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ABSTRACT

We consider the problem of estimating the unknown response function in the multi-
channel deconvolution model with long-range dependent Gaussian or sub-Gaussian
errors. We do not limit our consideration to a specific type of long-range dependence
rather we assume that the errors should satisfy a general assumption in terms of the
smallest and largest eigenvalues of their covariance matrices. We derive minimax lower
bounds for the quadratic risk in the proposed multichannel deconvolution model when
the response function is assumed to belong to a Besov ball and the blurring function is
assumed to possess some smoothness properties, including both regular-smooth and
super-smooth convolutions. Furthermore, we propose an adaptive wavelet estimator of
the response function that is asymptotically optimal (in the minimax sense), or near-
optimal (within a logarithmic factor), in a wide range of Besov balls, for both Gaussian and
sub-Gaussian errors. It is shown that the optimal convergence rates depend on the
balance between the smoothness parameter of the response function, the kernel
parameters of the blurring function, the long memory parameters of the errors, and
how the total number of observations is distributed among the total number of channels.
Some examples of inverse problems in mathematical physics where one needs to recover
initial or boundary conditions on the basis of observations from a noisy solution of a
partial differential equation are used to illustrate the application of the theory we
developed. The optimal convergence rates and the adaptive estimators we consider
extend the ones studied by Pensky and Sapatinas (2009, 2010) for independent and
identically distributed Gaussian errors to the case of long-range dependent Gaussian or
sub-Gaussian errors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the estimation problem of the unknown response function f(-) € L*(T) from observations y(uj, t;) driven by

y(Uz,t,-)=/g(uz,tf—X)f(x)dan, =1,2,..,M, i=1,2,..,N, (1.1
T
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where g is known, y;eU=[a,b], 0<a<b<oo, T=[0,1], t;=1i/N, and the errors &; are Gaussian or sub-Gaussian random
variables, independent for different I's, but dependent for different i's.

Denote the total number of observations n=NM and assume, without loss of generality, that N = 2/ for some integer J > 0.
Foreach[=1,2,...,M, let &) be a zero mean vector with components &;, i=1,2, ...,N, and let £?:=Cov(&®):=E[£" €P)T] be its
covariance matrix. Hence errors &; are independent for different I's, but dependent for different i’s. Let G? be a matrix such
that G"(G")" = =O. Then a vector ¥ = (G?) ' has the covariance matrix Iy, the identity matrix of size N.

In order to formulate our main assumption, recall that a random variable ¢ is sub-Gaussian if

Ny, =supp~ 2(E[ICIPD'P < 0.
p>1

Examples of sub-Gaussian random variables include Gaussian, Bernoulli or any bounded random variable. See Section 5.2.3
of Vershynin (2011) for more details. We consider the following assumption on the errors:

Assumption A0 (A0G). Vectors £V are of the forms
£ = GOy (1.2)

where 7 are independent vectors with independent sub-Gaussian (or Gaussian) components #; for every [=1,2, ..., M, and
i=1,2,...,N, such that |n;ll,, <K, 0 <K < occ.

(In what follows, we consider the cases when one knows that 4 are Gaussian vectors and refer to this stronger version
of Assumption AO as Assumption AOG.)
Furthermore, we impose the following condition on the dependence structure.

Assumption Al. For each [1=1,2,..,M, =¥ satisfies the following condition: there exist constants K; and K-
(0 < K7 <K; < o00), independent of [ and N, such that, for each [=1,2,...,M,

KiN% < 200 (ED) < Amax(E0) < KN, 0<dj<1/2, (1.3)
where Amin(E?) and Amax(E?) are the smallest and largest eigenvalues of (the Toeplitz matrix) =®.

Assumption A1 is valid when, for each 1=1,2,...,M, & is a second-order stationary Gaussian sequence with spectral
density satisfying certain assumptions. We shall elaborate on this issue in Section 2. Note that, in the case of independent
errors, for each [=1,2,...,M, =¥ is proportional to the identity matrix and that d;=0. In this case, the multichannel
deconvolution model (1.1) reduces to the one with independent and identically distributed Gaussian errors. In a view of
(1.1), the limit situation d;=0,[=1,2, ..., M, can be thought of as the standard multichannel deconvolution model described
in Pensky and Sapatinas (2009, 2010).

Model (1.1) can also be thought of as the discrete version of a model referred to as the functional deconvolution model by
Pensky and Sapatinas (2009, 2010). The functional deconvolution model has a multitude of applications. In particular, it can
be used in a number of inverse problems in mathematical physics where one needs to recover initial or boundary conditions
on the basis of observations from a noisy solution of a partial differential equation. For instance, the problem of recovering
the initial condition for parabolic equations based on observations in a fixed-time trip was first investigated in Lattes and
Lions (1967), and the problem of recovering the boundary condition for elliptic equations based on observations in an
interval domain was studied in Golubev and Khasminskii (1999) and Golubev (2004).

In the case when a=b, the functional deconvolution model reduces to the standard deconvolution model. This model has
been the subject of a great array of research papers since late 1980s, but the most significant contribution was that of
Donoho (1995) who was the first to device a wavelet solution to the problem. This has attracted the attention of a good deal
of researchers, see, e.g., Abramovich and Silverman (1998), Kalifa and Mallat (2003), Donoho and Raimondo (2004),
Johnstone and Raimondo (2004), Johnstone et al. (2004), Kerkyacharian et al. (2007). (For related results on the density
deconvolution problem, we refer to, e.g., Pensky and Vidakovic, 1999; Walter and Shen, 1999; Fan and Koo, 2002.)

In the multichannel deconvolution model studied by Pensky and Sapatinas (2009, 2010), as well as in the very current
extension of their results to derivative estimation by Navarro et al. (2013), it is assumed that errors are independent and
identically distributed Gaussian random variables. However, empirical evidence has shown that even at large lags, the
correlation structure in the errors can decay at a hyperbolic rate, rather than an exponential rate. To account for this, a great
deal of papers on long-range dependence (LRD) has been developed. The study of LRD (also called long memory) has a
number of applications, as it can be reflected by the very large number of articles having LRD or long memory in their titles,
in areas such as climate study, DNA sequencing, econometrics, finance, hydrology, internet modeling, signal and image
processing, physics and even linguistics. Other applications can be found in, e.g., Beran (1992, 1994), Beran et al. (2013) and
Doukhan et al. (2003).

Although quite a few LRD models have been considered in the regression estimation framework, very little has been
done in the standard deconvolution model. The density deconvolution setup has also witnessed some shift towards
analyzing the problem for dependent processes. The argument behind that was that a number of statistical models, such as
non-linear GARCH and continuous-time stochastic volatility models, can be looked at as density deconvolution models if we
apply a simple logarithmic transformation, and thus there is need to account for dependence in the data. This started by Van
Zanten and Zareba (2008) who investigated wavelet based density deconvolution studied by Pensky and Vidakovic (1999)
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with a relaxation to weakly dependent processes. Comte et al. (2008) analyzed another adaptive estimator that was
proposed earlier but under the assumption that the sequence is strictly stationary but not necessarily independent.
However, it was Kulik (2008), who considered the density deconvolution for LRD and short-range dependent (SRD)
processes. However, Kulik (2008) did not consider nonlinear wavelet estimators but dealt instead with linear kernel
estimators.

In nonparametric regression estimation, ARIMA-type models for the errors were analyzed in Cheng and Robinson (1994),
with error terms of the form o(x;,&). In Csérgo and Mielniczuk (2000), the error terms were modeled as infinite order
moving average processes. Mielniczuk and Wu (2004) investigated another form of LRD, with the assumption that x; and &
are not necessarily independent for the same i. ARIMA-type error models were also considered in Kulik and Raimondo
(2009). In the standard deconvolution model, and using a maxiset approach, Wishart (2013) applied a fractional Brownian
motion to model the presence of LRD, while Wang (1997) used a minimax approach to study the problem of recovering a
function f from a more general noisy linear transformation where the noise is also a fractional Brownian motion. For further
reference on nonparametric regression with long range dependent errors we refer to Sections 7.4 and 7.5 in Beran et al.
(2013).

The objective of this paper is to study the multichannel deconvolution model from a minimax point of view, with the
relaxation that errors may be sub-Gaussian and exhibit LRD. We do not limit our consideration to a specific type of LRD: the
only restriction is that the errors should satisfy Assumption Al. In particular, we derive minimax lower bounds for the L*-
risk in model (1.1) under Assumption A1 when f(-) is assumed to belong to a Besov ball and g(-, -) has smoothness properties
similar to those in Pensky and Sapatinas (2009, 2010), including both regular-smooth and super-smooth convolutions. In
addition, we propose an adaptive wavelet estimator for f(-) and show that such estimator is asymptotically optimal or near-
optimal (within a logarithmic factor) in the minimax sense, in a wide range of Besov balls when the errors are Gaussian, and
near-optimal (within a logarithmic factor) when the errors are sub-Gaussian. Moreover, the estimator adapts to sub-
Gaussianity of errors since its form does not depend on the nature of errors.

We prove that the convergence rates of the resulting estimators depend on the balance between the smoothness
parameter (of the response function f(-)), the kernel parameters (of the blurring function g(-,-)), and the long memory
parameters d;, [=1,2...,M (of the error sequence &”). Since the parameters d; depend on the values of I, the convergence
rates have more complex expressions than the ones obtained in Kulik and Raimondo (2009) when studying nonparametric
regression estimation with ARIMA-type error models. The convergence rates we derive are more similar in nature to those
in Pensky and Sapatinas (2009, 2010). In particular, the convergence rates depend on how the total number n=NM of
observations is distributed among the total number M of channels. As we illustrate in two examples, convergence rates are
not affected by LRD in the case of super-smooth convolutions, however, the situation changes in the case of regular-smooth
convolutions.

The paper is organized as follows. Section 2 discusses stationary sequences with LRD errors, justifies Assumption A1 and
provides illustrative examples of stationary sequences satisfying this assumption. Section 3 describes the construction of the
suggested wavelet estimator of f(-). Section 4 derives minimax lower bounds for the L2-risk for observations from model
(1.1). Section 5 proves that the suggested wavelet estimator is adaptive and asymptotically optimal (in the minimax sense)
or near-optimal (within a logarithmic factor), in a wide range of Besov balls. The Gaussian and sub-Gaussian cases are
treated separately. Section 7 presents examples of inverse problems in mathematical physics where one needs to recover
initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation to illustrate
the application of the theory we developed. Section 8 concludes with a brief discussion. Appendix A contains the proofs of
the theoretical results obtained in earlier sections.

2. Stationary sequences with long-range dependence

In this section, for simplicity of exposition, we consider one sequence of errors {&:j=1,2,...}. Assume that {¢;:
j=1,2,...} is a second-order stationary sequence with covariance function y.(k):=y(k), k=0, +1, +2,.... The spectral
density is defined as

ag(/l)==a(/1):=2lﬂk Ozo‘, rke ®,  pe[—n .

= —o0

On the other hand, the inverse transform which recovers y(k), k=0, +1, +2, ..., from a(1), 4 [—z, #], is given by

o= [ awe i k=011, 12....
under the assumption that the spectral density a(1), 1 € [z, #], is squared-integrable.
Let }::[y(j—k)]}f’kﬁ be the covariance matrix of (¢, ...,&y). Define X = {xe CN : x*x =1}, where x* is the complex-
conjugate of x. Since X is Hermitian, one has
Amin(Z) = ing X*TX) and Amax(T) = sup(X*Ex). 2.1
Xe

XekX
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With the definitions introduced above,

2

‘ % xie 1| a(2) da. (2.2)

j=1

N v 4
XEX= Y x*y(j—k)x=/

k=1 -

Note that, by the Parseval identity, the function h(1) = |Z]’V: 1xje =42, 2 e [—x, x], belongs to the set
HN = {h - h symmetric, |h|,, < N,/ h(1) da= 2;1}.
Let d €[0, 1/2). Consider the following class of spectral densities:

Fa=1{a:a()=14">'ax(4), 0 < Crin < 18x(A)| < Cmax < 00,4 € [~ 1, 7]}. (2.3)

Below we provide two examples of second-order stationary sequences such that their spectral densities a(4), A € [—x, x],
belong to the class F4 described in (2.3).
Fractional ARIMA(O, d, 0). Let {& : j=1,2,...} be the second-order stationary sequence

o0
= X amijj_m»
m=0

where z; are uncorrelated, zero-mean, random variables, a,f::Var(nj) < oo, and

_ mf —dY\ _ m ra-d
tn=(-1) (m )_(7]) rm+hHra—d—m

with d € [0,1/2). Then, a,,, m=0,1, ..., are the coefficients in the power-series representation
A@)=(1-2)"%= f} amz™.
m=0

Therefore, the spectral density a(2), 2e[—z,z], of {§:j=1,2,...}, is given by

o2 ) o2 ) o2 o2
a() = 5L 1AM = SE1—e 72 = SL2(1— cos )~ ~ L1217 (1-0).
2n 2 2 2
Hence, the sequence {¢; : j=1,2,...} has spectral density a(4), A € [, x], that belongs to the class F, described in (2.3). The
sequence {&; :j=1,2,...} is called the fractional ARIMA(O, d, 0) time series. Such models were introduced in Box and Jenkins
(1970) and studied extensively since then. We refer to Section 2.1.1.4 of Beran et al. (2013) for summary of its properties.
Fractional Gaussian noise: Assume that By(u), ue[0, 0], is a fractional Brownian motion with the Hurst parameter
He[1/2,1). Define the second-order stationary sequence & = By(j) —Bn(i—1),j=1,2,... . Its spectral density a(2), 2 € [z, 7],
is given by (see, e.g., Geweke and Porter-Hudak, 1983, p. 222)

al) = 62(2x) "M 2r@2H +1) sin (zH)4 sin(1/2) x 30; |k-+(/2m) ~2H-1,

= -0

and, hence,
202 . 1_2H
a(l) = 71“(2H+ 1) sin (zH)A (14+0(1)) (l0).

Hence, the sequence (& :j=1,2,...} has spectral density a(4), 2€[—z, ], that belongs to class F4 with d=H—1/2. The
sequence {& :j=1,2,...} is called the fractional Gaussian noise. We refer to Section 1.3.5 in Beran et al. (2013) for its further
properties.

It follows from (2.3) that, for a e 7,4, one has a(i) ~ |4 =2 (A—0). It also turns out that the condition a e Fy, d €[0,1/2),
implies that all eigenvalues of the covariance matrix = are of asymptotic order N°¢ (N —oo). In particular, the following
lemma is true.

Lemma 1. Assume that {§; : j=1,2,...} is a second-order stationary sequence with spectral density a € Fq, d € [0,1/2). Then, for
some constants K14 and K,4 (0 < K14 < K54 < 00) that depend on d only,

K1aN* < Anin(Z) < Amax(E) < KogN*.

Remark 1. If d=0, then F, is the class of spectral densities a(1) that are bounded away from 0 and o for all 1 e[z, z]. In
particular, the corresponding second-order stationary sequences {¢; : j=1,2,...} are weakly dependent. Then, the statement
of Lemma 1 reduces to a result in Grenander and Szego (1958, Section 5.2).

Corollary 1. For each 1=1,2,....M, let &€ be a second-order stationary Gaussian sequence with spectral density q, € Fap
d, €[0,1/2). We assume that €V are independent for different I's. Let d;, I=1,2,...,M, be uniformly bounded, i.e., there exists
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d* (0 <d* <1/2) such that, for each 1=1,2,...,M,
O<d <d*<1/2. (2.4)
Then, Assumption A1 holds.

3. The estimation algorithm

In what follows, (-, -) denotes the inner product in RN. We also denote the complex-conjugate of a € C by @, the discrete
Fourier basis on the interval T by e (t;) =e~ 2™, t; =i/N,i=1,2,....N,m=0, +1, +2,..., and the complex-conjugate of
the matrix A by A*,

Recall the multichannel deconvolution model (1.1). Denote

h(ul,ti)z/.g(u,,t,-—x)f(x)dx, 1=1,2,...M, i=1,2,....N.
JT

Then, Eq. (1.1) can be rewritten as
y(u,,t,—):h(u,,t,—)+§,i, [=1,2,..,.M,i=1,2,...,N. 3.1
For each [=1,2,...,M, let hu(u) = (em, h(uy, ), Yym(U) = €m, YU, )), Zim = (€, D), (W) = (€m, &(uy, ) and fr, = (em. f) be the

discrete Fourier coefficients of the RN vectors h(u;, t;), y(uy, t;), & g(u;, t;) and f(t;), i=1,2, ..., N, respectively. Then, applying
the discrete Fourier transform to (3.1), one obtains, for any u;e U, [=1,2,...,M,

hin () = gm(UDfim (3.2)
and
ym(ul)zgm(ul)fm +N71/221m. (33)
Multiplying both sides of (3.3) by N~2%g, (1), and adding them together, we obtain the following estimator of f,:
7 M -2 Moy-2d 2
fm= IZ] N=g (U ym(u) 121 N gmupl= | (3.4)

Let ¢*(-) and yw*(-) be the Meyer scaling and mother wavelet functions, respectively, defined on the real line (see, e.g., Meyer,

1992 or Mallat, 1999) and obtain a periodized version of Meyer wavelet basis for j>0 and k=0,1,...,2/ -1,
o) = ¥ 22* @ x+i)—k), w0 = T 2Py @x+i)—k), xeT.
iez ieZ
Following Pensky and Sapatinas (2009, 2010), using the periodized Meyer wavelet basis described above, for some j, >0,
expand f(-) e L*(T) as
2o _1 o 2-1
fO= ¥ qGuej®+ ¥ ¥ bpyp(t), teT. (3.5)
k=0 j=Jok=0

Furthermore, by Plancherel’s formula, the scaling coefficients, a; ;. = {f, »; 1), and the wavelet coefficients, by, = (f, w), of f(-)
can be represented as

Qjok = Z fmq'mjolo bjk = Z fm'/’mjk9 (3.6)

me CfD me(;
where @i = (€m, @jo1s Cjy = (M : Pjorc # O}, Wi = (em, yjr) and, for any j = jo,
G={m:yp #0) =2x/3[- 212, — 22U (2,242,

(Note that the cardinality |C;| of the set G; is |Cj| = 472, see, e.g., Johnstone et al., 2004.) Estimates of aj,x and by, are readily
obtained by substituting f,, in (3.6) with (3.4), i.e,

= % J?mwmjok, Bjk =X fml/’mjk- 3.7)

meCjU me(;

We now construct a (block thresholding) wavelet estimator of f(-), suggested by Pensky and Sapatinas (2009, 2010).
For this purpose, we divide the wavelet coefficients at each resolution level into blocks of length In n. Let A; and U;, be the
following sets of indices:

Aj=(rr=1,2,...[2/Inny,
Up={klk=0,1,....2 ~1;(r—Dlnn<k<rlnn-1).
Denote

Bj,=kz by. Bip= Y by (3.8)

e Uj ke Ui
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Finally, for any j, > 0, the (block thresholding) wavelet estimator f 2() of f(-) is constructed as

« 2o —1 J-1 = N
fa®= % Guoj®+ X X X bul(Bil = yp(t), teT, (3.9
k=0 j=JoreAike U
where [(A) is the indicator function of the set A, and the resolution levels j, and J and the thresholds 4; will be defined in
Section 5.
In what follows, the symbol C is used for a generic positive constant, independent of n, while the symbol K is used for a

generic positive constant, independent of m, n, M and uy, u, ..., uy. Either of C or K may take different values at different
places.

4. Minimax lower bounds for the L2-risk

Denote
s'=s+1/2-1/p, s*=s+1/2-1/p’, p’ =min{p,2}. 4.1)

Assume that the unknown response function f(-) belongs to a Besov ball Bf,,q(A) of radius A >0, so that the wavelet
coefficients a;; and by, defined in (3.6) satisfy the following relation:

ol 1 1/p o . (Y1 a/p\ /4
B (A)={ fel*U): <k2 |ajuk|"> +<,2 2”"(2 |bﬂ<|l’> ) <Aj. (42)

Jj=Jo k=0

Below, we construct minimax lower bounds for the (quadratic) L?-risk. For this purpose, we define the minimax L?-risk over
the set V < [*(T) as

Ra(V) = inf supE|If —f1%,
f fev
where ligll is the [2-norm of a function g(-) and the infimum is taken over all possible estimators f (-) (measurable functions

taking their values in a set containing V) of f(-), based on observations from model (1.1)).
For M =M, and N =n/M,, denote

M
r(mmy=M"1Y N~ 2dg u)?>, x=1or2or4, 4.3)
=1
and
AG.m=IGlI™" X amn)ey(m,m)]~*, x=1or2, (4.4)
me Cj

The expression r;(m,n) appears in both the lower and the upper bounds for the L2-risk and contains the dependence
parameters d;, [=1,2,...,M. Hence, we impose the following assumption:

Assumption A2. For some constants vq,v7,91,92 € R, aj,a2 >0 (81,92 >0 if oy =a3 =0, v1=v,=0) and K3,K4,5>0,
independent of m and n, and for some sequence ¢, > 0, independent of m, one has

Kseqlm| =2+ (Injm|)~"1e= ™" < 7y(m, n) < Kaeq|m| ~22(Injm])~ e~ (4.5)
where either aya; # 0 or a; =a3 =0 and v; =v; =v > 0. The sequence &, in (4.5) is such that

n*=ne;>oo  (N—o0). (4.6)

Since we expect estimator (3.9) to adapt to the case of sub-Gaussian errors and since Gaussian random variables is a
particular case of sub-Gaussian ones, it is sufficient to derive lower bounds in the Gaussian case.

Theorem 1. Let Assumptions AOG, Al and A2 hold. Let {¢;, x(-),w;.(-)} be the periodic Meyer wavelet basis discussed in Section3.
Let s >max(0,1/p—1/2), 1<p<oo,1<q<oo and A> 0. Then, as n— oo,
C(n*)—zs/(25+2b+1)(ln n*)2$82/(2$+2y+1) lf o =ay = 0’ 1/(2 _p) < ps*,

In n* 25*/(2s* +2v)
Ra (B q(4)) = c( - )

C(In n*)*zs*//’ if ajay #0.

(In n*)25"2/@" 420 jif o) = gy =0, U2 —p) > ps*, 4.7)
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5. Minimax upper bounds for the [*>—risk: Gaussian case
In this section, we shall assume that random variables #;;, for every [=1,2,...,M,and i=1,2,...,N, in (1.2) are Gaussian,

that is, Assumption AOG holds.
Let f,(-) be the (block thresholding) wavelet estimator defined by (3.9). Choose now j, and J such that

2j° =In n*, 2’ = (n*)l/(z”“) if al =ap = O, (51)
) =\ 1/8 .
o — i Inn N 2 =2 if araz > 0. (5.2)
87 \ 2a

Set, for some constant x > 0, large enough,
dj=p? ()~ In 22" if = ap =0. (5.3)

(Since jo >J—1 when aya; > 0, the estimator (3.9) only consists of the first (linear) part and, hence, 4; does not need to be
selected in this case.) Note that the choices of jy, J and 4; are independent of the parameters, s, p, g and A of the Besov ball
Bf,,q(A); hence, the estimator (3.9) is adaptive with respect to these parameters.

Denote (x) , = max(0,x),

@+ D2=p)y e (2 —p) < ps*,

p(2s+2v+1)
0={@-p, if L2 p) = ps* (5.4)
9 ,
0 if (2—p) > ps*.
Assume that, in the case of a; = a; =0, the sequence ¢, is such that
—hilnn<lneg <hyInn (5.5)

for some constants hq, h, € (0, 1). Observe that condition (5.5) implies (4.6) and that In n*< In n (n— oo). (Here, and in what
follows, u(n)=<v(n) means that there exist constants C;,C; (0<C;<Cy; <o), independent of n, such that
0 < Cyv(n) < u(n) < Cv(n) < oo for n large enough.)

Direct calculations yield that under Assumptions A1, A2 and (5.5), for some constants ¢; > 0 and ¢, > 0, independent of n,
for A1(j,n) defined in (4.4), one has

C1 8;] 221/]]'31 if a1 =ay =0,

. . ﬂ .
M0m = C 6‘"_1 221'1]].1ql EXP{(Z] (8377[) 2]/}} if aray > 0. (56)

The proof of the minimax upper bounds for the L?-risk is based on the following two lemmas.

Lemma 2. Let Assumptions AOG, Al and A2 hold. Let the estimators aj,x and Ejk of the scaling and wavelet coefficients a;,; and
b, respectively, be given by (3.6) with f, defined by (3.4). Then, for all j > jo,

[E|ajok—aj0k|2 < Cn_lAl(jo,n) and [El/b\jk_bjklz < Cn_1A1(j, n). (5.7)
If a1 = ay =0 and (5.5) holds, then, for any j > j,,
Elbj—bjl* < Cn?(In )" (n*) =3/ + D) (5.8)

Lemma 3. Let Assumptions AOG, A1, A2 and (5.5) hold. Let the estimators Bjk of the wavelet coefficients by, be given by (3.6) with
fm defined by (3.4). Let

2 8nk 27\"
> c1+ In 2)"1/2 (7) . 5.9
hE [ﬁ i 2" (3 (59)
where ¢y, K3 and h; are defined in (5.6), (4.5) and (5.5), respectively. Then, for all j > j, and any x > 0,
n»( Y Ibj—bjl? = 02547 (n*)~'2%4j" In n*> <n~*. (5.10)
ke Uj

Under Assumptions AOG, Al and A2, and using Lemmas 2 and 3, the following statement is true.

Theorem 2. Let Assumptions AOG, A1 and A2 hold. Letfn(-) be the wavelet estimator defined by (3.9), with j, and J given by (5.1)
(if a1 = ay =0) or (5.2) (if ayaz > 0) and u satisfying (5.9) with x =5. Let s> 1/p’, 1 <p < o0, 1 <q < oo and A > 0. Then, under
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(4.6) if ayay >0 0r (5.5) if a; = a3 =0, as n— oo,

C(n*)fzs/(25+2u+l)(ln n)g+2$81/(2$+2b+]) lf a=ay = O, I/(Z—p) <ps*,

. Inn 25%/(25* +2v) . .
sup Ellf,—fI?< C( * ) (In n)e*+25"/Cs"+20)if o0 = g = 0, U2 —p) > ps*, (5.11)
feBy (A n
C(In n*)~ %/ if ajan > 0.

Remark 2. Theorems 1 and 2 imply that, for the L-risk, the wavelet estimator f 2(+) defined by (3.9) is asymptotical optimal
(in the minimax sense), or near optimal within a logarithmic factor, over a wide range of Besov balls Bf,,q(A) of radius A>0
with s >max(1/p,1/2), 1 <p<oo and 1 < q < oo. The convergence rates depend on the balance between the smoothness
parameter s (of the response function f(-)), the kernel parameters v, 3, 9; and 9, (of the blurring function g(.,-)), the long
memory parameters d;, [ =1,2..., M (of the error sequence &”), and how the total number of observations n is distributed
among the total number of channels M. In particular, M and d;, [ = 1,2, ..., M, jointly determine the value of &, which, in turn,
defines the “essential” convergence rate n* =ne, which may differ considerably from n. For example, if M =M, =n?’,
0<6<1 and |g,(u)><|m|~% for every |=1,2...,M, then

M
en=M"1 Y N2, (5.12)
1=1
and, therefore, n! -24"1-0 < n* < n, where d* = max; - - yd,, so that, n* can take any value between n!~24°0-9 and n. This is
further illustrated in Section 7 below.

6. Minimax upper bounds for the [?>—risk: sub-Gaussian case

In this section, we shall assume that random variables #;, for every [=1,2,...,.M and i=1,2,...,N, in (1.2) are sub-
Gaussian, that is, the general version of Assumption A0 holds. Indeed, by slightly modifying the threshold, one can adapt the
estimator (3.9) to the case of sub-Gaussian noise.

Let J and jo be defined in (5.1) or (5.2) and ¢ be defined in (5.4). Assume that, in the case of @y = a; =0, sequence ¢,
satisfies condition (5.5). For some constant i > 0, large enough, choose

2 =4ci(1+p% Inmy(n*) = In()224j" if @y =ap =0, (6.1)

where c; is defined in (5.6). Note that, similar to the case of Gaussian errors, estimator (3.9) is adaptive with respect to
parameters of the Besov space where it belongs as well to sub-Gaussian noise without the knowledge of its exact
distribution.

The proof of the minimax upper bounds for the L*-risk in sub-Gaussian case is based on the following two lemmas. To
state it, for any matrix G, let ||G|lsp and ||G]|> be, respectively, the spectral and the Frobenius norms.

Lemma 4 (The matrix version of the Hanson-Wright inequality, Rudelson and Vershynin, 2013). Let X = (X1, ...,Xy) be a random
vector with independent components such that E[X;]=0, ||Xill,, < K. Then, for any matrix B, and some absolute constant cy > 0,
one has

{

Lemma 5. Let Assumptions AO, A1, A2 and (5.5) hold. Let the estimators Bjk of the wavelet coefficients by, be given by (3.6) with
fm defined by (3.4). Then, for all j > j,, (5.7) holds. Moreover, if a; = a; =0 and (5.5) holds, then, for any j > j,,

t2 t
X"BX—E|X"BX||>1t)<2 exp(—co min{—,—}). (6.2)
[ ] K* 1Bl K*|IBl|sp

[E|Ejk—bjk|4 < Cn3(n*)_2. (6.3)
In addition, for all j > j, and any x> 0,
P( Y |Bjk —byl? > ci(1+4* Inmn*) "' Inn 22”Jj’9‘> <2n7%, (6.4)
k e Uj
provided
1=K JCox, (6.5)

where ¢y and ¢, are defined in (6.2) and (5.6), respectively.

Lemma 5 implies the following version of the upper bounds for quadratic risk in the case of sub-Gaussian errors.

Theorem 3. Let Assumptions AO, A1 and A2 hold. Letfn(-) be the wavelet estimator defined by (3.9), with j, and ] given by (5.1)
(if oy = a2 = 0) or (5.2) (if a1a2 > 0) and u satisfying (6.5) with k=5.Let s> 1/p’, 1 <p<oo, 1 <q<oo and A > 0. Then, under
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(4.6) if ayay >0 0r (5.5) if a1 = a3 =0, as n— oo,

C(n*)_zs/(25+2”+l)(ln n)1+g+2581/(25+21/+1) lf o =ay= 0’ L/(Z—p) <ps*,

R Inn 2s* /(25* + 2v) . .
sup Ellf, —fII* < C( : ) (In ! Fer2N/@TH2f gy — 0y = 0, (2 —p) = ps*, (6.6)
feBqA) n
C(ln 1’1*)725*//} lf ajay > 0.

7. Illustrative examples

In this section, we consider some illustrative examples of application of the theory developed in the previous sections.
They are particular examples of inverse problems in mathematical physics where one needs to recover initial or boundary
conditions on the basis of observations from a noisy solution of a partial differential equation.

We assume that condition (2.4) holds true and that there exist Ks, Kg, 8; and 65, such that M = M,, satisfies

K5Tl(7'1 SMSKGTIHZ, 0<01<0,<1, 0<Ks<Kg<oo. (7.1)
(Note that, under (7.1), Ksn' =% <N < Kgn'~.)

Example 1. Consider the case when g,,(-), m=0, + 1, £+ 2, ..., is of the form

gm() = Cg exp(—KimiPq(u)), uel, (7.2)
where q(-) in (7.2) is such that, for some g, and g5,

O0<qi<quy<qy<oo, uel. (7.3)

This setup takes place in the estimation of the initial condition in the heat conductivity equation or the estimation of the
boundary condition for the Dirichlet problem of the Laplacian on the unit circle (see Pensky and Sapatinas, 2009, 2010,
Examples 1 and 2). In the former case, g,,,(1) = exp(—4z?m?u), u e U, so that K = 4z2, =2, q(u)=u, ¢, = a and g, = b. In the
latter case, g,,(u)=Cu"™ =Cexp(—|m|In(1/u)), 0<ry <u<r, <1, so that K=1, g=1, qu)=In(1/u), q; =In(1/r;) and
g5 = In(1/ry).

It is easy to see that, under conditions (7.2) and (7.3), for z;(m, n) given in (4.3),

71(m,n) < Cgen exp(—2Kqyiml’) and  z1(m,n) = Cyen exp(—2Kq,|im/),
where &, is of the form (5.12). Assumptions (2.4) and (7.1) lead to the following bounds for n*:
Ksn!—20"1-00 < p* <,
so that In nx In n*. Therefore, according to Theorems 1 and 2,
Ru(B,, 4(A)=(In m) =2/, (7.4)

Note that, in this case, the value of d* has absolutely no bearing on the convergence rates of the linear wavelet estimators:
the convergence rates are determined entirely by the properties of the smoothness parameter s* (of the response function
f()) and the kernel parameter g (of the blurring function g(-, -)).

In other words, in case of super-smooth convolutions, LRD does not influence the convergence rates of the suggested
wavelet estimator. A similar effect is observed in the case of kernel smoothing, see Section 2.2 in Kulik (2008).

Example 2. Suppose that the blurring function g(.,-) is of a box-car like kernel, i.e.,
g(u,t)=0.5qw)l(|t| <u), uel, teT, (7.5)

where q(-) is some positive function which satisfies conditions (7.3). In this case, the functional Fourier coefficients g,,(-) are
of the form

gow)y=1 and g,(u)= 2zm)~ 1 y(u) sin 2zmu), me 2\{0}, ueU. (7.6)

It is easy to see that estimation of the initial speed of a wave on a finite interval (see Pensky and Sapatinas, 2009, Example
4 or Pensky and Sapatinas, 2010, Example 3) leads to g,,(-) of the form (7.6) with q(u) = 1. Assume, without loss of generality,
that u € [0, 1], so that a=0, b=1, and consider (equispaced channels) u;=1/M, [=1,2,...,M, such that

d=auy+a, O0<a<d <1/2, 0<a+a,<d <1/2, (7.7)
i.e., condition (2.4) holds. Note that if a; =0, then

M
(M, =M~ 'N~2242m?) =" Y sin?2zml/M),
I=1
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which is similar to the expression for z;(m,n) studied in Section 6 of Pensky and Sapatinas (2010). Following their
calculations, one obtains that, if jo in (3.9) is such that 2% > (In n)° for some 6 >0 and M > (32z/3)n"/3, then, for n and |m|
large enough,

71 (m,n)=<N"2%2m~2,

Assume now, without loss of generality, that a; > 0. (Note that the case of a; <0 can be handled similarly by changing u
to 1—u.) Below, we shall show that, in this case, a similar result can be obtained under less stringent conditions on M = M,,.
Indeed, the following statement is true.

Lemma 6. Let g(-,-) be of the form (7.5), where q(-) is some positive function which satisfies (7.3), and let d;, |=1,2,...,M, be
given by (7.7) with a; > 0. Assume (without loss of generality) that U =10, 1], and consider u;=1/M, 1=1,2,...,M. Let M =M,
satisfy (7.1) with 6, > 0 if a; > 0 and M > (32xz/3)n'/3 if a, = 0. If m € A;, where |Aj| = Cn2/, for some absolute constant Cy, > 0,
with j > j, > 0, where jq is such that 2 > Cq In n for some Cy > 0, then, for n and |m| large enough,

71(m,m)=N"22m~2(log n)~". (7.8)

It follows immediately from Lemma 6 that, if
M=M,=n’, 0<0<1,

then Assumption A2 holds with a; =a; =0, 11 =1y =v=2, ep=n-220-9Inn)~' and 9; =9, =0. Note that &, satisfies
conditions (4.6) and (5.5), so that In nx In n*. Therefore, according to Theorems 1 and 2,

C(n*)~2/@s+5 if 4—2p < ps*,

R.(B (A %\ $T/(5"+2) 79
”( pal )) = C(lr;l: ) if 4-2p > ps*, 3)
and
Cn*)~2/@+3(nnye  if 4—2p < ps*,
sup Elfy,—fIP<{ _/Inn\*/+» (7.10)
Feg C(F) (nme if 4-2p > ps*,
where
n* — nl —2ay(1 —9)(“.1 n)—l
and
GCC-p. o, "
D(25+5) if 4—2p < ps*,
= 7(q—qp)+ if 4—2p = ps*,
0 if 4—2p > ps*.

Note that LRD affects the convergence rates in this case via the parameter a, that appears in the definition (7.7).
8. Discussion

Deconvolution is the common problem in many areas of signal and image processing which include, for instance, LIDAR
(Light Detection and Ranging) remote sensing and reconstruction of blurred images. LIDAR is a laser device which emits
pulses, reflections of which are gathered by a telescope aligned with the laser (see, e.g., Park et al., 1997; Harsdorf and
Reuter, 2000). The return signal is used to determine distance and the position of the reflecting material. However, if the
system response function of the LIDAR is longer than the time resolution interval, then the measured LIDAR signal is blurred
and the effective accuracy of the LIDAR decreases. If M (M > 2) LIDAR devices are used to recover a signal, then we talk about
a multichannel deconvolution problem. This leads to the discrete model (1.1) considered in this work.

The multichannel deconvolution model (1.1) can also be thought of as the discrete version of a model referred to as the
functional deconvolution model by Pensky and Sapatinas (2009, 2010). The functional deconvolution model has a multitude
of applications. In particular, it can be used in a number of inverse problems in mathematical physics where one needs to
recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation.
Lattes and Lions (1967) initiated research in the problem of recovering the initial condition for parabolic equations based on
observations in a fixed-time strip. This problem and the problem of recovering the boundary condition for elliptic equations
based on observations in an interval domain were studied in Golubev and Khasminskii (1999); the latter problem was also
discussed in Golubev (2004). Some of these specific models were considered in Section 7.

The multichannel deconvolution model (1.1) and its continuous version, the functional deconvolution model, were
studied by Pensky and Sapatinas (2009, 2010), under the assumption that errors are independent and identically distributed
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Gaussian random variables. The objective of this work was to study the multichannel deconvolution model (1.1) from a
minimax point of view, with the relaxation that errors exhibit LRD, covering also both Gaussian and sub-Gaussian cases. We
were not limited in our consideration to a specific type of LRD: the only restriction made was that the errors should satisfy a
general assumption in terms of the smallest and largest eigenvalues of their covariance matrices. In particular, minimax
lower bounds for the L?-risk in model (1.1) under such assumption were derived when f() is assumed to belong to a Besov
ball and g(-,-) has smoothness properties similar to those in Pensky and Sapatinas (2009, 2010), including both regular-
smooth and super-smooth convolutions. In addition, an adaptive wavelet estimator of f(-) was constructed and shown that
such estimator is asymptotically optimal (in the minimax sense), or near-optimal (within a logarithmic factor), in a wide
range of Besov balls, for both Gaussian and sub-Gaussian errors. The convergence rates of the resulting estimators depend
on the balance between the smoothness parameter (of the response function f(-)), the kernel parameters (of the blurring
function g(,-)), and the long memory parameters d,, [ =1,2...,M (of the error sequence £”), and how the total number of
observations is distributed among the total number of channels. Note that SRD is implicitly included in our results by
selecting d;=0, [ =1, 2, ..., M. In this case, the convergence rates we obtained coincide with the convergence rates obtained
under the assumption of independent and identically distributed Gaussian errors by Pensky and Sapatinas (2009, 2010).

Under the assumption that the errors are independent and identically distributed Gaussian random variables, for box-car
kernels, it is known that, when the number of channels in the multichannel deconvolution model (1.1) is finite, the precision
of reconstruction of the response function increases as the number of channels M grow (even when the total number of
observations n for all channels M remains constant) and this requires the channels to form a Badly Approximable (BA) M-
tuple (see De Canditiis and Pensky, 2004, 2006). Under the same assumption for the errors, Pensky and Sapatinas (2009,
2010) showed that the construction of a BA M-tuple for the channels is not needed and a uniform sampling strategy for the
channels with the number of channels increasing at a polynomial rate (i.e., u;=1/M,=1,2,...,M, for M = M,, > (32z/3)n'/3)
suffices to construct an adaptive wavelet estimator that is asymptotically optimal (in the minimax sense), or near-optimal
(within a logarithmic factor), in a wide range of Besov balls, when the blurring function g(-,-) is of box-car like kernel
(including both the standard box-car kernel and the kernel that appears in the estimation of the initial speed of a wave on a
finite interval). Example 2 showed that a similar result is still possible under long-range dependence with (equispaced
channels) u;=1/M,1=1,2,...,M,ns <M =M, <n?, forsome 0<0; <0, <1whend =aju+ay,1=1,2,...M,0<a,<1/2,
O<ay+ay<1/2.

However, in real-life situations, the number of channels M = M, usually refers to the number of physical devices
and, consequently, may grow to infinity only at a slow rate as n—oo. When M =M, grows slowly as n increases (i.e.,
M =M, =o((Inn)*) for some a>1/2), in the multichannel deconvolution model with independent and identically
distributed Gaussian errors, Pensky and Sapatinas (2011) developed a procedure for the construction of a BA M-tuple on
a specified interval, of a non-asymptotic length, together with a lower bound associated with this M-tuple, which explicitly
shows its dependence on M as M is growing. This result was further used for the derivation of upper bounds for the L2-risk
of the suggested adaptive wavelet thresholding estimator of the unknown response function and, furthermore, for the
choice of the optimal number of channels M which minimizes the L?-risk. It would be of interest to see whether or not
similar upper bounds are possible under long-range dependence. Another avenue of possible research is to consider an
analogous minimax study for the functional deconvolution model (i.e., the continuous version of the multichannel
deconvolution model (1.1)) under long range-dependence (e.g., modeling the errors as fractional Brownian motions) and
examine the effect of the convergence rates between the two models, similar to the convergence rate study of Pensky and
Sapatinas (2010) when the errors were considered to be independent and identically distributed Gaussian random variables.
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Appendix A. Proofs

A.1. Proofs of the statements in Section 2

Proof of Lemma 1. We prove the upper bound only since the proof of the lower bound is similar. By (2.1) and (2.2), and the
definitions of Hy and Fy,

Jmax(E) < Cmax Sup h)12] M= 2Cmax Sup h)1A] —2d dy,

heHy /S —x heHy /0
Now, we split f5 = [7/" + J7n- Since d <1/2, for the first integral, we have
/N /N 1 N\ —2d+1 ﬂ—2d+1
~2d —2d gy L _ 2d
/0 h()12] d/lsN/O A dz_Nl_zd(N) 4
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For the second integral, since d > 0, we have

" —2d -2 (" -2 (" _2dpp2d
/,,/thw d/ls(N) ,,/th dﬂs(ﬁ> /0 h(2) di < 2(27)~ 24N

This completes the proof of the lemma. ©
A.2. Proof of the minimax lower bounds for the [*-risk

In order to prove Theorem 1, we consider two cases: the dense case and the sparse case, when the hardest functions to
estimate are, respectively, uniformly spread over the unit interval T and are represented by only one term in a wavelet
expansion.

The proof of Theorem 1 is based on Lemma A.1 of Bunea et al. (2007), an easy corollary of the Fanno lemma, which we
reformulate here for completeness for the case of the L2-risk. [Note that the proof of the corresponding lower bound in
Pensky and Sapatinas, 2009, 2010, in the case of independent and identically distributed Gaussian errors, uses a different but
similar lemma (see Hardle et al., 1998, Lemma 10.1).]

Lemma 7 (Bunea et al., 2007, Lemma A.1). Let © be a set of functions of cardinality card(®) > 2, such that

(i) If —gl? =46 >0 for f.gec O, f #g,
(ii) the Kullback divergences K(Py,Pg) between the measures Py and Py satisfy the inequality K(Py,Py) <log(card(©))/16 for

f.geo.

Then, for some absolute constant C > 0, one has

inf sup E¢|ITn —fII* = C5%,
Tn fe o

where infy, denotes the infimum over all estimators.

The dense case: Let w be the 2/-dimensional vector with components w, = {0, 1}. Denote the set of all possible vectors w by
Q: Q=1{(0,1)%}, the set of binary sequences of length 2/, Note that the vector o has X = 2/ entries and, hence, card(Q) = 2%.
Let H®,w) = i’:‘gﬂ(d)k # wy) be the Hamming distance between the binary sequences w and @. Then, the Varshamov-
Gilbert Lemma (see, e.g., Tsybakov, 2008, p. 104) states that one can choose a subset @2 of ©2, of cardinality at least 2%/8, such
that H(@,w) > X/8 for any w,® € 2;.

Let ©={f, : w € 2;}. Consider two arbitrary sequences w,® e £; and the functions f, and f given by

21
fo®=0p; ’ Zo oy(t) and  f g (6) =p; ’ Zo dpypp(t), teT.

Choose p;=A2"**1/? so that f,,.f; € B} ,(A). Then, calculating the L*-norm difference of f,, and f,, we obtain
2

If o —full® =p? = p?H(@.w) > 2'p? /8.

21

Y (@) — oy
k=0
Hence, we get 45% = 2/p2/8 in condition (i) of Lemma 7.

In order to apply Lemma 7, one needs to also verify condition (ii). For f,, with @ € £, denote by h;,, and h;;, the vectors
with components, respectively,

ho(ui, t)) =gy, ti—)%f,(), i=1,2,...,N,
he (U, t) =g(u, ti—)%f (), i=1,2,...,N.

Then,
M T sy — 1
K(Ps,.P; )=0.5 121 (hy, —hy ) )" (hy, —hyg)
M hy-1 2
SOS Z lmax((z())7 )”hl,m_hl,tb ” .
=1

Now, since w and @ are binary vectors, using Plancherel’s formula and the fact that |y | < 2792 we derive that, under
Assumptions Al and A2,

1M
N 2 - 25— 124
K (wa,pf) < 0.5NMp; m§€ CleE 1 |gmu)I“K7 N

< 2Ky 'n2p? Aq(i,n) < 22AK7 'n2 7% Aq(in),

where A4(j,n) is defined by (4.4).
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Direct calculations yield that, under Assumptions A1, A2 and (4.5), for some constants c3 > 0 and ¢4 > 0, independent of n,

C3 é‘n_l 22u]j192 if ay=ay =0,

. . ﬂ i
410.m < Cq £ ' 2200j% exp{a] (%) 2”’} if ayay > 0. A1

Apply now Lemma 7 with j such that
27A%K; 12 7% A4G,n) <2 In 2/16,

ie.,
va [n*(ln n*) - 192]1/(25+21/+ 1 if ﬁ — 0’
) dnn®'” if >0,
to obtain
) [n*(ln n*)—&z]—ZS/(23+2»+l) if ﬁ:o,
= (nn*)~2/ if > 0. A2)

The sparse case: Consider the functions fy(-) of the form fy(t) = pjy(t), te T, k=0,1,...,2 —1, and denote
0= i) =pjyp(0) : k=0,1,..,2 —1, f,=0}.

Thus, card(©) = 2/. Choose now pj=A2 -5 so thatfy e B;’q(A). It is easy to check that, in this case, one has 45> :pj2 in Lemma
7, and that

K(Py,.Py,) < 27A’Ky 'n2~ I A1, ).
With

2jv [n*(ln n*)— 97 — 1]1/(25’ +2v) if ﬁ — O,
) (nn¥)'/# if p>0,

we then obtain that K(P;,.Py,) < 27A%K; 'n2~%% Ay(j,n) and
—25'/(25' +2v)
n* .
2 [7&1 ey } if p=0,

(Inn*)=2s/# if p>0.

(A.3)

Recall that s* = min{s, s’}. By noting that
25/(2s+2u+1) < 25*/(2s*+20)  if (2 —p) < ps*, (A4)
we then choose the highest of the lower bounds in (9.2) and (9.3). This completes the proof of the theorem. ©

A.3. Proof of the minimax upper bounds for the L*—risk: Gaussian case

We start with proofs of Lemmas 2 and 3.
Proof of Lemma 2. First, consider model (1.1). Then, using (3.3), (3.4), (3.6) and (3.7), one has

k=G = X Fm—fm)@mjok> Dx—bix=X Fm—Fm)Wmjk»

me G meG;

where

~ 1 M M
fu=fn="75 (1 LN ‘Zd'gmwz)z,m) / (l X N |gm(u,)|2>. (A5)

Define
M 2d, 2
Vi = ’2 N™2%gp(upl* = Mz1(m, n). (A.6)
=1

For1=1,2,...,M, consider vector V® with components

-1
M

Vi =Ny g m () {z} N2 |gm<u,-)|2} =Ny g W)V, (A7)
j =
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It is easy to see that, due to |y, <2 //* and the definition of G,
)

M
VO =N 3yl gm0 [ZIN*Mng(u»Iﬂ

me,

M -2
<4z|Gj|~' N~y \gm(u,)ﬁ{ > N‘delgm(ut)ﬁ] .

me G =

Hence,

IVOI2 < 471G~ INT2ANT24 S (g 22,

me G

Using Assumption A1, since z;,, are independent for different I's, we obtain

. 1 M _ B [ p— _
Elbj —byl* = N Y VUmijkmjk 2 N 4d’Vm]1Vm2]gml(ul)gmz(ul)COV(szl,Ztmz)
my,my e G =1
1 M —T
_ 15 yo soyo
N,
‘l M
1 0\ ryd 2
gNI:zlxmax(z v
<47K5|Cjl " 'N~1 z N7 % gy,

meC]

=47K5|CI7INT Y v, ? z N=2%g, (u)> = 4zK5|C;l "N~ X v,

me G =1 meC;

so that

Elbj—bul> <Cn NG~ X [(m,m)] ™ "=Cn~'41 ().

meG;

(One can obtain an upper bound for [E\ajok—ajok|2 by the following similar arguments.)
In order to prove (5.8), define

Bim —2d,
j=1

-1
ZN |gm(u,-)|2} =Ny 1

Note that

4 1/4
4
[E(Zlmlzlmzzlmgzlmzl) < |:| I [Elzm;ll :| .

i=1

Consequently, using Assumption Al, the fact that z,, are independent for different I's, and that E|z,|*
standard (complex-valued) Gaussian random variables z;,,, one obtains

4
[E|b,k— il —O(N 2 Z B; [ 2 Wil 1€m, UDI(E|Zm | )1/4} )

1=1 me G
+0(

M
=0<N2 Y B,
=1

+o(

Since Ym < ¢ Elzim|* = O(Cj|), one derives

R .
[Elbfk_bjk|4=o<|cj|1 ) {L 72(m, n) }+Al(1,n)>

my,m; € G

2
M e —— —
N~ ! I;] Blzm Z lT/mljka?jkgm] (ul)gmz (Ll[)COV(Zlm] 5 Zlmz ):| )

me G me(;

2
nNGITT Y [m(mom] } )

2
Z |V/mjk| |gm(ul)‘2 Z [E|Zml|2] )

mEJ

me G LM? [y (m, m)]* n
=O(M 34,3, n)+n~24%(j, n)).
It is straightforward to show that, when a; = a; =0, one has
29, = 0% %),

= 3[Elzym|*]* for

(A.8)
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Thus, using (A.1) and the fact that 2/ <2/~ < (n*)"/®*D_(A.8) can be rewritten as
[E|B]k*b]k\4 — O(25y]j381 8;3M73 +24jl/j2v91 Sn—Zn—Z)
— O(n3(In n)** (n*)~3/@v+ 1)),
Hence, (5.8) follows. This completes the proof of the lemma. ©

Proof of Lemma 3. Consider a set of vectors
Qp={v.kelUy: ¥ mf*<1
ke Uy
and a centered Gaussian process

Zip= % Vk(Ejk —Dbjp).

ke Uj

Note that, by Jensen'’s inequality,

supZy(v)= | ¥ |bj—Dbyl>.
v ke Ujr

We shall apply below a lemma of Cirelson et al. (1976) which states that, for any x > 0,

~ 2
Pr Y Ibj—bjl* =x+B; | < exp(— X—) (A9)
ke U 232

where
= 2| va2h"?VInn
[E|: kgjjylb‘ik—bjkl j| < T._Bl

with ¢, defined in (5.6), and B, is an upper bound for

sup Var(Zj(v)) = sup E

Ve Ve Qy

> VI((Bjk —by)|?.

e Ujr

Denote

-1
M
121N2d1|gm(ul)|2] , meC;.

Wim= Y, ViW mjk
k

e Uy

Then, under Assumption A2 with a; = a; =0, using argument similar to the proof of (5.7), one obtains

M
sup Var(Z;;(v)) = sup {N Y Wim, Wim, E L 21 N~ g w)gm, (ul)zlm1zlm2:| }

Ve Qy Ve Qy my,my e G

M
<supN~!' 3 N ¥0000(ZD) T Wjmgm(up)l?

Ve I=1 meG

Ve (me(C

<Ksn~! sup{ ¥ |wjm2[rl(m,n)]1}s4nC§221”j’9'(n*)—1:=Bz,

where C3 = (K3)~'(In 2)"(27z/3)*. Apply now inequality (A.9) with x=B;((u\/1—h1)/2./c1—1), in order to obtain large
deviation inequality (5.10) provided that (5.9) holds. This completes the proof of the lemma. ©

Proof of Theorem 2. With (5.6), the proof of this theorem is now almost identical to the proof of Theorem 2 in Pensky and
Sapatinas (2010). o©

A4. Proof of the minimax upper bounds for the L>—risk: sub-Gaussian case

In this section, we prove Lemma 5. Once the lemma is proved, Theorem 3 will follow from the same arguments that are
used in the proof of Theorem 2.

We note first that conclusion (5.7) of Lemma 2 holds, since its proof relies only on the correlation structure of the vector é&.
We need to establish upper bounds for the corresponding fourth moment and large deviation inequality.

Recall that for each [=1,2, ..., M, & is a vector with components &; i= 1,2, ...,N, given by (1.2) with G*(G?)" = =®. Then
a vector ¥ = (G")~"¢? has the covariance matrix Iy, the identity matrix of size N.
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Let @ be a matrix of Fourier transforms. Then we define

70 =g =60, 1=1,..,M.

Let vV b_e) a vector in R" with entries V“’ [=1,....M, me C;, defined in (A.7) and let v,,, be defined in (A.6). Define further
vectors Z and V obtained by stacking vectors Z(“ and VY, respectively, into one long vector:
Y/ v
Z=|: | v=|:
Z(M) v

Define block diagonal matrices

Gc» o ... 0 0 ® 0 00
@ .. - 0 @ 00
R R Y T R
0O 0 - 0 G™ 00 - 0 @
Since
7 2 MoN L oa —2d S —
b —bil= ¥ X N7 Ty aim ik Vm, Vi, 8m, U1)Em, (U1,) Zim, Zim, »

I, = 1my,my
and using the above notation, we can write Z-= ®Gyp, and calculate
2
~ 1 T— 1 T.
Ibj—byl? = { DI v,mzzm] =s(V ZY = S(V &Gy’
I=1meC(;
= Li6e'VV @G n= L Aky
N N ’
Ak)

Note that the quantities in the last line depend on j and k, in particular, V = V (k). Define further

k e Uj k e Uj

A=Y A(k):GTti>T< > 7(k)[7(k)]T><i>G (A.10)
and

]r— Z |b]k_ jkl —* TA’T~

k e Ujr
Using this notation and bearing in mind block-diagonal structure of the matrices, we can evaluate

N[E(Bjr)=[E(nTAn):[E[TF(AWT)]=TF(A)=TF< ) A(k)>

k e Uj

. T+ T— — T4 = T— T T
= Y Tr(G'® VK[V K] PG = Y Tr(d) v ([V (k)]'d GG )

ke Uj ke U ¥

= Y [V dzd V= X %[v<‘>(k)]T<1>z<’><1>Tv<’>(k).

ke Ujr keUpl=1
For any matrix G, recall that ||G||sp and |G|, denote, respectively, the spectral and the Frobenius norms. Denote
Djn = ()~ 1¢;2%" In n. (A.11)
Then, by Assumption A1, [®ZDT ||, = [|®]|sp |ZV[Isp 1D [Isp < KoN?%. Hence,
. M
EB< 2 T 3 VOt VOGN
N &=
1
=N.Z Z 3 Wl 18m(up vy 2N~ < Dy (A.12)

keUjl=1me(C
Next, using the definition of A, obtain
IAllsp < X I Akllsp

ke Uj
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where A, =u(k)[uk)]” with uk=GT<i>T7(k). Hence, A, is of rank 1 and, consequently, Amax(Ak)=[Akllsp=
[V (k)] ®X(®)" V (k). The latter implies that [|Allsp < Xy, [V (k)] ®Z(@)" V (k) and, hence,

N~ Allsp < EBj) < Dj. (A.13)
Moreover, since A, are matrices of rank 1, one has
Al < X A= X [Akllsp- (A14)
ke U ke Uy

Now, in order to prove (6.3), we compute

2242 (In n)?

T 1 2 1 2 2
[Enb,-k—bjm“]:E[(anmk)n) }sWnAnsp(nTn) Sl @'m?.
Since
2
T \2 N 2
E(m'n) —[E<Z > mm> =,
=1m=1
we derive
~ 4 cnd
[E[|bjk_ it ] < o

which implies (6.3).

In order to prove the large deviation inequality (6.4), we use Lemma 4. We apply inequality (6.2) with t = 42D;, log n,
X=nand B=N"'A4 where 4 and Dj, are defined in (9.10) and (9.11), respectively. Taking into account (9.13) and (9.14), we
obtain

P(1Bjr| > Dj(1+* log n)) < 2n~*
provided u > K,/Cox.

A.5. Proofs of the statement in Section 7

Proof of Lemma 6. Below we consider only the case of a; > 0. Validity of the statement for a; = 0 follows from Pensky and
Sapatinas (2010).
By direct calculations, one obtains that

M
r(m.n)=M""@z*m®)~'N"*% ¥ g*(I/M) sin®2zmIM~ "N >4!M,
=1

Therefore,
(4r*m?) g3 N~2%2S(m,n) < 7;(m,n) < (42°m?) " 'g3N~2%2S(m, n), (A.15)

where
M 5 1 .
Smmy=M~1Y sin’QzmiM~")N~2al/M,
1=1

Denote p=N"24/M x—4zmM~" and note that, as n— oo,
M N-2 0
and
p=exp(—2a;M~'InN)
=1-2a;M~ ' InN+2M~2 In* N+oM~2 In® N), (A.16)

since M~ ' InN—0 as n— oo.
Using the fact that sinz(x/2) = (1- cos x)/2 and formula 1.353.3 of Gradshtein and Ryzhik (1980), we obtain
1 [1-p™ 1—p cos x—p™ cos(Mx)+p"*! cos((M—1)x)

Stm.m = 5 1-p 1—2p cos x+p?

Since m is an integer and x = 4zmM ~ !,

cos(Mx)=1, sin(Mx)=0, cos((M—1)x)= cos x.
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Therefore, simple algebraic transformations yield

Sm.my— P+ DA=pM(1 - cos )
’ M(1—=p)[(1-p)*+2p(1 — cos )]

The asymptotic expansion (A.16) for p as n— oo leads to

(1-p" 1-N—%

~ i A17
M(1-p)  4a; InN(1—a;M~'InN) B.17)
so that, if N is large enough, due to p < 1, one obtains an upper bound for S(m, n):
M 2 -1
sam,my= 1=P) (1-p) 2 1 (A.18)

M —p) [pp+Dd—cosx) p+1| =2a,InN’

In order to obtain a lower bound for S(m, n), we note that for N large enough, one has 1/2 < p < 1. Consider the following
two cases: x> /3 and x < /3. If x> z/3, then cos x<1/2 and

(1-p? 2
p(p+1)(1— cos x) +p+l <2,
If x < z/3, we can use the fact that 1— cos x =2 sin?(x/2) > 3x2/8, so that

2 2 112
8(1—p)}<4{1 2a2 In® N

F(p.x)=

4
Fp. %) < 3 1+ 32 |3 322m?2

for N large enough. ©

Since |m| = Cpn2’ > CnCo In n for some Co >0 and Inn > (1—6;)~ " In N(14+0(1)) (as n—oco) due to assumption (7.1), one
has m? > C2,C2(1-6;) 2 In? N and

S(m,n)>C(InN)~ . (A.19)

Observe now that In Nx< In n. This completes the proof of the theorem. ©
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