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We consider an empirical Bayes approach to standard nonparametric regression estimation using a nonlinear wavelet
methodology. Instead of specifying a single prior distribution on the parameter space of wavelet coefficients, which
is usually the case in the existing literature, we elicit the ε-contamination class of prior distributions that is partic-
ularly attractive to work with when one seeks robust priors in Bayesian analysis. The type II maximum likelihood
approach to prior selection is used by maximizing the predictive distribution for the data in the wavelet domain over a
suitable subclass of the ε-contamination class of prior distributions. For the prior selected, the posterior mean yields
a thresholding procedure which depends on one free prior parameter and it is level- and amplitude-dependent, thus
allowing better adaptation in function estimation. We consider an automatic choice of the free prior parameter, guided
by considerations on an exact risk analysis and on the shape of the thresholding rule, enabling the resulting estimator
to be fully automated in practice. We also compute pointwise Bayesian credible intervals for the resulting function
estimate using a simulation-based approach. We use several simulated examples to illustrate the performance of the
proposed empirical Bayes term-by-term wavelet scheme, and we make comparisons with other classical and empirical
Bayes term-by-term wavelet schemes. As a practical illustration, we present an application to a real-life data set that
was collected in an atomic force microscopy study.

Keywords: Atomic force microscopy; ε-Contaminated priors; Empirical Bayes; Exact risk analysis; Nonparametric
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1 INTRODUCTION

Over the last decade, the nonparametric regression literature has been dominated by non-
linear wavelet methods. These methods are based on the idea of thresholding, which typically
amounts to individual assessment of every empirical wavelet coefficient. If an empirical wavelet
coefficient is sufficiently large in magnitude, that is if its magnitude exceeds a predetermined
threshold, then the corresponding term in the empirical wavelet expansion is retained (or
shrunk towards zero); otherwise it is omitted. The resulting term-by-term wavelet thresholding
estimators are typically implemented through fast algorithms which makes them very appealing
in practice (see, e.g., Donoho and Johnstone, 1994; 1995; Donoho et al., 1995).

Various empirical Bayes approaches for term-by-term wavelet shrinkage and wavelet thres-
holding estimators have also been proposed. (To introduce terminology, a shrinkage rule shrinks
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empirical wavelet coefficients to zero, whilst a thresholding rule shrinks and, in addition, sets
to zero all empirical wavelet coefficients below a certain level.) These approaches impose a
prior distribution on the wavelet coefficients of the unknown response function, designed to
capture the sparseness of wavelet expansions common to most applications. A popular prior
model for each wavelet coefficient is a mixture of two distributions, one mixture component
corresponding to negligible wavelet coefficients, the other to significant wavelet coefficients.
Usually, a mixture of two normal distributions or a mixture of one normal distribution and a
point mass at zero is considered. Then the function is estimated by applying a suitable Bayes
rule to the resulting posterior distribution of the wavelet coefficients. Different choices of loss
function lead to different Bayes rules and hence to different (usually level-dependent) wavelet
shrinkage and wavelet thresholding rules (see, e.g., Chipman et al., 1997; Abramovich et al.,
1998; Clyde et al., 1998; Vidakovic, 1998; Clyde and George, 1999; 2000).

Extensive reviews and descriptions of various classical and empirical Bayes term-by-term
wavelet schemes can be found in, for example, the book by Vidakovic (1999) and the review
papers by Abramovich et al. (2000) and Antoniadis et al. (2001). The relative small sample
performance of most of these wavelet schemes was also examined in an extensive simulation
study byAntoniadis et al. (2001), using a variety of sample sizes, test functions, signal-to-noise
ratios and wavelet filters. While empirical Bayes term-by-term wavelet shrinkage and wavelet
thresholding methods have proven to be an effective tool in nonparametric function estimation,
their computational cost and/or careful hand-tuning of their free prior parameters may be a
handicap, when compared with some classical term-by-term wavelet thresholding methods.
For example, the very best of them require computationally expensive iterative procedures (like
the EM algorithm of Dempster et al., 1977) to obtain estimates of the free prior parameters,
while others require careful hand-tuning of the various free prior parameters to obtain overall
good numerical performances.

In this article, instead of specifying a single prior distribution on the parameter space of
wavelet coefficients, which is usually the case in the existing literature, we elicit a class of
plausible prior distributions. We consider the ε-contamination class of prior distributions that
is particularly attractive to work with when one seeks robust priors in Bayesian analysis (see
e.g., Berger, 1985, Chapter 4). The type II maximum likelihood prior (ML-II prior) approach of
Berger and Berliner (1986) and Berger and Sellke (1987) is used by maximizing the predictive
distribution for the data in the wavelet domain over a suitable subclass of the ε-contamination
class of prior distributions. For the prior selected, the proposed empirical Bayes term-by-term
wavelet methodology possess the following advantageous features: (i) its posterior mean (the
Bayes rule under L2-loss) yields a bonafide thresholding rule which is level- and amplitude-
dependent, thus allowing better adaptation in function estimation (this is different from existing
empirical Bayes term-by-term wavelet schemes that are usually only level-dependent); (ii) it
only depends on one free prior parameter (it is therefore an almost-free method compared with
existing empirical Bayes term-by-term wavelet schemes that usually depend on more than
one free prior parameter); and (iii) its computational cost is low (it is much less computation-
ally expensive than those empirical Bayes term-by-term wavelet schemes requiring iterative
procedures to obtain estimates of their free prior parameters).

We note that a class of prior distributions similar to the ε-contaminated class used in this
article has been also recently considered by Angelini and Vidakovic (2004) to study wavelet
shrinkage in nonparametric regression via a �-minimax approach. However, their methodology
is suitable when prior information about the energy of the signal of interest is available.
Moreover, although their methodology is almost computationally inexpensive, the resulting
posterior-based rule is a shrinkage rule, depends on two free prior parameters and is level-
dependent; hence, it does not possess the appealing features of the proposed thresholding rule.
Furthermore, by adapting the simulation-based approach of Barber (2001), we have obtained
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a computationally very fast and easy to apply scheme to compute pointwise Bayesian credible
intervals for the resulting function estimate obtained from the proposed empirical Bayes term-
by-term wavelet thresholding methodology.

The article is organized as follows. In Section 2 we describe the proposed empirical Bayes
term-by-term wavelet thresholding methodology to the standard nonparametric regression
estimation and present a simulation-based approach to compute pointwise Bayesian credi-
ble intervals for the resulting function estimate. In Section 3, we carry out numerically an
exact risk analysis of the resulting thresholding rule and propose an automatic choice of its
free prior parameter. In Section 4 we provide several simulated examples to illustrate the
performance of the proposed empirical Bayes term-by-term wavelet thresholding methodol-
ogy and the simulation-based pointwise Bayesian credible intervals for the resulting function
estimates. Moreover, we compare the proposed empirical Bayes term-by-term wavelet thresh-
olding methodology with various standard classical and empirical Bayes term-by-term wavelet
schemes. As a practical illustration, we also present an application to a real-life data set that
was collected in an atomic force microscopy study. Some concluding remarks are made in
Section 5.

2 EMPIRICAL BAYES APPROACH TO WAVELET REGRESSION USING
ε-CONTAMINATED PRIORS

In this section we first briefly describe the standard nonparametric regression setting in the
data domain and the equivalent setting in the wavelet domain. We then explain in detail the
steps of the proposed empirical Bayes term-by-term wavelet scheme to the standard nonpara-
metric regression estimation and present a simulation-based approach to computing pointwise
Bayesian credible intervals for the resulting function estimate.

2.1 The Standard Nonparametric Regression Setting

Consider the standard nonparametric regression setting

yi = g(ti) + σεi, i = 1, . . . , n, (1)

where ti = i/n, n = 2J for some positive integer J, εi are independent and identically dis-
tributed N(0, 1) random variables and the noise level σ may, or may not, be known. The
problem is to estimate the underlying function g from the observations y = (y1, . . . , yn)

′
without assuming any particular parametric structure for its form.

The wavelet approach to this problem is easily described. Given a suitable wavelet basis
and primary resolution level j0 ≥ 0, the discrete wavelet transform (DWT) of y gives rise to
an n-dimensional vector d̂ consisting of what are known as the empirical scaling coefficients
ĉj0k(k = 0, . . . , 2j0 − 1) and the empirical wavelet coefficients d̂jk(j = j0, . . . , J − 1; k =
0, . . . , 2j − 1). In practice, the DWT (and its inverse (IDWT)) may be performed through a
computationally fast algorithm developed by Mallat (1989) that requires only O(n) operations.
Due to the orthogonality of the DWT, it follows from Eq. (1) that

ĉj0k = ĉj0k + σεj0k, k = 0, 1, . . . , 2j0 − 1, (2)

d̂jk = djk + σεjk, j = j0, . . . , J − 1, k = 0, . . . , 2j − 1, (3)
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where the εjk are themselves independent and identically distributed N(0, 1) random variables,
and the cj0k and djk are, respectively, the true scaling and wavelet coefficients of the (unknown)
vector of function values g = (g(t1), . . . , g(tn))

′.
Throughout the article we assume that the noise level σ is unknown and it is robustly

estimated by the median absolute deviation of the empirical wavelet coefficients of the data at
the highest resolution level divided by 0.6745 (see Donoho and Johnstone, 1994; 1995), i.e.,

σ̂ = median({|d̂J−1,k|: k = 0, 1, . . . , 2J−1 − 1})
0.6745

(4)

Following asymptotic considerations (see Härdle et al., 1998, Chapter 10), the primary reso-
lution level j0 that we have used throughout our examples was chosen to be

j0 = [log2(log(n))] + 1, (5)

where [x] denotes the integer part of x.

2.2 The ε-Contamination Prior Model

It is advisable to keep the coefficients on the lower coarse resolution levels intact because they
represent ‘low-frequency’ terms that usually contain important components of the function g.
Thus, the scaling coefficients {cj0k: k = 0, . . . , 2j0 − 1} are assumed to be mutual independent
random variables and vague priors are placed on them

cj0k ∼ N(0, ε), ε −→ ∞. (6)

The wavelet coefficients {djk: j = j0, . . . , J − 1; k = 0, . . . , 2j − 1} are assumed to be mutual
independent random variables and to belong to the ε-contaminated class of prior distributions

� = {π(djk) = (1 − εj )δ(0) + εjq(djk), q ∈ D}, (7)

where 0 ≤ εj ≤ 1, π denotes the prior distribution of the wavelet coefficients djk, δ(0) is a
point mass at zero (which models wavelet coefficients with negligible amplitudes) and D
denotes a class of possible spread distributions (which models wavelet coefficients with large
amplitudes). According to the ε-contamination prior model (7), at each resolution level j =
j0, . . . , J − 1, each wavelet coefficient djk is either zero with probability (1 − εj ) or with
probability εj is distributed with a probability distribution from the class D of plausible prior
distributions. Note that we are using the same prior parameter εj at each resolution level
j = j0, . . . , J − 1 and it should be specified appropriately (see Sec. 3.2).

For each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the predictive distribution (denoted
throughout the article by m(d̂jk|π) to emphasize its dependence on the prior π , rather than
using the standard notation m(d̂jk))

m(d̂jk|π) =
∫

f (d̂jk|djk)π(djk) ddjk,

where f (d̂jk|djk) is the probability density function given in Eq. (3), reflects the plausibility
of π . Therefore, a natural method of choosing π is to use the type II maximum likelihood
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approach, (ML-II approach) (see, e.g., Berger, 1985, Sec. 3.5.4). In other words, the ML-II
prior π̂ ∈ � satisfies (for the observed empirical wavelet coefficients d̂jk)

m(d̂jk|π̂) = sup
π∈�

m(d̂jk|π), (8)

where � is given by Eq. (7).
The attractive richness and flexibility of the ε-contamination class of prior distributions

given in Eq. (7) (through appropriate choice of D one can assume that � contains all plausible
priors and no implausible ones) has substantial calculational advantages as well. Surprisingly,
when � is infinite dimensional, the calculation of the ML-II prior given in Eq. (8) is not too
involved. In what follows we exploit one such a case which is appropriate for the proposed
empirical Bayes term-by-term wavelet methodology; the case D = Duni where

Duni = {the class of all densities of the form q(|djk|), q nonincreasing}. (9)

Note that in Eq. (9), only symmetric densities around zero are allowed, and only those which
are unimodal. This seems to be in agreement with the observation that, at each resolution level,
the wavelet coefficients of most noiseless signals or images encountered in practice possess
a density function with a marked peak at zero and heavy tails (see, e.g., Mallat, 1989). Var-
ious probability models have been used to model such behavior, including the mixtures of
two normal distributions (see, e.g., Chipman et al., 1997), the mixture of a normal distribu-
tion and a point mass at zero (see, e.g., Abramovich et al., 1998; Clyde et al., 1998; Clyde
and George, 1999; 2000), and the generalized Gaussian distribution (see, e.g., Moullin and
Liu, 1999; Figueiredo and Nowak, 2001). However, probability models with flatter tails could
give a better match between probability models and noiseless data in the wavelet domain. The
ε-contamination class of prior models that we consider in Section 2.3 allows such models to
be selected when the ML-II priors are chosen.

2.3 The ML-II Approach to Prior Selection

For any π in the ε-contamination class of prior distributions � given in Eq. (7), it is clear that

m(d̂jk|π) = (1 − εj )m0(d̂jk) + εjm(d̂jk|q),

where

m0(d̂jk) =
∫

f (d̂jk|djk)δ(0) ddjk (10)

and

m(d̂jk|q) =
∫

f (d̂jk|djk)q(djk) ddjk. (11)

Hence, the ML-II, prior for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1 can be found by max-
imizing m(d̂jk|π) over π ∈ � given in Eq. (7), or equivalently by maximizing m(d̂jk|q) over
q ∈ D.

By considering now q ∈ Duni, where Duni is given in Eq. (9), for each j = j0, . . . , J − 1;
k = 0, . . . , 2j − 1, the predictive distribution m(d̂jk|q) is maximized over q ∈ Duni at q̂, where
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q̂ follows a uniform distribution on (−ljk, ljk) (i.e., q̂ ∼ U(−ljk, ljk)), with ljk being chosen to
maximize (with a slight abuse of notation and assuming that the maximum is attained)

m(d̂jk|ljk) =
∫ ljk

−ljk

1

2ljk

f (d̂jk|djk) ddjk.

Indeed, following Berger and Berliner (1986) and Berger and Sellke (1987), for each j =
j0, . . . , J − 1; k = 0, . . . , 2j − 1, any density q ∈ Duni can be written as

q(|djk|) =
∫ ∞

0

1

2ljk

I[0,ljk)(|djk|) dF(ljk),

where IA is the indicator function of the set A and F is some distribution function on [0, ∞).
Therefore, it is not difficult to see that, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1,

m(d̂jk|q) =
∫ ∞

−∞
f (d̂jk|djk)q(|djk|) ddjk

=
∫ ∞

0
m(d̂jk|ljk) dF(ljk).

Clearly, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, this is maximized by choosing F to
be a point mass at a ljk maximizing m(d̂jk|ljk) (the corresponding value of q is indicated by q̂).

Recall from Eq. (3) that f (d̂jk|djk) is a N(djk, σ
2) probability density function. Then, it is

easily seen that, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1,

m(d̂jk|ljk) = 1

2ljk

{
�

(
ljk − d̂jk

σ

)
− �

(
−ljk − d̂jk

σ

)}
, (12)

where� is theN(0, 1) cumulative distribution function.Therefore, for each j = j0, . . . , J − 1;
k = 0, . . . , 2j − 1, the maximum of m(d̂jk|ljk) is unique and can be found by differentiat-
ing Eq. (12) with respect to ljk and setting equal to zero (unless |d̂jk| ≤ σ , in which case
the maximum is attained at lmax

jk = 0). After some simple algebra we found that, for each
j = j0, . . . , J − 1; k = 0, . . . , 2j − 1,

�(l∗jk − zjk) − �(−(l∗jk + zjk)) = l∗jk{φ(l∗jk − zjk) + φ(−(l∗jk + zjk))},

where zjk = |d̂jk|/σ, l∗jk = ljk/σ and φ is the N(0, 1) probability density function. A useful
rewriting of this equation, especially for iterative calculations, is

l∗jk = zjk +
{

−2 log

(√
2π

[
1

l∗jk

(�(l∗jk − zjk) − �(−(l∗jk + zjk))) − φ(−(l∗jk + zjk))

])}1/2

.

(13)

For iterative calculations, we plug in a guess for l∗jk on the right hand side of Eq. (13) (an
initial – good guess – is by taking l∗jk = zjk), carry out the calculation in Eq. (13) to obtain a
revised l∗jk , and iterate until the value stabilizes. Figure 1(a) shows the values of l∗jk as a function
of zjk (for fixed j and k).
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FIGURE 1 (a) Graph of l∗jk as a function of zjk (for fixed j and k); (b) ML-II thresholding rule ( ) as a function

of the empirical wavelet coefficients, d̂jk , with εj = 0.4 (for fixed j and k), superimposed with the hard (−··− ··− ··),
soft ( . . . . . ) thresholding rules with threshold value 1. For the three thresholding rules, σ = 1.

Thus, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the ML-II prior, π̂ , for this case is
given by

π̂(djk) =




δ(0) if lmax
jk = 0

(l − εj )δ(0) + εj
1

2lmax
jk

I(−lmax
jk

,lmax
jk

) if lmax
jk > 0,

where lmax
jk = l∗jkσ with l∗jk being the solution of Eq. (13) if |d̂jk| > σ , otherwise l∗jk = 0. For

each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the ML-II prior, π̂ , is therefore either a point mass
at zero or a mixture of two distributions; a point mass at zero and a uniform distribution on
(−lmax

jk , lmax
jk ) (with weights depending only on the particular resolution level). Note also that,

for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the value of lmax
jk depends on the corresponding

empirical wavelet coefficient d̂jk .

2.4 The Posterior Distribution and the Corresponding Bayes Rule for
the L2-Loss Function

Subject to the ε-contamination prior model (7), the posterior distribution is easily evaluated.
More specifically, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, after some straightforward
calculations, we have the following closed form for the resulting posterior distribution

π(djk|d̂jk) = (1 − ε∗
jk)δ(0) + ε∗

jkq(djk|d̂jk), (14)

where

ε∗
jk = εjm(d̂jk|q)

(1 − εj )m0(d̂jk) + εjm(d̂jk|q)
, (15)

q(djk|d̂jk) = q(djk)f (d̂jk|djk)

m(d̂jk|q)
,
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and m0(d̂jk), m(d̂jk|q) are given respectively by Eqs. (10) and (11). Although Eq. (14) seems
to express the posterior class as an ε-contamination class, this is not the case because ε∗

jk is not
fixed; Eq. (15) clearly shows that ε∗

jk depends on q(djk).
For each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, using the results of the ML-II prior analysis

considered in Section 2.3 for q ∈ Duni, where Duni is given in Eq. (9), and after some simple
algebra, we have the following closed form for the resulting posterior distribution

π̂(djk|d̂jk) =



δ(0) if |d̂jk| ≤ σ

(1 − ε∗
jk)δ(0) + ε∗

jkq̂(djk|d̂jk) otherwise,
(16)

where

q̂(djk|d̂jk) =
{

�

(
lmax
jk − d̂jk

σ

)
− �

(−lmax
jk − d̂jk

σ

)}−1
1

σ
√

2π

× exp

(
− 1

2σ 2
(djk − d̂jk)

2

)
, (17)

ε∗
jk is given by Eq. (15) with

m0(d̂jk) = 1

σ
√

2π
exp

(
− d̂2

jk

2σ 2

)
(18)

and

m(d̂jk|q) = 1

2lmax
jk

{
�

(
lmax
jk − d̂jk

σ

)
− φ

(−lmax
jk − d̂jk

σ

)}
, (19)

and lmax
jk = l∗jkσ with l∗jk being the solution of Eq. (13) if |d̂jk| > σ , otherwise l∗jk = 0.

For each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the corresponding Bayes rule for the L2-
loss function is obviously obtained by the posterior mean. After some simple algebra, for
each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the posterior mean E(djk|d̂jk) corresponding to
the posterior distribution π̂(djk|d̂jk) given in Eqs. (16) and (17) is given by

E(djk|d̂jk) =



0 if |d̂jk| ≤ σ

ε∗
jk{d̂jk − σAjkBjk} otherwise,

(20)

where ε∗
jk is given by Eqs. (15), (18) and (19), and Ajk and Bjk are given respectively by

Ajk =
{

�

(
lmax
jk − d̂jk

σ

)
− �

(−lmax
jk − d̂jk

σ

)}−1

(21)

and

Bjk =
{

φ

(
lmax
jk − d̂jk

σ

)
− φ

(−lmax
jk − d̂jk

σ

)}
, (22)
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where lmax
jk = l∗jkσ with l∗jk being the solution of Eq. (13) if |d̂jk| > σ , otherwise l∗jk = 0.

Clearly the posterior mean given in Eq. (20) yields a thresholding rule (which we call, ML-
II thresholding rule) with threshold value σ . It depends on one free prior parameter (i.e., it
depends only on εj ) and it is level- and amplitude-dependent, thus allowing better adaptation
in function estimation. For a plot of the proposed ML-II thresholding rule for a particular case
see Figure 1(b).

Finally, due to the vague priors (6) imposed on the scaling coefficients cj0k and the fact
that from Eq. (2) we have f (ĉj0k|cj0k) to be a N(cj0k, σ

2) probability density function, the
L2-loss function results in estimating cj0k by their empirical counterparts ĉj0k . Hence, the
vector ĝ of the corresponding estimate of the unknown response function g at the observed
data-points can be derived by simply performing the IDWT of {ĉj0k: k = 0, 1, . . . , 2j0 − 1}
and {E(djk|d̂jk): j = j0, . . . , J − 1; k = 0, . . . , 2j − 1}.

2.5 An Algorithm to Computing Pointwise Bayesian Credible Intervals for
the Resulting Function Estimate

After some simple algebra, for each j = j0, . . . , J − 1; k = 0, . . . , 2j − 1, the cumulative
distribution function of the posterior distribution given in Eq. (16) can be expressed as

F(djk|d̂jk) =

I[0,∞)(djk) if |d̂jk| ≤ σ

(1 − ε∗
jk)I[0,∞)(djk) + ε∗

jkAjk�jk otherwise,
(23)

where

�jk =
{

�

(
djk − d̂jk

σ

)
− �

(−lmax
jk − d̂jk

σ

)}
,

ε∗
jk is given by Eq. (15), Ajk is given by Eq. (21) and lmax

jk = l∗jkσ with l∗jk being the solution of

Eq. (13) if |d̂jk| > σ , otherwise l∗jk = 0. Clearly, when |d̂jk| > σ , the cumulative distribution
function F given in Eq. (23) is supported in (−lmax

jk , lmax
jk ) and we have

lim
djk→−lmax

jk

F (djk|d̂jk) = 0 and lim
djk→lmax

jk

F (djk|d̂jk) = 1.

It also follows that F(djk|d̂jk) has a discontinuity only at djk = 0; it is strictly monotonic and
invertible in each interval (−lmax

jk , 0) and (0, lmax
jk ), while it is not invertible on the whole real

line. We now define

u′ = lim
djk↑0

F(djk|d̂jk) = ε∗
jkAjk

{
�

(
−d̂jk

σ

)
− �

(−lmax
jk − d̂jk

σ

)}

and

u′′ = lim
djk↓0

F(djk|d̂jk) = (1 − ε∗
jk) + ε∗

jkAjk

{
�

(
−d̂jk

σ

)
− �

(−lmax
jk − d̂jk

σ

)}
.
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The inverse cumulative distribution function, F−1(u|d̂jk) for u ∈ [0, 1], is defined as

F−1(u|d̂jk) =

0 if |d̂jk| ≤ σ

G−1(u|d̂jk) otherwise,

where

G−1(u|d̂jk) =




0 if u ∈ [u′, u′′]

σ�−1

{
u

1

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk if u ∈ [0, u′)

σ�−1

{
(u − 1 + ε∗

jk)
1

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk if u ∈ (u′′, 1].

It is easily seen now that, if −lmax
jk < djk < 0 and |d̂jk| > σ ,

djk = σ�−1

{
u

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk

while, if 0 < djk < lmax
jk and |d̂jk| > σ ,

djk = σ�−1

{
u − (1 − ε∗

jk)

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk.

Following the idea of Barber (2001), we can now generate a sample value for each wavelet
coefficient, ds

jk , from the posterior distribution given in Eq. (16) using the following algorithm

• If |d̂jk| < σ , set ds
jk = 0.

• Else, generate u ∼ U [0, 1].
– if u ∈ [u′, u′′], set ds

jk = 0.
– if u < u′, set

ds
jk = σ�−1

{
u

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk.

– if u > u′′, set

ds
jk = σ�−1

{
u − 1 + ε∗

jk

Ajkε
∗
jk

+ �

(−lmax
jk − d̂jk

σ

)}
+ d̂jk.

We can now use the above algorithm to resample a value for each wavelet coefficient, ds
jk ,

generating thus a full set of sampled wavelet coefficients ds = {ds
jk: j = j0, . . . , J − 1; k =

0, . . . , 2j − 1}. This set of coefficients can be transformed via the IDWT (see Sec. 2.1), to
construct a sample from the posterior distribution of the vector of function values g, given
the observations y. By sampling a total, say S, of such sets of values, (1 − α)100% pointwise
Bayesian credible intervals can be found for each function point, g(ti), i = 1, . . . , n, by order-
ing the sampled values and taking the central (1 − α)100% as the resulting pointwise Bayesian
credible interval.
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3 EXACT RISK ANALYSIS OF THE ML-II THRESHOLDING RULE AND
ELICITATION OF THE FREE PRIOR PARAMETER

In this section we first carry out numerically an exact risk analysis of the ML-II thresholding
rule (20) to explore robustness in risk, bias and variance when the free prior parameter εj (j =
j0, . . . , J − 1) change. We then propose an automatic choice of this level-dependent free prior
parameter that is guided by considerations on the exact risk analysis and on the shape of the
ML-II thresholding rule, enabling the resulting estimator to be fully automated in practice.

3.1 Exact Risk Analysis of the ML-II Thresholding Rule

Exact risk analysis of any proposed wavelet shrinkage or wavelet thresholding rule has received
considerable attention since it allows for comparison of different classical and Bayesian term-
by-term wavelet schemes in nonparametric regression estimation. When the corresponding
rule is given in a simple form, then the exact risk analysis can be carried out explicitly. For
instance, Donoho and Johnstone (1994) and Bruce and Gao (1996) provide exact risk analysis
for hard and soft thresholding rule under squared error loss. Gao and Bruce (1997) give the
rationale for introducing the firm (or semi-soft) thresholding rule utilizing exact risk analysis.
However, the form of the ML-II thresholding rule (20) is more complex and the exact risk
analysis has to be carried numerically using a suitable quadrature formula. The aim of our
analysis is to explore the robustness of the ML-II thresholding rule in terms of risk (under
squared loss), squared bias, and variance when the free prior parameter εj ranges in [0, 1].
The analysis has been carried out in MATLAB using Gauss–Lobatto quadrature formula to
evaluate the integrals. In the following, we briefly describe the numerical findings.

The ML-II thresholding rule, for any choice of the free prior parameter εj , has a threshold
value σ . As depicted in Figure 2(a), it sets small values of empirical wavelet coefficients to zero
(i.e., when |d̂j,k| ≤ σ ) and shrinks (nonlinearly) large values of empirical wavelet coefficients
(i.e., when |d̂j,k| > σ ). However, it does not overpenalize large values of empirical wavelet
coefficients and hence does not create excessive biases when the wavelet coefficients have
large values. In fact, for large values of empirical wavelet coefficients (when |d̂jk| → ∞), the
proposed ML-II thresholding rule approaches the hard thresholding rule. Apart from the fixed
threshold value σ , the amount of shrinkage of the ML-II thresholding rule essentially depends
on the choice of εj that represents the probability of a wavelet coefficient being significant; the
smaller the value of εj the heavier the amount of shrinkage.

The risks (under squared losses) of the ML-II thresholding rules given in Figure 2(a) are
presented in Figure 2(b). Additionally, the risks of the hard and soft thresholding rules are
computed and superimposed in the figure as a reference. We notice an obvious trade-off in
the risk performance of the ML-II thresholding rule for small, medium and large values of
wavelet coefficients, respectively. When εj is small, the risk remains very close to 0, for small
values of |dj,k|; the risk rapidly increases for medium values of |djk| (the rate and the amplitude
of such increase is larger when εj is smaller). Finally, for large values of |djk| the risks of the
various ML-II thresholding rules are approaching the hard thresholding risk (mimic the fact
that the shape of the rules approaches the hard thresholding rule). For this range, the risks are
always lower than the soft thresholding risks.

The squared-biases of the ML-II thresholding rules given in Figure 2(a) are depicted in
Figure 2(c). We observe that they are not much influenced from the free prior parameter εj
for small values of |djk|, remaining always very close to zero. Analogously, for large values
of |djk|, the squared-bias of the ML-II thresholding rule tends to the squared-bias of the hard
thresholding rule, remaining lower than the corresponding function for the soft thresholding
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FIGURE 2 (a) ML-II thresholding rules for εj (for fixed j ) ranging from 0.1 (upper envelope function) to 0.9
(lower envelop function). (b) Exact risks of the ML-II thresholding rules given in (a); (c) Squared-biases of the
ML-II thresholding rules given in (a); (d) Variances of the ML-II thresholding rules given in (a). (Both hard and soft
thresholding rules are superimposed in all figures with threshold value 1. For all figures, σ = 1.)

rule. For medium values of |djk| and for large values of εj , the squared-bias of the ML-II
thresholding rule increases very fast.

The behavior of the variance functions of the ML-II thresholding rules given in Figure 2(a)
are illustrated in Figure 2(d). We observe that, for small values of |dj,k|, the variance functions
of the ML-II thresholding rules are lower than the variance of the hard thresholding rule and
decrease with εj . For large values of |dj,k|, the variance functions rapidly tend to the variance
of the hard and soft thresholding rules remaining, however, a little larger. For medium values
of |dj,k|, the smaller the value of εj the larger the variance function observed.

3.2 Elicitation of the Free Prior Parameter

The elicitation of prior parameters is one of the major issues in Bayesian analysis. In order
to have an effective ML-II thresholding rule, the free prior parameter εj should be carefully
elicited at each resolution level. The elicitation is guided by considerations of the exact risk
analysis and of the shape of the ML-II thresholding rule presented in Section 3.1.

It has been shown that, at each resolution level, εj regulates the amount of shrinkage at
zero. In fact, it should be close to 0 (large shrinkage) at the finest level of detail, where most of
the coefficients are zeros; and close to 1 (small shrinkage) at coarse levels, where most of the
coefficients are significant. However, the exact risk analysis presented in Section 3.1 shows
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that the ML-II thresholding rule is robust with respect to the choice of εj for large values of
|dj,k|, it is relatively robust for small values of |dj,k|, while the influence of εj is visible for
medium values of |dj,k|. Hence the capability of the resulting estimator will depend on the
elicitation of εj at medium values of |dj,k|.

For practical purposes, and taking into account the exact risk analysis and the shape of the
ML-II thresholding rule discussed above, we consider an automatic choice of εj according
to the suggestions by Vidakovic and Ruggeri (2001). The level-dependent values of εj are
defined as

εj = 1

(j − j0 + 1)γ
, j0 ≤ j ≤ J − 1, (24)

where j0 represents the primary resolution level (see Sec. 2.1) and γ is empirically chosen. An
automatic choice for γ that was found to work well in our examples and the sensitivity of the
results on a range of γ values is discussed in Section 4.1.

4 NUMERICAL RESULTS AND COMPARISONS

The purpose of this section is to provide several examples to illustrate the performance of the
proposed empirical Bayes term-by-term wavelet thresholding methodology. First, we carry out
an extensive simulation study to investigate the finite sample performance of this methodology.
We also give comparisons with various standard classical and empirical Bayes term-by-term
wavelet schemes. Then, we apply the proposed methodology to a real-life data set that was
collected in an atomic force microscopy study.

The computational algorithms related to wavelet analysis were performed using
Version 8 of the WaveLab toolbox (see Buckheit et al., 1995) for MATLAB that
is freely avallable from http://www-stat.stanford.edu/software/software.html and the
GaussianWaveDen toolbox (see Antoniadis et al., 2001) for MATLAB that is freely available
from http://www.jstatsoft.org/v06/i06. The entire study was carried out using the MATLAB
programming environment.

4.1 Simulation Study

The results of the simulation study will now be presented, with the remainder of this section
devoted to the discussion of these results. We compare the proposed empirical Bayes term-by-
term wavelet scheme (which we call ML-IIThresh) with three classical term-by-term wavelet
schemes (the VisuShrink method of Donoho and Johnstone, 1994, the hybrid version of the
SureShrink method of Donoho and Johnstone, 1995, and the ‘leave-out-half’ version of the
Cross Validation method of Nason, 1996) and three empirical Bayes term-by-term wavelet
schemes (the PostMean method of Clyde and George, 1999, the PostMedian method of
Abramovich et al., 1998, and the ABE method of Figueiredo and Nowak, 2001). For excellent
numerical performances, we consider the VisuShrink and the ‘leave-out-half’ version of the
Cross Validation methods with hard thresholding, while the versions of PostMean and Post-
Median methods that we consider 10 use the EM-algorithm for estimating their free prior
parameters. Note that the hybrid version of the SureShrink method is only defined for soft
thresholding, while the ABE method does not contain any free prior parameters.

In this simulation study, we evaluate the various classical and empirical Bayes term-by-
term wavelet schemes by estimating the noise level σ according to Eq. (4) and by choosing the
primary resolution level j0 according to Eq. (5). For the ML-Thresh method, εj was chosen
according to Eq. (24). We have considered the following nine test functions: Wave, Blip,
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HeaviSine, Doppler, Angles, Parabolas, Time Shifted Sine, Spikes and Corner; these functions
are supposed to caricature spatially variable signals arising in a number of scientific fields. For
all test functions, Daubechies’ nearly symmetric wavelets of order 8, Symmlet 8, were used.

For each test function, M = 200 samples were generated by adding independent random
noise ε ∼ N(0, σ 2) to n = 256 (small sample size), 512 (moderate sample size) and 1024
(large sample size) equally spaced points on [0,1]. The value of σ was taken to correspond to
the values 3 (high noise level), 5 (moderate noise level) and 7 (low noise level) for the root
signal-to-noise ratio (RSNR)

RSNR(g, σ ) =
√

1/n
∑n

i=1(g(ti) − ḡ)2

σ
, where ḡ = 1

n

n∑
i=1

g(ti).

The nine test functions based on n = 1024 design points with the addition of independent
normally distributed noise with mean zero and RSNR = 5, giving a visual impression of the
large sample size and moderate noise level used in the simulation study, are shown in Figure 3.

The goodness-of-fit for an estimator ĝ of g was measured by its average mean squared error
(AMSE) from the M simulations, defined as

AMSE(g) = 1

nM

M∑
m=1

n∑
i=1

(ĝm(ti) − g(ti))
2;

its average mean absolute deviation (AMAD) from the M simulations, defined as

AMAD(g) = 1

nM

M∑
m=1

n∑
i=1

|ĝm(ti) − g(ti)|;

and its average maximal absolute deviation (AMXD) from the M simulations, defined as

AMXD(g) = 1

M

M∑
m=1

max
1≤i≤n

|ĝm(ti) − g(ti)|.

In order to examine the effect of the parameter γ (the only free parameter through εj
according to Eq. (24)) on the numerical performance of the ML-IIThresh method, for each test
function, sample size and RSNR we have computed the AMSE, AMAD and AMXD for a range
of γ values. For brevity, we only report here in detail the results for AMSE and n = 1024.
Different combinations of goodness-of-fit measures and sample sizes yield basically similar
results. We have found that for moderate or high RSNR, the performance of the estimator
in terms of AMSE is quite robust with respect to the choice of γ . Larger values of γ would
provide an almost free noise reconstruction at the price of oversmoothing the singularities.
When RSNR decreases, AMSE exhibits a significant influence with respect to γ , showing
preference to relatively large values of γ in most cases. Figure 4 shows the behavior of AMSE,
as γ ranges in [1,3], for the nine test functions based on n = 1024 design points. The value
of γ = 1.8 has been selected as a default value to compromise the bias and the variance in
the reconstruction, when no additional information on the true signal is available. Although
not reproduced here, larger values of γ can often improve the estimator, especially for very
large sample sizes. As an illustration of the visual appearance of the ML-IIThresh method with
the default value γ = 1.8, Figure 5 shows the estimates obtained using the noisy samples of
the nine test functions given in Figure 3.
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FIGURE 3 The nine test functions ( ) used in the simulation study, based on n = 1024 design points, with the
addition of independent normally distributed noise with mean zero and RSNR = 5 (◦), giving a visual impression of
the large sample size and moderate noise level used in the simulation study.

The various goodness-of-fit measures, AMSE, AMAD and AMXD, have been computed
for the ML-IIThresh method using the default value γ = 1.8 and compared with the corre-
sponding indices computed for the various classical and empirical Bayes term-by-term wavelet
schemes used in this simulation study. The results across the various combinations of test func-
tions, sample sizes and RSNR show that the ML-IIThresh method outperforms the VisuShrink
method with hard thresholding, the hybrid version of the SureShrink method, the ‘leave-out-
half’ version of the CrossValidation method with hard thresholding and the ABE method, and
performs as well as (sometimes even better than) PostMean and PostMedian methods. More-
over, it is seen that the VisuShrink method with hard thresholding and the hybrid version of
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FIGURE 4 The behavior of AMSE for the ML-IIThresh method as γ ranges in [1, 3], for the nine test functions
based on n = 1024 design points. The top line corresponds to RSNR = 3, the middle line corresponds to RSNR = 5,
and the bottom line corresponds RSNR = 7.

the SureShrink method both outperform the ABE method. If one instead uses the VisuShrink
with soft thresholding and SureShrink methods then, although not reproduced here, the ABE
method is superior to these two latter methods; a point that has been highlighted as one of the
main features in the simulation study of Figueiredo and Nowak (2001). Obviously, our simula-
tion study reveals features that affect the conclusions drawn by Figueiredo and Nowak (2001)
about the relative performance of their free parameter empirical Bayes term-by-term wavelet
scheme with standard classical term-by-term wavelet schemes. For brevity, we only show the
results obtained for AMSE. Figure 6 shows the boxplots of the AMSE computed for the 9 test
functions based on n = 1024 design points and RSNR = 5 given in Figure 3.
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FIGURE 5 Estimates obtained using the ML-IIThresh method with the default value γ = 1.8 for the noisy samples
of the nine test functions given in Figure 3.

The ML-IIThresh method using the default value γ = 1.8 has also been compared with the
classical and empirical Bayes term-by-term wavelet schemes in terms of the average CPU time.
The results show that obviously the ML-IIThresh method has a larger computational cost with
respect to the VisuShrink with soft thresholding, hybrid version of the SureShrink and ABE
methods (that are almost computationally inexpensive procedures). However its computational
cost is much smaller than the corresponding computational cost of the ‘leave-out-half’ version
of the CrossValidation with hard thresholding, PostMean and PostMedian methods. We also
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FIGURE 6 Boxplots of the AMSE for the various methods (1) ML-IIThresh (γ = 1.8), (2) VisuShrink with hard
thresholding, (3) hybrid version of SureShrink, (4) ‘leave-out-half’ version of CrossValidation with hard thresholding,
(5) PostMean, (6) PostMedian, and (7) ABE, computed for the nine test functions based on n = 1024 design points
and RSNR = 5 given in Figure 3.

note that the large computational cost of the PostMean and PostMedian methods is mainly
due to the EM-algorithm (used for estimating their free prior parameters) and its average value
is accomplished with a large standard deviation. The relatively high cost of the ML-IIThresh
method that can be observed in some cases is mainly due to the large number of iterations needed
to compute l∗jk when |d̂jk| ↓ σ , as expected observing Figure 1(a), while for |d̂jk| > 1.2σ the
convergence is reached within 3–4 iterations at most. Figure 7 shows the barplots of the CPU
time computed for the nine test functions based on n = 1024 design points and RSNR = 5
given in Figure 3.
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FIGURE 7 Barplots of the CPU time for the various methods (1) ML-IIThresh (γ = 1.8), (2) VisuShrink with hard
thresholding, (3) hybrid version of SureShrink, (4) ‘leave-out-half’ version of CrossValidation with hard thresholding,
(5) PostMean, (6) PostMedian, and (7) ABE, computed for the nine test functions based on n = 1024 design points
and RSNR = 5 given in Figure 3.

Pointwise Bayesian credible intervals have been computed according to the simulation-
based procedure described in Section 2.5 for the standard nominal coverage probabilities 0.90,
0.95 and 0.99. The empirical coverage rates and interval widths have been analyzed for each
test function, sample size and RSNR. The corresponding pointwise Bayesian credible intervals
have been generated by resampling S = 200 runs from the posterior distribution, and M = 200
samples have been considered in order to compute the empirical coverage rates and the interval
widths. The resulting pointwise Bayesian credible intervals computed using the default value
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γ = 1.8 present noisy spikes that are recognized to be typical of wavelet regression methods
(see Barber, 2001; Barber et al., 2002). However, although the maximum interval widths
are nonnegligible due to the presence of the spikes, the average interval widths are quite
tight and the pointwise Bayesian credible intervals have good average empirical coverage
rates. Obviously, the empirical coverage rates varies greatly across each test function and,
unsurprisingly, it becomes much better where the test function is smoother and less variable.
Moreover, the performance of the proposed pointwise Bayesian credible intervals improves
as the nominal coverage probability increases. As pointed out by Barber et al. (2002), this

FIGURE 8 The 95% pointwise Bayesian credible intervals computed for the nine test functions based on n = 1024
design points and RSNR = 5, using the simulation-based procedure described in Section 2.5 for the ML-II Thresh
method with γ = 1.8.
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can be, in part, attributed to the kurtosis of the posterior distribution. As the nominal coverage
increases, the limits of the pointwise Bayesian credible intervals move out into the tails of the
posterior distributions. Therefore, with heavy tails distributions, like the posterior distribution
given in Eq. (16), small increases in the nominal coverage rates can produce substantially
wider pointwise Bayesian credible intervals. The brief spikes which occur in the interval bands
can be smoothed out by increasing the parameter γ . However, this risks oversmoothing the
data and it is usually payed by a decrease in the empirical coverage rate. For brevity, we
only present some of the numerical findings. Figure 8 shows the 95% pointwise Bayesian
credible intervals computed for the nine test functions based on n = 1024 design points and
RSNR = 5 for the choice γ = 1.8. Figure 9 shows the boxplots of the empirical coverage rates
and interval widths for the nominal 90%, 95% and 99% pointwise Bayesian credible intervals
for the nine test functions based on n = 1024 design points and RSNR = 5 for the choice
γ = 1.8.

4.2 Atomic Force Microscopy

The atomic force microscopy is a type of scanned proximity probe microscopy that can measure
the adhesion strength between two materials at the nanonewton scale (see Binning et al., 1986).
In atomic force microscopy, a cantalevar beam is adjusted until it bonds with the surface of
a sample, and then the force required to separate the beam and the sample is measured from
beam deflection. Beam vibration can be caused by various factors, such as thermal energy of
the surrounding air or the footsteps of someone outside the laboratory, and it acts as noise on the
deflection signal. The atomic force microscopy signal sampled at n = 2048 data points from

FIGURE 9 Boxplots of the empirical coverage rates (top panel) and interval widths (bottom panel) computed for
the nominal (left panel) 90%, (middle panel) 95% and (right panel) 99% pointwise Bayesian credible intervals using
the simulation-based procedure described in Section 2.5 for the ML-II Thresh method with γ = 1.8, for each of the
nine test functions (1) Wave, (2) Blip, (3) HeaviSine, (4) Doppler, (5) Angles, (6) Parabolas, (7) Time Shifted Sine,
(8) Spikes and (9) Corner, based on n = 1024 design points and RSNR = 5.
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the adhesion measurements between carbohydrate and the cell adhesion molecule E-selectin
is plotted in the top-right panel of Figure 10. The technical descriptions of this data set are
provided in Marshall et al. (2001). In order for the data to be useful for subsequent analysis,
the noise that arose from beam vibration must be removed.

FIGURE 10 (Top panel) The atomic force microscopy signal sampled at n = 2048 data points (left); Estimate
based on the ML-IIThresh method with γ = 1.8 (middle); Estimate based on the ML-II Thresh method with γ = 8
and corresponding 95% pointwise Bayesian credible intervals, using the simulation-based procedure described in
Section 2.5 (right). (Middle panel) Estimate based on the VisuShrink method with hard thresholding (left); Estimate
based on the Hybrid version of the SureShrink method (middle); Estimate based on the ‘leave-out-half’ version of
the CrossValidation method with hard thresholding (right). (Bottom panel) Estimate based on the PostMean method
(left); Estimate based the PostMedian method (middle); Estimate based on the ABE method (right).
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The ML-IIThresh method with Daubechies’s nearly symmetric wavelets of order 8, Symm-
let 8, and the default value γ = 1.8 have been applied to the atomic force microscopy signal
shown in the top-right panel of Figure 10, and the resulting estimate is shown in the top-middle
panel of Figure 10. We can observe that the ML-IIThresh method with γ = 1.8 still exhibits a
noisy shape; however, as Figure 10 shows, analogous estimates (and in most cases even nois-
ier) have been obtained for the various classical and empirical Bayes term-by-term wavelet
schemes used in the simulation study presented in Section 4.1. Guided from the consideration
that high noise levels, as well as large sample sizes, would require a larger value of γ , the
ML-IIThresh method has been applied to the atomic force microscopy data with the choice
γ = 8. The resulting estimate, shown in the top-right panel of Figure 10, exhibits a smooth
behavior, especially in the long-middle term without oversmoothing the bump at the beginning
of the signal. Superimposed are shown the corresponding 95% pointwise Bayesian credible
intervals, using the simulation-based procedure described in Section 2.5. Note that the largest
widths of the resulting pointwise Bayesian credible intervals that appear at the boundaries of
the atomic force microscopy signal are due to the fact that we have used periodic wavelets in
our analysis.

5 CONCLUDING REMARKS

We have proposed an empirical Bayes approach to standard nonparametric regression estima-
tion using a nonlinear wavelet methodology. This approach results in a thresholding procedure
which depends on one free prior parameter and it is level- and amplitude-dependent, thus
allowing better adaptation in function estimation. We have considered an automatic choice
of the free prior parameter, guided by considerations on an exact risk analysis and on the
shape of the thresholding rule, enabling the resulting estimator to be fully automated in prac-
tice. Pointwise Bayesian credible intervals for the resulting function estimate have also been
considered using a simulation-based approach. It has been demonstrated that the proposed
empirical Bayes term-by-term wavelet scheme outperforms standard classical term-by-term
wavelet thresholding schemes and performs nearly as well as (sometimes even better than)
much more computationally expensive empirical Bayes term-by-term wavelet shrinkage and
wavelet thresholding schemes in finite sample situations.A simulation study also shows that the
proposed pointwise Bayesian credible intervals for the resulting function estimates have good
empirical coverage rates for standard nominal coverage probabilities. The proposed empirical
Bayes term-by-term wavelet scheme and the resulting simulation-based procedure to com-
puting pointwise Bayesian credible intervals could have been presented as a possibly useful
addition to the growing range of nonlinear wavelet-based function estimation tools.
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