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This supplement contains the proofs of Lemma 5.1 and Lemma 5.2.

1 PROOF OF LEMMA 5.1

We proceed in two steps. First, we proof that, as n — oo,
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Then, we prove that, as n — oo,
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Assertion (1.3) is proved by showing that there exists my € N such that all three terms on the right
hand side of (1.4) can be made arbitrarily small, in probability, as n — oo for m = my.

For the first term of the right hand side of the above inequality, we use the bound
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and the decomposition
ZO,m ® Zt,m - ZO & Zt = (ZO,m - ZO) ® Zt,m + ZO ® (Zt,m - Zt)

By Cauchy-Schwarz’s inequality, we get, for the first term of (1.5), that
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Therefore, by Assumption 1 of the main paper, we get that, for every e; > 0, there exists m; € N
such that the last quantity above is less than €; for every m > m;j. Consider the second term of the
right hand side of (1.5). Since Zy and Z;; are independent for t > m+1 and E[Z] = 0, we get, using

Cauchy-Schwarz’s inequality,
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Using (8) of the main paper, it follows that, for every e > 0, there exists ms € N such that the above
quantity is less than eg for every m > mso.

For the second term of the bound in (1.4), note that, for every m > 1, we have that for any fixed

Hence, the aforementioned term of interest is o, (1), if we show that, as n — oo,
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By the definition of fgm), we have that
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Since the sequence {Z; ,,, t € Z} is m-dependent, Z; ,, and Z; s, are independent for s > m+1 and,
therefore, E[Z; ,;, ® Zy45.m) = 0 for s > m+1. Hence, the number of terms E(Z;, 1, ® Z¢, 151.ms Zto,m ®

Zty+s9,m)HS 0 the last equation above which do not vanish is of order O(nb) and, consequently, as
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from which (1.6) follows by Markov’s inequality.
For the third term in (1.4) we show that, for m = mg and for any ¢ > 0,
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Using Markov’s inequality, expression (1.8) follows if we show that, for m = myg, as n — oo,
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Now, by the definitions of T, and f’gm), we have
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Using Cauchy-Schwarz’s inequality and the decomposition
Zt @ Ziys — Ztm @ Zivsm = (Zt — Ztm) @ Zigs + Ziym @ (Zis — Zitsm),

we get, for the first term of the right hand side of (1.10), the bound
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By Assumption 1 of the main paper, it follows that, for every es > 0, there exists m3 € Z such that,

for every m > mg, this quantity is less than e3. For the second term on the right hand side of (1.10),

we use the bound
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Expression (1.7) implies that the second summand of (1.11) is o(1). For the first term of (1.11), we

use the decomposition
Zi @ Ziys = Zt @ Ziyss + 2t @ (Zigs — Zits,s),

and get the bound
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For the last term of expression (1.12), we have the bound
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Therefore, since {Z;, t € Z} is L?-m-approximable, with Zo,m be the m-dependent approximation of
Z, it follows that for every e4 > 0, there exists my4 € N such that, for every m > my, this term is less
than e4. Consider next the first term of (1.12). We have
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Since Zp and Z; ¢ are independent, ||Zo ® Zi||ps = || Zol|us||Z¢||ns and E(Zy ® Zs s, Zt @ Ziys,s)HS =
E(Zo, Zt) Hs(Zs,s, Zi+s,s)us = 0 for [t| > s. Using Cauchy-Schwarz’s inequality, we get
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Therefore, by (1.13), the first term of (1.12) is Op(b*/2/n'/?). The proof is then concluded by choosing

mo = max{my, ma, ms, my}.

Consider (1.2). First note that using Theorem 3 of Kokoszka and Reimherr (2013), we get, as
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Therefore, it suffices to show that
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Again, by Theorem 3 of Kokoszka and Reimherr (2013), we get that, as n — oo,
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This completes the proof of the lemma.

2 PROOF OF LEMMA 5.2

Since Y72 E [[ Zo(u,v)Z(u, v)dudv converges and is finite, and since
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as n — 00, it suffices to prove that
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assertion (2.1) is proved by showing that there exists mg € N such that all three terms on the right
hand side of (2.2) can be made arbitrarily small in probability as n — oo for m = my.

For the first term, we use the bound
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By Cauchy-Schwarz’s inequality and the decomposition
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we get that the first term of (2.3) is bounded by
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Using (9) of the main paper, and since {X; ® Xy, t € Z} is L>-m-approximable, it follows that for
every €1 > 0 there exists m; € N such that the above term is less than ¢; for every m > m;.
Consider the second term of (2.3). Since Zy(u,v) and Z;¢(u,v) are independent for ¢ > m + 1, using

Cauchy-Schwarz’s inequality, we get
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From (8) of the main paper, it follows that for every e2 > 0, there exists mg € N such that the above
quantity is less than es for every m > mso.
Consider next the second term of the the right-hand side of the inequality (2.2). Note that for

every m > 1, we have that, for any fixed s, as n — oo,
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Since the sequence {Z; ,(u,v), t € Z} is m-dependent, Z; p,(u,v) and Ziysm(u,v) are independent
for s > m + 1, therefore using E(Zym(u,v)) = 0 we get that, E [[ Z; 1 (u, v) Zitsm(u, v)dudv = 0.

Hence, the number of terms

E [// Ztym(U1,01) Zgy 461 m (w1, v1)durdoy x // th,m(u27/Uz)Zt2+52,m(u27UQ)dUZdU2:|

in the last equation above which do not vanish is of order O(nb) and, consequently, as n — oo,
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from which (2.4) follows by Markov’s inequality.
For the third term in (2.2), we show that, for m = my,
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for any 6 > 0. By Markov’s inequality, expression (2.6) follows if we show that, for m = my,
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For the above quantity we have the bound
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Hence, by (9) of the main paper, it follows that, for every e3 > 0, there exists ms € Z such that, for
every m > mg, this quantity is bounded by es. For the second term on the right hand side of (2.8),
we use the bound
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Expression (2.5) implies that the second summand of (2.11) is o(1), while for the first term of (2.11)

we use the decomposition
Zi(u,0) Zpts(u,v) = Zi(u,0) Zigs,s (us v) + Ze(u, 0) [ Zts (0, 0) = Ziys s(u, )]

to get the bound

b—1

> Qb(S);g// Zy(u,0) Ziy 5.5 (u, v)dudv

s=m+1

E

b—1

> ) ; / / 241ty 0) [ Zeg s (1 0) — Zoo (11, 0)] dud

s=m+1

1 E . (2.12)

Using same arguments as those applied in (2.10), we get the bound
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Hence, for the last term of expression (2.12), we have
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Therefore, using (8) of the main paper, we get that for every €4 > 0, there exists m4 € N such that,
for every m > my, this term is bounded by e4. Consider next the first term of (2.12). Using the

decomposition
Zy (u’ U)Zt+575(u’ U) = [Zt (u7 U) - Zt,S(u’ 'U)]ZH-&S (uv U) + Zt,s (u’ U)ZH-S,S (u’ U),

we get the bound
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For the first term of this bound, and by Cauchy-Schwarz’s inequality, we get the bound

b—1 1 n—s
E (s)— Z(u,v) — Zt s(u, )| Ziys,5(u, v)dudv
PIECI)Y /[ 12,1

1/2 1/2
< [Euxt © X, — Xom @ Xt,mr%qs] [EHM ® Xopo - co\%qs]

Hence, by (8) of the main paper, it follows that, for every e; > 0, there exists mg € Z such that,
for every m > mg, this quantity is bounded by e5. Consider the last term of the expression given
in (2.13) and note that { [[ Z; s(u,v)Zi1ss(u, v)dudv, t € Z} is a 2s-dependent sequence. Also note
that since Z; 5(u,v) and Z;;s(u,v) are independent E [[ Z; s(u,v)Zi4s,s(u,v)dudv = 0. Therefore, as
n— 00, n V23" [[ Z4 s(u, ) Zits.s(u, v)dudv = Op(1). Hence, using Portmanteau’s theorem, and
since f(z) = |z| is a Lipschitz function, we get that, as n — oo,
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Therefore, as n — oo,
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The proof of the lemma is concluded by choosing my = max{mj, ma, ms, mg, ms}.
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