea proposed in this article.
That is, to first translate the testing problem to one of testing equality of means of samples consisting of the i.i.d.
tensor operators and then to apply an appropriate i.i.d. bootstrap procedure.

4. NUMERICAL RESULTS

In this section, we investigate via simulations the size and power behavior of the MBB-based testing procedure
applied to testing the equality of lag zero autocovariance operators and we illustrate its applicability by considering
a real life dataset.

4.1. Simulations

In the simulation experiment, two functional time series X1,t and X2,t are generated from the functional autoregres-
sive (FAR) models,

X1,t(u) = ∫ 𝜓(u, v)X1,t−1(v) dv + 𝛿X1,t−2(u) + B1,t(u),

X2,t(u) = ∫ 𝜓(u, v)X2,t−1(v) dv + B2,t(u), (6)

or from the functional moving average (FMA) models,

X1,t(u) = ∫ 𝜓(u, v)B1,t−1(v) dv + 𝛿B1,t−2(u) + B1,t(u),

X2,t(u) = ∫ 𝜓(u, v)B2,t−1(v) dv + B2,t(u). (7)
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The kernel function 𝜓(⋅, ⋅) in the above models is equal and it is given by

𝜓(u, v) = e−(u
2+v2)∕2

4 ∫ e−t2 dt
, (u, v) ∈ [0, 1]2,

while the Bi,t(⋅)’s (i = 1, 2) are generated as i.i.d. Brownian bridges, independent for different i. Notice that, in
both cases above, 𝛿 = 0 corresponds to H0 while 𝛿 > 0 corresponds to H1.

All curves were approximated using T = 21 equidistant points 𝜏1, 𝜏2,… , 𝜏21 in the unit interval  and trans-
formed into functional objects using the Fourier basis with 21 basis functions. Functional time series of length
n1 = n2 = 200 are then generated and testing the null hypothesis H0 ∶ 1,0 = 2,0 is considered using the TM test
investigated Section 3.2. All bootstrap calculations are based on B = 1000 bootstrap replicates, R = 1000 model
repetitions have been considered and a range of different block sizes have been used. Since n1 = n2 we set for
simplicity b = b1 = b2.

Regarding the selection of b we mention the following. As an inspection of the proof of Theorem 2.1 shows, the
MBB estimator of the distribution of interest also delivers a lag-window type estimator of the covariance operator
Γ0 of the limiting Gaussian process 0 using implicitly the Bartlett lag-window with ‘truncation lag’ the block
size b; see also (3). Viewing the choice of b as the selection of the truncation lag in the aforementioned lag window
type estimator, allows for the use of some results available in the literature in order to select b. To elaborate, the
choice of the truncation lag in the functional set-up has been discussed in Horváth et al. (2016) and Rice and Shang
(2017), where different procedures to select this parameter have been investigated. In our context, we found the
simple rule proposed by Rice and Shang (2017) quite effective according to which the block length b is set equal
to the smallest integer larger or equal to n0.3. Various choices of the block length b have been considered in our
simulations.

The TM test has been applied using three standard nominal levels 𝛼 = 0.01, 0.05, and 0.10. Notice that 𝛿 = 0
corresponds to the null hypothesis while to investigate the power behavior of the test we set 𝛿 = 0 for the first
functional time series and allow for 𝛿 ∈ {0.2, 0.5, 0.8} for the second and for each of the two different models
considered. The results obtained for different values of the block size b using the FAR model (6) as well as the
FMA model (7) are shown in Table I. As it is seen from this table, the MBB based testing procedure retains the
nominal level with good size results for both dependence structures considered. Furthermore, the power of the TM

test increases as the deviations from the null increase and reaches high values for the large values of the deviation
parameter 𝛿 considered.

4.2. Cyprus Daily Temperature Data

The bootstrap based TM testing is applied to a real-life dataset which consists of daily temperatures recorded in
15 minutes intervals in Nicosia, Cyprus, that is, there are 96 temperature measurements for each day. Sample
A and Sample B consist of the daily temperatures recorded in Summer 2007 (1 June 2007–31 August 2007)
and Summer 2009 (1 June 2009–31 August 2009) respectively. The measurements have been transformed into
functional objects using the Fourier basis with 21 basis functions. All curves are rescaled to be defined in the
interval  = [0, 1]. Figure 1 shows the estimated lag-zero autocovariance kernels ĉi(u, v) = n−1

i

∑ni

t=1(Xi,t(u) −
Xi(u))(Xi,t(v) − Xi(v)), (u, v) ∈  × , associated with the lag-zero autocovariance operators for the temperature
curves of the summer 2007 (i = 1) and of the summer 2009 (i = 2). We are interested in testing whether the
covariance structure of the daily temperature curves of the two summer periods is the same, a question which can
be important in the context of investigating the changing behavior of the Mediterranean climate. Furthermore,
such a question could also arise if one is concerned with the stationarity behavior of the centered time series of
temperature curves. The bootstrap p-values of the MBB-based TM test using B = 1000 bootstrap replicates and
for a selection of different block sizes b = b1 = b2, are equal to 0.016 (b = 3), 0.015 (b = 4), 0.033 (b = 5)
and 0.030 (b = 6). Notice that in this example, n1 = n2 = 92 and that, for this sample size, the value of b = 4 is
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Table I. Empirical size and power of the TM test using bootstrap critical values

Block size, b

𝛿 𝛼 2 4 6 8 10

FAR(1) 0 0.01 0.011 0.022 0.014 0.021 0.018
0.05 0.050 0.062 0.063 0.083 0.076
0.10 0.108 0.123 0.108 0.132 0.125

0.2 0.01 0.025 0.018 0.020 0.025 0.026
0.05 0.089 0.093 0.085 0.081 0.089
0.10 0.151 0.171 0.150 0.156 0.151

0.5 0.01 0.593 0.495 0.411 0.381 0.375
0.05 0.776 0.731 0.698 0.676 0.672
0.10 0.839 0.813 0.794 0.788 0.791

0.8 0.01 1.000 1.000 1.000 0.997 0.989
0.05 1.000 1.000 1.000 1.000 1.000
0.10 1.000 1.000 1.000 1.000 1.000

FAM(1) 0 0.01 0.012 0.013 0.014 0.013 0.015
0.05 0.065 0.073 0.060 0.054 0.071
0.10 0.121 0.108 0.118 0.116 0.127

0.2 0.01 0.015 0.022 0.019 0.024 0.016
0.05 0.055 0.076 0.065 0.079 0.062
0.10 0.1114 0.130 0.119 0.123 0.122

0.5 0.01 0.148 0.125 0.143 0.121 0.131
0.05 0.339 0.239 0.330 0.292 0.289
0.10 0.479 0.421 0.468 0.412 0.418

0.8 0.01 0.074 0.695 0.689 0.693 0.681
0.05 0.920 0.889 0.899 0.887 0.900
0.10 0.957 0.944 0.941 0.949 0.957
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Figure 1. Estimated lag-zero autocovariance kernels of the temperature curves: Summer 2007 (left panel) and summer 2009
(right panel)

the one chosen by the simple selection rule discussed in the previous section. As it is evident from these results,
the bootstrap p-values of the MBB-based test are quite small and lead to a rejection of H0, for instance at the
commonly used 5% level.

To see were the differences between the temperatures in the two summer periods come from and to better inter-
pret the test results, Figure 2 presents a contour plot of the estimated squared differences |̂c1(u, v) − ĉ2(u, v)|2 for
different values of (u, v) in the plane [0, 1]2. Note that the Hilbert–Schmidt distance ‖̂1,0 − ̂2,0‖HS appearing in

the test statistic TM can be approximated by the discretized quantity
√

L−2
∑L

i=1

∑L
j=1 |̂c1(ui, vj) − ĉ2(ui, vj)|2, where

L = 96 is the number of equidistant time points in the interval [0, 1] used and at which the temperature measure-
ments are recorded. Large values of |̂c1(ui, vj)−ĉ2(ui, vj)|2 (i.e., dark gray regions in Figure 2) contribute strongly to
the value of the test statistic TM and pinpoint to regions where large differences between the corresponding lag-zero
autocovariance operators occur. Taking into account the symmetry of the covariance kernel c(⋅, ⋅), Figure 2 is very
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Figure 2. Contour plot of the estimated differences |̂c1(ui, vj) − ĉ2(ui, vj)|2 for (i, j) ∈ {1, 2,… , 96}

informative. It shows that the main differences between the two covariance operators are concentrated between
the time regions 3:00 am to 6:00 am and 3:00 pm to 8:00 pm of the daily temperature curves, with the strongest
contributions to the test statistic being due to the largest differences recorded around 4:00 to 4:30 in the morning
and 6:30 to 7:30 in the evening.
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APPENDIX A. PROOFS

In the following we assume, without loss of generality, that 𝜇 = 0 and we consider the case h = 0 only. Further-

more, we let ̂̃0 = n−1 ∑n
t=1 Xt ⊗ Xt, Zt = Xt ⊗ Xt − 0, Ẑt = Xt ⊗ Xt − ̂̃0, Z̃t = Xt ⊗ Xt, Zt,m = Xt,m ⊗ Xt,m − 0,

Z∗
t = X∗

t ⊗ X∗
t and Ẑ∗

t = X∗
t ⊗ X∗

t − ̂̃0. Also, we denote by Zt(u, v) the kernel of the integral operator Zt, that is,
Zt(u, v) = Xt(u)Xt(v) − c0(u, v), where c0(u, v) = 𝔼[Xt(u)Xt(v)], and by Zt,m(u, v) the kernel of the integral operator
Zt,m, that is, Zt,m(u, v) = Xt,m(u)Xt,m(v) − c0(u, v).

We first fix some notation and present two basic lemmas which will be used in the proofs. Toward this note
first that we repeatedly use the fact that, by stationarity, 𝔼‖Xt,m − Xt‖p = 𝔼‖X0,m − X0‖p and 𝔼‖Xt,m‖p =
𝔼‖Xt‖p = 𝔼‖X0‖p for p ∈ ℕ and for all t ∈ ℤ. Also note that Kokoszka and Reimherr (2013) proved that the
L4-m-approximability of 𝕏 implies that the tensor product process {Xt ⊗ Xt, t ∈ ℤ} is L2-m-approximable.

For Xt,m ⊗ Xt,m the m-dependent approximation of Xt ⊗ Xt, we, therefore, have

∞∑
m=1

(
𝔼‖Xt ⊗ Xt − Xt,m ⊗ Xt,m‖2

HS

)1∕2

< ∞. (A1)

Furthermore, since ‖X0 ⊗Xt‖HS = ‖X0‖‖Xt‖ for all t ∈ ℤ, and using Cauchy–Schwarz’s inequality, we get, for
all t ∈ ℤ,

𝔼‖Xt ⊗ Xt − Xt,m ⊗ Xt,m‖2
HS ≤ 2𝔼‖Xt ⊗ (Xt − Xt,m)‖2

HS + 2𝔼‖(Xt − Xt,m)⊗ Xt,m‖2
HS

≤ 4(𝔼‖Xt‖4)1∕2(𝔼‖Xt − Xt,m‖4)1∕2.
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Therefore, by Assumption 1, we get, for all t ∈ ℤ,

lim
m→∞

m
(
𝔼‖Xt ⊗ Xt − Xt,m ⊗ Xt,m‖2

HS

)1∕2 ≤ 2(𝔼‖Xt‖4)1∕4 lim
m→∞

m(𝔼‖Xt − Xt,m‖4)1∕4 = 0 (A2)

and by the same arguments,

‖𝔼[X0 ⊗ Xt]‖HS = ‖𝔼[X0 ⊗ (Xt − Xt,t]‖HS ≤ (
𝔼‖X0‖2

HS

)1∕2 (
𝔼‖X0 − X0,t‖2

HS

)1∕2

≤ (
𝔼‖X0‖2

HS

)1∕2 (
𝔼‖X0 − X0,t‖4

HS

)1∕4
.

Therefore, the L4-m-approximability assumption implies that
∑

t∈ℤ ‖𝔼[X0 ⊗ Xt]‖HS < ∞.
To prove Theorem 2.1, we establish below Lemmas A.1 and A.2. Their proofs are given in the Supporting

information.

Lemma A.1. Let gb(⋅) be a non-negative, continuous and bounded function defined on ℝ, satisfying gb(0) = 1,
gb(u) = gb(−u), gb(u) ≤ 1 for all u, gb(u) = 0, if |u| > c, for some c > 0. Assume that for any fixed u, gb(u) → 1
as n → ∞. Suppose that the process 𝕏 satisfies Assumption 1 and that b = b(n) is a sequence of integers such that
b−1 + bn−1∕3 = o(1) as n → ∞. Then, as n → ∞,

‖‖‖‖‖
b−1∑

s=−b+1

gb(s)Γ̂s −
∞∑

s=−∞
𝔼[Z0 ⊗ Zs]

‖‖‖‖‖HS

= op(1),

where Γ̂s =
1

n

∑n−s
t=1 Ẑt ⊗ Ẑt+s for 0 ≤ s ≤ b − 1 and Γ̂s =

1

n

∑n+s
t=1 Ẑt−s ⊗ Ẑt for −b + 1 ≤ s < 0.

Lemma A.2. Let gb(⋅) be a non-negative, continuous and bounded function satisfying the conditions of
Lemma A.1. Suppose that 𝕏 satisfies Assumption 1 and that b = b(n) is a sequence of integers such that
b−1 + bn−1∕2 = o(1) as n → ∞. Then, as n → ∞,

b−1∑
s=−b+1

gb(s)
1
n

n−|s|∑
t=1

∫ ∫ Zt(u, v)Zt+|s|(u, v)dudv
P
→

∞∑
s=−∞

𝔼∫ ∫ Z0(u, v)Zs(u, v)dudv.

Proof of Theorem 2.1. By the triangle inequality and Theorem 3 of Kokoszka and Reimherr (2013), the assertion
of the theorem is established if we show that, as n → ∞,√

n(̂∗
0 − 𝔼∗(̂∗

0 )) ⇒ 0, (A3)

in probability, where 0 is a mean zero Gaussian Hilbert Schmidt operator with covariance operator given by

Γ0 = 𝔼[Z1 ⊗ Z1] + 2
∞∑

s=2

𝔼[Z1 ⊗ Zs].

Using Theorem 1 of Horváth et al. (2013), we get√
n(̂∗

0 − 𝔼∗(̂∗
0 )) =

1√
n

n∑
t=1

[
X∗

t ⊗ X∗
t − 𝔼∗(X∗

t ⊗ X∗
t ) − Xn ⊗ (X∗

t − 𝔼∗(X∗
t )) − (X∗

t − 𝔼∗(X∗
t ))⊗ Xn

]
= 1√

n

n∑
t=1

[Z∗
t − 𝔼∗(Z∗

t )] + OP(1∕
√

n).
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Also note that

1√
n

n∑
t=1

[Z∗
t − 𝔼∗(Z∗

t )] =
1√
k

k∑
t=1

(
1√
b

b∑
i=1

(
Z∗
(t−1)b+i − 𝔼∗(Z∗

(t−1)b+i)
))

= 1√
k

k∑
t=1

Ŷ∗
t ,

with an obvious notation for Ŷ∗
t , t = 1, 2,… , k. Recall that due to the block bootstrap resampling scheme, the

random variables Ŷ∗
t , t = 1, 2,… , k, are i.i.d. Therefore to prove (A3), it suffices by Lemma 5 of Kokoszka and

Reimherr (2013), to prove that,

(i)

⟨
1√
k

∑k
t=1 Ŷ∗

t , y

⟩
HS

d
→ N(0, 𝜎2(y)) for every Hilbert Schmidt operator y acting on L2,

and that

(ii) limn→∞ 𝔼∗
‖‖‖‖‖‖ 1√

k

∑k
t=1 Ŷ∗

t

‖‖‖‖‖‖
2

HS

exists and is finite.

To establish assertion A, we first prove that, as n → ∞,

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)
P
→ 𝜎2(y). (A4)

Consider (A4) and notice that

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)
= Var∗

(⟨Ŷ∗
1 , y⟩HS

)
= 𝔼∗

[⟨
1√
b

b∑
t=1

(Z∗
t − 𝔼∗(Z∗

t )), y

⟩
HS

]2

. (A5)

Let N = n−b+1, Ỹt = b−1∕2(Z̃t + Z̃t+1+…+ Z̃t+b−1), t = 1, 2,… ,N and Ỹ∗
t = b−1∕2 ∑b

i=1 Z∗
(t−1)b+i, t = 1, 2,… , k.

Since n∕N → 1 as n → ∞, in the following we will occasionally replace 1∕N by 1∕n. Notice that,

𝔼∗

(⟨
1√
b

b∑
t=1

Z∗
t , y

⟩
HS

)
= 𝔼∗(Ỹ∗

1 ) =
1
N

N∑
t=1

⟨Ỹt, y⟩HS

=
√

b

N

[
n∑

t=1

⟨Z̃t, y⟩HS −
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]

= ⟨√b ̂̃n, y⟩ − √
b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]
. (A6)

Therefore,

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)
= 𝔼∗

[⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

+
√

b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]]2
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= 𝔼∗

[⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

]2

+

[√
b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]]2

+ 2

[√
b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]]
𝔼∗

[⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

]

= 𝔼∗

[⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

]2

+ OP(b3∕n2). (A7)

Let Ŷt = b−1∕2(Ẑt + Ẑt+1 + · · · + Ẑt+b−1), t = 1, 2,… ,N. Since,

𝔼∗

[⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

]2

= 1
N

N∑
t=1

⟨Ŷt, y⟩2
HS = 1

N

n∑
t=1

⟨Ẑt, y⟩HS⟨Ẑt, y⟩HS

+
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[⟨Ẑt, y⟩HS⟨Ẑt+i, y⟩HS + ⟨Ẑt+i, y⟩HS⟨Ẑt, y⟩HS]

− 1
N

b−1∑
i=1

(
1 − i

b

)
[⟨Ẑi, y⟩HS⟨Ẑi, y⟩HS + ⟨Ẑn−i+1, y⟩HS⟨Ẑn−i+1, y⟩]HS

− 1
N

b−1∑
i=1

b−t∑
j=1

(
1 −

j + i

b

)
[⟨Ẑj, y⟩HS⟨Ẑj+i, y⟩HS + ⟨Ẑn−j+1−i, y⟩HS⟨Ẑn−j+1, y⟩HS

+ ⟨Ẑj+i, y⟩HS⟨Ẑj, y⟩HS + ⟨Ẑn−j+1, y⟩HS⟨Ẑn−j+1−i, y⟩HS],

we get, using (A7),

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)

= 1
N

n∑
t=1

⟨Ẑt, y⟩HS⟨Ẑt, y⟩HS +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[⟨Ẑt, y⟩HS⟨Ẑt+i, y⟩HS + ⟨Ẑt+i, y⟩HS⟨Ẑt, y⟩HS]

+ OP(b∕n) + OP(b2∕n) + OP(b3∕n2).

Therefore,

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)

= 1
N

n∑
t=1

⟨Ẑt ⊗ Ẑt, y⊗ y⟩HS +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[⟨Ẑt ⊗ Ẑt+i, y⊗ y⟩HS + ⟨Ẑt+i ⊗ Ẑt, y⊗ y⟩HS]

+ OP(b2∕n). (A8)

Let gb(i) =
(

1 − |i|
b

)
in Lemma A.1, and use the triangular inequality to get

||||||
⟨

1
N

n∑
t=1

Ẑt ⊗ Ẑt +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[Ẑt ⊗ Ẑt+i + Ẑt+i ⊗ Ẑt] −
∞∑

t=−∞
𝔼[Z0 ⊗ Zt], y⊗ y

⟩
HS

||||||
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≤
‖‖‖‖‖‖ 1

N

n∑
t=1

Ẑt ⊗ Ẑt +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[Ẑt ⊗ Ẑt+i + Ẑt+i ⊗ Ẑt] −
∞∑

t=−∞
𝔼[Z0 ⊗ Zt]

‖‖‖‖‖‖HS

‖‖y⊗ y‖‖HS

= op(1).

Therefore, and using ⟨Z0 ⊗ Zt, y⊗ y⟩HS = ⟨Z0, y⟩HS⟨Zt, y⟩HS, we get from (A8), as n → ∞,

Var∗
(⟨

1√
k

k∑
t=1

Ŷ∗
t , y

⟩
HS

)
P
→

⟨ ∞∑
t=−∞

𝔼[Z0 ⊗ Zt], y⊗ y

⟩
HS

= ⟨Γ0, y⊗ y⟩HS = 𝜎2(y). (A9)

We next establish the asymptotic normality stated in (i). Since ⟨Ŷ∗
t , y⟩HS, t = 1, 2,… , k are i.i.d. real-valued

random variables, we show that Lindeberg’s condition is satisfied, that is, for every 𝜀 > 0, as n → ∞,

1
𝜏∗2

k

k∑
t=1

𝔼∗
[(⟨Ŷ∗

t , y⟩HS − 𝔼∗(⟨Ŷ∗
t , y⟩HS)

)2𝟙
(|⟨Ŷ∗

t , y⟩HS − E∗(⟨Ŷ∗
t , y⟩HS)| > 𝜀𝜏∗k )] = op(1), (A10)

where 𝟙A(x) denotes the indicator function of the set A and

𝜏∗2
k =

k∑
t=1

Var∗(⟨Ŷ∗
t , y⟩HS) = kVar∗(⟨Ŷ∗

1 , y⟩HS). (A11)

To establish (A10), and because of (A9) and (A11), it suffices to show that, for any 𝛿 > 0, as n → ∞,

P

(
1
k

k∑
t=1

𝔼∗
[
(⟨Ŷ∗

t , y⟩HS − 𝔼∗(⟨Ŷ∗
t , y⟩HS))2𝟙(|⟨Ŷ∗

t , y⟩HS − E∗(⟨Ŷ∗
t , y⟩HS)| > 𝜀𝜏∗k )] > 𝛿

)
→ 0. (A12)

Toward this, notice first that, for any two random variables X and Y and any 𝜂 > 0,

𝔼[|X + Y|2𝟙(|X + Y| > 𝜂)]
≤ 4

[
𝔼|X|2𝟙(|X| > 𝜂∕2) + 𝔼|Y|2𝟙(|Y| > 𝜂∕2)

]
; (A13)

see Lahiri (2003, p. 56). Since the random variables ⟨Ŷ∗
t , y⟩HS are i.i.d., we get using expression (A6) and Markov’s

inequality that, as n → ∞,

P

(
1
k

k∑
t=1

𝔼∗
[
(⟨Ŷ∗

t , y⟩HS − 𝔼∗(⟨Ŷ∗
t , y⟩HS))2𝟙(|⟨Ŷ∗

t , y⟩HS − 𝔼∗(⟨Ŷ∗
t , y⟩HS)| > 𝜀𝜏∗k )] > 𝛿

)
≤ 𝛿−1𝔼

{
𝔼∗

[
(⟨Ŷ∗

1 , y⟩HS − 𝔼∗(⟨Ŷ∗
1 , y⟩HS))2𝟙(|⟨Ŷ∗

1 , y⟩HS − 𝔼∗(⟨Ŷ∗
1 , y⟩HS)| > 𝜀𝜏∗k )]}

= 𝛿−1𝔼
{
𝔼∗

[(⟨
1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

+
√

b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

])2

× 𝟙

(||||||
⟨

1√
b

b∑
t=1

Ẑ∗
t , y

⟩
HS

+
√

b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]|||||| > 𝜀𝜏∗k
)]}
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= 𝛿−1𝔼
[

1
N

N∑
t=1

(⟨Ŷt, y⟩HS +
√

b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

])2

× 𝟙

(||||||⟨Ŷt, y⟩HS +
√

b

N

[
b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

]|||||| > 𝜀𝜏∗k
)]

≤ 4𝛿−1

[
𝔼(⟨Ŷ1, y⟩2

HS)𝟙(|⟨Ŷ1, y⟩HS| > 𝜀𝜏∗k ∕2) + 𝔼

(√
b

N

b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

)2

× 𝟙(
||||||
(√

b

N

b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

)|||||| > 𝜀𝜏∗k ∕2)
]

≤ 4𝛿−1

[
𝔼(⟨Ŷ1, y⟩2

HS)𝟙(|⟨Ŷ1, y⟩HS| > 𝜀𝜏∗k ∕2) + 𝔼

(√
b

N

b−1∑
i=1

(
1 − i

b

)
[⟨Z̃i, y⟩HS + ⟨Z̃n−i+1, y⟩HS]

)2 ]
≤ 4𝛿−1𝔼(⟨Ŷ1, y⟩2

HS)𝟙(|⟨Ŷ1, y⟩HS| > 𝜀𝜏∗k ∕2) + O(b3∕n2). (A14)

By Lemma 4 of Kokoszka and Reimherr (2013) it follows that
∑∞

s=−∞ 𝔼⟨Z0, y⟩HS⟨Zs, y⟩HS converges absolutely.
By Kronecker’s lemma, we then get, as n → ∞,

𝔼(⟨Ŷ1, y⟩2
HS) =

1
b

b∑
i=1

b∑
j=1

𝔼[⟨Ẑi, y⟩HS⟨Ẑj, y⟩HS]

=
∑
|s|<b

(
1 − |s|

b

)
𝔼[⟨Ẑ0, y⟩HS⟨Ẑs, y⟩HS]

=
∑
|s|<b

(
1 − |s|

b

)
𝔼[⟨Z0, y⟩HS⟨Zs, y⟩HS] + O(b∕n1∕2)

→
∞∑

s=−∞
𝔼[⟨Z0, y⟩HS⟨Zs, y⟩HS].

Therefore, by the dominated convergence theorem,

𝔼[⟨Ŷ1, y⟩2
HS)𝟙(|⟨Ŷ1, y⟩HS| > 𝜀𝜏∗k ∕2) = o(1) (A15)

and, therefore, assertion (i) is proved.
To establish assertion A, notice first that

𝔼∗
‖‖‖‖‖‖ 1√

k

k∑
t=1

Ŷ∗
t

‖‖‖‖‖‖
2

HS

= 𝔼∗‖Ŷ∗
1 ‖2

HS.

Furthermore, since

𝔼∗

(
1√
b

b∑
t=1

Z∗
t

)
= 1

N

N∑
t=1

Ỹt =
√

b

N

[
n∑

t=1

Z̃t −
b−1∑
i=1

(
1 − i

b

)
[Z̃i + Z̃n−i+1]

]

=
√

b̂̃Cn −
√

b

N

b−1∑
i=1

(
1 − i

b

)
[Z̃i + Z̃n−i+1],
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we get

𝔼∗‖Ŷ∗
1 ‖2

HS = 𝔼∗
‖‖‖‖‖‖ 1√

b

b∑
t=1

Ẑ∗
t +

√
b

N

b−1∑
i=1

(
1 − i

b

)
[Z̃i + Z̃n−i+1]

‖‖‖‖‖‖
2

HS

= 1
N

N∑
t=1

‖‖‖‖‖‖Ŷt +
√

b

N

b−1∑
i=1

(
1 − i

b

)
[Z̃i + Z̃n−i+1]

‖‖‖‖‖‖
2

HS

.

Since,
√

bN−1 ∑b−1
i=1

(
1 − i

b

)
[Z̃i + Z̃n−i+1] = OP(b3∕2∕n), it suffices to prove that the limit

lim
n→∞

1
N

N∑
t=1

‖Ŷt‖2
HS (A16)

exists and it is finite. Let Yt = b−1∕2(Zt + · · · + Zt+b−1), t = 1, 2,… ,N, and note that N−1 ∑N
t=1 ‖Ŷt‖2

HS =
N−1 ∑N

t=1 ‖Yt +
√

b(0 − ̂̃0)‖2
HS. By Theorem 3 of Kokoszka and Reimherr (2013), to prove (A16), it suffices to

show that

lim
n→∞

1
N

N∑
t=1

‖Yt‖2
HS (A17)

exists and it is finite. We have that

1
N

N∑
t=1

‖Yt‖2
HS =

1
N

⟨Zt,Zt⟩HS +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[⟨Zt,Zt+i⟩HS + ⟨Zt+i,Zt⟩HS]

− 1
N

b−1∑
t=1

(
1 − t

b

)
[⟨Zt,Zt⟩HS + ⟨Xn−t+1,Xn−t+1⟩]HS

− 1
N

b−1∑
t=1

b−t∑
j=1

(
1 −

t + j

b

)
[⟨Zj,Zj+t⟩HS + ⟨Zn−j+1−t,Zn−j+1⟩HS

+ ⟨Zj+t,Zj⟩HS + ⟨Zn−j+1,Zn−j+1−t⟩HS]

= 1
N

n∑
t=1

⟨Zt,Zt⟩HS +
b−1∑
i=1

(
1 − i

b

) 1
N

n−i∑
t=1

[⟨Zt,Zt+i⟩HS + ⟨Zt+i,Zt⟩HS] + OP(b2∕n)

=
b−1∑

i=−b+1

(
1 − i

b

) 1
n

n−|i|∑
t=1

∫ ∫ Zt(u, v)Zt+|i|(u, v)dudv + OP(b2∕n). (A18)

Hence, by letting gb(s) = (1 − |s|∕b) in Lemma A.2, we get that the last term above converges to∑∞
s=−∞ 𝔼 ∫∫ Z0(u, v)Zs(u, v)dudv, from which we conclude that, as n → ∞,

𝔼∗‖Y∗
1 ‖2

HS →
∞∑

s=−∞
𝔼∫ ∫ Z0(u, v)Zs(u, v)dudv,

in probability.
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Proof of Lemma 3.1. Using Theorem 3 of Kokoszka and Reimherr (2013) it follows that there exist two inde-
pendent, mean zero, Gaussian Hilbert Schmidt operators 1,0 and 2,0 with covariance operators Γ1,0 and Γ2,0

respectively, such that (√
n1(̂1,0 − 1,0),

√
n2(̂2,0 − 2,0)

)
,

converges weakly to (1,0,2,0). Since√
n1n2

M
(̂1,0 − ̂2,0) =

√
n2

M

√
n1(̂1,0 − ̃0) −

√
n1

M

√
n2(̂2,0 − ̃0),

where ̃0 is the (under H0) common lag-zero covariance operator of the two populations, we get that, for n1, n2 → ∞
and n1∕M → 𝜃,

TM

d
→ ‖0‖2

HS,

where 0 =
√

1 − 𝜃1,0 −
√
𝜃2,0.

Proof of Theorem 3.1. Using the triangle inequality and the fact that
√

n(̂i,0 − i,0) ⇒ i,0, i = 1, 2, it suffices to

prove that T∗
M converges weakly to ‖0‖2

HS, where 0 =
√

1 − 𝜃1,0−
√
𝜃2,0. This is proved along the same lines

as Lemma 3.1 using of Theorem 2.1 and the independence of the pseudo-random elements ∗
1,n1

and ∗
2,n2

.
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