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We consider the problem of estimating the unknown response function in the multi-
channel deconvolution model with long-range dependent Gaussian or sub-Gaussian
errors. We do not limit our consideration to a specific type of long-range dependence
rather we assume that the errors should satisfy a general assumption in terms of the
smallest and largest eigenvalues of their covariance matrices. We derive minimax lower
bounds for the quadratic risk in the proposed multichannel deconvolution model when
the response function is assumed to belong to a Besov ball and the blurring function is
assumed to possess some smoothness properties, including both regular-smooth and
super-smooth convolutions. Furthermore, we propose an adaptive wavelet estimator of
the response function that is asymptotically optimal (in the minimax sense), or near-
optimal (within a logarithmic factor), in a wide range of Besov balls, for both Gaussian and
sub-Gaussian errors. It is shown that the optimal convergence rates depend on the
balance between the smoothness parameter of the response function, the kernel
parameters of the blurring function, the long memory parameters of the errors, and
how the total number of observations is distributed among the total number of channels.
Some examples of inverse problems in mathematical physics where one needs to recover
initial or boundary conditions on the basis of observations from a noisy solution of a
partial differential equation are used to illustrate the application of the theory we
developed. The optimal convergence rates and the adaptive estimators we consider
extend the ones studied by Pensky and Sapatinas (2009, 2010) for independent and
identically distributed Gaussian errors to the case of long-range dependent Gaussian or
sub-Gaussian errors.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

We consider the estimation problem of the unknown response function f ð�ÞAL2ðTÞ from observations yðul; tiÞ driven by

yðul; tiÞ ¼
Z
T
gðul; ti�xÞf ðxÞ dxþξli; l¼ 1;2;…;M; i¼ 1;2;…;N; ð1:1Þ
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where g is known, ulAU ¼ ½a; b�, 0oarbo1, T ¼ ½0;1�, ti ¼ i=N, and the errors ξli are Gaussian or sub-Gaussian random
variables, independent for different l0s, but dependent for different i0s.

Denote the total number of observations n¼NM and assume, without loss of generality, that N¼ 2J for some integer J40.
For each l¼ 1;2;…;M, let ξðlÞ be a zero mean vector with components ξli, i¼ 1;2;…;N, and let ΣðlÞ≔CovðξðlÞÞ≔E½ξðlÞðξðlÞÞT � be its
covariance matrix. Hence errors ξli are independent for different l0s, but dependent for different i0s. Let GðlÞ be a matrix such
that GðlÞðGðlÞÞT ¼ ΣðlÞ. Then a vector ηðlÞ ¼ ðGðlÞÞ�1ξðlÞ has the covariance matrix IN , the identity matrix of size N.

In order to formulate our main assumption, recall that a random variable ζ is sub-Gaussian if

‖ζ‖ψ2
≔sup

pZ1
p�1=2ðE½jζjp�Þ1=po1:

Examples of sub-Gaussian random variables include Gaussian, Bernoulli or any bounded random variable. See Section 5.2.3
of Vershynin (2011) for more details. We consider the following assumption on the errors:

Assumption A0 (A0G). Vectors ξðlÞ are of the forms

ξðlÞ ¼ GðlÞηðlÞ ð1:2Þ
where ηðlÞ are independent vectors with independent sub-Gaussian (or Gaussian) components ηli for every l¼ 1;2;…;M, and
i¼ 1;2;…;N, such that ‖ηil‖ψ2

oK , 0oKo1.

(In what follows, we consider the cases when one knows that ηðlÞ are Gaussian vectors and refer to this stronger version
of Assumption A0 as Assumption A0G.)

Furthermore, we impose the following condition on the dependence structure.

Assumption A1. For each l¼ 1;2;…;M, ΣðlÞ satisfies the following condition: there exist constants K1 and K2

(0oK1rK2o1), independent of l and N, such that, for each l¼ 1;2;…;M,

K1N
2dl rλminðΣðlÞÞrλmaxðΣðlÞÞrK2N

2dl ; 0rdlo1=2; ð1:3Þ
where λminðΣðlÞÞ and λmaxðΣðlÞÞ are the smallest and largest eigenvalues of (the Toeplitz matrix) ΣðlÞ.

Assumption A1 is valid when, for each l¼ 1;2;…;M, ξðlÞ is a second-order stationary Gaussian sequence with spectral
density satisfying certain assumptions. We shall elaborate on this issue in Section 2. Note that, in the case of independent
errors, for each l¼ 1;2;…;M, ΣðlÞ is proportional to the identity matrix and that dl¼0. In this case, the multichannel
deconvolution model (1.1) reduces to the one with independent and identically distributed Gaussian errors. In a view of
(1.1), the limit situation dl¼0, l¼ 1;2;…;M, can be thought of as the standard multichannel deconvolution model described
in Pensky and Sapatinas (2009, 2010).

Model (1.1) can also be thought of as the discrete version of a model referred to as the functional deconvolution model by
Pensky and Sapatinas (2009, 2010). The functional deconvolution model has a multitude of applications. In particular, it can
be used in a number of inverse problems in mathematical physics where one needs to recover initial or boundary conditions
on the basis of observations from a noisy solution of a partial differential equation. For instance, the problem of recovering
the initial condition for parabolic equations based on observations in a fixed-time trip was first investigated in Lattes and
Lions (1967), and the problem of recovering the boundary condition for elliptic equations based on observations in an
interval domain was studied in Golubev and Khasminskii (1999) and Golubev (2004).

In the case when a¼b, the functional deconvolution model reduces to the standard deconvolution model. This model has
been the subject of a great array of research papers since late 1980s, but the most significant contribution was that of
Donoho (1995) who was the first to device a wavelet solution to the problem. This has attracted the attention of a good deal
of researchers, see, e.g., Abramovich and Silverman (1998), Kalifa and Mallat (2003), Donoho and Raimondo (2004),
Johnstone and Raimondo (2004), Johnstone et al. (2004), Kerkyacharian et al. (2007). (For related results on the density
deconvolution problem, we refer to, e.g., Pensky and Vidakovic, 1999; Walter and Shen, 1999; Fan and Koo, 2002.)

In the multichannel deconvolution model studied by Pensky and Sapatinas (2009, 2010), as well as in the very current
extension of their results to derivative estimation by Navarro et al. (2013), it is assumed that errors are independent and
identically distributed Gaussian random variables. However, empirical evidence has shown that even at large lags, the
correlation structure in the errors can decay at a hyperbolic rate, rather than an exponential rate. To account for this, a great
deal of papers on long-range dependence (LRD) has been developed. The study of LRD (also called long memory) has a
number of applications, as it can be reflected by the very large number of articles having LRD or long memory in their titles,
in areas such as climate study, DNA sequencing, econometrics, finance, hydrology, internet modeling, signal and image
processing, physics and even linguistics. Other applications can be found in, e.g., Beran (1992, 1994), Beran et al. (2013) and
Doukhan et al. (2003).

Although quite a few LRD models have been considered in the regression estimation framework, very little has been
done in the standard deconvolution model. The density deconvolution setup has also witnessed some shift towards
analyzing the problem for dependent processes. The argument behind that was that a number of statistical models, such as
non-linear GARCH and continuous-time stochastic volatility models, can be looked at as density deconvolution models if we
apply a simple logarithmic transformation, and thus there is need to account for dependence in the data. This started by Van
Zanten and Zareba (2008) who investigated wavelet based density deconvolution studied by Pensky and Vidakovic (1999)
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with a relaxation to weakly dependent processes. Comte et al. (2008) analyzed another adaptive estimator that was
proposed earlier but under the assumption that the sequence is strictly stationary but not necessarily independent.
However, it was Kulik (2008), who considered the density deconvolution for LRD and short-range dependent (SRD)
processes. However, Kulik (2008) did not consider nonlinear wavelet estimators but dealt instead with linear kernel
estimators.

In nonparametric regression estimation, ARIMA-type models for the errors were analyzed in Cheng and Robinson (1994),
with error terms of the form sðxi; ξiÞ. In Csörgo and Mielniczuk (2000), the error terms were modeled as infinite order
moving average processes. Mielniczuk and Wu (2004) investigated another form of LRD, with the assumption that xi and ξi
are not necessarily independent for the same i. ARIMA-type error models were also considered in Kulik and Raimondo
(2009). In the standard deconvolution model, and using a maxiset approach, Wishart (2013) applied a fractional Brownian
motion to model the presence of LRD, while Wang (1997) used a minimax approach to study the problem of recovering a
function f from a more general noisy linear transformation where the noise is also a fractional Brownian motion. For further
reference on nonparametric regression with long range dependent errors we refer to Sections 7.4 and 7.5 in Beran et al.
(2013).

The objective of this paper is to study the multichannel deconvolution model from a minimax point of view, with the
relaxation that errors may be sub-Gaussian and exhibit LRD. We do not limit our consideration to a specific type of LRD: the
only restriction is that the errors should satisfy Assumption A1. In particular, we derive minimax lower bounds for the L2-
risk in model (1.1) under Assumption A1 when f ð�Þ is assumed to belong to a Besov ball and gð�; �Þ has smoothness properties
similar to those in Pensky and Sapatinas (2009, 2010), including both regular-smooth and super-smooth convolutions. In
addition, we propose an adaptive wavelet estimator for f ð�Þ and show that such estimator is asymptotically optimal or near-
optimal (within a logarithmic factor) in the minimax sense, in a wide range of Besov balls when the errors are Gaussian, and
near-optimal (within a logarithmic factor) when the errors are sub-Gaussian. Moreover, the estimator adapts to sub-
Gaussianity of errors since its form does not depend on the nature of errors.

We prove that the convergence rates of the resulting estimators depend on the balance between the smoothness
parameter (of the response function f ð�Þ), the kernel parameters (of the blurring function gð�; �Þ), and the long memory
parameters dl, l¼ 1;2…;M (of the error sequence ξðlÞ). Since the parameters dl depend on the values of l, the convergence
rates have more complex expressions than the ones obtained in Kulik and Raimondo (2009) when studying nonparametric
regression estimation with ARIMA-type error models. The convergence rates we derive are more similar in nature to those
in Pensky and Sapatinas (2009, 2010). In particular, the convergence rates depend on how the total number n¼NM of
observations is distributed among the total number M of channels. As we illustrate in two examples, convergence rates are
not affected by LRD in the case of super-smooth convolutions, however, the situation changes in the case of regular-smooth
convolutions.

The paper is organized as follows. Section 2 discusses stationary sequences with LRD errors, justifies Assumption A1 and
provides illustrative examples of stationary sequences satisfying this assumption. Section 3 describes the construction of the
suggested wavelet estimator of f ð�Þ. Section 4 derives minimax lower bounds for the L2-risk for observations from model
(1.1). Section 5 proves that the suggested wavelet estimator is adaptive and asymptotically optimal (in the minimax sense)
or near-optimal (within a logarithmic factor), in a wide range of Besov balls. The Gaussian and sub-Gaussian cases are
treated separately. Section 7 presents examples of inverse problems in mathematical physics where one needs to recover
initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation to illustrate
the application of the theory we developed. Section 8 concludes with a brief discussion. Appendix A contains the proofs of
the theoretical results obtained in earlier sections.
2. Stationary sequences with long-range dependence

In this section, for simplicity of exposition, we consider one sequence of errors fξj : j¼ 1;2;…g. Assume that fξj :
j¼ 1;2;…g is a second-order stationary sequence with covariance function γξðkÞ≔γðkÞ, k¼ 0; 71; 72;…. The spectral
density is defined as

aξ λð Þ≔a λð Þ≔ 1
2π

∑
1

k ¼ �1
γ kð Þe� ikλ; λA �π; π½ �:

On the other hand, the inverse transform which recovers γðkÞ, k¼ 0; 71; 72;…, from aðλÞ, λA ½�π; π�, is given by

γðkÞ ¼
Z π

�π
aðλÞeikλ dλ; k¼ 0; 71; 72;…;

under the assumption that the spectral density aðλÞ, λA ½�π; π�, is squared-integrable.
Let Σ¼ ½γðj�kÞ�Nj;k ¼ 1 be the covariance matrix of ðξ1;…; ξNÞ. Define X ¼ fxACN : xnx¼ 1g, where xn is the complex-

conjugate of x. Since Σ is Hermitian, one has

λminðΣÞ ¼ inf
xAX

ðxnΣxÞ and λmaxðΣÞ ¼ sup
xAX

ðxnΣxÞ: ð2:1Þ
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With the definitions introduced above,

xnΣx¼ ∑
N

j;k ¼ 1
xnγðj�kÞx¼

Z π

�π
∑
N

j ¼ 1
xje

� ijλ

�����
�����
2

aðλÞ dλ: ð2:2Þ

Note that, by the Parseval identity, the function hðλÞ ¼ j∑N
j ¼ 1xje

� ijλj2, λA ½�π; π�, belongs to the set

HN ¼ h : h symmetric; jhj1rN;
Z π

�π
hðλÞ dλ¼ 2π

� �
:

Let dA ½0;1=2Þ. Consider the following class of spectral densities:

F d ¼ fa : aðλÞ ¼ jλj�2danðλÞ; 0oCminr janðλÞjrCmaxo1; λA ½�π; π�g: ð2:3Þ
Below we provide two examples of second-order stationary sequences such that their spectral densities aðλÞ, λA ½�π; π�,

belong to the class F d described in (2.3).
Fractional ARIMA(0, d, 0). Let fξj : j¼ 1;2;…g be the second-order stationary sequence

ξj ¼ ∑
1

m ¼ 0
amηj�m;

where ηj are uncorrelated, zero-mean, random variables, s2η≔VarðηjÞo1, and

am ¼ ð�1Þm �d

m

� �
¼ ð�1Þm Γð1�dÞ

Γðmþ1ÞΓð1�d�mÞ

with dA ½0;1=2Þ. Then, am, m¼ 0;1;…, are the coefficients in the power-series representation

AðzÞ≔ð1�zÞ�d≔ ∑
1

m ¼ 0
amzm:

Therefore, the spectral density aðλÞ, λA ½�π; π�, of fξj : j¼ 1;2;…g, is given by

a λð Þ ¼ s2η
2π

jAðe� iλÞj2 ¼ s2η
2π

j1�e� iλj�2d ¼ s2η
2π

j2 1� cos λð Þj�d � s2η
2π

jλj�2d λ-0ð Þ:

Hence, the sequence fξj : j¼ 1;2;…g has spectral density aðλÞ, λA ½�π; π�, that belongs to the class F d described in (2.3). The
sequence fξj : j¼ 1;2;…g is called the fractional ARIMA(0, d, 0) time series. Such models were introduced in Box and Jenkins
(1970) and studied extensively since then. We refer to Section 2.1.1.4 of Beran et al. (2013) for summary of its properties.

Fractional Gaussian noise: Assume that BH(u), uA ½0;1�, is a fractional Brownian motion with the Hurst parameter
HA ½1=2;1Þ. Define the second-order stationary sequence ξj ¼ BHðjÞ�BHðj�1Þ, j¼ 1;2;… . Its spectral density aðλÞ, λA ½�π; π�,
is given by (see, e.g., Geweke and Porter-Hudak, 1983, p. 222)

aðλÞ ¼ s2ð2πÞ�2H�2Γð2Hþ1Þ sin ðπHÞ4 sin 2ðλ=2Þ � ∑
1

k ¼ �1
jkþðλ=2πÞj�2H�1;

and, hence,

a λð Þ ¼ 2s2

π
Γ 2Hþ1ð Þ sin πHð Þλ1�2H 1þo 1ð Þð Þ λ↓0ð Þ:

Hence, the sequence fξj : j¼ 1;2;…g has spectral density aðλÞ, λA ½�π; π�, that belongs to class F d with d¼H�1=2. The
sequence fξj : j¼ 1;2;…g is called the fractional Gaussian noise. We refer to Section 1.3.5 in Beran et al. (2013) for its further
properties.

It follows from (2.3) that, for aAF d, one has aðλÞ � jλj�2d (λ-0). It also turns out that the condition aAF d, dA ½0;1=2Þ,
implies that all eigenvalues of the covariance matrix Σ are of asymptotic order N2d (N-1). In particular, the following
lemma is true.

Lemma 1. Assume that fξj : j¼ 1;2;…g is a second-order stationary sequence with spectral density aAF d, dA ½0;1=2Þ. Then, for
some constants K1d and K2d ð0oK1drK2do1Þ that depend on d only,

K1dN
2drλminðΣÞrλmaxðΣÞrK2dN

2d:

Remark 1. If d¼0, then F d is the class of spectral densities aðλÞ that are bounded away from 0 and 1 for all λA ½�π; π�. In
particular, the corresponding second-order stationary sequences fξj : j¼ 1;2;…g are weakly dependent. Then, the statement
of Lemma 1 reduces to a result in Grenander and Szegö (1958, Section 5.2).

Corollary 1. For each l¼ 1;2;…;M, let ξðlÞ be a second-order stationary Gaussian sequence with spectral density alAF dl ,
dlA ½0;1=2Þ. We assume that ξðlÞ are independent for different l0s. Let dl, l¼ 1;2;…;M, be uniformly bounded, i.e., there exists
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dn ð0rdno1=2Þ such that, for each l¼ 1;2;…;M,

0rdlrdno1=2: ð2:4Þ
Then, Assumption A1 holds.

3. The estimation algorithm

In what follows, 〈�; �〉 denotes the inner product in RN . We also denote the complex-conjugate of aAC by a, the discrete
Fourier basis on the interval T by emðtiÞ ¼ e� i2πmti , ti ¼ i=N, i¼ 1;2;…;N, m¼ 0; 71; 72;…, and the complex-conjugate of
the matrix A by An.

Recall the multichannel deconvolution model (1.1). Denote

hðul; tiÞ ¼
Z
T
gðul; ti�xÞf ðxÞ dx; l¼ 1;2;…;M; i¼ 1;2;…;N:

Then, Eq. (1.1) can be rewritten as

yðul; tiÞ ¼ hðul; tiÞþξli; l¼ 1;2;…;M; i¼ 1;2;…;N: ð3:1Þ
For each l¼ 1;2;…;M, let hmðulÞ ¼ 〈em;hðul; �Þ〉, ymðulÞ ¼ 〈em; yðul; �Þ〉, zlm ¼ 〈em; ξðlÞ〉, gmðulÞ ¼ 〈em; gðul; �Þ〉 and f m ¼ 〈em; f 〉 be the
discrete Fourier coefficients of the RN vectors hðul; tiÞ, yðul; tiÞ, ξli, gðul; tiÞ and f ðtiÞ, i¼ 1;2;…;N, respectively. Then, applying
the discrete Fourier transform to (3.1), one obtains, for any ulAU, l¼ 1;2;…;M,

hmðulÞ ¼ gmðulÞf m ð3:2Þ
and

ymðulÞ ¼ gmðulÞf mþN�1=2zlm: ð3:3Þ
Multiplying both sides of (3.3) by N�2dl gmðulÞ, and adding them together, we obtain the following estimator of fm:

bf m ¼ ∑
M

l ¼ 1
N�2dl gmðulÞymðulÞ

 !
∑
M

l ¼ 1
N�2dl jgmðulÞj2

 !
:

,
ð3:4Þ

Let φnð�Þ and ψnð�Þ be the Meyer scaling and mother wavelet functions, respectively, defined on the real line (see, e.g., Meyer,
1992 or Mallat, 1999) and obtain a periodized version of Meyer wavelet basis for jZ0 and k¼ 0;1;…;2j�1,

φjkðxÞ ¼ ∑
iAZ

2j=2φnð2jðxþ iÞ�kÞ; ψ jkðxÞ ¼ ∑
iAZ

2j=2ψnð2jðxþ iÞ�kÞ; xAT :

Following Pensky and Sapatinas (2009, 2010), using the periodized Meyer wavelet basis described above, for some j0Z0,
expand f ð�ÞAL2ðTÞ as

f ðtÞ ¼ ∑
2j0 �1

k ¼ 0
aj0kφj0kðtÞþ ∑

1

j ¼ j0

∑
2j �1

k ¼ 0
bjkψ jkðtÞ; tAT : ð3:5Þ

Furthermore, by Plancherel0s formula, the scaling coefficients, aj0k ¼ 〈f ;φj0k〉, and the wavelet coefficients, bjk ¼ 〈f ;ψ jk〉, of f ð�Þ
can be represented as

aj0k ¼ ∑
mACj0

f mφmj0k ; bjk ¼ ∑
mACj

f mψmjk ; ð3:6Þ

where φmj0k ¼ 〈em;φj0k〉, Cj0 ¼ fm : φmj0ka0g, ψmjk ¼ 〈em;ψ jk〉 and, for any jZ j0,

Cj ¼ fm : ψmjka0gD2π=3½�2jþ2; �2j� [ ½2j;2jþ2�:
(Note that the cardinality jCjj of the set Cj is jCjj ¼ 4π2j, see, e.g., Johnstone et al., 2004.) Estimates of aj0k and bjk are readily
obtained by substituting f m in (3.6) with (3.4), i.e.,

baj0k ¼ ∑
mACj0

bf mφmj0k ;
bbjk ¼ ∑

mACj

bf mψmjk : ð3:7Þ

We now construct a (block thresholding) wavelet estimator of f ð�Þ, suggested by Pensky and Sapatinas (2009, 2010).
For this purpose, we divide the wavelet coefficients at each resolution level into blocks of length ln n. Let Aj and Ujr be the
following sets of indices:

Aj ¼ frjr¼ 1;2;…; ½2j=ln n�g;

Ujr ¼ fkjk¼ 0;1;…;2j�1; ðr�1Þln nrkrr ln n�1g:
Denote

Bjr ¼ ∑
kAUjr

b2jk; bBjr ¼ ∑
kAUjr

bb2

jk: ð3:8Þ
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Finally, for any j0Z0, the (block thresholding) wavelet estimator f̂ nð�Þ of f ð�Þ is constructed as

f̂ nðtÞ ¼ ∑
2j0 �1

k ¼ 0

baj0kφj0kðtÞþ ∑
J�1

j ¼ j0

∑
rAAj

∑
kAUjr

bbjkIðjbBjrjZλjÞψ jkðtÞ; tAT ; ð3:9Þ

where IðAÞ is the indicator function of the set A, and the resolution levels j0 and J and the thresholds λj will be defined in
Section 5.

In what follows, the symbol C is used for a generic positive constant, independent of n, while the symbol K is used for a
generic positive constant, independent of m, n, M and u1;u2;…;uM . Either of C or K may take different values at different
places.

4. Minimax lower bounds for the L2-risk

Denote

s0 ¼ sþ1=2�1=p; sn ¼ sþ1=2�1=p0; p0 ¼minfp;2g: ð4:1Þ
Assume that the unknown response function f ð�Þ belongs to a Besov ball Bs

p;qðAÞ of radius A40, so that the wavelet
coefficients aj0k and bjk defined in (3.6) satisfy the following relation:

Bs
p;qðAÞ ¼ f AL2ðUÞ : ∑

2j0 �1

k ¼ 0
jaj0kjp

 !1=p

þ ∑
1

j ¼ j0

2js0q ∑
2j �1

k ¼ 0
jbjkjp

 !q=p
0@ 1A1=q

rA

8><>:
9>=>;: ð4:2Þ

Below, we construct minimax lower bounds for the (quadratic) L2-risk. For this purpose, we define the minimax L2-risk over
the set VDL2ðTÞ as

RnðVÞ ¼ inf
~f

sup
f AV

E‖~f � f‖2;

where JgJ is the L2-norm of a function gð�Þ and the infimum is taken over all possible estimators ~f ð�Þ (measurable functions
taking their values in a set containing V) of f ð�Þ, based on observations from model (1.1)).

For M¼Mn and N¼ n=Mn, denote

τκðm;nÞ ¼M�1 ∑
M

l ¼ 1
N�2κdl jgmðulÞj2κ ; κ¼ 1 or 2 or 4; ð4:3Þ

and

Δκðj;nÞ ¼ jCjj�1 ∑
mACj

τκðm;nÞ½τ1ðm;nÞ��2κ ; κ¼ 1 or 2: ð4:4Þ

The expression τ1ðm;nÞ appears in both the lower and the upper bounds for the L2-risk and contains the dependence
parameters dl, l¼ 1;2;…;M. Hence, we impose the following assumption:

Assumption A2. For some constants ν1; ν2; ϑ1; ϑ2AR, α1; α2Z0 (ϑ1; ϑ240 if α1 ¼ α2 ¼ 0, ν1 ¼ ν2 ¼ 0) and K3;K4; β40,
independent of m and n, and for some sequence ɛn40, independent of m, one has

K3ɛnjmj�2ν1 ðlnjmjÞ�ϑ1e�α1 jmjβ rτ1ðm;nÞrK4ɛnjmj�2ν2 ðlnjmjÞ�ϑ2e�α2 jmjβ ; ð4:5Þ
where either α1α2a0 or α1 ¼ α2 ¼ 0 and ν1 ¼ ν2 ¼ ν40. The sequence ɛn in (4.5) is such that

nn ¼ nɛn-1 ðn-1Þ: ð4:6Þ

Since we expect estimator (3.9) to adapt to the case of sub-Gaussian errors and since Gaussian random variables is a
particular case of sub-Gaussian ones, it is sufficient to derive lower bounds in the Gaussian case.

Theorem 1. Let Assumptions A0G, A1 and A2 hold. Let fϕj0 ;kð�Þ;ψ j;kð�Þg be the periodic Meyer wavelet basis discussed in Section3.
Let s4maxð0;1=p�1=2Þ, 1rpr1, 1rqr1 and A40. Then, as n-1,

Rn Bs
p;q Að Þ

� �
Z

CðnnÞ�2s=ð2sþ2νþ1Þðln nnÞ2sϑ2=ð2sþ2νþ1Þ if α1 ¼ α2 ¼ 0; νð2�pÞopsn;

C
ln nn

nn

� �2sn=ð2sn þ2νÞ
ðln nnÞ2snϑ2=ð2sn þ2νÞ if α1 ¼ α2 ¼ 0; νð2�pÞZpsn;

Cðln nnÞ�2sn=β if α1α2a0:

8>>>><>>>>: ð4:7Þ
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5. Minimax upper bounds for the L2�risk: Gaussian case

In this section, we shall assume that random variables ηli, for every l¼ 1;2;…;M, and i¼ 1;2;…;N, in (1.2) are Gaussian,
that is, Assumption A0G holds.

Let f̂ nð�Þ be the (block thresholding) wavelet estimator defined by (3.9). Choose now j0 and J such that

2j0 ¼ ln nn; 2J ¼ ðnnÞ1=ð2νþ1Þ if α1 ¼ α2 ¼ 0; ð5:1Þ

2j0 ¼ 3
8π

ln nn

2α

� �1=β

; 2J ¼ 2j0 if α1α240: ð5:2Þ

Set, for some constant μ40, large enough,

λj ¼ μ2 ðnnÞ�1 ln nn22νjjϑ1 if α1 ¼ α2 ¼ 0: ð5:3Þ
(Since j04 J�1 when α1α240, the estimator (3.9) only consists of the first (linear) part and, hence, λj does not need to be
selected in this case.) Note that the choices of j0, J and λj are independent of the parameters, s, p, q and A of the Besov ball
Bs
p;qðAÞ; hence, the estimator (3.9) is adaptive with respect to these parameters.
Denote ðxÞþ ¼maxð0; xÞ,

ϱ¼

ð2νþ1Þð2�pÞþ
pð2sþ2νþ1Þ if νð2�pÞopsn;

ðq�pÞþ
q

if νð2�pÞ ¼ psn;

0 if νð2�pÞ4psn:

8>>>>><>>>>>:
ð5:4Þ

Assume that, in the case of α1 ¼ α2 ¼ 0, the sequence ɛn is such that

�h1 ln nr ln ɛnrh2 ln n ð5:5Þ
for some constants h1;h2Að0;1Þ. Observe that condition (5.5) implies (4.6) and that ln nn≍ ln n (n-1). (Here, and in what
follows, uðnÞ≍vðnÞ means that there exist constants C1;C2 ð0oC1rC2o1Þ, independent of n, such that
0oC1vðnÞruðnÞrC2vðnÞo1 for n large enough.)

Direct calculations yield that under Assumptions A1, A2 and (5.5), for some constants c140 and c240, independent of n,
for Δ1ðj;nÞ defined in (4.4), one has

Δ1ðj;nÞr
c1 ɛ�1

n 22νjjϑ1 if α1 ¼ α2 ¼ 0;

c2 ɛ�1
n 22ν1 jjϑ1 exp α1

8π
3

� �β

2jβ

( )
if α1α240:

8>><>>: ð5:6Þ

The proof of the minimax upper bounds for the L2-risk is based on the following two lemmas.

Lemma 2. Let Assumptions A0G, A1 and A2 hold. Let the estimators baj0k and bbjk of the scaling and wavelet coefficients aj0k and
bjk, respectively, be given by (3.6) with bf m defined by (3.4). Then, for all jZ j0,

Ejbaj0k�aj0kj2rCn�1Δ1ðj0;nÞ and Ejbbjk�bjkj2rCn�1Δ1ðj;nÞ: ð5:7Þ

If α1 ¼ α2 ¼ 0 and (5.5) holds, then, for any jZ j0,

Ejbbjk�bjkj4rCn3ðln nÞ3ϑ1 ðnnÞ�3=ð2νþ1Þ: ð5:8Þ

Lemma 3. Let Assumptions A0G, A1, A2 and (5.5) hold. Let the estimators bbjk of the wavelet coefficients bjk be given by (3.6) withbf m defined by (3.4). Let

μZ
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�h1
p ffiffiffiffiffi

c1
p þ

ffiffiffiffiffiffiffiffi
8πκ

p ffiffiffiffiffiffi
K3

p ðln 2Þϑ1=2 2π
3

� �ν
" #

; ð5:9Þ

where c1, K3 and h1 are defined in (5.6), (4.5) and (5.5), respectively. Then, for all jZ j0 and any κ40,

P ∑
kAUjr

jbbjk�bjkj2Z0:25μ2 ðnnÞ�122νjjϑ1 ln nn

 !
rn� κ : ð5:10Þ

Under Assumptions A0G, A1 and A2, and using Lemmas 2 and 3, the following statement is true.

Theorem 2. Let Assumptions A0G, A1 and A2 hold. Let f̂ nð�Þ be the wavelet estimator defined by (3.9), with j0 and J given by (5.1)
(if α1 ¼ α2 ¼ 0) or (5.2) (if α1α240) and μ satisfying (5.9) with κ¼ 5. Let s41=p0, 1rpr1, 1rqr1 and A40. Then, under
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(4.6) if α1α240 or (5.5) if α1 ¼ α2 ¼ 0, as n-1,

sup
f ABs

p;qðAÞ
E‖f̂ n� f‖2r

CðnnÞ�2s=ð2sþ2νþ1Þðln nÞϱþ2sϑ1=ð2sþ2νþ1Þ if α1 ¼ α2 ¼ 0; νð2�pÞopsn;

C
ln n
nn

� �2sn=ð2sn þ2νÞ
ðln nÞϱþ2snϑ1=ð2sn þ2νÞ if α1 ¼ α2 ¼ 0; νð2�pÞZpsn;

Cðln nnÞ�2sn=β if α1α240:

8>>>><>>>>: ð5:11Þ

Remark 2. Theorems 1 and 2 imply that, for the L2-risk, the wavelet estimator f̂ nð�Þ defined by (3.9) is asymptotical optimal
(in the minimax sense), or near optimal within a logarithmic factor, over a wide range of Besov balls Bs

p;qðAÞ of radius A40
with s4maxð1=p;1=2Þ, 1rpr1 and 1rqr1. The convergence rates depend on the balance between the smoothness
parameter s (of the response function f ð�Þ), the kernel parameters ν; β; ϑ1 and ϑ2 (of the blurring function gð�; �Þ), the long
memory parameters dl, l¼ 1;2…;M (of the error sequence ξðlÞ), and how the total number of observations n is distributed
among the total number of channels M. In particular, M and dl, l¼ 1;2;…;M, jointly determine the value of ɛn which, in turn,
defines the “essential” convergence rate nn ¼ nɛn which may differ considerably from n. For example, if M¼Mn ¼ nθ ,
0rθo1 and jgmðulÞj2≍jmj�2ν for every l¼ 1;2…;M, then

ɛn ¼M�1 ∑
M

l ¼ 1
N�2dl ; ð5:12Þ

and, therefore, n1�2dnð1�θÞrnnrn, where dn ¼max1r lrMdl, so that, nn can take any value between n1�2dnð1�θÞ and n. This is
further illustrated in Section 7 below.

6. Minimax upper bounds for the L2�risk: sub-Gaussian case

In this section, we shall assume that random variables ηli, for every l¼ 1;2;…;M and i¼ 1;2;…;N, in (1.2) are sub-
Gaussian, that is, the general version of Assumption A0 holds. Indeed, by slightly modifying the threshold, one can adapt the
estimator (3.9) to the case of sub-Gaussian noise.

Let J and j0 be defined in (5.1) or (5.2) and ϱ be defined in (5.4). Assume that, in the case of α1 ¼ α2 ¼ 0, sequence ɛn
satisfies condition (5.5). For some constant μ40, large enough, choose

λj ¼ 4c1ð1þμ2 ln nÞðnnÞ�1 lnðnÞ22νjjϑ1 if α1 ¼ α2 ¼ 0; ð6:1Þ
where c1 is defined in (5.6). Note that, similar to the case of Gaussian errors, estimator (3.9) is adaptive with respect to
parameters of the Besov space where it belongs as well to sub-Gaussian noise without the knowledge of its exact
distribution.

The proof of the minimax upper bounds for the L2-risk in sub-Gaussian case is based on the following two lemmas. To
state it, for any matrix G, let ‖G‖sp and ‖G‖2 be, respectively, the spectral and the Frobenius norms.

Lemma 4 (The matrix version of the Hanson–Wright inequality, Rudelson and Vershynin, 2013). Let X¼ ðX1;…;XnÞ be a random
vector with independent components such that E½Xi� ¼ 0, ‖Xi‖ψ2

rK . Then, for any matrix B, and some absolute constant c040,
one has

P XTBX�E XTBX
h i

4tj Þr2 exp �c0 min
t2

K4‖B‖22
;

t

K2‖B‖sp

( ) !
:

�����
 

ð6:2Þ

Lemma 5. Let Assumptions A0, A1, A2 and (5.5) hold. Let the estimators bbjk of the wavelet coefficients bjk be given by (3.6) withbf m defined by (3.4). Then, for all jZ j0, (5.7) holds. Moreover, if α1 ¼ α2 ¼ 0 and (5.5) holds, then, for any jZ j0,

Ejbbjk�bjkj4rCn3ðnnÞ�2: ð6:3Þ

In addition, for all jZ j0 and any κ40,

P ∑
kAUjr

jbbjk�bjkj24c1ð1þμ2 ln nÞðnnÞ�1 ln n 22νjjϑ1
 !

r2 n� κ ; ð6:4Þ

provided

μZK
ffiffiffiffiffiffiffi
c0κ

p
; ð6:5Þ

where c0 and c1 are defined in (6.2) and (5.6), respectively.

Lemma 5 implies the following version of the upper bounds for quadratic risk in the case of sub-Gaussian errors.

Theorem 3. Let Assumptions A0, A1 and A2 hold. Let f̂ nð�Þ be the wavelet estimator defined by (3.9), with j0 and J given by (5.1)
(if α1 ¼ α2 ¼ 0) or (5.2) (if α1α240) and μ satisfying (6.5) with κ¼5. Let s41=p0, 1rpr1, 1rqr1 and A40. Then, under
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(4.6) if α1α240 or (5.5) if α1 ¼ α2 ¼ 0, as n-1,

sup
f ABsp;qðAÞ

E‖f̂ n� f‖2r

CðnnÞ�2s=ð2sþ2νþ1Þ ln nð Þ1þϱþ2sϑ1=ð2sþ2νþ1Þ if α1 ¼ α2 ¼ 0; νð2�pÞopsn;

C
ln n
nn

� �2sn=ð2sn þ2νÞ
ðln nÞ1þϱþ2snϑ1=ð2sn þ2νÞ if α1 ¼ α2 ¼ 0; νð2�pÞZpsn;

Cðln nnÞ�2sn=β if α1α240:

8>>>><>>>>: ð6:6Þ

7. Illustrative examples

In this section, we consider some illustrative examples of application of the theory developed in the previous sections.
They are particular examples of inverse problems in mathematical physics where one needs to recover initial or boundary
conditions on the basis of observations from a noisy solution of a partial differential equation.

We assume that condition (2.4) holds true and that there exist K5, K6, θ1 and θ2, such that M¼Mn satisfies

K5nθ1 rMrK6nθ2 ; 0rθ1rθ2o1; 0oK5rK6o1: ð7:1Þ
(Note that, under (7.1), K5n1� θ2 rNrK6n1� θ1 .)

Example 1. Consider the case when gmð�Þ, m¼ 0; 71; 72;…, is of the form

gmðuÞ ¼ Cg expð�KjmjβqðuÞÞ; uAU; ð7:2Þ
where qð�Þ in (7.2) is such that, for some q1 and q2,

0oq1rqðuÞrq2o1; uAU: ð7:3Þ
This setup takes place in the estimation of the initial condition in the heat conductivity equation or the estimation of the

boundary condition for the Dirichlet problem of the Laplacian on the unit circle (see Pensky and Sapatinas, 2009, 2010,
Examples 1 and 2). In the former case, gmðuÞ ¼ expð�4π2m2uÞ, uAU, so that K ¼ 4π2, β¼ 2, qðuÞ ¼ u, q1 ¼ a and q2 ¼ b. In the
latter case, gmðuÞ ¼ Cujmj ¼ C expð�jmjlnð1=uÞÞ, 0or1rurr2o1, so that K¼1, β¼1, qðuÞ ¼ lnð1=uÞ, q1 ¼ lnð1=r2Þ and
q2 ¼ lnð1=r1Þ.
It is easy to see that, under conditions (7.2) and (7.3), for τ1ðm;nÞ given in (4.3),

τ1ðm;nÞrCgɛn expð�2Kq1jmjβÞ and τ1ðm;nÞZCgɛn expð�2Kq2jmjβÞ;
where ɛn is of the form (5.12). Assumptions (2.4) and (7.1) lead to the following bounds for nn:

K5n1�2dnð1� θ1Þrnnrn;

so that ln n≍ ln nn. Therefore, according to Theorems 1 and 2,

RnðBs
p;qðAÞÞ≍ðln nÞ�2sn=β: ð7:4Þ

Note that, in this case, the value of dn has absolutely no bearing on the convergence rates of the linear wavelet estimators:
the convergence rates are determined entirely by the properties of the smoothness parameter sn (of the response function
f ð�Þ) and the kernel parameter β (of the blurring function gð�; �ÞÞ.
In other words, in case of super-smooth convolutions, LRD does not influence the convergence rates of the suggested

wavelet estimator. A similar effect is observed in the case of kernel smoothing, see Section 2.2 in Kulik (2008).

Example 2. Suppose that the blurring function gð�; �Þ is of a box-car like kernel, i.e.,

gðu; tÞ ¼ 0:5qðuÞIðjtjouÞ; uAU; tAT ; ð7:5Þ
where qð�Þ is some positive function which satisfies conditions (7.3). In this case, the functional Fourier coefficients gmð�Þ are
of the form

g0ðuÞ ¼ 1 and gmðuÞ ¼ ð2πmÞ�1 γðuÞ sin ð2πmuÞ; mAZ\f0g; uAU: ð7:6Þ

It is easy to see that estimation of the initial speed of a wave on a finite interval (see Pensky and Sapatinas, 2009, Example
4 or Pensky and Sapatinas, 2010, Example 3) leads to gmð�Þ of the form (7.6) with qðuÞ ¼ 1. Assume, without loss of generality,
that uA ½0;1�, so that a¼0, b¼1, and consider (equispaced channels) ul ¼ l=M, l¼ 1;2;…;M, such that

dl ¼ a1ulþa2; 0ra2rdno1=2; 0ra1þa2rdno1=2; ð7:7Þ
i.e., condition (2.4) holds. Note that if a1 ¼ 0, then

τ1ðm;nÞ≍M�1N�2a2 ð4π2m2Þ�1 ∑
M

l ¼ 1
sin 2ð2πml=MÞ;
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which is similar to the expression for τ1ðm;nÞ studied in Section 6 of Pensky and Sapatinas (2010). Following their
calculations, one obtains that, if j0 in (3.9) is such that 2j0 4 ðln nÞδ for some δ40 and MZð32π=3Þn1=3, then, for n and jmj
large enough,

τ1ðm;nÞ≍N�2a2m�2:

Assume now, without loss of generality, that a1Z0. (Note that the case of a1r0 can be handled similarly by changing u
to 1�u.) Below, we shall show that, in this case, a similar result can be obtained under less stringent conditions on M¼Mn.
Indeed, the following statement is true.

Lemma 6. Let gð�; �Þ be of the form (7.5), where qð�Þ is some positive function which satisfies (7.3), and let dl, l¼ 1;2;…;M, be
given by (7.7) with a1Z0. Assume (without loss of generality) that U ¼ ½0;1�, and consider ul ¼ l=M, l¼ 1;2;…;M. Let M¼Mn

satisfy (7.1) with θ140 if a140 and MZ ð32π=3Þn1=3 if a1 ¼ 0. If mAAj, where jAjj ¼ Cm2j, for some absolute constant Cm40,
with jZ j040, where j0 is such that 2j0 ZC0 ln n for some C040, then, for n and jmj large enough,

τ1ðm;nÞ≍N�2a2m�2ðlog nÞ�1: ð7:8Þ

It follows immediately from Lemma 6 that, if

M¼Mn≍nθ ; 0oθo1;

then Assumption A2 holds with α1 ¼ α2 ¼ 0, ν1 ¼ ν2 ¼ ν¼ 2, ɛn ¼ n�2a2ð1�θÞðln nÞ�1 and ϑ1 ¼ ϑ2 ¼ 0. Note that ɛn satisfies
conditions (4.6) and (5.5), so that ln n≍ ln nn. Therefore, according to Theorems 1 and 2,

Rn Bs
p;q Að Þ

� �
Z

CðnnÞ�2s=ð2sþ5Þ if 4�2popsn;

C
ln nn

nn

� �sn=ðsn þ2Þ
if 4�2pZpsn;

8><>: ð7:9Þ

and

sup
f ABs

p;qðAÞ
E‖f̂ n� f‖2r

CðnnÞ�2s=ð2sþ5Þðln nÞϱ if 4�2popsn;

C
ln n
nn

� �sn=ðsn þ2Þ
ðln nÞϱ if 4�2pZpsn;

8><>: ð7:10Þ

where

nn ¼ n1�2a2ð1�θÞðln nÞ�1

and

ϱ¼

ð5ð2�pÞþ
pð2sþ5Þ if 4�2popsn;

ðq�pÞþ
q

if 4�2p¼ psn;

0 if 4�2p4psn:

8>>>>><>>>>>:
Note that LRD affects the convergence rates in this case via the parameter a2 that appears in the definition (7.7).

8. Discussion

Deconvolution is the common problem in many areas of signal and image processing which include, for instance, LIDAR
(Light Detection and Ranging) remote sensing and reconstruction of blurred images. LIDAR is a laser device which emits
pulses, reflections of which are gathered by a telescope aligned with the laser (see, e.g., Park et al., 1997; Harsdörf and
Reuter, 2000). The return signal is used to determine distance and the position of the reflecting material. However, if the
system response function of the LIDAR is longer than the time resolution interval, then the measured LIDAR signal is blurred
and the effective accuracy of the LIDAR decreases. IfM (MZ2) LIDAR devices are used to recover a signal, then we talk about
a multichannel deconvolution problem. This leads to the discrete model (1.1) considered in this work.

The multichannel deconvolution model (1.1) can also be thought of as the discrete version of a model referred to as the
functional deconvolution model by Pensky and Sapatinas (2009, 2010). The functional deconvolution model has a multitude
of applications. In particular, it can be used in a number of inverse problems in mathematical physics where one needs to
recover initial or boundary conditions on the basis of observations from a noisy solution of a partial differential equation.
Lattes and Lions (1967) initiated research in the problem of recovering the initial condition for parabolic equations based on
observations in a fixed-time strip. This problem and the problem of recovering the boundary condition for elliptic equations
based on observations in an interval domain were studied in Golubev and Khasminskii (1999); the latter problem was also
discussed in Golubev (2004). Some of these specific models were considered in Section 7.

The multichannel deconvolution model (1.1) and its continuous version, the functional deconvolution model, were
studied by Pensky and Sapatinas (2009, 2010), under the assumption that errors are independent and identically distributed
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Gaussian random variables. The objective of this work was to study the multichannel deconvolution model (1.1) from a
minimax point of view, with the relaxation that errors exhibit LRD, covering also both Gaussian and sub-Gaussian cases. We
were not limited in our consideration to a specific type of LRD: the only restriction made was that the errors should satisfy a
general assumption in terms of the smallest and largest eigenvalues of their covariance matrices. In particular, minimax
lower bounds for the L2-risk in model (1.1) under such assumption were derived when f ð�Þ is assumed to belong to a Besov
ball and gð�; �Þ has smoothness properties similar to those in Pensky and Sapatinas (2009, 2010), including both regular-
smooth and super-smooth convolutions. In addition, an adaptive wavelet estimator of f ð�Þ was constructed and shown that
such estimator is asymptotically optimal (in the minimax sense), or near-optimal (within a logarithmic factor), in a wide
range of Besov balls, for both Gaussian and sub-Gaussian errors. The convergence rates of the resulting estimators depend
on the balance between the smoothness parameter (of the response function f ð�Þ), the kernel parameters (of the blurring
function gð�; �ÞÞ, and the long memory parameters dl, l¼ 1;2…;M (of the error sequence ξðlÞ), and how the total number of
observations is distributed among the total number of channels. Note that SRD is implicitly included in our results by
selecting dl¼0, l¼ 1;2;…;M. In this case, the convergence rates we obtained coincide with the convergence rates obtained
under the assumption of independent and identically distributed Gaussian errors by Pensky and Sapatinas (2009, 2010).

Under the assumption that the errors are independent and identically distributed Gaussian random variables, for box-car
kernels, it is known that, when the number of channels in the multichannel deconvolution model (1.1) is finite, the precision
of reconstruction of the response function increases as the number of channels M grow (even when the total number of
observations n for all channels M remains constant) and this requires the channels to form a Badly Approximable (BA) M-
tuple (see De Canditiis and Pensky, 2004, 2006). Under the same assumption for the errors, Pensky and Sapatinas (2009,
2010) showed that the construction of a BA M-tuple for the channels is not needed and a uniform sampling strategy for the
channels with the number of channels increasing at a polynomial rate (i.e., ul ¼ l=M, l¼ 1;2;…;M, for M¼MnZ ð32π=3Þn1=3)
suffices to construct an adaptive wavelet estimator that is asymptotically optimal (in the minimax sense), or near-optimal
(within a logarithmic factor), in a wide range of Besov balls, when the blurring function gð�; �Þ is of box-car like kernel
(including both the standard box-car kernel and the kernel that appears in the estimation of the initial speed of a wave on a
finite interval). Example 2 showed that a similar result is still possible under long-range dependence with (equispaced
channels) ul ¼ l=M, l¼ 1;2;…;M, nθ1 rM¼Mnrnθ2 , for some 0rθ1rθ2o1 when dl ¼ a1ulþa2, l¼ 1;2;…;M, 0ra2o1=2,
0ra1þa2o1=2.

However, in real-life situations, the number of channels M¼Mn usually refers to the number of physical devices
and, consequently, may grow to infinity only at a slow rate as n-1. When M¼Mn grows slowly as n increases (i.e.,
M¼Mn ¼ oððln nÞαÞ for some αZ1=2), in the multichannel deconvolution model with independent and identically
distributed Gaussian errors, Pensky and Sapatinas (2011) developed a procedure for the construction of a BA M-tuple on
a specified interval, of a non-asymptotic length, together with a lower bound associated with this M-tuple, which explicitly
shows its dependence on M as M is growing. This result was further used for the derivation of upper bounds for the L2-risk
of the suggested adaptive wavelet thresholding estimator of the unknown response function and, furthermore, for the
choice of the optimal number of channels M which minimizes the L2-risk. It would be of interest to see whether or not
similar upper bounds are possible under long-range dependence. Another avenue of possible research is to consider an
analogous minimax study for the functional deconvolution model (i.e., the continuous version of the multichannel
deconvolution model (1.1)) under long range-dependence (e.g., modeling the errors as fractional Brownian motions) and
examine the effect of the convergence rates between the two models, similar to the convergence rate study of Pensky and
Sapatinas (2010) when the errors were considered to be independent and identically distributed Gaussian random variables.
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Appendix A. Proofs

A.1. Proofs of the statements in Section 2
Proof of Lemma 1. We prove the upper bound only since the proof of the lower bound is similar. By (2.1) and (2.2), and the
definitions of HN and F d,

λmaxðΣÞrCmax sup
hAHN

Z π

�π
hðλÞjλj�2d dλ¼ 2Cmax sup

hAHN

Z π

0
hðλÞjλj�2d dλ:

Now, we split
R π
0 ¼ R π=N

0 þ R ππ=N . Since do1=2, for the first integral, we haveZ π=N

0
h λð Þjλj�2d dλrN

Z π=N

0
λ�2d dλ¼N

1
1�2d

π

N

� ��2dþ1
¼ π�2dþ1

1�2d
N2d:
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For the second integral, since dZ0, we haveZ π

π=N
h λð Þjλj�2d dλr π

N

� ��2d
Z π

π=N
h λð Þ dλr π

N

� ��2d
Z π

0
h λð Þ dλrπð2πÞ�2dN2d:

This completes the proof of the lemma. □

A.2. Proof of the minimax lower bounds for the L2-risk

In order to prove Theorem 1, we consider two cases: the dense case and the sparse case, when the hardest functions to
estimate are, respectively, uniformly spread over the unit interval T and are represented by only one term in a wavelet
expansion.

The proof of Theorem 1 is based on Lemma A.1 of Bunea et al. (2007), an easy corollary of the Fanno lemma, which we
reformulate here for completeness for the case of the L2-risk. [Note that the proof of the corresponding lower bound in
Pensky and Sapatinas, 2009, 2010, in the case of independent and identically distributed Gaussian errors, uses a different but
similar lemma (see Härdle et al., 1998, Lemma 10.1).]

Lemma 7 (Bunea et al., 2007, Lemma A.1). Let Θ be a set of functions of cardinality cardðΘÞZ2, such that
(i)
 ‖f �g‖2Z4δ240 for f ; gAΘ, f ag,

(ii)
 the Kullback divergences KðPf ; PgÞ between the measures Pf and Pg satisfy the inequality KðPf ; PgÞr logðcardðΘÞÞ=16 for

f ; gAΘ.
Then, for some absolute constant C40, one has

inf
Tn

sup
f A Θ

Ef ‖Tn� f ‖2ZCδ2;

where infTn denotes the infimum over all estimators.

The dense case: Let ω be the 2j-dimensional vector with components ωk ¼ f0;1g. Denote the set of all possible vectors ω by
Ω: Ω¼ fð0;1Þ2j g, the set of binary sequences of length 2j. Note that the vector ω has ℵ¼ 2j entries and, hence, cardðΩÞ ¼ 2ℵ.
Let Hð ~ω;ωÞ ¼∑2j �1

k ¼ 0Ið ~ωkaωkÞ be the Hamming distance between the binary sequences ω and ~ω. Then, the Varshamov–
Gilbert Lemma (see, e.g., Tsybakov, 2008, p. 104) states that one can choose a subset Ω1 of Ω, of cardinality at least 2ℵ=8, such
that Hð ~ω;ωÞZℵ=8 for any ω; ~ωAΩ1.

Let Θ¼ ff ω : ωAΩ1g. Consider two arbitrary sequences ω; ~ωAΩ1 and the functions f ω and ~f ~ω given by

f ωðtÞ ¼ ρj ∑
2j �1

k ¼ 0
ωkψ jkðtÞ and ~f ~ω ðtÞ ¼ ρj ∑

2j �1

k ¼ 0
~ωkψ jkðtÞ; tAT :

Choose ρj ¼ A2� jðsþ1=2Þ, so that f ω; ~f ~ω ABs
p;qðAÞ. Then, calculating the L2-norm difference of f ω and ~f ~ω , we obtain

‖~f ~ω � f ω‖2 ¼ ρ2j ∑
2j �1

k ¼ 0
ð ~ωk�ωkÞψ jk













2

¼ ρ2j Hð ~ω;ωÞZ2jρ2j =8:

Hence, we get 4δ2 ¼ 2jρ2j =8 in condition (i) of Lemma 7.
In order to apply Lemma 7, one needs to also verify condition (ii). For f ω with ωAΩ, denote by hl;ω and hl; ~ω , the vectors

with components, respectively,

hωðul; tiÞ ¼ gðul; ti��Þnf ωð�Þ; i¼ 1;2;…;N;
h ~ω ðul; tiÞ ¼ gðul; ti��Þnf ~ω ð�Þ; i¼ 1;2;…;N:

Then,

KðPfω ; P ~f ~ω
Þ ¼ 0:5 ∑

M

l ¼ 1
ðhl;ω�hl; ~ω ÞT ðΣðlÞÞ�1ðhl;ω�hl; ~ω Þ

r0:5 ∑
M

l ¼ 1
λmaxððΣðlÞÞ�1Þ‖hl;ω�hl; ~ω‖2:

Now, since ω and ~ω are binary vectors, using Plancherel0s formula and the fact that jψ jk;mjr2� j=2, we derive that, under
Assumptions A1 and A2,

K Pfω ; P ~f ~ω

� �
r0:5NMρ2j ∑

mACj

1
M

∑
M

l ¼ 1
jgm ulð Þj2K �1

1 N�2dl

r2πK �1
1 n2jρ2j Δ1ðj;nÞr2πA2K �1

1 n2�2js Δ1ðj;nÞ;

where Δ1ðj;nÞ is defined by (4.4).
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Direct calculations yield that, under Assumptions A1, A2 and (4.5), for some constants c340 and c440, independent of n,

Δ1ðj;nÞr
c3 ɛ�1

n 22νjjϑ2 if α1 ¼ α2 ¼ 0;

c4 ɛ�1
n 22ν1 jjϑ2 exp α1

8π
3

� �β

2jβ

( )
if α1α240:

8>><>>: ðA:1Þ

Apply now Lemma 7 with j such that

2πA2K �1
1 n2�2js Δ1ðj;nÞr2j ln 2=16;

i.e.,

2j≍
½nnðln nnÞ�ϑ2 �1=ð2sþ2νþ1Þ if β¼ 0;
ðln nnÞ1=β if β40;

(

to obtain

δ2 ¼ ½nnðln nnÞ�ϑ2 ��2s=ð2sþ2νþ1Þ if β¼ 0;
ðln nnÞ�2s=β if β40:

(
ðA:2Þ

The sparse case: Consider the functions f kð�Þ of the form f kðtÞ ¼ ρjψ jkðtÞ, tAT , k¼ 0;1;…;2j�1, and denote

Θ¼ ff kðtÞ ¼ ρjψ jkðtÞ : k¼ 0;1;…;2j�1; f 0 ¼ 0g:

Thus, cardðΘÞ ¼ 2j. Choose now ρj ¼ A2� js0 , so that f kABs
p;qðAÞ. It is easy to check that, in this case, one has 4δ2 ¼ ρ2j in Lemma

7, and that

KðPf k ; Pf ~k
Þr2πA2K �1

1 n2�2js0 Δ1ðj;nÞ:

With

2j≍
½nnðln nnÞ�ϑ2 �1�1=ð2s0 þ2νÞ if β¼ 0;
ðln nnÞ1=β if β40;

(

we then obtain that KðPf k ; Pf ~k
Þr2πA2K �1

1 n2�2js0Δ1ðj;nÞ and

δ2 ¼
nn

ðln nnÞϑ2 þ1

" #�2s0=ð2s0 þ2νÞ

if β¼ 0;

ðln nnÞ�2s0=β if β40:

8>><>>: ðA:3Þ

Recall that sn ¼minfs; s0g. By noting that

2s=ð2sþ2νþ1Þr2sn=ð2snþ2νÞ if νð2�pÞrpsn; ðA:4Þ
we then choose the highest of the lower bounds in (9.2) and (9.3). This completes the proof of the theorem. □

A.3. Proof of the minimax upper bounds for the L2�risk: Gaussian case

We start with proofs of Lemmas 2 and 3.

Proof of Lemma 2. First, consider model (1.1). Then, using (3.3), (3.4), (3.6) and (3.7), one has

baj0k�aj0k ¼ ∑
mACj0

ðbf m� f mÞφmj0k ;
bbjk�bjk ¼ ∑

mACj

ðbf m� f mÞψmjk ;

where

bf m� f m ¼ 1ffiffiffiffi
N

p ∑
M

l ¼ 1
N�2dl gmðulÞzlm

 !
∑
M

l ¼ 1
N�2dl jgmðulÞj2

 !
:

,
ðA:5Þ

Define

vm ¼ ∑
M

l ¼ 1
N�2dl jgmðulÞj2 ¼Mτ1ðm;nÞ: ðA:6Þ

For l¼ 1;2;…;M, consider vector VðlÞ with components

V ðlÞ
m ¼N�2dlψmjkgmðulÞ ∑

M

j ¼ 1
N�2dj jgmðujÞj2

" #�1

¼N�2dlψmjkgmðulÞv�1
m : ðA:7Þ
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It is easy to see that, due to jψmjkjr2� j=2 and the definition of Cj,

‖VðlÞ‖2 ¼N�4dl ∑
mACj

jψmjkj2jgmðulÞj2 ∑
M

t ¼ 1
N�2dt jgmðutÞj2

� ��2

r4πjCjj�1 N�4dl ∑
mACj

jgmðulÞj2 ∑
M

t ¼ 1
N�2dt jgmðutÞj2

� ��2

:

Hence,

‖VðlÞ‖2r4πjCjj�1N�2dlN�2dl ∑
mACj

jgmðulÞj2v�2
m :

Using Assumption A1, since zlm are independent for different l0s, we obtain

Ejbbjk�bjkj2 ¼
1
N

∑
m1 ;m2 ACj

ψm1 jkψm2 jk ∑
M

l ¼ 1
N�4dl v�1

m1
v�1
m2

gm1
ðulÞgm2

ulð ÞCov zlm1
; zlm2

 �
¼ 1

N
∑
M

l ¼ 1
VðlÞ TΣðlÞVðlÞ

r 1
N

∑
M

l ¼ 1
λmax ΣðlÞ

� �
‖VðlÞ‖2

r4πK2jCjj�1N�1 ∑
M

l ¼ 1
N�2dl ∑

mACj

jgmðulÞj2v�2
m

¼ 4πK2jCjj�1N�1 ∑
mACj

v�2
m ∑

M

l ¼ 1
N�2dl jgmðulÞj2 ¼ 4πK2jCjj�1N�1 ∑

mACj

v�1
m ;

so that

Ejbbjk�bjkj2rCn�1jCjj�1 ∑
mACj

½τ1ðm;nÞ��1≔Cn�1Δ1ðj;nÞ:

(One can obtain an upper bound for Ejbaj0k�aj0kj2 by the following similar arguments.)
In order to prove (5.8), define

Blm ¼N�2dl ∑
M

j ¼ 1
N�2dj jgmðujÞj2

" #�1

¼N�2dl v�1
m :

Note that

Eðzlm1
zlm2

zlm3
zlm4

Þr ∏
4

i ¼ 1
Ejzmilj4

" #1=4
:

Consequently, using Assumption A1, the fact that zlm are independent for different l0s, and that Ejzlmj4 ¼ 3½Ejzlmj2�2 for
standard (complex-valued) Gaussian random variables zlm, one obtains

Ejbbjk�bjkj4 ¼O N�2 ∑
M

l ¼ 1
B4
lm ∑

mACj

jψmjkjjgm2
ðulÞjðEjzlmj4Þ1=4

" #40@ 1A
þO N�1 ∑

M

l ¼ 1
B2
lm ∑

m1 ;m2 ACj

ψm1 jkψm2jkgm1
ðulÞgm2

ðulÞCovðzlm1
; zlm2

Þ
" #20@ 1A

¼O N�2 ∑
M

l ¼ 1
B4
lm ∑

mACj

jψmjkj2jgmðulÞj2 ∑
mACj

Ejzmlj2
" #20@ 1A

þO n�1jCjj�1 ∑
mACj

½τ1ðm;nÞ��1

" #20@ 1A:

Since ∑mACj
Ejzlmj2 ¼OðjCjjÞ, one derives

Ejbbjk�bjkj4 ¼O jCjj�1 ∑
mACj

1

M3

τ2ðm;nÞ
½τ1ðm;nÞ�4

� �
þ Δ2

1ðj;nÞ
n2

 !
¼OðM�3Δ2ðj;nÞþn�2Δ2

1ðj;nÞÞ: ðA:8Þ
It is straightforward to show that, when α1 ¼ α2 ¼ 0, one has

Δ2ðj;nÞ ¼Oð26jνj3ϑ1ɛ�3
n Þ:
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Thus, using (A.1) and the fact that 2jr2J�1o ðnnÞ1=ð2νþ1Þ, (A.8) can be rewritten as

Ejbbjk�bjkj4 ¼Oð26νjj3ϑ1ɛ�3
n M�3þ24jνj2ϑ1ɛ�2

n n�2Þ
¼Oðn3ðln nÞ3ϑ1 ðnnÞ�3=ð2νþ1ÞÞ:

Hence, (5.8) follows. This completes the proof of the lemma. □

Proof of Lemma 3. Consider a set of vectors

Ωjr ¼ vk; kAUjr : ∑
kAUjr

jvkj2r1

( )

and a centered Gaussian process

Zjr ¼ ∑
kAUjr

vkðbbjk�bjkÞ:

Note that, by Jensen0s inequality,

sup
v
ZjrðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

kAUjr

jbbjk�bjkj2
s

:

We shall apply below a lemma of Cirelson et al. (1976) which states that, for any x40,

Pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

kAUjr

jbbjk�bjkj2
s

ZxþB1

0@ 1Arexp � x2

2B2

� �
; ðA:9Þ

where

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

kAUjr

jbbjk�bjkj2
s24 35r ffiffiffiffiffi

c1
p

2jνjϑ1=2
ffiffiffiffiffiffiffiffiffi
ln n

pffiffiffiffiffi
nn

p ≔B1

with c1 defined in (5.6), and B2 is an upper bound for

sup
vAΩjr

VarðZjrðvÞÞ ¼ sup
vAΩjr

E ∑
kAUjr

vkðbbjk�bjkÞ 2:
�������

Denote

wjm ¼ ∑
kAUjr

vkψmjk ∑
M

l ¼ 1
N�2dl jgmðulÞj2

" #�1

; mACj:

Then, under Assumption A2 with α1 ¼ α2 ¼ 0, using argument similar to the proof of (5.7), one obtains

sup
vAΩjr

VarðZjrðvÞÞ ¼ sup
vAΩjr

N�1 ∑
m1 ;m2 ACj

wjm1
wjm2

E ∑
M

l ¼ 1
N�4dl gm1

ðulÞgm2
ðulÞzlm1

zlm2

" #( )

r sup
vAΩjr

N�1 ∑
M

l ¼ 1
N�4dlλmaxðΣðlÞÞ ∑

mACj

jwjmgmðulÞj2

rK3n�1 sup
vAΩjr

∑
mACj

jwjmj2½τ1ðm;nÞ��1

( )
r4πCn

32
2jνjϑ1 ðnnÞ�1≔B2;

where Cn

3 ¼ ðK3Þ�1ðln 2Þϑ1 ð2π=3Þ2ν. Apply now inequality (A.9) with x¼ B1ððμ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�h1

p
Þ=2 ffiffiffiffiffi

c1
p �1Þ, in order to obtain large

deviation inequality (5.10) provided that (5.9) holds. This completes the proof of the lemma. □

Proof of Theorem 2. With (5.6), the proof of this theorem is now almost identical to the proof of Theorem 2 in Pensky and
Sapatinas (2010). □

A.4. Proof of the minimax upper bounds for the L2�risk: sub-Gaussian case

In this section, we prove Lemma 5. Once the lemma is proved, Theorem 3 will follow from the same arguments that are
used in the proof of Theorem 2.

We note first that conclusion (5.7) of Lemma 2 holds, since its proof relies only on the correlation structure of the vector ξ.
We need to establish upper bounds for the corresponding fourth moment and large deviation inequality.

Recall that for each l¼ 1;2;…;M, ξðlÞ is a vector with components ξli, i¼ 1;2;…;N, given by (1.2) with GðlÞðGðlÞÞT ¼ΣðlÞ. Then
a vector ηðlÞ ¼ ðGðlÞÞ�1ξðlÞ has the covariance matrix IN , the identity matrix of size N.
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Let Φ be a matrix of Fourier transforms. Then we define

ZðlÞ ¼ΦξðlÞ ¼ΦGðlÞηðlÞ; l¼ 1;…;M:

Let VðlÞ be a vector in Rn with entries V ðlÞ
m , l¼1,…,M, mACj, defined in (A.7) and let vm be defined in (A.6). Define further

vectors Z
!

and v! obtained by stacking vectors ZðlÞ and VðlÞ, respectively, into one long vector:

Z
!¼

Zð1Þ

⋮
ZðMÞ

264
375; v!¼

Vð1Þ

⋮
VðMÞ

264
375

Define block diagonal matrices

G¼

Gð1Þ 0 ⋯ 0 0
0 Gð2Þ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 GðMÞ

266664
377775; ~Φ ¼

Φ 0 ⋯ 0 0
0 Φ ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 Φ

26664
37775:

Since

jbbjk�bjkj2 ¼ ∑
M

l1 ;l2 ¼ 1
∑
N

m1 ;m2

N�2dl1 �2dl2 ψm1jkψm2 jkvm1vm2gm1
ðul1 Þgm2

ðul2 Þzlm1
zlm2

;

and using the above notation, we can write Z
!¼ΦGη, and calculate

jbbjk�bjkj2 ¼
1
N

∑
M

l ¼ 1
∑

mACj

~vlmzlm

" #2
¼ 1

N
ð v!T

Z
!Þ2 ¼ 1

N
ð v!T

~ΦGηÞ2

¼ 1
N
ηTGT ~ΦT v! v!T

~ΦG|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
AðkÞ

η¼ 1
N
ηTA kð Þη:

Note that the quantities in the last line depend on j and k, in particular, v!¼ v!ðkÞ. Define further

A¼ ∑
kAUjr

AðkÞ ¼ GT ~ΦT ∑
kAUjr

v!ðkÞ½ v!ðkÞ�T
 !

~ΦG ðA:10Þ

and

B̂jr ¼ ∑
kAUjr

jbbjk�bjkj2 ¼
1
N
ηTAη:

Using this notation and bearing in mind block-diagonal structure of the matrices, we can evaluate

NEðB̂jrÞ ¼ EðηTAηÞ ¼ E½TrðAηηT Þ� ¼ TrðAÞ ¼ Tr ∑
kAUjr

AðkÞ
 !

¼ ∑
kAUjr

TrðGT ~ΦT v!ðkÞ½ v!ðkÞ�T ~ΦGÞ ¼ ∑
kAUjr

Tr ~ΦT v!ðkÞ½ v!ðkÞ�T ~Φ GGT|ffl{zffl}
Σ

0@ 1A
¼ ∑

kAUjr

½ v!ðkÞ�T ~ΦΣ ~ΦT v!ðkÞ ¼ ∑
kAUjr

∑
M

l ¼ 1
½VðlÞðkÞ�TΦΣðlÞΦTVðlÞðkÞ:

For any matrix G, recall that ‖G‖sp and ‖G‖2 denote, respectively, the spectral and the Frobenius norms. Denote

Djn ¼ ðnnÞ�1c12
2jνjϑ1 ln n: ðA:11Þ

Then, by Assumption A1, ‖ΦΣðlÞΦT‖sp ¼ ‖Φ‖sp‖ΣðlÞ‖sp‖ ~ΦT‖sprK2N
2dl . Hence,

EðB̂jrÞr
K2

N
∑

kAUjr

∑
M

l ¼ 1
½VðlÞðkÞ�TVðlÞ kð ÞN2dl

¼ 1
N

∑
kAUjr

∑
M

l ¼ 1
∑

mACj

jψmjkj2jgm ulð Þj2v�2
m N�2dl rDjn: ðA:12Þ

Next, using the definition of A, obtain

‖A‖spr ∑
kAUjr

‖Ak‖sp
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where Ak ¼ uðkÞ½uðkÞ�T with uk ¼ GT ~ΦT v!ðkÞ. Hence, Ak is of rank 1 and, consequently, λmaxðAkÞ ¼ ‖Ak‖sp ¼
½ v!ðkÞ�T ~ΦΣð ~ΦÞT v!ðkÞ. The latter implies that ‖A‖spr∑kAUjr

½ v!ðkÞ�T ~ΦΣð ~ΦÞT v!ðkÞ and, hence,

N�1‖A‖sprEðB̂jrÞrDjn: ðA:13Þ
Moreover, since Ak are matrices of rank 1, one has

‖A‖2r ∑
kAUjr

‖Ak‖2 ¼ ∑
kAUjr

‖Ak‖sp: ðA:14Þ

Now, in order to prove (6.3), we compute

E½jbbjk�bjkj4� ¼ E
1
N
ηTA kð Þη

� �2
" #

r 1

N2 ‖A‖spðηTηÞ2r
c212

4jνj2ϑ1 ðln nÞ2
ðnnÞ2

ðηTηÞ2:

Since

EðηTηÞ2 ¼ E ∑
M

l ¼ 1
∑
N

m ¼ 1
η2lm

 !2

rCn2;

we derive

E jbbjk�bjkj4
h i

r Cn3

ðnnÞ2
;

which implies (6.3).
In order to prove the large deviation inequality (6.4), we use Lemma 4. We apply inequality (6.2) with t ¼ μ2Djn log n,

X¼ η and B¼N�1A where A and Djn are defined in (9.10) and (9.11), respectively. Taking into account (9.13) and (9.14), we
obtain

PðjB̂jrj4Djnð1þμ2 log nÞÞr2n� κ

provided μZK
ffiffiffiffiffiffiffi
c0κ

p
.

A.5. Proofs of the statement in Section 7
Proof of Lemma 6. Below we consider only the case of a140. Validity of the statement for a1 ¼ 0 follows from Pensky and
Sapatinas (2010).
By direct calculations, one obtains that

τ1ðm;nÞ ¼M�1ð4π2m2Þ�1N�2a2 ∑
M

l ¼ 1
q2ðl=MÞ sin 2ð2πmlM�1ÞN�2a1 l=M :

Therefore,

ð4π2m2Þ�1q21 N�2a2Sðm;nÞrτ1ðm;nÞrð4π2m2Þ�1q22N
�2a2Sðm;nÞ; ðA:15Þ

where

Sðm;nÞ ¼M�1 ∑
M

l ¼ 1
sin 2ð2πmlM�1ÞN�2a1l=M :

Denote p¼N�2a1=M , x¼ 4πmM�1 and note that, as n-1,

pM ¼N�2a1-0

and

p¼ expð�2a1M
�1 ln NÞ

¼ 1�2a1M
�1 ln Nþ2a21M

�2 ln2 NþoðM�2 ln2 NÞ; ðA:16Þ

since M�1 ln N-0 as n-1.
Using the fact that sin 2ðx=2Þ ¼ ð1� cos xÞ=2 and formula 1.353.3 of Gradshtein and Ryzhik (1980), we obtain

S m;nð Þ ¼ 1
M

1�pM

1�p
� 1�p cos x�pM cos ðMxÞþpMþ1 cos ððM�1ÞxÞ

1�2p cos xþp2

� �
:

Since m is an integer and x¼ 4πmM�1,

cos ðMxÞ ¼ 1; sin ðMxÞ ¼ 0; cos ððM�1ÞxÞ ¼ cos x:
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Therefore, simple algebraic transformations yield

S m;nð Þ ¼ pðpþ1Þð1�pMÞð1� cos xÞ
Mð1�pÞ½ð1�pÞ2þ2pð1� cos xÞ�

The asymptotic expansion (A.16) for p as n-1 leads to

ð1�pMÞ
Mð1�pÞ �

1�N�2a1

4a1 ln Nð1�a1M
�1 ln NÞ

; ðA:17Þ

so that, if N is large enough, due to po1, one obtains an upper bound for Sðm;nÞ:

S m;nð Þ ¼ ð1�pMÞ
Mð1�pÞ

ð1�pÞ2
pðpþ1Þð1� cos xÞ þ

2
pþ1

" #�1

r 1
2a1 ln N

: ðA:18Þ

In order to obtain a lower bound for Sðm;nÞ, we note that for N large enough, one has 1=2opo1. Consider the following
two cases: xZπ=3 and xoπ=3. If xZπ=3, then cos xr1=2 and

F p; xð Þ ¼ ð1�pÞ2
pðpþ1Þð1� cos xÞ þ

2
pþ1

r2;

If xoπ=3, we can use the fact that 1� cos x¼ 2 sin 2ðx=2ÞZ3x2=8, so that

F p; xð Þr 4
3

1þ 8ð1�pÞ2
3x2

" #
r 4

3
1þ 2a21 ln

2 N
3π2m2

" #
for N large enough. □

Since jmj ¼ Cm2j4CmC0 ln n for some C040 and ln nZ ð1�θ1Þ�1 ln Nð1þoð1ÞÞ (as n-1) due to assumption (7.1), one
has m2ZC2

mC
2
0ð1�θ1Þ�2 ln2 N and

Sðm;nÞZCðln NÞ�1: ðA:19Þ
Observe now that ln N≍ ln n. This completes the proof of the theorem. □
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