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Summary. We discuss a Bayesian formalism which gives rise to a type of wavelet threshold
estimation in nonparametric regression. A prior distribution is imposed on the wavelet coef®cients
of the unknown response function, designed to capture the sparseness of wavelet expansion that
is common to most applications. For the prior speci®ed, the posterior median yields a thresholding
procedure. Our prior model for the underlying function can be adjusted to give functions falling in
any speci®c Besov space. We establish a relationship between the hyperparameters of the prior
model and the parameters of those Besov spaces within which realizations from the prior will fall.
Such a relationship gives insight into the meaning of the Besov space parameters. Moreover, the
relationship established makes it possible in principle to incorporate prior knowledge about the
function's regularity properties into the prior model for its wavelet coef®cients. However, prior
knowledge about a function's regularity properties might be dif®cult to elicit; with this in mind, we
propose a standard choice of prior hyperparameters that works well in our examples. Several
simulated examples are used to illustrate our method, and comparisons are made with other
thresholding methods. We also present an application to a data set that was collected in an
anaesthesiological study.

Keywords: Adaptive estimation; Anaesthetics; Bayes model; Besov spaces; Nonparametric
regression; Thresholding; Wavelet transform

1. Introduction

Consider the standard nonparametric regression problem

yi � g�ti� � �i, i � 1, . . ., n; �1�
where ti � i=n and �i are independent identically distributed normal variables with zero mean
and variance �2, and we wish to recover the unknown function g from the noisy data without
assuming any particular parametric form.

There are several approaches to the nonparametric estimation of the unknown function g
such as spline smoothing, kernel estimation and generalized Fourier series expansion. In this
paper we consider wavelet-based estimators of g. The function g is expanded in wavelet series
in a way that is similar to the generalized Fourier series approach. The advantage of the
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wavelet basis is its `universality'Ð functions from a wide set of function spaces, such as Besov
or Triebel spaces, have a parsimonious representation in wavelet series. The usual approach
is to expand the noisy data in wavelet series, to extract the `signi®cant' wavelet coe�cients by
thresholding and then to invert the wavelet transform of the denoised coe�cients. Donoho
and Johnstone (1994, 1995) and Donoho et al. (1995) showed that such wavelet estimators
with a properly chosen threshold rule have various important optimality properties. The
choice of thresholding rule, therefore, becomes a crucial step in the estimation procedure.
Several approaches to thresholding have been introduced: a minimax approach (Donoho and
Johnstone, 1994, 1995); multiple-hypothesis testing (Abramovich and Benjamini, 1995, 1996;
Ogden and Parzen, 1996a, b); cross-validation (Nason, 1995, 1996; Weyrich and Warhola,
1995). The idea of thresholding has also been studied in the context of correlated errors �i;
see, for example, Wang (1996) and Johnstone and Silverman (1997).
In this paper we consider thresholding within a Bayesian framework. In the Bayesian

approach a prior distribution is imposed on the wavelet coe�cients of the unknown response
function. The prior model is designed to capture the sparseness of wavelet expansion that is
common to most applications. Then, the function is estimated by applying some Bayes rule
on the resulting posterior distribution of the wavelet coe�cients. The traditional Bayes rule
(Chipman et al., 1997; Clyde et al., 1998; Vidakovic, 1998) corresponds to an L2-loss (the
posterior mean) based on the wavelet coe�cients. However, such a rule is not a thresholding
rule but a shrinkage. To ®x our terminology, we say that a shrinkage rule is a function that
decreases (not necessarily strictly) the absolute values of the wavelet coe�cients, without
changing their sign. For a rule to be a thresholding rule, it must not only shrink the coef-
®cients towards 0 but must also map actually to 0 all coe�cients falling in some non-empty
interval around 0.

In this paper, instead of the L2-loss, we suggest the use of a weighted combination of L1-
losses based on the wavelet coe�cients. These losses correspond to L1-losses based on the
function and on its derivatives; such losses are natural measures for spatially inhomogeneous
functions. The corresponding Bayes rule will be the posterior median and, for a certain prior,
yields a thresholding procedure.

The paper is organized as follows: in Section 2 we brie¯y review the discrete wavelet
transform and the relevant aspects of Donoho and Johnstone's work on the nonparametric
regression problem. A review of relevant aspects of Besov spaces is also given. In Section 3,
we study the problem of wavelet thresholding within a Bayesian approach. In Section 4, we
discuss the form for the hyperparameters of the prior model, and we demonstrate a
relationship between Besov space parameters and hyperparameters of the prior model. The
implications of this relationship for the choice of prior hyperparameters are discussed. In
addition, since it may be di�cult in practice to elicit prior knowledge of the regularity
properties of the function, we also propose a `standard' choice of hyperparameters, which in
our experience works well on a range of examples. In Section 5, we provide several simulated
examples to illustrate our method, and we give comparisons with other thresholding meth-
ods. We also present an application to a data set that was collected in an anaesthesiological
study. Some concluding remarks are made in Section 6, and the more technical details and
proofs are given in Appendix A.

2. Wavelet estimators

2.1. Overview of wavelets
Wavelet series are generated by dilations and translations of a function  , called the mother
wavelet:
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 jk�t� � 2j=2  �2jtÿ k�, j, k 2 Z.
For suitable choices of  , the corresponding set of  jk forms an orthonormal basis in L2�R�.
Examples of mother wavelets with di�erent regularity properties, number of vanishing
moments and compact support can be found in Daubechies (1992). The wavelet series
representation of a function g 2 L2�R� is then

g�t� �P
j2Z

P
k2Z

wjk  jk�t�,

where the wavelet coe�cients wjk are given by

wjk �
�
R
g�t�  jk�t� dt.

Intuitively, the  jk represent `smooth wiggly functions' localized to spatial positions near 2ÿjk
and frequencies near 2j. In contrast with standard Fourier sine and cosine series, wavelets are
local in both frequency or scale (via dilations) and time (via translations). This localization
allows parsimonious representations for a wide set of di�erent functions in wavelet series.

In technical terms this corresponds to the property that, by choosing the mother wavelet
with corresponding regularity properties, we can generate an unconditional wavelet basis in
a wide set of function spaces, such as Besov (see Section 2.2) or Triebel spaces. For a clear
and accessible introduction to wavelets see Strang (1993). Jawerth and Sweldens (1994) pro-
vide an excellent overview of wavelet-based multiresolution analyses. Meyer (1992) and
Daubechies (1992) give detailed expositions of the mathematical aspects of wavelets.

In many practical situations, the functions involved are only de®ned on a compact set, such
as the interval �0, 1�, and to apply wavelets then requires some modi®cations. Cohen et al.
(1993) have obtained the necessary boundary corrections to retain orthonormality. Their
wavelets also constitute unconditional bases for the Besov and Triebel spaces on the interval.
In later sections, however, we con®ne attention to periodic functions on R with unit period
and work in e�ect with periodic wavelets. In this case, the wavelet coe�cients wjk of the
function are restricted to the resolution and spatial indices j5 0 and k � 0, . . ., 2j ÿ 1
respectively; there is also the coarsest scaling coe�cient, which is labelled as u00 (see, for
example, Daubechies (1992), section 9.3). As Johnstone (1994) has pointed out, this
computational simpli®cation a�ects only a ®xed number of wavelet coe�cients at each
resolution level and does not alter the qualitative phenomena that we wish to present.

2.2. Besov spaces on the interval
In this section, we brie¯y introduce some relevant aspects of the (inhomogeneous) Besov
spaces on the interval that we need further. For a more detailed study we refer to DeVore and
Popov (1988), Triebel (1990), DeVore et al. (1992) and Meyer (1992).

Let the rth di�erence of a function g be

�
�r�
h g�t� � Pr

k�0

r

k

� �
�ÿ1�k g�t� kh�,

and let the rth modulus of smoothness of g in Lp�0, 1� be
�r, p�g; t� � sup

h4t

�jj��r�h gjjLp�0;1ÿrh��.

Then the Besov seminorm of index �s, p, q� is de®ned for r > s, where 14 p, q41, by
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jgjBs
p;q
�

�1
0

�r;p�g; h�
hs

� �q
dh

h

� �1=q
, if 14 q <1,

and by

jgjBs
p;1 � sup

0<h<1

f�r;p�g; h�=hsg.

De®ne the Besov norm as jjgjjBs
p;q
� jjgjjLp�0;1� � jgjBs

p;q
. The Besov space Bs

p;q is then the class of
functions g: �0, 1� ! R satisfying g 2 Lp�0, 1� and jgjBs

p;q
<1. The parameter s measures the

number of derivatives, where the existence of derivatives is required in an Lp-sense, whereas
the parameter q provides a further ®ner gradation.

The Besov spaces include, in particular, the well-known Sobolev and HoÈ lder spaces of
smooth functions Hm and Cs (Bm

2;2 and Bs
1;1 respectively), but in addition less traditional

spaces, like the space of functions of bounded variation, sandwiched between B1
1;1 and B1

1;1.
The latter functions are of statistical interest because they allow for better models of spatial
inhomogeneity (e.g. Meyer (1992) and Donoho and Johnstone (1995)).

The Besov norm for the function g is related to a sequence space norm on the wavelet
coe�cients of the function. As noted in Section 2.1, con®ning attention to the resolution and
spatial indices j5 0 and k � 0, . . ., 2j ÿ 1 respectively, the sequence space norm is given by

jjwjjbsp;q � ju00j �
P1
j�0

2js
0q P2jÿ1

k�0
jwjkjp

 !q=p
8<:

9=;
1=q

, if 14 q <1, �2�

jjwjjbsp;1 � ju00j � sup
j50

2js
0 P2jÿ1

k�0
jwjkjp

 !1=p
8<:

9=;, �3�

where s0 � s� 1
2
ÿ 1=p (see, for example, Donoho et al. (1995)).

If the mother wavelet  is of regularity r, where max �0, 1=pÿ 1
2
� < s < r, then we have

K1jjgjjBs
p;q
4 jjwjjbsp;q 4K2jjgjjBs

p;q
,

where K1 and K2 are constants, not depending on g (e.g. Meyer (1992) and Donoho and
Johnstone (1995)). Therefore the Besov norm of g is equivalent to the corresponding
sequence space norm �2� or �3�. In Section 4.3, we exploit the equivalence of the norms for
relating prior information about the function's regularity to hyperparameters of our prior
model for the wavelet coe�cients wjk.

In the particular case p � q � 1 the sequence space norm in equation (2) becomes a
weighted sum of the jwjkj and the corresponding Besov space norm is essentially an L1-norm
on the derivatives of g up to order s. This will provide motivation for the loss function that
we use in Section 3.

2.3. Discrete wavelet transform and thresholding
In practice, given observed discrete data y � �y1, . . ., yn�T from model �1�, we may ®nd the
vector d̂ of its sample discrete wavelet coe�cients by performing the discrete wavelet trans-
form (DWT) of y:

d̂ � Wy,
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whereW is the DWT matrix with � jk, i� entry given by Wjk,i

p
n �  jk�i=n� � 2j=2  �2ji=nÿ k�.

The population discrete wavelet coe�cients djk are de®ned as the DWT of the vector of
function values g�ti�, i � 1, . . ., n. These are related to the wavelet coe�cients

wjk �
�
R
g�t�  jk�t� dt

by djk � wjk

p
n. The factor

p
n essentially arises from the di�erence between continuous and

discrete orthogonality conditions. Since the de®nitions of the DWT and of the coe�cients wjk

are by now standard, this factor cannot be avoided and therefore we use di�erent letters djk
and wjk to clarify the distinction.

If n � 2J (for some positive integer J) then both the DWT and the inverse DWT are
performed by Mallat's (1989) fast algorithm that requires only O�n� operations and is
available in several standard implementations, e.g. in the S-PLUS package WaveThresh
(Nason, 1993; Nason and Silverman, 1994). The WaveThresh package implements a
periodized form of the DWT that produces nÿ 1 sample discrete wavelet coe�cients d̂jk,
j � 0, . . ., Jÿ 1, k � 0, . . ., 2j ÿ 1, and one sample scaling coe�cient, which is labelled ĉ00.
Each d̂jk describes the contribution around spatial location 2ÿjk and near frequency 2j,
whereas ĉ00 is the sample mean multiplied by

p
n. Because of the orthogonality of W, the

DWT of a white noise process is also an array �jk of independent N�0, �2� random variables
and, hence, equally contaminates the population discrete wavelet coe�cients djk:

d̂jk � djk � �jk, j � 0, . . ., Jÿ 1, k � 0, . . ., 2j ÿ 1.

The next step is to extract those coe�cients that really contain information about the
unknown function g and to discard the others. This can be done by thresholding the sample
discrete wavelet coe�cients d̂jk. The intuitive idea is that the true function g has a parsim-
onious wavelet expansion, i.e. only a few `large' d̂jk essentially contain real information about
g. If we can decide which these are, we can estimate them and set all the others equal to 0.

Donoho and Johnstone (1994, 1995) proposed the hard and soft thresholding rules

Thard�d̂jk, �� � d̂jk I�jd̂jkj > ��, �4�
Tsoft�d̂jk, �� � sgn�d̂jk�max�0, jd̂jkj ÿ ��, �5�

where �5 0 is a threshold parameter and I is the usual indicator function. The hard
thresholding method keeps some coe�cients ®xed and sets others to 0; in contrast the soft
thresholding method either `shrinks' coe�cients or sets them to 0. In applications, hard thresh-
olding generally reproduces peak heights and discontinuities better, but at some cost in visual
smoothness (Donoho and Johnstone, 1994, 1995). By de®ning dnew

jk � Thard�d̂jk, �� or dnew
jk �

Tsoft�d̂jk, ��, we can then reconstruct ĝ by the inverse DWT:

ĝ � WTdnew:

The choice of � is therefore crucial: if the threshold is too small or too large then the
wavelet shrinkage estimator will tend to over®t or under®t the data. Donoho and Johnstone
(1994) proposed the universal threshold �DJ � �

pf2 log�n�g called VisuShrink by them.
Despite the simplicity of such a threshold, they showed that the resulting non-linear wavelet
estimator is spatially adaptive and is asymptotically near minimax within the whole range of
Besov spaces. Moreover, Donoho and Johnstone (1998) proved that it asymptotically out-
performs any linear estimator (i.e. splines, kernel estimators, truncated Fourier series, etc.)
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within Besov spaces Bs
p,q with p < 2 that contain spatially inhomogeneous functions. How-

ever, the universal threshold depends on the data only through the estimated � and is
otherwise the same for all kinds of functions. It tends to oversmooth in practice, since it does
not compromise between signal and noise. In practice, for ®nite samples, Donoho and
Johnstone (1994, 1995) suggested keeping coe�cients on the lower `coarse' levels, even if
these coe�cients do not pass the threshold level.

Several data-driven thresholding rules have been developed recently. Donoho and John-
stone (1995) proposed the SureShrink thresholding which is based on minimizing Stein's
unbiased risk estimate (Stein, 1981) and will usually yield smaller thresholds than the Visu-
Shrink method. They have shown that SureShrink is also asymptotically near minimax and
the computational e�ort of the overall procedure is Ofn log�n�g. For a practical demon-
stration of the advantages of this approach see Johnstone and Silverman (1997). In another
development, Nason (1995, 1996) adjusted the well-known cross-validation approach for
choosing the threshold level. Some possible extensions to Nason's method are described in
Weyrich and Warhola (1995) and Wang (1996). Abramovich and Benjamini (1995, 1996) and
Ogden and Parzen (1996a, b) considered thresholding as a multiple-hypothesis testing
procedure: for every wavelet coe�cient test simultaneously whether it is 0 or not. Johnstone
and Silverman (1997) have developed a level-dependent threshold approach for data with
correlated noise, and some of the above approaches can be extended to this case. A Bayesian
viewpoint to thresholding was introduced by Chipman et al. (1997), Clyde et al. (1998) and
Vidakovic (1998) and will be discussed in detail later in this paper.

3. Thresholding within a Bayesian framework

Most of the existing thresholding procedures are essentially minimax and, therefore, they
may be `too universal'; they do not take into account some speci®c properties of a concrete g
that we are interested in. A natural way of using the prior belief (knowledge or information)
about the unknown g (say, its regularity properties) is via a Bayesian approach. Within a
Bayesian framework we specify a prior distribution on the population wavelet coe�cients.
In this section we show that a certain choice of prior model for the population wavelet
coe�cients implies a Bayesian estimate that produces a thresholding rule, with some features
in common with Thard and Tsoft given in equations �4� and �5� respectively.
In this section we work with the sampled white noise model (1) and apply the DWT of

Section 2.3. As we have already mentioned, a large variety of functions allow parsimonious
representation in wavelet series where there are only a few non-negligible coe�cients in the
expansion. We incorporate this characteristic feature of wavelet bases by placing the
following prior on the population discrete wavelet coe�cients djk:

djk � �j N�0, �2j � � �1ÿ �j� ��0�, j � 0, . . ., Jÿ 1, k � 0, . . ., 2j ÿ 1, �6�
where 04 �j 4 1, ��0� is a point mass at 0 and the djk are independent. The hyperparameters
�j and �

2
j must be speci®ed appropriately (see Section 4). Note that we are using the same

prior parameters �j and �
2
j for all coe�cients at a given resolution level j.

According to the prior model �6�, each djk is either 0 with probability 1ÿ �j or with
probability �j is normally distributed with zero mean and variance �2j . The probability �j
gives the proportion of non-zero wavelet coe�cients at resolution level j whereas the vari-
ance �2j is a measure of their magnitudes. Clyde et al. (1998) used a formulation similar to
expression (6) but with di�erent forms for the hyperparameters �j and �

2
j . The prior model (6)
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is an extreme case of a model considered by Chipman et al. (1997). Their prior for each djk
is the mixture of two normal distributions with zero means but di�erent variances for
`negligible' and `non-negligible' wavelet coe�cients.

Subject to the prior �6�, the posterior distribution djkjd̂jk is also a mixture of a corres-
ponding posterior normal distribution and ��0�. Hence, the posterior cumulative distribution
function F�djkjd̂jk�, letting � be the standard normal cumulative distribution function, is

F�djkjd̂jk� �
1

1� !jk

�

(
djk ÿ d̂jk�

2
j =��2 � �2j �

��j=
p��2 � �2j �

)
� !jk

1� !jk

I�djk 5 0�, �7�

where the posterior odds ratio for the component at 0 is

!jk �
1ÿ �j
�j

p��2j � �2�
�

exp

(
ÿ �2j d̂jk

2

2�2��2j � �2�

)
.

The traditional Bayes rule corresponding to the L2-loss (the posterior mean) considered in the
literature (Chipman et al., 1997; Clyde et al., 1998; Vidakovic, 1998) is not a thresholding rule
but a shrinkage. Instead, we suggest the use of any weighted combination of L1-losses on the
individual wavelet coe�cients. Whichever weighted combination is used, the corresponding
Bayes rule will be obtained by taking the posterior median of each coe�cient. As explained in
Section 2.2,L1-losses on the estimated function and its derivatives, corresponding toBs

1;1-norms
for the function space loss, will be, for all applicable values of s, equivalent to suitable weighted
combinations ofL1-losses on the wavelet coe�cientswjk. As we shall show below, suchL1-rules
(posteriormedians) are of the thresholding type. Another possible way to obtain a thresholding
rule within a Bayesian framework is via hypothesis testing ideas (Vidakovic, 1998).

The posterior cumulative distribution function of djkjd̂jk corresponding to equation �7� has
a jump at 0. This fact becomes crucial since by solving the equation F�djkjd̂jk� � 0:5 we ®nd
that the posterior median is 0 if !jk 5 1, and also if

!jk < 1

and

0:5�1ÿ !jk�4 �

(
ÿ d̂jk�j

�
p��2 � �2j �

)
4 0:5�1� !jk�;

it is non-zero otherwise. After straightforward calculus we then have the following closed
form:

Med�djkjd̂jk� � sgn�d̂jk�max�0, �jk�,
where

�jk �
�2j

�2 � �2j
jd̂jkj ÿ

�j�p��2 � �2j �
�ÿ1

(
1�min�!jk, 1�

2

)
. �8�

The quantity �jk is negative for all d̂jk in some implicitly de®ned interval �ÿ�j, �j�, and
hence djk is 0 whenever jd̂jkj falls below the threshold �j. The posterior median is therefore a
level-dependent thresholding rule with thresholds �j. For large d̂jk the thresholding rule is
asymptotic to linear shrinkage by a factor of �2j =��2 � �2j �, since the second term in equation
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(8) becomes negligible as jd̂jkj ! 1. For a plot of the thresholding function for a particular
case, see Fig. 1.

To complete the prior speci®cation of g, we place a vague prior on the population scaling
coe�cient, which is therefore estimated by the sample scaling coe�cient ĉ00 obtained from
the DWT of the data.

4. A particular form for the hyperparameters

The hyperparameters �j and �
2
j of the prior model �6� must be de®ned. Di�erent values of

hyperparameters will lead to di�erent wavelet estimators, so their proper choice is important.
Assume the hyperparameters of the prior model �6� to be of the form

�2j � 2ÿ�jC1 and �j � min �1, 2ÿ�jC2�, j � 0, . . ., Jÿ 1, �9�
where C1, C2, � and � are non-negative constants.

We remark that the universal threshold �DJ � �
pf2 log�n�g of Donoho and Johnstone

(1994) can be obtained as a particular limiting case of our Bayes rule setting � � � � 0 and
letting C1 !1 and C2 ! 0 as n increases in such a way that

p
C1=C2�n! 1.
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In what follows we discuss the choice of form �9� and demonstrate a relationship between
Besov space parameters and hyperparameters of the prior model.

4.1. A prior model
Corresponding to the prior model �6� with hyperparameters speci®ed by expression �9�, we
consider the following distribution on the in®nite sequence of wavelet coe�cients wjk, as
de®ned in Section 2.1:

wjk � �j N�0, �2j � � �1ÿ �j� ��0�, j5 0, k � 0, . . ., 2j ÿ 1, �10�
where 04 �j 4 1, ��0� is a point mass at 0 and wjk are independent. To complete the model
we place a vague prior on the scaling coe�cient u00.

The hyperparameters of the prior model �10� are assumed to be of the form

�2j � 2ÿ�jC1* and �j � min �1, 2ÿ�jC2�, j5 0, �11�
where C1*� nÿ1C1.

It follows from expression �11� that the prior expected number of non-zero wavelet
coe�cients on the jth level is 2j�1ÿ��C2. Appealing to the ®rst Borel±Cantelli lemma, in the case
� > 1, the number of non-zero coe�cients in the wavelet expansion is ®nite. In this case the
prior model implies that the function is exactly expressed as a ®nite wavelet expansion. More
fruitful and interesting, however, is the case 04 �4 1. The case � � 0 corresponds to the
prior belief that all coe�cients on all levels have the same probability of being non-zero. This
characterizes self-similar processes such as white noise or Brownian motion, the overall
regularity depending on the value of �. The case � � 1 assumes that the expected number of
non-zero wavelet coe�cients is the same on each level, which is typical, for example, for
piecewise polynomial functions, as we shall discuss below. In Section 4.3, we derive an
explicit connection between the regularity properties of the response function and the hyper-
parameters �11� in a very general case.

Bayesian simulation has become very popular in recent years. See for example section 7 of
Silverman (1985) for an application of this idea in the curve ®tting literature and many recent
papers on Markov chain Monte Carlo methods. In an earlier paper, Stewart (1979) suggested
simulating from prior distributions as an aid to the elicitation of prior parameters in the
Bayesian paradigm for curve ®tting, and our approach is a natural context for the application
of this idea. Some realizations from priors for particular values of the hyperparameters � and
� will be given in Fig. 2 later.

4.2. Some connections with a piecewise polynomial model
To give further intuitive understanding of the model implied by expression �11� consider a
piecewise polynomial function g (not generated by a wavelet prior). Suppose that there
are N jumps in the mth derivative of g, uniformly located with independent and identically
distributed sizes h, where N is a random variable with ®nite mean.

Let the mother wavelet  with a compact support �a, b� be of regularity r > m and derive
wavelet coe�cients of such a piecewise polynomial. Consider a wavelet coe�cient wjk. Then
wjk � 0 if there is no jump within supp� jk� � �2ÿj�k� a�, 2ÿj�k� b��. For su�ciently large j,
the probability that more than one jump occurs within supp� jk� is negligible, so, after simple
calculus, the variance of wjk conditional on a jump within supp� jk� is given by
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var�wjkjwjk 6� 0� � 2ÿ�2m�1�j
E�h2�
bÿ a

�b
a

	�m�1��u�2 du,

where 	�m�1� is the �m� 1�-fold integral of the mother wavelet  . The probability of a jump
within supp� jk� is

P�wjk 6� 0� � 2ÿj�bÿ a�E�N�.
These conditions correspond to the properties of model �10� with

� � 2m� 1, C1*�
E�h2�
bÿ a

�b
a

	�m�1��u�2du, � � 1, C2 � �bÿ a� E�N�,

though in the piecewise polynomial case the coe�cients are not independent and the dis-
tribution of wjk conditioned on wjk 6� 0 is no longer normal. Nevertheless, the connection
between piecewise polynomial functions and prior �10� helps to clarify the intuitive meaning
of the constants in expression �11� in the general case.

4.3. A relationship between Besov space parameters and hyperparameters of the prior
model
In this section, we show that, specifying the hyperparameters of the proposed prior model
�10�, we obtain functions from various Besov spaces. Because of the improper nature of the
prior distribution of u00, we consider the prior distribution of g conditioned on any given
value for u00. We explore the connections between the parameters � and � of the prior model
�10� with parameters speci®ed by expression �11� and the Besov space parameters s and p. In
Appendix A, we study a three-parameter prior family that includes expression �11� as a
special case to take into account the Besov space parameter q as well.

Suppose that g is generated from the prior model �10� with hyperparameters speci®ed by
expression (11). The following theorem establishes necessary and su�cient conditions for g to
fall (with probability 1) in any particular Besov space.

Theorem 1. Let  be a mother wavelet of regularity r, where max �0, 1=pÿ 1
2
� < s < r,

14 p, q41, and let the wavelet coe�cients wjk of a function g obey the prior model �10�
with �2j � 2ÿ�jC1* and �j � min �1, 2ÿ�jC2�, where C*1, C2, �5 0 and 04 �4 1. Then, for any
®xed value of u00, g 2 Bs

p;q almost surely if and only if either

s� 1
2
ÿ �=pÿ �=2 < 0 �12�

or

s� 1
2
ÿ �=pÿ �=2 � 0 and 04 � < 1, 14 p <1, q � 1. �13�

Remark 1. As we mentioned in Section 4.1, in the case � > 1, the number of non-
zero coe�cients in the wavelet expansion is ®nite almost surely. Therefore, with probability
1, g will belong to the same Besov spaces as the mother wavelet  , i.e. those for which
max �0, 1=pÿ 1

2
� < s < r, 14 p, q41.

Theorem 1 is a particular case of the more general theorem 2 formulated and proved in
Appendix A. However, theorem 1 shows how prior knowledge about a speci®c Besov space
can be incorporated into the prior model �10� for the wavelet coe�cients by choosing the
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corresponding hyperparameters of their prior distribution and gives insight into the meaning
of the Besov space parameters.

Certain priors are important in the derivation of minimax properties of wavelet threshold
estimators (see, for example, Donoho and Johnstone (1994) and Johnstone and Silverman
(1997)). These priors place a symmetric three-point distribution independently on each
wavelet coe�cient and give realizations that can be considered as being `least favourable'
within particular smoothness classes. Johnstone (1994) investigated various properties of
these priors. He presented realizations from these and used them to illustrate the variety of
forms of prior information captured by a family of Besov spaces. For this purpose, the priors
that we construct may be preferable in producing functions that are typical of particular
Besov spaces rather than least favourable with respect to some criterion.

Fig. 2 shows realizations with various values of the hyperparameters. It can be seen that,
for � � 1, the functions show irregularities in some places with relatively smooth behaviour
in between. The same is true to a much lesser extent for � � 0:5. For � � 1 there are gross
irregularities in the value of the function itself, and for � � 2 these are less marked. The
irregularities for � � 4 are not easily visible in Fig. 2, but the ®rst derivative of the realization
is similar in character to the corresponding ®gures for � � 2. The model � � 4, � � 0, is
equivalent to an integrated Wiener process which is the prior used to motivate spline
smoothing by Kimeldorf and Wahba (1970).

The priors that we construct can be used to aid our understanding of Besov spaces and
norms (Fig. 3). Consider, for example, the case s � 1, p � 1. Fig. 3 demonstrates that real-
izations (f ), (g), (h) and (i) in Fig. 2 lie in Besov space B1

1;q, whereas realizations (a), (b) and
(d) lie outside. Realizations (c) and (e) are on the boundaries of just in or out; (e) is out for
14 q <1 but is in for q � 1. Therefore, from the point of view of Besov norms with p � 1,
realizations (e) and (c) are, roughly speaking, equally irregular. Realization (c) has occasional
gross irregularities and so is more inhomogeneous, whereas in (e) the irregularity is more
evenly spread. A more detailed consideration of Bs

1;q-norms in Fig. 3 shows that the ranking
of the realizations in terms of their critical value s is, from roughest to smoothest, (a), (b) and
(d) jointly, (c) and (e) jointly, (f ) and (g) jointly, (h) and (i).

Now consider the other extreme, p � 1. In this case, the realizations within each row of
Fig. 2 have the same critical value of s, 0 for the top row, 0.5 for the middle row and 1.5 for
the bottom row. Fig. 2 gives a clear demonstration of the way that the Bs

1;q-norms stress the
maximum irregularity. They give quite a di�erent ordering from the case p � 1. Yet other
rankings are yielded by intermediate values of p.

It can be seen from Fig. 3 that for � � 0:5 there is some restriction on the range of � that
will give lines that intersect the unshaded part of the ®gure. However, the case � � 0:5, � � 1,
will give a line with slope ÿ1 and will intersect the horizontal axis at p � 4. In our subsequent
investigation, we shall ®nd that this is a good model in practice and a realization from this
model is given in Fig. 4. It can be seen that the function is mostly regular but allows for
occasional gross irregularities.

In general, the priors discussed in this section can be used to generate a range of functions
just on the boundary of membership of any particular Besov space.

4.4. Estimation of the hyperparameters
To apply the proposed Bayesian thresholding procedure in practice, it is necessary ®rst to
specify the hyperparameters �, �, C1 and C2 in expression (9). Our approach is as follows.
The choice of � and � could be made from prior knowledge about regularity properties of the
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unknown function making use of the results of theorem 1. However, all except the most
fundamentalist Bayesians may ®nd this a daunting prospect, and we investigate the choice
further in Section 5.1. To estimate C1 and C2 we suggest the following procedure.
As we have already mentioned, the set of sample wavelet coe�cients d̂jk contains both

`non-negligible' coe�cients of the unknown function g and `negligible' coe�cients rep-
resenting random noise. Apply the VisuShrink threshold �DJ � �

pf2 log�n�g. When the noise
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Fig. 2. Realizations with various values of the hyperparameters � and �, with n � 2048, C1 � 1 and C2 � 2: (a)
� � 1, � � 0; (b) � � 1, � � 0:5; (c) � � 1, � � 1; (d) � � 2, � � 0; (e) � � 2, � � 0:5; (f) � � 2, � � 1; (g) � � 4,
� � 0; (h) � � 4, � � 0:5; (i) � � 4, � � 1
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Fig. 3. Critical values of the Besov space parameters s and p for certain values of � and � for any values of
1 4 q 41: the values of � are indicated on the right-hand axis; the values of � are indicated by the style of line
(Ð, � � 0; .........., � � 0:5; - - - -, � � 1); for each value (�, �), realizations lie in all Besov spaces with
parameter values below the line plotted; they also lie in spaces on the critical line if 04 � < 1, 14 p <1 and
q � 1; the shaded region represents the range of (p, s) that is excluded by the conditions of theorem 1; the p-
axis is transformed to be linear in 1ÿ 1=p; (a)±(i) correspond to the realizations given in Fig. 2

Fig. 4. Realization with hyperparameters � � 0:5, � � 1 with n � 2048, C1 � 1 and C2 � 2



level � is unknown, it is robustly estimated by the median absolute deviation of the wavelet
coe�cients at the ®nest level, divided by 0.6745 (Donoho and Johnstone, 1994). By the
construction of this thresholding rule, the probability that even one negligible coe�cient will
pass the threshold tends to 0 (Donoho and Johnstone, 1994), so essentially only non-
negligible d̂jk will survive after thresholding. Suppose that, on level j, the number of
coe�cients that pass �DJ is Mj, and that the values of these coe�cients are xj1, . . ., xjMj

.
Conditioning on the value Mj, the xjm, m � 1, . . ., Mj, are independent realizations from the
tails of the N�0, �2 � �2j � distribution beyond the points ��pf2 log�n�g. The log-likelihood
function is therefore, up to a constant,

l��20 , . . ., �2Jÿ1� � ÿ
PJÿ1
j�0

Mj

 
1

2
log��2 � �2j � ÿ log

"
�

(
ÿ �DJp��2 � �2j �

)#!

ÿ PJÿ1
j�0

(
1

2��2 � �2j �
PMj

m�1
x2
jm

)
. �14�

Substituting �2j � 2ÿ�jC1 and �DJ � �
pf2 log�n�g we can obtain an estimate of C1 by a

numerical maximization of equation (14), carrying out a grid search on C1.
The parameter C2 can be chosen by a cognate procedure. We use the numbers

M0, . . ., MJÿ1 of coe�cients passing the threshold to estimate the �j. Let qj �
2 �fÿ�DJ=

p��2 � �2j �g, the probability conditional on djk 6� 0 that djk passes the threshold
�DJ. Neglecting the possibility that any d̂jk corresponding to a zero djk passes the threshold
�DJ, the `imputed number' of non-zero djk at level j is Mj=qj, and the expected value of Mj=qj
is 2�1ÿ��jC2. Given the value of �, a simple method-of-moments estimate of C2 based on the
total imputed number of non-zero djk is

Ĉ2 �
21ÿ� ÿ 1

2�1ÿ��J ÿ 1

PJÿ1
j�0

Mj

qj
, if 04 � < 1,

1

J

PJÿ1
j�0

Mj

qj
, if � � 1.

8>>><>>>:
5. Applications and comparisons

In this section we ®rst consider simulated examples to illustrate the proposed Bayesian
thresholding procedure, which we refer to as BayesThresh, and make comparisons with other
existing thresholding methods. An application to a data set collected in an anaesthesiological
study is then presented.

5.1. Simulation study
We consider the four examples of Donoho and Johnstone (1994, 1995) that have become
standard tests for wavelet estimators: `Blocks', `Bumps', `Heavisine' and `Doppler'. These
functions caricature spatially variable signals arising in imaging, spectroscopy, seismography
and other scienti®c ®elds.

For each test function, noisy data were generated for 100 replications by corrupting a true
function with independent random noise �i � N�0, �2� at 1024 data points uniformly spaced
on �0, 1�. The values of � were taken to correspond to values 10, 7, 5 and 3 for the root signal-
to-noise ratio (RSNR) f� 1

0
�gÿ �g�2g1=2=�, where �g � � 1

0
g.
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We compare BayesThresh with several wavelet-based estimators for reconstructing the
original functions: VisuShrink (Donoho and Johnstone, 1994), GlobalSure (a modi®ed
version of the SureShrink of Donoho and Johnstone (1995) considered in Nason (1996)),
cross-validation (Nason, 1995, 1996) and the false discovery rate (Abramovich and
Benjamini, 1995, 1996). Daubechies's least asymmetric wavelet of order 8 (de®ned through
a set of 16 non-zero coe�cients whose numerical values may be found in Daubechies (1992),
Table 6.3, p. 198) was used for all the methods. In all the methods, except BayesThresh, the
soft thresholding �5� was applied, and the wavelet coe�cients on the ®ve coarsest levels were
not thresholded.

The goodness of ®t of each estimator was measured by its average mean-square error
(AMSE) de®ned as the average over simulated replications ĝ of

nÿ1
Pn
i�1
�ĝi ÿ gi�2.

The AMSEs and standard errors over 100 simulations for the various methods appear in
Table 1. The simulations show that, in almost all cases, BayesThresh (� � 0:5, � � 1) has a
smaller AMSE with cross-validation usually second, GlobalSure third, the false discovery
rate fourth and VisuShrink ®fth in the rankings. In fact, similar results held when we used the
hard thresholding �4� instead of the soft, with the exception of the false discovery rate
procedure whose performance is improved substantially, approximately to the level obtained
by GlobalSure. This is, perhaps, not surprising, since the original idea of the false discovery
rate has a natural interpretation as a hard thresholding procedure (see Abramovich and
Benjamini (1995, 1996)).
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Table 1. AMSEs for the BayesThresh, VisuShrink, GlobalSure, cross-validation and false discovery rate
estimators, using various test functions, for various levels of the RSNR{

Method RSNR AMSEs for the following test functions:

Blocks Bumps Heavisine Doppler

BayesThresh, � � 0:5; � � 1 10 0.22 (0.002) 0.25 (0.002) 0.06 (0.001) 0.09 (0.001)
7 0.38 (0.003) 0.45 (0.004) 0.10 (0.001) 0.16 (0.003)
5 0.67 (0.008) 0.74 (0.006) 0.15 (0.002) 0.30 (0.004)
3 1.60 (0.014) 1.73 (0.019) 0.30 (0.002) 0.69 (0.009)

Cross-validation 10 0.23 (0.002) 0.25 (0.002) 0.06 (0.001) 0.11 (0.001)
7 0.41 (0.003) 0.46 (0.003) 0.10 (0.014) 0.21 (0.002)
5 0.72 (0.006) 0.84 (0.005) 0.16 (0.003) 0.39 (0.004)
3 1.68 (0.013) 2.08 (0.016) 0.32 (0.005) 0.91 (0.005)

GlobalSure 10 0.25 (0.002) 0.29 (0.003) 0.08 (0.007) 0.11 (0.001)
7 0.42 (0.003) 0.48 (0.004) 0.12 (0.001) 0.21 (0.002)
5 0.82 (0.009) 0.92 (0.008) 0.18 (0.002) 0.59 (0.009)
3 3.32 (0.047) 3.31 (0.031) 0.32 (0.004) 1.73 (0.022)

False discovery rate 10 0.55 (0.005) 0.69 (0.006) 0.08 (0.008) 0.22 (0.003)
7 0.96 (0.008) 1.23 (0.011) 0.12 (0.001) 0.39 (0.005)
5 1.58 (0.015) 2.08 (0.022) 0.17 (0.003) 0.65 (0.006)
3 3.15 (0.025) 4.68 (0.043) 0.31 (0.004) 1.35 (0.015)

VisuShrink 10 0.77 (0.006) 1.04 (0.009) 0.08 (0.007) 0.27 (0.002)
7 1.29 (0.012) 1.77 (0.017) 0.12 (0.001) 0.47 (0.005)
5 2.08 (0.016) 2.99 (0.028) 0.17 (0.002) 0.77 (0.009)
3 3.69 (0.024) 6.21 (0.057) 0.32 (0.004) 1.55 (0.015)

{Standard errors are given in parentheses.



Within the BayesThresh approach, the e�ect of varying � and � was investigated. For all four
functions, reducing � gave worse results, especially for the Blocks and Doppler functions.
This is as might be expected given the irregularity of these functions. The value � � 1 gave
very slightly better results for large RSNR, but noticeably worse for smaller RSNR. Larger
values of � gave poor results, except for the Heavisine example, which is somewhat more
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Fig. 5. Original test function and various reconstructions based on 1024 equally spaced values of the function
with the addition of independent N(0, �2) noise with � � 7=3 (RSNR, 3): (a) original Blocks function; (b)
BayesThresh (� � 0:5, � � 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink



regular than the others; even in this case there was no improvement over the case � � 0:5.
Figs 5±8 show the test functions and the reconstructions obtained, with all methods

applied to noisy versions of the functions with an RSNR of 3. It can be seen from these plots
that the BayesThresh (� � 0:5, � � 1) method generally gives a better reconstruction of the
®ne scale structure, relative to the amount of noise in the smooth parts of the functions. In
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Fig. 6. Original test function and various reconstructions based on 1024 equally spaced values of the function
with the addition of independent N(0, �2) noise with � � 7=3 (RSNR, 3): (a) original Bumps function; (b)
BayesThresh (� � 0:5, � � 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink



particular, the BayesThresh method gives a better reconstruction of the corners in Blocks, the
high peaks in Bumps, the jumps in Heavisine and the high frequency parts of Doppler.

5.2. Inductance plethysmography data
Here, we apply the thresholding methods to a data set arising from anaesthesiology collect-
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Fig. 7. Original test function and various reconstructions based on 1024 equally spaced values of the function
with the addition of independent N(0, �2) noise with � � 7=3 (RSNR, 3): (a) original Heavisine function; (b)
BayesThresh (� � 0:5, � � 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink



ed by inductance plethysmography. The recordings were made by the Department of
Anaesthesia at the Bristol Royal In®rmary and measure the ¯ow of air during breathing.
The same data set has been analysed in Nason (1996), to which the reader is refered for
more details. These signals are intrinsically continuous, and therefore large values of � in
the BayesThresh method may be appropriate. Therefore, we consider � � 0:5, 1, 2, and we
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Fig. 8. Original test function and various reconstructions based on 1024 equally spaced values of the function
with the addition of independent N(0, �2) noise with � � 7=3 (RSNR, 3): (a) original Doppler function; (b)
BayesThresh (� � 0:5, � � 1); (c) cross-validation; (d) GlobalSure; (e) false discovery rate; (f) VisuShrink



estimate C1 and C2 as suggested in Section 4.4. The noise level � is robustly estimated by the
median absolute deviation of the wavelet coe�cients at the ®nest level, divided by 0.6745
(Donoho and Johnstone, 1994).

Figs 9 and 10 show a section of a plethysmograph recording lasting approximately 80 s
(4096 data points) together with various reconstructions. The two main sets of regular
oscillations correspond to normal breathing. The disturbed behaviour in the centre of
the plot where the normal breathing pattern disappears corresponds to vomiting by the pa-
tient.

The VisuShrink and false discovery rate reconstructions remove the noise but tend to
attenuate the peaks whereas the cross-validation and GlobalSure procedures retain the
sharpness of peaks, but the smooth parts of the curves are still noisy. In contrast, the
BayesThresh method has `noise-free' quality without the attenuation. See, for example, the
height of the ®rst peak tabulated in Table 2.
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Fig. 9. (a) Section of an inductance plethysmograph recording and the curve estimates obtained by Bayes-
Thresh: (b) � � 0:5, � � 1; (c) � � 1, � � 1; (c) � � 2, � � 1 (it can be seen that the choice of � does not have
an appreciable effect)



6. Concluding remarks

We have discussed a Bayesian formalism which has given rise to a type of wavelet threshold
estimation in nonparametric regression. A prior distribution was imposed on the wavelet
coe�cients of the unknown response function, designed to capture the sparseness of wavelet
expansion that is common to most applications. For the prior speci®ed, the posterior median
yielded a thresholding procedure. Several simulated examples were used to illustrate our
method, and comparisons were made with other thresholding methods. We also presented an
application to a data set that was collected in an anaesthesiological study.

Our prior model for the underlying function can be adjusted to give functions falling in any
speci®c Besov space. We have established a relationship between the hyperparameters of the
prior model and the parameters of those Besov spaces within which realizations from the
prior will fall. This makes it possible in principle to incorporate prior knowledge about the
function's regularity properties into the prior model for its wavelet coe�cients, though in the
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Fig. 10. (a) Curve estimates of the inductance plethysmograph recording given in Fig. 9(a), obtained by (a)
cross-validation, (b) GlobalSure, (c) the false discovery rate and (d) VisuShrink (it can be seen that cross-
validation and GlobalSure do not eliminate high frequency noise, whereas the false discovery rate and VisuShrink
attenuate the peaks: see Table 2)



present state of understanding of Bayesian smoothing methods the `standard' choice � � 0:5
and � � 1 seems to be the best practical approach.

As in any applications of Bayesian methods in curve and image processing, there are aspects
of our `genuine' prior knowledge that are not captured in themodel. For example, an interesting
avenue for future research would be the investigation of the e�ects of allowing a dependence
between the wavelet coe�cients of the true function. Although the wavelet transform can act as
a `decorrelator' that tends to make each wavelet coe�cient statistically independent of all
others, it will not completely decorrelate most signals. A recent contribution in this direction is
by Crouse et al. (1998) who have developed a framework to capture statistical dependences
between wavelet coe�cients based on wavelet domain hidden Markov models.

Another interesting aspect is the estimation of the noise level �. In our formulation, it is
assumed that either � is known or a reasonably good estimator is available. Where this is
not the case, a prior may be put on �. Clyde et al. (1998) dealt with this situation and used
a Bayesian hierarchical model to de®ne a multiple-shrinkage estimator for the wavelet
coe�cients. They also discussed fast computational implementations through importance
sampling and Markov chain Monte Carlo methods. The combination of these ideas with our
approaches is an interesting topic for further research.
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Appendix A: Theoretical details

Our study so far has concentrated on the Besov space parameters s and p. To take into account the
Besov space parameter q as well, we now introduce a three-parameter prior family that includes
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Table 2. Highest peak value (®rst peak) in the curves shown in
Figs 9 and 10 for the inductance plethysmography data

Highest peak value

Data 0.847
BayesThresh �� � 2, � � 1� 0.845
BayesThresh �� � 1, � � 1� 0.836
BayesThresh �� � 0:5, � � 1� 0.835
Cross-validation 0.835
GlobalSure 0.828
False discovery rate 0.806
VisuShrink 0.796



expression �11� as a special case. Speci®cally, we allow a more delicate dependence of the variance
parameter �2j on the level j by introducing a third parameter , with ÿ1 <  <1:

�2j � 2ÿ�jjC*1.

The following theorem extends the results of theorem 1 to this prior and contains theorem 1 as the
special case  � 0.

Theorem 2. Let  be a mother wavelet of regularity r, where max �0, 1=pÿ 1
2
� < s < r, 14 p, q41,

and let the wavelet coe�cients wjk of a function g obey the prior model �10� with �2j � 2ÿ�jjC*1 and
�j � min �1, 2ÿ�jC2�, where C*1, C2, �5 0, 04 �4 1 and  2 R. Then, for any ®xed value of u00, g 2
Bs

p;q almost surely if and only if either

s� 1
2
ÿ �=pÿ �=2 < 0

or

s� 1
2
ÿ �=pÿ �=2 � 0

and  satis®es the appropriate one of the following conditions:

(a)  < ÿ2=q for
(i) p, q <1 and 04 � < 1,
(ii) p, q <1 and � � 1,
(iii) p � 1, q <1 and � � 1;

(b)  < ÿ1ÿ 2=q for p � 1, q <1 and 04 � < 1;
(c) 4 0 for p <1, q � 1 and 04 � < 1;
(d) 4 ÿ1 for p, q � 1 and 04 � < 1;
(e)  < 0 for

(i) p <1, q � 1 and � � 1,
(ii) p, q � 1 and � � 1.

Proof. De®ne zj to be the vector with elements zjk, where zjk � �ÿ1j wjk for k � 0, . . ., 2j ÿ 1. We con-
sider three cases.
In case I �04 � < 1; 14 p41; 14 q41�, for any 14 p <1, let �p be the pth absolute moment

of the standard normal distribution. We then have Ejjzjjjpp � 2�1ÿ��j�pC2 and var�jjzjjjpp�4 2�1ÿ��j�2pC2.
We also de®ne

� �
s� 1

2
ÿ �=pÿ �=2 if 14 p <1,

s� 1
2
ÿ �=2 if p � 1.

(

Given � > 0, Chebyshev's inequality implies thatP1
j�0

Pfj2ÿ�1ÿ��jjjzjjjpp ÿ C2�pj > �g4O�1� �ÿ2P1
j�0

2ÿ�1ÿ��j <1.

Appealing to the ®rst Borel±Cantelli lemma, it follows that

2ÿ�1ÿ��jjjzjjjpp ! C2�p almost surely as j!1. �15�
By standard extreme value manipulations, using the fact that P�jzjkj > u� � 2�jf1ÿ��u�g, where � is
the standard normal distribution function, we also have

jÿ1=2jjzjjj1 !
pf2�1ÿ �� log�2�g almost surely as j!1. �16�

Hence, in view of expressions (15) and (16) and the equivalence of the norms given by equations (2) and
(3), the required conditions that g 2 Bs

p;q almost surely will be the ®niteness of
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P1
j�0

2js
0q � 2�1ÿ��jq=p�

q
j �

P1
j�0

2j�qjq=2, if 14 p <1, 14 q <1, �17�
P1
j�0

2js
0qjq=2�

q
j �

P1
j�0

2j�qj��1�q=2 if p � 1, 14 q <1, �18�

sup
j50

�2js0 � 2�1ÿ��j=p�j� � sup
j50

�2j�j=2�, if 14 p <1, q � 1, �19�

sup
j50

�2js0 j1=2�j� � sup
j50

�2j�j��1�=2�, if p � 1, q � 1. �20�

In each case, the above expressions will be ®nite if � < 0 and in®nite for � > 0. For � � 0, the
expressions will be ®nite if and only if  < ÿ2=q in case (17),  < ÿ1ÿ 2=q in case (18), 4 0 in case
(19) or 4 ÿ 1 in case (20).
In case II �� � 1; 14 p41; 14 q <1�, the non-zero elements of zj consist of Mj independent

standard normal random variables, where Mj � binomial�2j, 2ÿjC2�. By a standard coupling argu-
ment, there is a sequence Nj of Poisson(C2) random variables such that Mj � Nj almost surely for
all su�ciently large j. Let �j be a vector of Nj independent standard normal random variables,
independently for each j. Then jj�jjj1 is a sum of a Poisson number of independent identical jN�0, 1�j
random variables; by standard probability arguments all the moments of jj�jjj1 are therefore ®nite since
E exp�jj�jjj1� <1. Furthermore, for any 14 p41, jj�jjjp 4 jj�jjj1 (e.g. Beckenbach and Bellman
(1961), p. 18) and hence 0 < Ejj�jjjqp 4 Ejj�jjjq1 <1.
By the equivalence of the norms given by equation (2), we now have the result that g 2 Bs

p;q almost
surely if and only if P1

j�0
2js
0q�

q
j jj�jjjqp �

P1
j�0

2j�qjq=2jj�jjjqp <1 almost surely. �21�

It can be shown from the monotone convergence theorem and the three-series theorem (see Karr
(1993), theorems 4.10 and 7.5 respectively) that, if Zn are independent and identically distributed non-
negative random variables with strictly positive ®nite mean, and an are non-negative constants, then
� anZn is convergent almost surely if and only if � an is convergent. It follows that expression (21) is
equivalent to P1

j�0
2j�qjq=2 <1, �22�

since the �j are independent and identically distributed and Ejj�jjjqp is ®nite. Condition (22) is satis®ed if
and only if either � < 0, or � � 0 and  < ÿ2=q.

In case III �� � 1; 14 p41; q � 1�, by the equivalence of the norms given by equation (3) and the
coupling argument presented previously, g 2 Bs

p;q almost surely if and only if

sup
j50

�2js0�jjj�jjjp� � sup
j50

�2j�j=2jj�jjjp� <1 almost surely. �23�

Appealing to the Borel±Cantelli lemmas, it follows that condition (23) holds if and only if there is a
constant c such that P1

j�0
P�2j�j=2jj�jjjp 5 c� <1. �24�

After some simple arguments, using the facts that, for any 14 p41,

jj�jjjp 4 jj�jjj1
and

E exp�jj�jjj1� <1,

condition (24) is satis®ed if and only if either � < 0, or � � 0 and  < 0. This completes the proof for this
case, and hence we have the theorem.
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