## SUPPLEMENT TO:

# "Testing equality of autocovariance operators for functional time series"

Dimitrios PILAVAKIS, Efstathios PAPARODITIS and Theofanis SAPATINAS\*
Department of Mathematics and Statistics, University of Cyprus,
P.O. Box 20537, CY 1678 Nicosia, CYPRUS.

This supplement contains the proofs of Lemma 5.1 and Lemma 5.2.

#### 1 Proof of Lemma 5.1

We proceed in two steps. First, we proof that, as  $n \to \infty$ ,

$$\left\| \sum_{s=-b+1}^{b-1} g_b(s) \tilde{\Gamma}_s - \sum_{t=-\infty}^{\infty} \mathbb{E}[Z_0 \otimes Z_t] \right\|_{HS} = o_p(1), \tag{1.1}$$

where  $\tilde{\Gamma}_s = n^{-1} \sum_{t=1}^{n-s} Z_t \otimes Z_{t+s}$  for  $0 \le s \le b-1$  and  $\tilde{\Gamma}_s = n^{-1} \sum_{t=1}^{n+s} Z_{t-s} \otimes Z_t$  for  $-b+1 \le s < 0$ . Then, we prove that, as  $n \to \infty$ ,

$$\left\| \sum_{s=-b+1}^{b-1} g_b(s) \left( \tilde{\Gamma}_s - \hat{\Gamma}_s \right) \right\|_{HS} = o_p(1). \tag{1.2}$$

Consider (1.1). Since  $||n^{-1}\sum_{t=1}^{n} Z_t \otimes Z_t - \mathbb{E}[Z_0 \otimes Z_0]||_{HS} = o_p(1)$  as  $n \to \infty$ , it suffices to show that, as  $n \to \infty$ ,

$$\left\| \sum_{s=1}^{b-1} g_b(s) \tilde{\Gamma}_s - \sum_{t \ge 1} \mathbb{E}[Z_0 \otimes Z_t] \right\|_{HS} = o_p(1). \tag{1.3}$$

Let  $c_{\infty}^+ = \sum_{t \geq 1} \mathbb{E}[Z_0 \otimes Z_t], c_m^+ = \sum_{t=1}^m \mathbb{E}[Z_{0,m} \otimes Z_{t,m}] \text{ and } \tilde{\Gamma}_s^{(m)} = n^{-1} \sum_{t=1}^{n-s} Z_{t,m} \otimes Z_{t+s,m}.$  Then,

$$\left\| \sum_{s=1}^{b-1} g_b(s) \tilde{\Gamma}_s - c_{\infty}^+ \right\|_{HS} \le \|c_m^+ - c_{\infty}^+\|_{HS} + \left\| \sum_{s=1}^{b-1} g_b(s) \tilde{\Gamma}_s^{(m)} - c_m^+ \right\|_{HS}$$

<sup>\*</sup>Corresponding author (email: fanis@ucy.ac.cy)

+ 
$$\left\| \sum_{s=1}^{b-1} g_b(s) \tilde{\Gamma}_s - \sum_{s=1}^{b-1} g_b(s) \tilde{\Gamma}_s^{(m)} \right\|_{HS}$$
. (1.4)

Assertion (1.3) is proved by showing that there exists  $m_0 \in \mathbb{N}$  such that all three terms on the right hand side of (1.4) can be made arbitrarily small, in probability, as  $n \to \infty$  for  $m = m_0$ .

For the first term of the right hand side of the above inequality, we use the bound

$$\left\| \sum_{t=1}^{m} \mathbb{E} \left[ Z_{0,m} \otimes Z_{t,m} - Z_{0} \otimes Z_{t} \right] \right\|_{HS} + \left\| \sum_{t=m+1}^{\infty} \mathbb{E} \left[ Z_{0} \otimes Z_{t} \right] \right\|_{HS}$$

$$(1.5)$$

and the decomposition

$$Z_{0,m} \otimes Z_{t,m} - Z_0 \otimes Z_t = (Z_{0,m} - Z_0) \otimes Z_{t,m} + Z_0 \otimes (Z_{t,m} - Z_t).$$

By Cauchy-Schwarz's inequality, we get, for the first term of (1.5), that

$$\left\| \sum_{t=1}^{m} \mathbb{E} \left[ (Z_{0,m} - Z_{0}) \otimes Z_{t,m} \right] \right\|_{HS} + \left\| \sum_{t=1}^{m} \mathbb{E} \left[ Z_{0} \otimes (Z_{t,m} - Z_{t}) \right] \right\|_{HS}$$

$$\leq 2 \left( \mathbb{E} \| Z_{0} \|_{HS}^{2} \right)^{1/2} \sum_{t=1}^{m} \left( \mathbb{E} \| Z_{0,m} - Z_{0} \|_{HS}^{2} \right)^{1/2}$$

$$= 2 \left( \mathbb{E} \| Z_{0} \|_{HS}^{2} \right)^{1/2} m \left( \mathbb{E} \| Z_{0,m} - Z_{0} \|_{HS}^{2} \right)^{1/2}.$$

Therefore, by Assumption 1 of the main paper, we get that, for every  $\epsilon_1 > 0$ , there exists  $m_1 \in \mathbb{N}$  such that the last quantity above is less than  $\epsilon_1$  for every  $m \geq m_1$ . Consider the second term of the right hand side of (1.5). Since  $Z_0$  and  $Z_{t,t}$  are independent for  $t \geq m+1$  and  $\mathbb{E}[Z_0] = 0$ , we get, using Cauchy-Schwarz's inequality,

$$\left\| \sum_{t=m+1}^{\infty} \mathbb{E} \left[ Z_0 \otimes Z_t \right] \right\|_{HS} \le \left( \mathbb{E} \| Z_0 \|_{HS}^2 \right)^{1/2} \sum_{t=m+1}^{\infty} \left( \mathbb{E} \| Z_0 - Z_{0,t} \|_{HS}^2 \right)^{1/2}.$$

Using (8) of the main paper, it follows that, for every  $\epsilon_2 > 0$ , there exists  $m_2 \in \mathbb{N}$  such that the above quantity is less than  $\epsilon_2$  for every  $m \geq m_2$ .

For the second term of the bound in (1.4), note that, for every  $m \ge 1$ , we have that for any fixed s, as  $n \to \infty$ ,

$$\left\| \tilde{\Gamma}_s^{(m)} - \mathbb{E}[Z_{0,m} \otimes Z_{s,m}] \right\|_{HS} = o_p(1).$$

Hence, the aforementioned term of interest is  $o_p(1)$ , if we show that, as  $n \to \infty$ ,

$$\left\| \sum_{s=m+1}^{b-1} g_b(s) \tilde{\Gamma}_s^{(m)} \right\|_{HS} = o_p(1). \tag{1.6}$$

By the definition of  $\tilde{\Gamma}_s^{(m)}$ , we have that

$$\mathbb{E} \left\| \sum_{s=m+1}^{b-1} g_b(s) \tilde{\Gamma}_s^{(m)} \right\|_{HS}^2 = \mathbb{E} \left\langle \sum_{s_1=m+1}^{b-1} g_b(s_1) \tilde{\Gamma}_{s_1}^{(m)}, \sum_{s_2=m+1}^{b-1} g_b(s_2) \tilde{\Gamma}_{s_2}^{(m)} \right\rangle_{HS}$$

$$=\frac{1}{n^2}\sum_{s_1=m+1}^{b-1}\sum_{s_2=m+1}^{b-1}\sum_{t_1=1}^{n-s_1}\sum_{t_2=1}^{n-s_2}g_b(s_1)g_b(s_2)\mathbb{E}\langle Z_{t_1,m}\otimes Z_{t_1+s_1,m},Z_{t_2,m}\otimes Z_{t_2+s_2,m}\rangle_{HS}.$$

Since the sequence  $\{Z_{t,m}, t \in \mathbb{Z}\}$  is m-dependent,  $Z_{t,m}$  and  $Z_{t+s,m}$  are independent for  $s \geq m+1$  and, therefore,  $\mathbb{E}[Z_{t,m} \otimes Z_{t+s,m}] = 0$  for  $s \geq m+1$ . Hence, the number of terms  $\mathbb{E}\langle Z_{t_1,m} \otimes Z_{t_1+s_1,m}, Z_{t_2,m} \otimes Z_{t_2+s_2,m}\rangle_{HS}$  in the last equation above which do not vanish is of order O(nb) and, consequently, as  $n \to \infty$ ,

$$\mathbb{E} \left\| \sum_{s=m+1}^{b-1} g_b(s) \tilde{\Gamma}_s^{(m)} \right\|_{HS}^2 = O\left(\frac{b}{n}\right) = o(1), \tag{1.7}$$

from which (1.6) follows by Markov's inequality.

For the third term in (1.4) we show that, for  $m = m_0$  and for any  $\delta > 0$ ,

$$\limsup_{n \to \infty} P\left( \left\| \sum_{s=1}^{b-1} g_b(s) \left( \tilde{\Gamma}_s - \tilde{\Gamma}_s^{(m)} \right) \right\|_{HS} > \delta \right) = 0.$$
 (1.8)

Using Markov's inequality, expression (1.8) follows if we show that, for  $m=m_0$ , as  $n\to\infty$ ,

$$\mathbb{E} \left\| \sum_{s=1}^{b-1} g_b(s) (\tilde{\Gamma}_s - \tilde{\Gamma}_s^{(m)}) \right\|_{HS} = o(1). \tag{1.9}$$

Now, by the definitions of  $\tilde{\Gamma}_h$  and  $\tilde{\Gamma}_s^{(m)}$ , we have

$$\mathbb{E} \left\| \sum_{s=1}^{b-1} g_b(s) \left( \tilde{\Gamma}_s - \tilde{\Gamma}_s^{(m)} \right) \right\|_{HS} \leq \mathbb{E} \left\| \frac{1}{n} \sum_{s=1}^m g_b(s) \sum_{t=1}^{n-s} (Z_t \otimes Z_{t+s} - Z_{t,m} \otimes Z_{t+s,m}) \right\|_{HS} + \mathbb{E} \left\| \frac{1}{n} \sum_{s=m+1}^{b-1} g_b(s) \sum_{t=1}^{n-s} (Z_t \otimes Z_{t+s} - Z_{t,m} \otimes Z_{t+s,m}) \right\|_{HS} .$$
(1.10)

Using Cauchy-Schwarz's inequality and the decomposition

$$Z_t \otimes Z_{t+s} - Z_{t,m} \otimes Z_{t+s,m} = (Z_t - Z_{t,m}) \otimes Z_{t+s} + Z_{t,m} \otimes (Z_{t+s} - Z_{t+s,m}),$$

we get, for the first term of the right hand side of (1.10), the bound

$$\frac{1}{n} \sum_{s=1}^{m} \sum_{t=1}^{n-s} (\mathbb{E} \| (Z_{t} - Z_{t,m}) \otimes Z_{t+s} \|_{HS} + \mathbb{E} \| Z_{t,m} \otimes (Z_{t+s} - Z_{t+s,m}) \|_{HS}) \\
\leq \frac{1}{n} \sum_{s=1}^{m} \sum_{t=1}^{n-s} (\mathbb{E} \| Z_{t} - Z_{t,m} \|_{HS}^{2} \mathbb{E} \| Z_{t+s} \|_{HS}^{2})^{1/2} + (\mathbb{E} \| Z_{t+s} - Z_{t+s,m} \|_{HS}^{2} \mathbb{E} \| Z_{t,m} \|_{HS}^{2})^{1/2} \\
\leq m [(\mathbb{E} \| Z_{0} - Z_{0,m} \|_{HS}^{2} \mathbb{E} \| Z_{0} \|_{HS}^{2})^{1/2} + (\mathbb{E} \| Z_{0} - Z_{0,m} \|_{HS}^{2} \mathbb{E} \| Z_{0,m} \|_{HS}^{2})^{1/2}].$$

By Assumption 1 of the main paper, it follows that, for every  $\epsilon_3 > 0$ , there exists  $m_3 \in \mathbb{Z}$  such that, for every  $m \ge m_3$ , this quantity is less than  $\epsilon_3$ . For the second term on the right hand side of (1.10), we use the bound

$$\mathbb{E} \left\| \frac{1}{n} \sum_{s=m+1}^{b-1} g_b(s) \sum_{t=1}^{n-s} Z_t \otimes Z_{t+s} \right\|_{HS} + \mathbb{E} \left\| \frac{1}{n} \sum_{s=m+1}^{b-1} g_b(s) \sum_{t=1}^{n-s} Z_{t,m} \otimes Z_{t+s,m} \right\|_{HS}.$$
 (1.11)

Expression (1.7) implies that the second summand of (1.11) is o(1). For the first term of (1.11), we use the decomposition

$$Z_t \otimes Z_{t+s} = Z_t \otimes Z_{t+s,s} + Z_t \otimes (Z_{t+s} - Z_{t+s,s}),$$

and get the bound

$$\mathbb{E}\left\|\frac{1}{n}\sum_{s=m+1}^{b-1}g_b(s)\sum_{t=1}^{n-s}Z_t\otimes Z_{t+s,s}\right\|_{HS} + \mathbb{E}\left\|\frac{1}{n}\sum_{s=m+1}^{b-1}g_b(s)\sum_{t=1}^{n-s}Z_t\otimes (Z_{t+s}-Z_{t+s,s})\right\|_{HS}.$$
 (1.12)

For the last term of expression (1.12), we have the bound

$$\frac{1}{n} \sum_{s=m+1}^{b-1} \sum_{t=1}^{n-s} \mathbb{E} \left\| Z_t \otimes (Z_{t+s} - Z_{t+s,s}) \right\|_{HS} \le \left( \mathbb{E} \| Z_0 \|_{HS}^2 \right)^{1/2} \sum_{s=m+1}^{b-1} \left( \mathbb{E} \| Z_0 - Z_{0,s} \|_{HS}^2 \right)^{1/2}.$$

Therefore, since  $\{Z_t, t \in \mathbb{Z}\}$  is  $L^2$ -m-approximable, with  $Z_{0,m}$  be the m-dependent approximation of  $Z_0$ , it follows that for every  $\epsilon_4 > 0$ , there exists  $m_4 \in \mathbb{N}$  such that, for every  $m \geq m_4$ , this term is less than  $\epsilon_4$ . Consider next the first term of (1.12). We have

$$\mathbb{E} \left\| \frac{1}{n} \sum_{s=m+1}^{b-1} g_b(s) \sum_{t=1}^{n-s} Z_t \otimes Z_{t+s,s} \right\|_{HS} \leq \sum_{s=m+1}^{b-1} \mathbb{E} \left\| \frac{1}{n} \sum_{t=1}^{n-s} Z_t \otimes Z_{t+s,s} \right\|_{HS} \\
\leq \sum_{s=m+1}^{b-1} \left( \mathbb{E} \left\| \frac{1}{n} \sum_{t=1}^{n-s} Z_t \otimes Z_{t+s,s} \right\|_{HS}^2 \right)^{1/2}.$$
(1.13)

Since  $Z_0$  and  $Z_{s,s}$  are independent,  $||Z_0 \otimes Z_t||_{HS} = ||Z_0||_{HS}||Z_t||_{HS}$  and  $\mathbb{E}\langle Z_0 \otimes Z_{s,s}, Z_t \otimes Z_{t+s,s}\rangle_{HS} = \mathbb{E}\langle Z_0, Z_t\rangle_{HS}\langle Z_{s,s}, Z_{t+s,s}\rangle_{HS} = 0$  for |t| > s. Using Cauchy-Schwarz's inequality, we get

$$\mathbb{E} \left\| \frac{1}{n} \sum_{t=1}^{n-s} Z_{t} \otimes Z_{t+s,s} \right\|_{HS}^{2} \leq \frac{n-s}{n^{2}} \sum_{|t| < n-s} \mathbb{E}(\langle Z_{0} \otimes Z_{s,s}, Z_{t} \otimes Z_{t+s,s} \rangle_{HS})$$

$$\leq \frac{1}{n} \sum_{t=-s}^{s} |\mathbb{E}\langle Z_{0} \otimes Z_{s,s}, Z_{t} \otimes Z_{t+s,s} \rangle_{HS}| \leq \frac{1}{n} \sum_{t=-s}^{s} \mathbb{E} \|Z_{0} \otimes Z_{s,s}\|_{HS} \|Z_{t} \otimes Z_{t+s,s}\|_{HS}$$

$$\leq \frac{1}{n} \sum_{t=-s}^{s} \mathbb{E} \|Z_{0} \otimes Z_{s,s}\|_{HS}^{2} \frac{1}{n} \sum_{t=-s}^{s} (\mathbb{E} \|Z_{0}\|_{HS}^{2})^{2}$$

$$\leq \frac{1}{n} \sum_{t=-s}^{s} (\mathbb{E} \|X_{0} \otimes X_{0}\|_{HS}^{2})^{2} \leq \frac{1}{n} \sum_{t=-s}^{s} (\mathbb{E} \|X_{0}\|_{HS}^{4})^{2}.$$

Therefore, by (1.13), the first term of (1.12) is  $O_P(b^{3/2}/n^{1/2})$ . The proof is then concluded by choosing  $m_0 = \max\{m_1, m_2, m_3, m_4\}$ .

Consider (1.2). First note that using Theorem 3 of Kokoszka and Reimherr (2013), we get, as  $n \to \infty$ ,

$$\left\| \frac{1}{n} \sum_{t=1}^{n} [Z_t \otimes Z_t - \hat{Z}_t \otimes \hat{Z}_t] \right\|_{HS} = \left\| (\hat{\hat{C}}_0 - C_0) \otimes (\hat{\hat{C}}_0 - C_0) \right\|_{HS} = \frac{1}{n} \left\| \sqrt{n} (\hat{\hat{C}}_0 - C_0) \right\|_{HS}^2 = O_P(1/n).$$

Therefore, it suffices to show that

$$\left\| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} [Z_t \otimes Z_{t+s} - \hat{Z}_t \otimes \hat{Z}_{t+s}] \right\|_{HS} = o_p(1).$$

Again, by Theorem 3 of Kokoszka and Reimherr (2013), we get that, as  $n \to \infty$ ,

$$\begin{split} \left\| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} [Z_t \otimes Z_{t+s} - \hat{Z}_t \otimes \hat{Z}_{t+s}] \right\|_{HS} \\ &= \left\| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} [(X_t \otimes X_t) \otimes (\hat{\mathcal{C}}_0 - \mathcal{C}_0) + (\hat{\mathcal{C}}_0 - \mathcal{C}_0) \otimes (X_{t+s} \otimes X_{t+s}) + \mathcal{C}_0 \otimes \mathcal{C}_0 - \hat{\mathcal{C}}_0 \otimes \hat{\mathcal{C}}_0] \right\|_{HS} \\ &\leq \sum_{s=1}^{b-1} \frac{1}{\sqrt{n}} \left\| \frac{1}{n} \sum_{t=1}^{n-s} (X_t \otimes X_t) \right\|_{HS} \left\| \sqrt{n} (\hat{\mathcal{C}}_0 - \mathcal{C}_0) \right\|_{HS} \\ &+ \sum_{s=1}^{b-1} \frac{1}{\sqrt{n}} \left\| \sqrt{n} (\hat{\mathcal{C}}_0 - \mathcal{C}_0) \right\|_{HS} \left\| \frac{1}{n} \sum_{t=1}^{n-s} (X_{t+s} \otimes X_{t+s}) \right\| \\ &+ \frac{1}{\sqrt{n}} \sum_{s=1}^{b-1} \frac{1}{n} \sum_{t=1}^{n-s} \|\mathcal{C}_0\|_{HS} \|\sqrt{n} (\mathcal{C}_0 - \hat{\mathcal{C}}_0) \|_{HS} \\ &+ \frac{1}{\sqrt{n}} \sum_{s=1}^{b-1} \frac{1}{n} \sum_{t=1}^{n-s} \|\hat{\mathcal{C}}_0\|_{HS} \|\sqrt{n} (\mathcal{C}_0 - \hat{\mathcal{C}}_0) \|_{HS} = O_P(b/\sqrt{n}) = o_P(1). \end{split}$$

This completes the proof of the lemma.

#### 2 Proof of Lemma 5.2

Since  $\sum_{t=-\infty}^{\infty} \mathbb{E} \iint Z_0(u,v) Z_t(u,v) du dv$  converges and is finite, and since

$$\frac{1}{n} \sum_{t=1}^{n} \iint (Z_{t}(u, v))^{2} du dv \stackrel{P}{\to} \mathbb{E} \iint (Z_{0}(u, v))^{2} du dv$$

as  $n \to \infty$ , it suffices to prove that

$$\sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u, v) Z_{t+s}(u, v) du dv \xrightarrow{P} \sum_{t=1}^{\infty} \mathbb{E} \iint Z_0(u, v) Z_t(u, v) du dv.$$
 (2.1)

Since

$$\left| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{i=1}^{n-s} \iint Z_t(u, v) Z_{t+s}(u, v) du dv - \sum_{t=1}^{\infty} \mathbb{E} \iint Z_0(u, v) Z_t(u, v) du dv \right|$$

$$\leq \left| \sum_{t=1}^{m} \mathbb{E} \iint Z_{0,m}(u, v) Z_{t,m}(u, v) du dv - \sum_{t=1}^{\infty} \mathbb{E} \iint Z_0(u, v) Z_t(u, v) du dv \right|$$

$$+ \left| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du dv - \sum_{t=1}^{m} \mathbb{E} \iint Z_{0,m}(u,v) Z_{t,m}(u,v) du dv \right|$$

$$+ \left| \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u,v) Z_{t+s}(u,v) du dv - \sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du dv \right|, (2.2)$$

assertion (2.1) is proved by showing that there exists  $m_0 \in \mathbb{N}$  such that all three terms on the right hand side of (2.2) can be made arbitrarily small in probability as  $n \to \infty$  for  $m = m_0$ .

For the first term, we use the bound

$$\left| \sum_{t=1}^{m} \left( \mathbb{E} \iint Z_{0,m}(u,v) Z_{t,m}(u,v) du dv - \mathbb{E} \iint Z_{0}(u,v) Z_{t}(u,v) du dv \right) \right| + \left| \sum_{t=m+1}^{\infty} \mathbb{E} \iint Z_{0}(u,v) Z_{t}(u,v) du dv \right|.$$
(2.3)

By Cauchy-Schwarz's inequality and the decomposition

$$Z_{0,m}(u,v)Z_{t,m}(u,v)-Z_0(u,v)Z_t(u,v)=[Z_{0,m}(u,v)-Z_0(u,v)]Z_{t,m}(u,v)+Z_0(u,v)[Z_{t,m}(u,v)-Z_t(u,v)],$$
  
we get that the first term of (2.3) is bounded by

$$\begin{split} &\left|\sum_{t=1}^{m} \mathbb{E} \iint [Z_{0,m}(u,v) - Z_{0}(u,v)] Z_{t,m}(u,v) \mathrm{d}u \mathrm{d}v\right| + \left|\sum_{t=1}^{m} \mathbb{E} \iint Z_{0}(u,v) [Z_{t,m}(u,v) - Z_{t}(u,v)] \mathrm{d}u \mathrm{d}v\right| \\ &\leq 2 \sum_{t=1}^{m} \mathbb{E} \left\{ \left[\iint [Z_{0,m}(u,v) - Z_{0}(u,v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \left[\iint [Z_{t,m}(u,v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \right\} \\ &\leq 2 \sum_{t=1}^{m} \left[\mathbb{E} \iint [Z_{0,m}(u,v) - Z_{0}(u,v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \left[\mathbb{E} \iint [Z_{t,m}(u,v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \\ &\leq 2 \sum_{t=1}^{m} \left[\mathbb{E} \iint [X_{0,m}(u)X_{0,m}(v) - X_{0}(u)X_{0}(v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \left[\mathbb{E} \iint [X_{0,m}(u)X_{0,m}(v) - c(u,v)]^{2} \mathrm{d}u \mathrm{d}v\right]^{1/2} \\ &= 2 \sum_{t=1}^{m} \left[\mathbb{E} ||X_{0,m} \otimes X_{0,m} - X_{0} \otimes X_{0}||_{HS}^{2}\right]^{1/2} \left[\mathbb{E} ||X_{0,m} \otimes X_{0,m} - C||_{HS}^{2}\right]^{1/2} \\ &= \left[\mathbb{E} ||X_{0} \otimes X_{0} - C||_{HS}^{2}\right]^{1/2} \left(m \left[\mathbb{E} ||X_{0,m} \otimes X_{0,m} - X_{0} \otimes X_{0}||_{HS}^{2}\right]^{1/2}\right). \end{split}$$

Using (9) of the main paper, and since  $\{X_t \otimes X_t, t \in \mathbb{Z}\}$  is  $L^2$ -m-approximable, it follows that for every  $\epsilon_1 > 0$  there exists  $m_1 \in \mathbb{N}$  such that the above term is less than  $\epsilon_1$  for every  $m \geq m_1$ . Consider the second term of (2.3). Since  $Z_0(u,v)$  and  $Z_{t,t}(u,v)$  are independent for  $t \geq m+1$ , using Cauchy-Schwarz's inequality, we get

$$\left| \sum_{t=m+1}^{\infty} \mathbb{E} \iint Z_0(u,v) Z_t(u,v) du dv \right| = \left| \sum_{t=m+1}^{\infty} \mathbb{E} \iint Z_0(u,v) [Z_t(u,v) - Z_{t,t}(u,v)] du dv \right|$$

$$\leq \sum_{t=m+1}^{\infty} \left[ \mathbb{E} \iint [Z_0(u,v)]^2 du dv \right]^{1/2} \left[ \mathbb{E} \iint [Z_t(u,v) - Z_{t,t}(u,v)]^2 du dv^2 \right]^{1/2}$$

$$= \left[ \mathbb{E} \iint [X_0(u)X_0(v) - c(u,v)]^2 du dv \right]^{1/2} \sum_{t=m+1}^{\infty} \left[ \mathbb{E} \iint [X_t(u)X_t(v) - X_{t,t}(u)X_{t,t}(v)]^2 du dv \right]^{1/2}$$

$$= \left[ \mathbb{E} \|X_{0,m} \otimes X_{0,m} - C\|_{HS}^2 \right]^{1/2} \sum_{t=m+1}^{\infty} \left[ \mathbb{E} \|X_{0,m} \otimes X_{0,m} - X_0 \otimes X_0\|_{HS}^2 \right]^{1/2}.$$

From (8) of the main paper, it follows that for every  $\epsilon_2 > 0$ , there exists  $m_2 \in \mathbb{N}$  such that the above quantity is less than  $\epsilon_2$  for every  $m \geq m_2$ .

Consider next the second term of the the right-hand side of the inequality (2.2). Note that for every  $m \ge 1$ , we have that, for any fixed s, as  $n \to \infty$ ,

$$\left| \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du du - \mathbb{E} \iint Z_{0,m}(u,v) Z_{s,m}(u,v) du dv \right| = o_p(1).$$

Therefore, the aforementioned term is  $o_p(1)$  if we show that

$$\left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du d \right| = o_p(1).$$
 (2.4)

For this, notice first that

$$\mathbb{E}\left[\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du d\right]^2 \\
= \frac{1}{n^2} \sum_{s_1=m+1}^{b-1} \sum_{s_2=m+1}^{b-1} g_b(s_1) g_b(s_2) \sum_{t_1=1}^{n-s_1} \sum_{t_2=1}^{n-s_1} \mathbb{E}\left[\iint Z_{t_1,m}(u_1,v_1) Z_{t_1+s_1,m}(u_1,v_1) du_1 dv_1 \times \iint Z_{t_2,m}(u_2,v_2) Z_{t_2+s_2,m}(u_2,v_2) du_2 dv_2\right].$$

Since the sequence  $\{Z_{t,m}(u,v), t \in \mathbb{Z}\}$  is m-dependent,  $Z_{t,m}(u,v)$  and  $Z_{t+s,m}(u,v)$  are independent for  $s \geq m+1$ , therefore using  $\mathbb{E}(Z_{0,m}(u,v)) = 0$  we get that,  $\mathbb{E}\iint Z_{t,m}(u,v)Z_{t+s,m}(u,v)\mathrm{d}u\mathrm{d}v = 0$ . Hence, the number of terms

$$\mathbb{E}\left[\iint Z_{t_1,m}(u_1,v_1)Z_{t_1+s_1,m}(u_1,v_1)du_1dv_1 \times \iint Z_{t_2,m}(u_2,v_2)Z_{t_2+s_2,m}(u_2,v_2)du_2dv_2\right]$$

in the last equation above which do not vanish is of order O(nb) and, consequently, as  $n \to \infty$ ,

$$\mathbb{E}\left[\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) dud\right]^2 = O\left(\frac{b}{n}\right) = o(1), \tag{2.5}$$

from which (2.4) follows by Markov's inequality.

For the third term in (2.2), we show that, for  $m = m_0$ ,

$$\lim_{n \to \infty} P\left(\left|\sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u, v) Z_{t+s}(u, v) du dv\right|\right)$$

$$-\sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du dv > \delta = 0, \quad (2.6)$$

for any  $\delta > 0$ . By Markov's inequality, expression (2.6) follows if we show that, for  $m = m_0$ ,

$$\mathbb{E}\left|\sum_{s=1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u, v) Z_{t+s}(u, v) du dv - Z_{t,m}(u, v) Z_{t+s,m}(u, v) du dv\right| = o(1).$$
 (2.7)

For the above quantity we have the bound

$$\mathbb{E}\left|\sum_{s=1}^{m} g_{b}(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t}(u, v) Z_{t+s}(u, v) - Z_{t,m}(u, v) Z_{t+s,m}(u, v) du dv\right| + \mathbb{E}\left|\sum_{s=m+1}^{b-1} g_{b}(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t}(u, v) Z_{t+s}(u, v) - Z_{t,m}(u, v) Z_{t+s,m}(u, v) du dv\right|.$$
(2.8)

For the first term of the right hand side of the above inequality, using the decomposition

$$Z_{t}(u,v)Z_{t+s}(u,v) - Z_{t,m}(u,v)Z_{t+s,m}(u,v)$$

$$= [Z_{t}(u,v) - Z_{t,m}(u,v)]Z_{t+s}(u,v) + [Z_{t+s}(u,v) - Z_{t+s,m}(u,v)]Z_{t,m}(u,v)$$

we get the bound,

$$\sum_{s=1}^{m} \frac{1}{n} \sum_{t=1}^{n-s} \mathbb{E} \iiint |[Z_{t}(u,v) - Z_{t,m}(u,v)] Z_{t+s}(u,v)| \, du dv + \mathbb{E} \iiint |[Z_{t+s}(u,v) - Z_{t+s,m}(u,v)] Z_{t,m}(u,v)| \, du dv.$$
 (2.9)

Using Cauchy-Schwarz's inequality, we have

$$\mathbb{E} \iiint |[Z_{t}(u,v) - Z_{t,m}(u,v)]Z_{t+h}(u,v)| \, du dv$$

$$\leq \mathbb{E} \Big[ \iint [Z_{t}(u,v) - Z_{t,m}(u,v)]^{2} \, du dv \Big]^{1/2} \Big[ \iint [Z_{t+s}(u,v)]^{2} \, du dv \Big]^{1/2}$$

$$\leq \Big[ \mathbb{E} \iint [Z_{t}(u,v) - Z_{t,m}(u,v)]^{2} \, du dv \Big]^{1/2} \Big[ \mathbb{E} \iint [Z_{t+s}(u,v)]^{2} \, du dv \Big]^{1/2}$$

$$= \Big[ \mathbb{E} ||X_{t} \otimes X_{t} - X_{t,m} \otimes X_{t,m}||_{HS}^{2} \Big]^{1/2} \Big[ \mathbb{E} ||X_{t+h} \otimes X_{t+s} - C_{0}||_{HS}^{2} \Big]^{1/2}.$$
(2.10)

Using the same arguments, we get

$$\mathbb{E} \iint |[Z_{t+s}(u,v) - Z_{t+s,m}(u,v)] Z_{t,m}(u,v)| \, du dv$$

$$\leq \left[ \mathbb{E} ||X_{t+s} \otimes X_{t+s} - X_{t+s,m} \otimes X_{t+s,m}||_{HS}^{2} \right]^{1/2} \left[ \mathbb{E} ||X_{t} \otimes X_{t} - C||_{HS}^{2} \right]^{1/2}.$$

Therefore, (2.9) is bounded by

$$2(\mathbb{E}\|X_0\otimes X_0-\mathcal{C}_0\|_{HS}^2)^{1/2}\left[m(\mathbb{E}\|X_0\otimes X_0-X_{0,m}\otimes X_{0,m}\|_{HS}^2)^{1/2}\right].$$

Hence, by (9) of the main paper, it follows that, for every  $\epsilon_3 > 0$ , there exists  $m_3 \in \mathbb{Z}$  such that, for every  $m \geq m_3$ , this quantity is bounded by  $\epsilon_3$ . For the second term on the right hand side of (2.8), we use the bound

$$\mathbb{E} \left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u,v) Z_{t+s}(u,v) du dv \right| 
+ \mathbb{E} \left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,m}(u,v) Z_{t+s,m}(u,v) du dv \right|.$$
(2.11)

Expression (2.5) implies that the second summand of (2.11) is o(1), while for the first term of (2.11) we use the decomposition

$$Z_t(u, v)Z_{t+s}(u, v) = Z_t(u, v)Z_{t+s,s}(u, v) + Z_t(u, v)[Z_{t+s}(u, v) - Z_{t+s,s}(u, v)]$$

to get the bound

$$\mathbb{E} \left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u, v) Z_{t+s,s}(u, v) du dv \right| 
+ \mathbb{E} \left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u, v) [Z_{t+s}(u, v) - Z_{t+s,s}(u, v)] du dv \right|.$$
(2.12)

Using same arguments as those applied in (2.10), we get the bound

$$\mathbb{E} \iint |Z_{t}(u,v)[Z_{t+s}(u,v) - Z_{t+s,s}(u,v)]| \, du dv$$

$$\leq \left[ \mathbb{E} \|X_{t+s} \otimes X_{t+s} - X_{t+s,s} \otimes X_{t+s,s}\|_{HS}^{2} \right]^{1/2} \left[ \mathbb{E} \|X_{t} \otimes X_{t} - C_{0}\|_{HS}^{2} \right]^{1/2}.$$

Hence, for the last term of expression (2.12), we have

$$\mathbb{E}\left|\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_t(u,v) [Z_{t+s}(u,v) - Z_{t+s,s}(u,v)] du dv\right| \\ \leq \left[\mathbb{E} \|X_0 \otimes X_0 - \mathcal{C}_0\|_{HS}^2\right]^{1/2} \sum_{s=m+1}^{\infty} \left[\mathbb{E} \|X_0 \otimes X_0 - X_{0,s} \otimes X_{0,s}\|_{HS}^2\right]^{1/2}.$$

Therefore, using (8) of the main paper, we get that for every  $\epsilon_4 > 0$ , there exists  $m_4 \in \mathbb{N}$  such that, for every  $m \geq m_4$ , this term is bounded by  $\epsilon_4$ . Consider next the first term of (2.12). Using the decomposition

$$Z_t(u,v)Z_{t+s,s}(u,v) = [Z_t(u,v) - Z_{t,s}(u,v)]Z_{t+s,s}(u,v) + Z_{t,s}(u,v)Z_{t+s,s}(u,v),$$

we get the bound

$$\mathbb{E}\left|\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint [Z_t(u,v) - Z_{t,s}(u,v)] Z_{t+s,s}(u,v) du dv\right|$$

$$+ \mathbb{E} \left| \sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,s}(u,v) Z_{t+s,s}(u,v) du dv \right|.$$
 (2.13)

For the first term of this bound, and by Cauchy-Schwarz's inequality, we get the bound

$$\mathbb{E}\left|\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint [Z_t(u,v) - Z_{t,s}(u,v)] Z_{t+s,s}(u,v) du dv\right| \\ \leq \left[ \mathbb{E} \|X_t \otimes X_t - X_{t,m} \otimes X_{t,m}\|_{HS}^2 \right]^{1/2} \left[ \mathbb{E} \|X_{t+s} \otimes X_{t+s} - \mathcal{C}_0\|_{HS}^2 \right]^{1/2}.$$

Hence, by (8) of the main paper, it follows that, for every  $\epsilon_5 > 0$ , there exists  $m_3 \in \mathbb{Z}$  such that, for every  $m \geq m_3$ , this quantity is bounded by  $\epsilon_5$ . Consider the last term of the expression given in (2.13) and note that  $\{\iint Z_{t,s}(u,v)Z_{t+s,s}(u,v)\mathrm{d}u\mathrm{d}v, t \in \mathbb{Z}\}$  is a 2s-dependent sequence. Also note that since  $Z_{t,s}(u,v)$  and  $Z_{t+s}(u,v)$  are independent  $\mathbb{E}\iint Z_{t,s}(u,v)Z_{t+s,s}(u,v)\mathrm{d}u\mathrm{d}v = 0$ . Therefore, as  $n \to \infty$ ,  $n^{-1/2}\sum_{t=1}^n \iint Z_{t,s}(u,v)Z_{t+s,s}(u,v)\mathrm{d}u\mathrm{d}v = O_P(1)$ . Hence, using Portmanteau's theorem, and since f(x) = |x| is a Lipschitz function, we get that, as  $n \to \infty$ ,

$$\mathbb{E}\left|\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\iint Z_{t,s}(u,v)Z_{t+s}(u,v)\mathrm{d}u\mathrm{d}v\right| = O(1).$$

Therefore, as  $n \to \infty$ ,

$$\mathbb{E}\left|\sum_{s=m+1}^{b-1} g_b(s) \frac{1}{n} \sum_{t=1}^{n-s} \iint Z_{t,s}(u,v) Z_{t+s,s}(u,v) du dv\right|$$

$$\leq \frac{1}{\sqrt{n}} \sum_{s=m+1}^{b-1} \mathbb{E}\left|\frac{1}{\sqrt{n}} \sum_{t=1}^{n-s} \iint Z_{t,s}(u,v) Z_{t+s,s}(u,v) du dv\right| = O(b/\sqrt{n}) = o(1).$$

The proof of the lemma is concluded by choosing  $m_0 = \max\{m_1, m_2, m_3, m_4, m_5\}$ .

### References

[1] Kokoszka, P. and Reimherr, M. (2013). Asymptotic normality of the principal components of functional time series. *Stochastic Processes and their Applications*, Vol. **123**, 1546–1562.