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Abstract

We consider the prediction problem of a continuous-time stochastic process on an entire

time-interval in terms of its recent past. The approach we adopt is based on the notion of

autoregressive Hilbert processes that represent a generalization of the classical autoregressive

processes to random variables with values in a Hilbert space. A careful analysis reveals, in

particular, that this approach is related to the theory of function estimation in linear ill-posed

inverse problems. In the deterministic literature, such problems are usually solved by suitable

regularization techniques. We describe some recent approaches from the deterministic

literature that can be adapted to obtain fast and feasible predictions. For large sample sizes,

however, these approaches are not computationally efficient.

With this in mind, we propose three linear wavelet methods to efficiently address the

aforementioned prediction problem. We present regularization techniques for the sample paths

of the stochastic process and obtain consistency results of the resulting prediction estimators.

We illustrate the performance of the proposed methods in finite sample situations by means of a

real-life data example which concerns with the prediction of the entire annual cycle of

climatological El Niño-Southern Oscillation time series 1 year ahead. We also compare the

resulting predictions with those obtained by other methods available in the literature, in

particular with a smoothing spline interpolation method and with a SARIMA model.
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models; Singular value decomposition; Sobolev spaces; Smoothing splines; Tikhonov–Phillips

regularization; Wavelets

1. Introduction

In many real life situations one seeks information on the evolution of a
continuous-time stochastic process X ¼ ðXðtÞ; tARÞ in the future. Given a
trajectory of X observed on the interval ½0;T �; one would like to predict the
behavior of X on the entire interval ½T ;T þ d�; where d40; rather than at specific
time-points. An appropriate approach to this problem is to divide the interval ½0;T �
into subintervals ½id; ði þ 1Þd�; i ¼ 0; 1;y; n � 1 with d ¼ T=n; and to consider the
process Z ¼ ðZn; nAZÞ defined by

ZnðtÞ ¼ Xðt þ ndÞ; 0ptpd; nAZ: ð1Þ

This representation is especially fruitful if X possesses a seasonal component with
period d: It can be also employed if the data are collected as curves indexed by time-
intervals of equal lengths; these intervals may be adjacent, disjoint or even
overlapping (see, for example, [39,40]).

To deal with the prediction problem, Bosq [13] introduced and studied the (zero-
mean) Hilbert-valued (H-valued) autoregressive (of order 1) processes (ARH(1)) as

the natural and infinite-dimensional extension of the classical Rd-valued ðdX1Þ
autoregressive (of order 1) processes. In this line of study, if Z in (1) is an ARH(1)
process, the best prediction of Znþ1 given its past history ðZn;Zn�1;yÞ is then
obtained by

Z̃nþ1 ¼ EðZnþ1 j Zn;Zn�1;yÞ

¼ rðZnÞ; nAZ;

where r is a bounded linear operator associated with the ARH(1) process. In many
practical situations, however, the stochastic process X is not centered and, therefore,
is not weakly stationary. We will assume that its mean is a periodic, H-valued,
function a ¼ ðat; tARÞ with period d and, hence, the centered stochastic process
Y ¼ ðYn ¼ Zn � a; nAZÞ is an ARH(1) process, implying that the best predictor of
Znþ1 given Zn;Zn�1;y is obtained by

Z̃nþ1 ¼ EðZnþ1 j Zn;Zn�1;yÞ

¼ a þ rðZn � aÞ; nAZ: ð2Þ

If one is able to estimate the (unknown) periodic function a; say by â; and the
‘prediction’ operator r; say by #r; given Z0;Z1;y;Zn; then a statistical predictor of
Znþ1 based on (2) is obtained by

#̃Znþ1 ¼ â þ #rðZn � âÞ: ð3Þ

This is the approach that we consider in the following development. The article is
organized as follows. In Section 2, we briefly state some material from ARH(1)
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processes that we shall need further. We also briefly discuss some existing methods in
the literature to predict a continuous-time stochastic process on an entire time-
interval in terms of its recent past, based on the notion of ARH(1) processes. Section
3 is devoted to a detailed analysis of this approach revealing, in particular, that it is
related to the theory of function estimation in linear ill-posed inverse problems. In
the deterministic literature, such problems are usually solved by suitable regulariza-
tion techniques. We describe some recent approaches from the deterministic
literature that can be adapted to obtain fast and feasible predictions. For large
sample sizes, however, these approaches are not computationally efficient. With this
in mind, in Section 4, we propose three linear wavelet methods to efficiently address
the aforementioned prediction problem. We present regularization techniques for the
sample paths of the stochastic process and obtain consistency results of the resulting
prediction estimators. In Section 5, we illustrate the performance of the proposed
methods in finite sample situations by means of a real-life data example which
concerns with the prediction of the entire annual cycle of climatological El Niño–
Southern Oscillation time series 1 year ahead. We also compare the resulting
predictions with those obtained by other methods available in the literature, in
particular with a smoothing spline interpolation method and with a SARIMA
model. Concluding remarks and hints for possible extensions of the proposed linear
wavelet methods are made in Section 6.

2. Preliminary results

In this section, we briefly state some material from ARH(1) processes that we shall
need further. We also briefly discuss some existing methods in the literature to
predict a continuous-time stochastic process on an entire time-interval in terms of its
recent past, based on the notion of ARH(1) processes.

Let H be a (real) separable Hilbert space, endowed with the Hilbert inner product
/
; 
S and the Hilbert norm jj 
 jj: Typically, H is chosen to be the space of squared-

integrable functions on the interval ½a; b�DR (i.e. H ¼ L2½a; b�) or the Sobolev space
of s-smooth functions on the interval ½a; b�DR (i.e. H ¼ W s

2 ½a; b� with integer

regularity index sX1).
Let x ¼ ðxn; nAZÞ be a sequence of H-valued random variables defined on the

same probability space ðO;F;PÞ: We say that x is a (zero mean) ARH(1) process, if

xn ¼ rðxn�1Þ þ en; nAZ; ð4Þ

where r : H/H is a bounded linear operator and e ¼ ðen; nAZÞ is a H-valued
strong white noise, i.e. a sequence of independent and identically distributed H-

valued random variables such that EðenÞ ¼ 0 and Eðjjenjj2ÞoN: Under some mild
conditions, (4) has a unique solution which is a weakly stationary process with
innovation e (see, for example, [14, Chapter 3]).

Let H� be the (topological) dual of H; i.e. the space of all bounded linear
functionals on H: The covariance structure of x is related to two bounded linear
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operators from H� to H; namely the covariance and cross-covariance (of order 1)
operators. Since H� may be identified with H (by Riesz representation), they are
defined respectively by

fAH/Cf ¼ Eððx0#x0Þð f ÞÞ

and

fAH/D�f ¼ Eððx1#x0Þð f ÞÞ;

where the tensor product u#v (for two fixed elements u; vAH) is the bounded linear
operator from H to H; defined by

xAH/ðu#vÞðxÞ ¼ /u; xSv:

If Ejjx0jj2oN; the operator C is then symmetric, positive, nuclear and, therefore,
Hilbert–Schmidt (see, for example, [14, Chapter 1]). The cross-covariance (of order
1) operator D (the adjoint of D�) defined by

fAH/Df ¼ Eððx0#x1Þð f ÞÞ

is also nuclear and, therefore, Hilbert–Schmidt (see, for example, [14, Chapter 1]).
The operators C; D and D� can be (unbiasedly) estimated by their empirical
counterparts Cn; Dn and D�

n defined respectively by

Cn ¼ 1

n þ 1

Xn

k¼0

xk#xk;

Dn ¼ 1

n

Xn�1

k¼0

xk#xkþ1

and

D�
n ¼ 1

n

Xn�1

k¼0

xkþ1#xk:

Since the ranges of Cn; Dn and D�
n are finite-dimensional, it follows that they are

nuclear and, therefore, Hilbert–Schmidt. Moreover, Cn is symmetric and positive.
From now on, the eigenvalues of C and Cn will be respectively denoted (in decreasing
order) by l1Xl2X? and l1;nXl2;nX? with corresponding eigenfunctions

respectively denoted by e1; e2;y and e1;n; e2;ny : Consistency results for Cn; Dn;
D�

n; li;n and ei;n (i ¼ 1; 2;y) can be found in, for example, [14, Chapter 4].

Using (4), it is not difficult to see that we obtain the following relations:

D ¼ rC; ð5Þ

D� ¼ Cr�; ð6Þ
where r� denotes the adjoint operator of r: One could try to estimate the ‘prediction’
operator r by inverting the operator C in (5) and using the empirical estimates Cn and Dn

of C and D; respectively. In other words, an estimator of r could be based on the relation

r ¼ DC�1: ð7Þ
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In a finite-dimensional context, such a relation makes sense, provided the
invertibility of C: In an infinite-dimensional context, however, (7) does not make

sense because C�1 is an unbounded operator. Bosq [13] initiated research in this area
and proposed to first project the data over a suitable finite dimensional subspace of
H and then defined an appropriate estimator of r: Further work in this direction and
extensions have been developed by Pumo [38], Mourid [35], Merlevéde [33] and
Cardot [17]. In most applied contexts, however, the process Z defined in (1) is only
observed at discrete time-points. Therefore, in order to use these results to deal with
the prediction problem of a continuous-time stochastic process on an entire time-
interval in terms of its recent past, as discussed in Section 1, one should first
approximate the sample paths of Z and then derive appropriate estimators of r:
Under some strict assumptions on the sample paths of Z (i.e. Hölder continuity of
order s; 0osp1), Pumo [38] used a linear interpolation of the discrete time-points
and proceeded in approximating C and D by finite-rank estimators. The resulting
class of estimators for r are called the linear interpolation estimators. Alternatively, by
assuming that the predictable part of Z belong to a q-dimensional subspace Hq of

smooth functions (i.e., the range of r is an s-smooth Sobolev space (W s
2 ½0; 1�) with

integer regularity index sX1), Besse and Cardot [11] proposed to simultaneously

estimate the sample paths of Z and project the data using natural cubic splines
(usually called smoothing splines in the nonparametric curve estimation literature).
The resulting class of estimators for r are called the smoothing spline interpolation

estimators.
On the other hand, since C is a compact operator, by the closed graph theorem

(see, for example, [26, Theorem 5.20]) and the fact that the range of D� is included in

the domain of C�1; the adjoint relation to (7) (using (6)) given by

r� ¼ C�1D� ð8Þ

is well-defined and bounded on the domain of C�1 which is dense in H: By standard
results on linear operators (see, for example, [24, Theorem 3, p. 74]), r� given in (8)
can be extended by continuity to r: Furthermore, we have

r ¼ ExtðDC�1Þ ¼ ðC�1D�Þ� ¼ ðDC�1Þ��; ð9Þ

where Ext denotes the extension to H of a bounded linear operator defined on a
dense subspace of H: If one is, therefore, able to estimate r� given in (8), then any
theoretical result obtained on the estimate of r� is applicable to the corresponding
estimator of r: Moreover, for any zAH; rz can be estimated via estimates of relevant
elements in the range of r�; by first decomposing rz on any basis in H and then using
the adjoint property. The above discussion justifies why, in what follows, we merely
concentrate on the estimation of r�:

Recently, Mas [32, Chapter 3] considered two classes of estimators for r�; namely
the class of projection estimators and the class of resolvent estimators. The class of
projection estimators is defined by

r�n ¼ ðPkn CnPknÞ�1
D�

nP
kn : ð10Þ

ARTICLE IN PRESS
A. Antoniadis, T. Sapatinas / Journal of Multivariate Analysis 87 (2003) 133–158 137



The (random) operator ðPkn CnPknÞ�1 is, in fact, defined by inverting the operator

ðPkn CnPknÞ and completing it by the null operator on the subspace orthogonal to the
space spanned by the first kn eigenfunctions of Cn: The class of resolvent estimators is
defined by

r�n;p ¼ fn;pðCnÞD�
n; ð11Þ

where

fn;pðCnÞ ¼ ðCn þ bnIÞ�ðpþ1Þ
Cp

n ; for pX0; bn40; nX0:

The above expressions are defined in terms of powers of compact operators using
their spectral measures (see, for example, [26, p. 356]). When pX1; the resolvent
operators fn;pðCnÞ are compact. Moreover, contrary to the projection operators

discussed above, these operators have a deterministic norm equal to b�1
n : This allows

one to control, through appropriate convergence rates towards 0 of the sequence bn;
the consistency properties of the corresponding resolvent estimators.

The classes (10) and (11) of estimators for r� will be discussed further in Section 4
when we will construct two of the proposed linear wavelet methods to efficiently
address the prediction problem (2).

3. Continuous-time prediction as a linear ill-posed inverse problem

In this section, we first show that the original estimator of Bosq [13] to predict a
continuous-time stochastic process on an entire time-interval, based on the notion of
ARH(1) processes, can be seen as a projection-type estimator. We then present a
detailed analysis of his prediction setup, revealing, in particular, that the resulting
projection-type estimator is related to the theory of function estimation in linear ill-
posed inverse problems. In the deterministic literature, such problems are usually
solved by suitable regularization techniques. We describe some recent approaches
from the deterministic literature that can be adapted to obtain fast and feasible
solutions to the prediction problem (2). For large sample sizes, however, these
approaches are not computationally efficient.

Remark 3.1. Throughout this section, without loss of generality, we consider the
prediction problem (2) with a ¼ 0: The general case with aa0 follows easily along
the same lines with a replaced by its unbiased and mean-squared consistent estimator

â ¼ %Z (see [14, Theorem 3.7]).

Projection-type estimators. Let z be any generic vector in H: Using (6), one obtains
the relation

D�z ¼ Cr�z: ð12Þ

Noting that C is a symmetric operator, (12) can be written as

CD�z ¼ C�Cr�z: ð13Þ
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Since we cannot invert C�C; from standard literature on inverse problems (using the
singular value decomposition of C), we have

r�z ¼
XN
i¼1

1

li

/ei;D�zSei:

Using the m nonzero eigenvalues li;n and the corresponding eigenfunctions ei;n of Cn;
and the estimator D�

n of D�; an estimator of r�z is then obtained by

r�n;mz ¼
Xm

i¼1

1

li;n
/ei;n;D�

nzSei;n: ð14Þ

The above expression (14) clearly represents a projection-type estimator of r�z:
Moreover, this estimator is nothing else than the regularized solution of (12)
obtained by truncated singular value decomposition (where C and D are replaced by
Cn and Dn; respectively) which corresponds to the original estimator obtained by
Bosq [13].

The linear ill-posed inverse problem setting. On the other hand, it is easily seen that
(12) can also be written as

D�
nz þ ðD� � D�

nÞz ¼ Cnr�z þ ðC � CnÞr�z

which is equivalent to

D�
nz ¼Cnr�z þ ðC � CnÞr�z � ðD� � D�

nÞz

¼Cnr�z þ Zn: ð15Þ

The above expression (15) clearly represents a linear ill-posed inverse problem that
could be solved to estimate r�z: The ill-posedness is caused by asymptotic instability

due to lack of boundness of C�1:
In the deterministic literature, such problems are usually solved by suitable

regularization techniques. However, to adapt this approach in our stochastic setting
in order to obtain an estimator of r�z; one needs to control the error term Zn ¼
ðC � CnÞr�z � ðD� � D�

nÞz in (15). We first note that Zn is random because Cn and Dn

are random. We are going to control the terms ðC � CnÞ and ðD� � D�
nÞ: It is easily

seen that

jjZnjj
2p jjðC � CnÞr�zjj þ jjðD� � D�

nÞzjj
� �2

p 2ðjjC � Cnjj2Ljjr�zjj2 þ jjD� � D�
njj

2
Ljjzjj2Þ;

where jj 
 jjL stands for the supremum norm for bound linear operators from

H to H:
Using the fact that the Hilbert–Schmidt norm is finer than the supremum norm

and taking into account the asymptotic rates obtained by Bosq [13, Propositions 2.1
and 2.2], we then have

EjjZnjj
2p

2k
n
ðjjr�zjj2 þ jjzjj2Þ;
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where k is a generic positive constant, leading to

EjjZnjj
2 ¼ O

1

n

� �
; as n-N:

The above expression ensures that the error term Zn in (15) is controlled.
Furthermore, if in the definition of Zn we use the H-valued process Z instead of

the generic vector zAH; nothing changes since Ejjr�Zjj2oN and EjjZjj2oN:
We now describe some recent approaches from the deterministic literature that

address suitable regularization algorithms which can be adapted to solve (15). Our
analysis, enables regularization procedures to be ‘lifted’ from the deterministic
literature, reducing thus to a minimum the considerable effort that it would be
required to extend these methods to the stochastic setting.

3.1. Mair and Ruymgaart [29]

The preconditioning step in (13), for the original equation (12), turns out to be
extremely expedient. The operator C�C is Hermitian and strictly positive and,
therefore, easier to deal with than C: A version of the spectral theorem due to
Halmos [23] ensures that C�C is unitary, equivalent to multiplication in a Hilbert
space. More precisely, using the singular value decomposition for C; C�C can be
expressed as

C�C ¼ U�1Mh2U ;

where U is a unitary operator U : H/L2ðmÞ; m a s-finite measure, hALNðmÞ a

strictly positive function and Mh2 means multiplication by h2: It is, therefore, more

convenient to work in the spectral domain, L2ðmÞ; than in the original domain, H:

The inverse ðC�CÞ�1 can be now be represented by multiplication by 1=h2; where

defined. By regularization, we can replace 1=h2; which may be unbounded, with a
function close to it but still bounded. Certain types of regularized estimators in
Hilbert (particularly Sobolev) spaces, with applications in deconvolution and
indirect nonparametric regression, have been considered by Mair and Ruymgaart
[29]. It is shown that the resulting estimators attain the asymptotic minimax rate.

3.2. Plato and Vainikko [37], Maass and Rieder [28] and Rieder [41]

If we consider a Tikhonov–Phillips regularization method then, because the

operator C�1 is unbounded, (12) is replaced by the following variational problem:

min
r�z

fjjCr�z � D�zjj2 þ ljjr�zjj2; r�zAHg;

where l40 is the regularization parameter. Theoretically, the minimum is given by
the normal equations

ðC�C þ lIÞðr�zÞl ¼ C�D�z: ð16Þ
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Remark 3.2. Note that the above solution (16), when C and D are replaced by Cn

and Dn; respectively, is a special case of the resolvent estimator (11) (for p ¼ 0)
obtained by Mas [32, Chapter 3].

For a computable approximation one has to project the normal equations given in
(16) to a finite-dimensional subspace of H: In other words, we can replace (16) by

ðC�
l Cl þ lIÞðr�zÞl ¼ C�

l D�z; ð17Þ

where Cl ¼ CPl ; Pl : H/Vl ; Vl is a finite-dimensional subspace of H with VlCVlþ1;S
l Vl ¼ H: With these properties, the solution of (17) converges to the minimal

solution of (16) as l-N; provided l is chosen appropriately (see [37]).
The original problem (16), or its computational approximation (17), may be

efficiently solved via a multilevel solver. The general idea of multilevel methods is to
approximate the original problem by a sequence of related auxiliary problems at
smaller scales which can be solved very cheaply and efficiently. Maass and Rieder
[28] and Rieder [41] constructed a numerical algorithm for implementing such
multilevel iterations for Tikhonov–Phillips regularization by employing wavelet
techniques. More specifically, let the sequences fVj ; jAZg and fWj; jAZg be

respectively the approximated and the detailed spaces associated with a multi-
resolution analysis of H (see [30]). By writing

Vl ¼ Vlmin
" "

l�1

j¼lmin

Wj; lminpl � 1

and denoting with Qj the orthogonal projection of H onto Wj ; everything will now

depend (speed to the right solution) on the decay rate of the quantity

gl ¼ jjC�C � C�
l Cl jj ¼ jjC�CðI � PlÞjj as l-N:

Using Lemma 1 of [28] and the fact that the operator C�C is compact, we have

jjC�CQl jjpgl-0 as l-N:

Under these conditions, the solution may be obtained by applying an additive
Schwarz relaxation iterative solver, similar to the one described in [28]. In
practice, however, the operators C and D in the above expressions are
unknown, and one could replace them respectively by Cn and Dn in the above
computations. Provided n is large enough, and since Cn and Dn converge to C and D

respectively (see, for example, [13, Propositions 2.1 and 2.2]), the convergence
analysis of the numerical iterative solver of [28] carries over when Cn is replaced by
Cn;l ¼ CnPl :

Moreover, instead of replacing Cn by Cn;l ¼ CnPl ; one could also approximate Cn

by any approximation operator Cn;h such that the error of approximation is

controlled. A particular way to do that is to compute the (truncated) singular value
decomposition of Cn and to take Cn;h as

Cn;hð
Þ ¼
X

kpmðhÞ
lk/
; ekSek;
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where jlkjph for all kXmðhÞ: Replacing the normal equations (16) by the
approximating version

ðC�
n;hCn;h þ lIÞðr�zÞh ¼ C�

n;hD�
nz; ð18Þ

the regularized solution of (18) is then explicitly given by

ðr�nzÞl;h ¼
X

kpmðhÞ

lk

l2
k þ l

/ek;D�
nzSek: ð19Þ

Remark 3.3. (i) By taking l ¼ 0 in (19), one obtains a prediction estimator similar
to the projection-type estimator (14) that appeared as our interpretation of
the prediction estimator obtained by Bosq [13]. If instead of using the weights

lk=ðl2
k þ lÞ we consider the weights lp

k=ðl
2
k þ lÞpþ1 for some pX0; and take h ¼ 0;

one then obtains the resolvent estimator (11) obtained by Mas [32, Chapter 3].
(ii) Similar results to the ones presented above can also be obtained by a more

general approximation to the normal equations given in (16). In other words, one
can consider the generalized Tikhonov method (see, for example, [37]) which consists
in finding the solution of

ððC�CÞqþ1 þ lIÞðr�zÞl ¼ ðC�CÞq
C�D�z; ð20Þ

where qX� 1=2:

The above discussion, and the analysis of Bosq [13] and Mas [32, Chapter 3]
approaches, allows one to numerically obtain fast and feasible solutions to the
prediction problem (2) using some ad hoc wavelet techniques. However, if n is large,
the resulting systems are then too large to be efficiently implemented. With this in
mind, we propose in the following section some specific-designed linear wavelet
methods that are well-suited and theoretically sound for continuous-time prediction.

4. Linear wavelet methods for continuous-time prediction

In this section, we propose three linear wavelet methods to efficiently address the
prediction problem (2). We present regularization techniques for the sample paths of
the stochastic process and obtain consistency results of the resulting estimators. It is
worth pointing out that the proposed linear wavelet methods allow one to obtain
asymptotic rates under much weaker assumptions on the sample paths than second
order differentiability. We shall assume that the sample paths of Z belongs to the
Sobolev space H ¼ W s

2 ½0; 1� with noninteger regularity index s41=2: This space

consists of relatively smooth functions, but not as smooth as the usual Sobolev space
used in smoothing spline approaches, i.e. H ¼ W s

2 ½0; 1� with integer regularity index

sX1 (see, for example, [8]).
Hereafter, we assume that we are working within an orthonormal basis generated

by dilations and translations of a compactly supported scaling function, f; and a
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compactly supported mother wavelet, c; associated with an r-regular (rX0)

multiresolution analysis of L2½0; 1� (see, for example, [18, Chapter 5]). For simplicity
in exposition, we work with periodic wavelet bases on ½0; 1� (see, for example, [31,
Section 7.5.1]), letting

fp
jkðtÞ ¼

X
lAZ

fjkðt � lÞ and cp
jkðtÞ ¼

X
lAZ

cjkðt � lÞ; for tA½0; 1�;

where

fjkðtÞ ¼ 2 j=2fð2 j t � kÞ; cjkðtÞ ¼ 2 j=2cð2 j t � kÞ:

For any j0X0; the collection

ffp
j0k; k ¼ 0; 1;y; 2 j0 � 1; cp

jk; jXj0X0; k ¼ 0; 1;y; 2 j � 1g

is then an orthonormal basis of L2½0; 1�: The superscript ‘‘p’’ will be suppressed from
the notation for convenience. Despite the poor behavior of periodic wavelets near
the boundaries, where they create high amplitude wavelet coefficients, they are
commonly used because the numerical implementation is particular simple.

For detailed expositions of the mathematical aspects of wavelets we refer, for
example, to [18,31,34]. For comprehensive expositions and reviews on wavelets in
statistical settings we refer, for example, to [1,5,6,43].

4.1. Regularized wavelet-vaguelette estimators

It is easily seen that the best predictor of Y1 given Y0; leading to the best predictor
of Z1 given Z0 (see (2) and (3)), can be expressed as

Ỹ1 ¼
XN
j¼0

X2 j�1

k¼0

/rY0;cjkScjk: ð21Þ

Our purpose is first to compute the coefficients /rY0;cjkS ¼ /Y0; r�cjkS: These

are similar to the ones obtained by wavelet-vaguelette decompositions of a
homogeneous operator (see [21]). The wavelet-vaguelette method for regularizing
linear ill-posed problems has also been considered by Dicken and Maass [20]; the
approach presented in this section is closely related to the one used in [20, Section 4].

Recall from (6) that D� ¼ Cr� and, therefore, D�cjk ¼ Cr�cjk: One way to solve

the latter equation and get r�cjk is by regularization, since the operator C is not

invertible. By regularization (see Section 3.2), we estimate r�cjk bydðr�cjkÞðr�cjkÞl
¼ ðC�

n;lCn;l þ lIÞ�1
C�

n;lD
�
ncjk;

where Cn;l ¼ CnPl ; Pl : H/Vl and Vl is the scaling space corresponding to a

periodic multiresolution analysis associated with the wavelet c: Therefore, we

estimate /rY0;cjkS by d/rY0;cjkS/rY0;cjkS ¼ /Y0; dðr�cjkÞðr�cjkÞl
S and D�cjk by D�

ncjk ¼
1
n

Pn�1
i¼0 /Yiþ1;cjkSYi:
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In order now to compute /rY0;cjkS; we note that it is enough to compute

/rY0;fJkS; J ¼ log2ðnÞ; k ¼ 0; 1;y; 2 j � 1: This is so, because r is linear and we
can use the pyramid algorithm (the discrete wavelet transform) to compute the
wavelet coefficients at coarser scales (see [30]). Indeed, we have

fjcðxÞ ¼
X

k

hc�2kfj�1;kðxÞ þ
X

k

gc�2kcj�1;kðxÞ; xAL2½0; 1�;

where h and g are the quadrature mirror filters associated with the pyramid
algorithm, implying that

/rY0;fjcS ¼ rY0;
X

k

hc�2kfj�1;k

* +
þ rY0;

X
k

gc�2kcj�1;k

* +
¼
X

k

hc�2k/rY0;fj�1;kSþ
X

k

gc�2k/rY0;cj�1;kS: ð22Þ

(Note that a similar remark for such a fast evaluation is given in [20, Proposition
5.2]). In order to estimate /rY0;fJkS ¼ /Y0; r�fJkS; we need to estimate r�fJk:
To do that, we recall again from (6) that D� ¼ Cr� and, therefore, D�fJk ¼ Cr�fJk:
Again, by regularization, we estimate r�fJk bydðr�fJkÞlðr�fJkÞl ¼ ðC�

n;lCn;l þ lIÞ�1
C�

n;lD
�
nfJk;

where Cn;l is defined above, and D�
nfJk ¼ 1

n

Pn�1
i¼0 /Yiþ1;fJkSYi: If f is now a Coiflet

of order L4½s� þ 1; where ½x� is the integer part of x (see [18, p. 258]), then one can

get the approximation (see, [3]) /Yiþ1;fJkSC2�J=2Yiþ1ðk=2JÞ: The resulting

approximation dD�
nfJkD�
nfJk ¼ 2�J=2

n

Pn�1
i¼0 Yiþ1ðk=2JÞYi; while presenting a very small bias,

leads to a highly oscillatory function (see [3]). In order to further regularize it, we
associate with the discretization grid size m (hereafter, the discretization grid size m

depends on n; the number of simple paths of an ARH(1) process, i.e. m :¼ mðnÞ; but
for notation simplicity we will omit this dependency and denote it by m), a resolution

level JðmÞoJ; and estimate D�
nfJk by gD�

nfJðmÞkD�
nfJðmÞk; its orthogonal projection onto the

scaling space VJðmÞ associated with the multiresolution analysis of H:

To control the previous approximations, we need to bound the mean-squared

approximation error of Ejj brfrf � rf jj2; for any fAH; where

brfrf ¼
X2JðmÞ�1

k¼0

/f ; dr�fJðmÞkr�fJðmÞkSfJðmÞk

and dr�fJðmÞkr�fJðmÞk ¼ fn;0ðCnÞ gD�
nfJðmÞkD�
nfJðmÞk

with fn;0 ¼ ðCn þ bnIÞ�1 (see (11)). The error of approximating D�
nfJk by gD�

nfJðmÞkD�
nfJðmÞk

will be called the interpolation error. It is bounded above by the interpolation error of

approximating D�
nfJk by dD�

nfJkD�
nfJk: If f is now a Coiflet of order L4½s� þ 1; using
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Lemma 3.1 in [3], we then have

EjjD�
nfJk � dD�

nfJkD�
nfJkjj

2 ¼ Oð2�Jð2sþ1ÞÞEjj %Ynjj2 as n-N;

where %Yn ¼ 1
nþ1

Pn
l¼0 Yl : If EjjY0jj2oN; then Ejj %Ynjj2 ¼ Oð1

n
Þ; as n-N (see [14,

Theorem 3.7]). Therefore,

EjjD�
nfJk � dD�

nfJkD�
nfJkjj

2 ¼ Oð2�2Jðsþ1ÞÞ as n-N;

implying that

EjjD�
nfJk � gD�

nfJðmÞkD�
nfJðmÞkjj

2 ¼Oð2�2Jðsþ1Þ22ðJ�JðmÞÞÞ

¼Oð2�2ðJsþJðmÞÞÞ as n-N:

Moreover, for any fAH; we have

jj brfrf � rf jj2 ¼
X2JðmÞ�1

k¼0

/f ; r�fJðmÞk � dr�fJðmÞkr�fJðmÞkS
2 þ jjðI � PVJðmÞ Þrf jj2;

where PVJðmÞ denotes the orthogonal projection operator of H onto VJðmÞ: The

assumption that the sample paths belong to H ¼ W s
2 ½0; 1�; for s41=2; implies that

rfAH ¼ W s
2 ½0; 1�; s41=2: Therefore, by using standard wavelet approximation

results (see, for example, [18] or [34], for any fAH; we have that

jjðI � PVJðmÞ Þrf jj2 ¼ Oð2�2sJðmÞÞ as n-N:

Using the Cauchy–Schwarz inequality and Proposition 3 in [32] (including the
arguments in his proof), we getX2JðmÞ�1

k¼0

/f ; r�fJðmÞk � dr�fJðmÞkr�fJðmÞkS
2

pjjf jj2
X2JðmÞ�1

k¼0

jjr�fJðmÞk � dr�fJðmÞkr�fJðmÞkjj
2

¼ jf jj2
X2JðmÞ�1

k¼0

jjr�fJðmÞk �
ddr�fJðmÞkr�fJðmÞk
dr�fJðmÞkr�fJðmÞk þ

ddr�fJðmÞkr�fJðmÞk
dr�fJðmÞkr�fJðmÞk � dr�fJðmÞkr�fJðmÞkjj

2;

where
ddr�fJðmÞkr�fJðmÞk
dr�fJðmÞkr�fJðmÞk is the kth discrete wavelet coefficient at scale JðmÞ of

fn;0ðCnÞD�
nfJðmÞk: Hence, by the triangular inequality, we get

E
X2JðmÞ�1

k¼0

/f ; r�fJðmÞk � dr�fJðmÞkr�fJðmÞkS
2

" #

p2 jjf jj2 Oð2JðmÞ2�2ðJsþJðmÞÞÞ þ O
2JðmÞ�J

bn

� �� �
¼ 2jjf jj2 Oð2�ð2JsþJðmÞÞÞ þ O

2JðmÞ�J

bn

� �� �
;
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implying that, for any fAH

Ejj brfrf � rf jj2 ¼ Oð2�ð2JsþJðmÞÞÞ þ O
2JðmÞ�J

bn

� �
þ Oð2�2sJðmÞÞ as n-N; ð23Þ

where the first term in (23) depends on fAH (not uniformly).
In order that the bias (the last term in (23)) tends to zero, we need JðmÞ-N as

m-N: But JðmÞ has to go to N at a slower speed than J; in other words,

J � JðmÞ-N: For example, if one takes JðmÞ ¼ log2ðnÞ
ð1þ2sÞ and bn ¼ 1

logðnÞ; then the

mean-squared approximation error is, for any fAH

Ejj brfrf � rf jj2 ¼ OðlogðnÞ n
� 2s

2sþ1Þ; as n-N;

implying the (mean-squared) consistency of our prediction estimator at the optimal
(up to a logarithmic factor) rate.

Remark 4.1. To obtain the above approximation results, we have used a linear
wavelet method, by assuming that the sample paths belong to a Sobolev space
H ¼ W s

2 ½0; 1� with non-integer regularity index s41=2: If, instead, we assume that

the sample paths belong to a Besov space on ½0; 1� (see, for example, [34]) then, given
the results in [20], we conjecture that a nonlinear wavelet thresholding estimator for
correlated data (see, for example, [25]), computed in the same spirit as above, would
define an adaptive consistent prediction estimator of rf ; fAH: For the asymptotic
rates of such estimators see, for example, [19]).

4.2. Regularized wavelet interpolation estimators

As mentioned in Section 2, one way to regularize the sample paths and to get a
reasonable estimator for the prediction problem (2) is to use smoothing splines (see
[11,17]). However, as mentioned at the beginning of Section 4, by using wavelet-
based regularization techniques, we can reach stochastic processes with less smooth
sample paths.

Denote by Zl ¼ ZlðtiÞ; i ¼ 1;y;m; l ¼ 0; 1;y; n; ti ¼ i
m
¼ i

2J ; the m-

dimensional vector of sampled-values for the lth block of an ARH(1) process. As
in [4], we shall first approximate the discrete sample paths of Z by a continuous
process

ImZl ¼ 2�J=2
X2J�1

k¼0

Zl

k

2J

� �
fJk ð24Þ

which is an approximation of the projection of Zl onto the space VJ ; associated with
a multiresolution analysis of H: Using again Coiflets of order L4½s� þ 1; the
following (uniformly) bounds hold (as consequences of Lemma 3.1 in [4])

sup
tA½0;1�

2�
J
2
X2J�1

k¼0

2
J
2/Zl ;fJkS� Zl

k

2J

� ����� ���� jfJkj
( )

pO 2�Js
� �

a:s: as n-N;
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justifying our approximation ImZl given in (24). For a given primary resolution level
j0X0; (24) can be expanded as

ImZl ¼
X2 j0�1

k¼0

cl
j0kfj0k þ

XJ�1

j¼j0

X2 j�1

k¼0

dl
jkcjk;

where, for any l ¼ 0; 1;y; n;

cl
j0k ¼/ImZl ;fj0kS; k ¼ 0; 1;y; 2 j0 � 1;

dl
jk ¼/ImZl ;cjkS; j ¼ j0;y; J � 1; k ¼ 0; 1;y; 2 j � 1:

We are going to use wavelet-based regularization to obtain smooth estimates of
the sample paths. More precisely, one could solve the following variational problem:

inf
fAH

fjjImZl � f jj2L2½0;1� þ ljjPV>
j0

f jj2; fAHg; ð25Þ

where l40 is the regularization parameter and PV>
j0

denotes the orthogonal

projection operator of H onto the orthogonal complement of Vj0 ; associated with a

multiresolution analysis of H: Here, for any l ¼ 0; 1;y; n;

f ¼
X2 j0�1

k¼0

al
j0kfj0k þ

XN
j¼j0

X2 j�1

k¼0

bl
jkcjk;

and

al
j0k ¼/f ;fj0kS; k ¼ 0; 1;y; 2 j0 � 1;

bl
jk ¼/f ;cjkS; jXj0; k ¼ 0; 1;y; 2 j � 1:

Using the equivalent sequence norms for H ¼ W s
2 ½0; 1�; s41=2; minimizing

functional (25) is equivalent to minimizing the following expression (see [4]):X2 j0�1

k¼0

ðcl
j0k � aj0kÞ2 þ

XJ�1

j¼j0

X2 j�1

k¼0

ðdl
jk � bjkÞ

2 þ
XN
j¼j0

X2 j�1

k¼0

l22jsb2
jk

( )
: ð26Þ

One minimizes (26) by minimizing each term separately, and the solution is then
given bycal

j0kal
j0k ¼ cl

j0k; k ¼ 0; 1;y; 2 j0 � 1;

dbl
j0kbl
j0k ¼

dl
jk

ð1 þ l22sjÞ; j ¼ j0;y; J � 1; k ¼ 0; 1;y; 2 j � 1;

cbl
jkbl
jk ¼ 0; jXJ; k ¼ 0; 1;y; 2 j � 1;

leading to the following smoothed sample paths

Z̃l;l ¼
X2 j0�1

k¼0

cal
j0kal
j0kfj0k þ

XJ�1

j¼j0

X2 j�1

k¼0

cbl
jkbl
jkcjk:
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Let now the empirical mean of the smoothed sample paths be denoted by

ãn;l ¼
1

n þ 1

Xn

l¼0

Z̃l;l; ð27Þ

and let

Ỹl;l ¼ Z̃l;l � ãn;l; l ¼ 0; 1;y; n

be the centered smoothed sample paths. We define the smoothed covariance and
smooth cross-covariance (of order 1) operators, respectively, by

C̃n;l ¼
1

n þ 1

Xn

l¼0

Ỹl;l#Ỹl;l;

D̃n;l ¼
1

n

Xn�1

l¼0

Ỹl;l#Ỹlþ1;l

and

D̃�
n;l ¼

1

n

Xn�1

l¼0

Ỹlþ1;l#Ỹl;l:

Note that all smoothed sample paths Ỹl;l belong to VJ : Using our previous

notation (see (10)), let *Pkn

l be the projection operator onto the space spanned by the

first kn eigenfunctions of C̃n;l: Then, we define the regularized wavelet projection

estimator of r� byer�r�n;l ¼ ð *Pkn

l C̃n;l *P
kn

l Þ�1
D̃�

n;l
*Pkn

l : ð28Þ

Similarly, using our previous notation (see (11)), we define the regularized wavelet

resolvent estimator byer�r�n;l;p ¼ fn;pðC̃n;lÞD̃�
n;l; ð29Þ

where

fn;pðC̃n;lÞ ¼ ðC̃n;l þ bnIÞ�ðpþ1Þ
C̃

p
n;l; pX0; bn40; nX0:

Remark 4.2. (i) The advantage of calculating (29) is that one does not need to

compute the singular value decomposition of C̃n;l to construct an estimator for r�

(meaning that not assumptions are needed to control the behavior of the eigenvalues
of C). Large positive powers p produce smoother solutions. However, the larger the
value of p the slower the convergence speed is in proving consistency results (see [32,
Chapter 3]).

(ii) The resolvent estimator er�r�n;l;0 may be seen as a ridge regression estimator with

smoothing parameter bn:
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4.2.1. Consistency results

Hereafter, we assume that

ðH1Þ: EðjjY0jj4ÞoN and jjr j0 jjLo1 for some j0X1:

This ensures that Y ¼ ðYn; nAZÞ is a weakly stationary stochastic process with
innovation e (see, for example, [14, Theorem 3.1]). We shall also assume that

ðH2Þ : C is one-to-one;

otherwise r cannot be defined uniquely (see [32, Chapter 3]). It is also assumed that

ðH3Þ: Pðlim inf EnÞ ¼ 1; where En ¼ foAO: dim RðPkn CnPknÞ ¼ kng

with RðAÞ denoting the range of the operator A: This assumption guarantees that the

operator *Pkn

l C̃n;l *P
kn

l in (28) is almost surely invertible after some nAZ (see [32,

Chapter 3]). Moreover, we assume that

ðH4Þ: nl4
kn
-N and

1

n

Xkn

k¼1

gk

l2
k

-0; as n-N;

where gk ¼ maxfðlk�1 � lkÞ�1; ðlk � lkþ1Þ�1g (see [32, Chapter 3]).
We are going first to show that ãn;l in (27) is a consistent estimator of the mean a:

Lemma 4.1. The following holds:

Ejja � ãn;ljj2 ¼ O
1

n

� �
þ Oðlþ 2�2JsÞ as n-N:

Proof. Let ãl ¼ Eðãn;lÞ: It is easily seen that

Ejja � ãn;ljj2pjja � ãljj2 þ Ejjãl � ãn;ljj2:

Due to the fact that ða � ãlÞAV>
J and ðãl � ãn;lÞAVJ ; we have that

Ejjãl � ãn;ljj2p 3

(
Ejjãl � ajj2 þ Ejj 1

ðn þ 1Þ
Xn

l¼0

ðZl � aÞjj2:

þ E
1

ðn þ 1Þ
Xn

l¼0

ðZ̃l;l � ZlÞ
�����

�����
�����

�����
2)

¼ 3ðA1 þ A2 þ A3Þ; as n-N:

We have that A2 ¼ Oð1
n
Þ; as n-N (see [14, Theorem 3.7]), and that A1 ¼

O lþ 2�2sJ
� �

; A3 ¼ O lþ 2�2sJ
� �

; as n-N (see [4, Theorem 3.1]), completing thus

the proof of the lemma. &

By Lemma 4.1, we assume without loss of generality, that the process is centered
and, therefore, we can work with the centered process Yl ¼ Zl � a:
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Lemma 4.2. Using the notation of Section 4.2, the following hold:

EjjC̃n;l � Cjj2HS ¼O
1

n

� �
þ Oðlþ 2�2sJÞ as n-N;

EjjD̃n;l � Djj2HS ¼O
1

n

� �
þ Oðlþ 2�2sJÞ as n-N;

EjjD̃�
n;l � D�jj2HS ¼O

1

n

� �
þ Oðlþ 2�2sJÞ as n-N;

where jj 
 jjHS stands for the Hilbert–Schmidt norm for Hilbert–Schmidt operators from

H to H:

Moreover, if J41þg
2s

log2ðnÞ for some g40 and lon�ð1þdÞ; d40; the following hold

jjC̃n;l � CjjHS- 0 a:s: as n-N;

jjD̃n;l � DjjHS- 0 a:s: as n-N;

jjD̃�
n;l � D�jjHS- 0 a:s: as n-N:

Proof. It is easily seen that

EjjC̃n;l � Cjj2HSp 2fEjjC̃n;l � Cnjj2HS þ EjjCn � Cjj2HSg

¼ 2ðB1 þ B2Þ:

We have that B2 ¼ Oð1
n
Þ; as n-N (see [14, Theorem 3.7]). Also, using similar

arguments as in Lemma 4.1, B1 can be expressed as

B1 ¼ E
1

ðn þ 1Þ
Xn

l¼0

ðỸl;l#Ỹl;l � Yl#YlÞ
�����

�����
�����

�����
2

HS

p
1

ðn þ 1Þ2
E
Xn

l¼0

fðYl � Ỹl;lÞ#Yl � Ỹl;l#ðYl � Ỹl;lÞg
�����

�����
�����

�����
2

HS

p
4

ðn þ 1Þ2
E
Xn

l¼0

jjYl jjL2 jjYl � Ỹl;ljjL2

 !2

p 4EjjY jj2L2EjjY � Ỹljj2L2

¼Oðlþ 2�2sJÞ as n-N:

Similarly, the same result is true for EjjD̃n;l � Djj2HS and EjjD̃�
n;l � D�jj2HS:

The assumptions J41þg
2s

log2ðnÞ for some g40 and lon�ð1þdÞ; d40; suffices to

ensure the convergence of the series PðjjC̃n;l � Cjj2HS4eÞ; for some e40; and the

Borel–Cantelli lemma provides the almost surely convergence of C̃n;l: The same is

true for D̃n;l and D̃�
n;l; completing thus the proof of the lemma. &
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Lemma 4.3. Let *lk;n;l and ẽk;n;l ðk ¼ 1;y; knÞ be respectively the first kn eigenvalues

and eigenfunctions of the operator C̃n;l: Then, the following hold:

Ej*lk;n;l � lkj2 ¼O
1

n

� �
þ Oðlþ 2�2sJÞ ðfor k ¼ 1;y; knÞ; as n-N;

Ejjẽk;n;l � ekjj2 ¼ a2
k O

1

n

� �
þ Oðlþ 2�2sJÞ

� �
ðfor k ¼ 1;y; knÞ; as n-N;

where

a1 ¼
2
ffiffiffi
2

p

ðl1 � l2Þ
and ak ¼ 2

ffiffiffi
2

p

minðlk�1 � lk; lk � lkþ1Þ
; k ¼ 2;y; kn:

Remark 4.3. Since the operator *Pkn

l C̃n;l *P
kn

l is assumed to be almost surely invertible

after some nAZ; the ak ðk ¼ 1;y; knÞ are all different than zeros.

Proof. Using Lemma 3.1 in [13], we have that

j*lk;n;l � lkjp jjC̃n;l � CjjHS;

jjẽk;n;l � ekjjp ak jjC̃n;l � CjjHS:

The rates of convergence follow now from Lemma 4.2, completing thus the proof of
the lemma. &

We are now in the position to give consistency results for the regularized wavelet

interpolation estimators er�r�n;l given in (28) and er�r�n;l;p given in (29) of r�: In the

following theorems, !p stands for convergence in probability.

Theorem 4.1. Under the assumptions ðH1Þ; ðH2Þ; ðH3Þ and ðH4Þ; if lk ¼ ark; a40;

rAð0; 1Þ and if kn ¼ oðminðlogðnÞ;�logðlþ 2�2sJÞÞÞ as n-N and l-0; then

jj er�r�n;lðỸn;lÞ � r�ðYnÞjj!
p

0; as n-N:

Proof. The proof follows along the same lines of Proposition 4.6 in [13] by using
Lemmas 4.1, 4.2 and 4.3. &

Theorem 4.2. Under the assumptions ðH1Þ and ðH2Þ; if J ¼ Oðlog2ðnÞÞ; l ¼
Oðn�ð1þdÞÞ for some d40; as n-N; and if bn-0; bpþ2

n

ffiffiffi
n

p
-N for some pX0; as

n-N; then

jj er�r�n;l;pðỸn;lÞ � r�ðYnÞjj!
p

0; as n-N:

Proof. The proof follows along the same lines of Proposition 3 in [32, Chapter 3] by
using Lemmas 4.1 and 4.2. &
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Remark 4.4. Theorems 4.1 and 4.2 are concerned with the estimation of r�ðYnÞ:
However, by continuous extension (see Section 2), they also apply to the best
prediction rðYnÞ:

5. Applications and comparisons

The purpose of this section is to illustrate the performance of the proposed linear
wavelet methods in finite sample situations by means of a real-life data example. We
also compare our prediction results with those obtained by other methods available
in the literature, in particular with a smoothing spline interpolation method and with
a SARIMA model.

The computational algorithms related to wavelet analysis were performed using
Version 8 of the WaveLab toolbox for MATLAB [16] that is freely available from
http://www-stat.stanford.edu/software/software.html. The entire study was
carried out using the MATLAB programming environment.

5.1. El Niño-Southern Oscillation

This application concerns with the prediction of a climatological times series
describing El Niño-Southern Oscillation (ENSO) during the 12-month period of
1986, from monthly observations during the 1950–1985 period. ENSO is a natural
phenomenon arising from coupled interactions between the atmosphere and the
ocean in the tropical Pacific Ocean. El Niño (EN) is the ocean component of ENSO
while Southern Oscillation (SO) is the atmospheric counterpart of ENSO. Most of
the year-to-year variability in the tropics, as well as a part of the extratropical
variability over both Hemispheres, is related to ENSO. For a detailed review of
ENSO the reader is referred, for example, to [36].

An useful index of El Niño variability is provided by the sea surface temperatures
averaged over the Niño-3 domain (51S–51N; 1501W–901W). Monthly mean values
have been obtained from January 1950 to December 1996 from gridded analyses
made at the US National Centers for Environmental Prediction (see [42]). The time
series of this EN index is depicted in Fig. 1, and shows marked interannual variations
superimposed on a strong seasonal component. It has been analyzed by many
authors (see, for example, [12]) and it is freely available from http://

www.cpc.ncep.noaa.gov/data/indices.
Assuming first that an ARH(1) process can model these data, we have fitted this

model with the wavelet methods proposed in Section 4. For these methods, the first
36 years, from 1950 to 1985, were considered as a learning sample. The discretization
grid size for each sample path, which is equal to m ¼ 12; is relatively small and not
even a power of 2. In order to apply our wavelet methods, we have used the binned
wavelet transform of [9], which is suited when the sample sizes are not a power of 2.
The idea is to approximate directly the scaling function, f; and the mother wavelet,
c; by some simpler functions which can be more easily evaluated at a given point.
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The resulting wavelet transform procedure, called BINWAV, is able to deal with
random designs and sample sizes that are not power of 2. We refer to [9] for the
algorithmic details.

As with any other nonparametric smoothing method, the proposed linear wavelet
methods depend on tuning parameters. It is, therefore, desirable to select such
parameters automatically. The problem of selecting the optimal resolution level,
JðmÞ; is rather easier than the smoothing parameter, l; and the dimensionality, q; for
smoothing spline interpolation estimators. This is so because the optimal resolution

level JðmÞ is essentially reduced to being such that JðmÞo1
2
log2ðmÞ: A commonly

used selection rule adapted to our setting is to choose JðmÞ as the minimizer of the
cross-validation function

CVðJðmÞÞ ¼ m�1
Xm

i¼1

ðXi � X̂ðiÞðtiÞÞ2;

where X̂ðiÞðtÞ is the leave-one-out predictor obtained by evaluating X̂ (as a function

of JðmÞ and t) with the ith data point removed. It is found that this criterion
produces reasonable results. In practice, for sample sizes between 10 and 100, we
have found that it suffices to examine only JðmÞ ¼ 1; 2 and 3. For this example, the
data are pretty regular and the optimal value of the resolution level JðmÞ for the
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Fig. 1. The monthly mean Niño-3 surface temperature index in (deg C) which provides a contracted

description of ENSO.
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regularized wavelet-vaguelette estimator (Wavelet I) discussed in Section 4.1 is small
and was set equal to 1. For the regularized wavelet projection estimator (Wavelet II)
discussed in Section 4.2, the smoothing parameter kn was set equal to 2. For the
regularized wavelet resolvent estimator (Wavelet III) discussed in Section 4.2,
the smoothing parameters p and bn were chosen to be equal to 1 and 0.25
respectively. We noted that similar predictions were reached for a range of bn

from 0.1 to 1.5, and values of p between 1 and 2. For the Wavelet I, II and III
estimators, Daubechies nearly symmetric wavelets of order 6, Symmlet 6, were used
(see [18, p. 195]), while the primary resolution level j0 for the Wavelet II and III
estimators was set equal to 2.

We have compared our results with those obtained by Besse et al. [12], using
the smoothing spline interpolation estimator (Splines), with smoothing
parameter l and dimensionality ðqÞ chosen optimally by a cross-validation
criterion. In this case, l was found equal to 1.6e-0.5 while q was found equal to 4.
To complete the comparison, a suitable ARIMA model, including 12 month
seasonality, has also been adjusted to the times series from January 1950 to
December 1985. Following the Box–Jenkins methodology (see [15, Chap. 9]),
the most parsimonious SARIMA model, validated through a portmanteau test
for serial correlation of the fitted residuals, was driven by the parameters
ð0; 1; 1Þ � ð1; 0; 1Þ12; i.e.

ð1 �Y12B12Þð1 � BÞX ðtÞ ¼ ð1 �Y1BÞð1 �Y�
12B12ÞeðtÞ; ð30Þ

where B denotes the backshift operator and Y1; Y12 and Y%
12 are appropriate

coefficients. The left-hand side of this model corresponds to differencing at lags 1
and 12, and the right-hand side is a multiplicative moving average at lags 1 and 12.

The quality of the prediction is measured by two criteria: the mean-squared error

(MSE) defined by

MSE ¼ 1

m

Xm

t¼1

ðX̂Tþt � xTþtÞ2; ð31Þ

and the relative mean-absolute error (RMAE) defined by

RMAE ¼ 1

m

Xm

t¼1

jX̂Tþt � xTþtj
xTþt

; ð32Þ

where fT þ t; t ¼ 1;y;mg are the months of the year to be forecasted. In this
application, we have taken T ¼ 1985 and m ¼ 12:

Fig. 2 displays the observed data of the 37th year (1986) and its predictions
obtained by the various methods. One can notice that the Wavelet II estimator gives
an almost similar prediction as the Splines estimator, both visually and in terms of
the prediction criteria (31) and (32). Moreover, the Wavelet II estimator has a much
less computational effort since it is 20 times faster than the Splines methods in CPU
time. Note also the almost perfect prediction of the Wavelet III estimator for the first
8 months of 1986. This is a very nice property of this estimation, considering that
present day forecasts of ENSO only show skill for leads of less than six months (see,
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for example, [27]). Note also the failure of the SARIMA estimator to produce an
adequate prediction in this example (see [12], for an explanation). Finally the MSE
and RAME of each prediction method are displayed in Table 1. The results have
been presented in descending order, starting from the best method.

We conclude this section by pointing out that, apart from having much faster
implementations, the improvement of the proposed linear wavelet methods over the
smoothing spline interpolation method is not so obvious in this example. We have
also applied the proposed linear wavelet methods to another data set which concern
with the prediction of the degree of hotel occupation in Granada (Spain) during the
12-month period of 1994 from monthly observations during the 1974–1993 period.
This data set has also been used by Aguilera et al. [2] to illustrate continuous-time
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Fig. 2. The Niño-3 surface temperature during 1986 and its various predictions.

Table 1

MSE and RMAE for the prediction of Niño-3 surface temperatures during 1986 based on various methods

Prediction method MSE RAME (%)

Wavelet II 0.0630 0.89

Splines 0.0655 0.89

Wavelet III 0.1913 1.20

Wavelet I 0.3052 1.63

SARIMA 1.4567 3.72
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prediction by an approximated principal component method. It has been found that
the proposed linear wavelet methods produce the best predictions, both visually and
in terms of the prediction criteria (31) and (32). Due to lack of space, however, we do
not include this example here but we refer instead to [10].

6. Concluding remarks

We have proposed some linear wavelet methods to predict a continuous-time
stochastic process on an entire time-interval in terms of its recent past, based on the
notion of ARH(1) processes.

One of the most important advantages of the proposed linear wavelet methods is
that they have a much faster implementation. While these methods require the
specification of a number of tuning parameters for optimal prediction, the range of
these parameters is much more restricted than the smoothing spline interpolation
method. As shown in the application that we have used to illustrate the proposed
linear wavelet methods, there is a quite simple recipe for the choice of these
parameters.

Another advantage of the proposed linear wavelet methods is that they provide an
excellent setup for continuous-time prediction of stochastic processes with much less
smooth sample paths than other smoothing prediction methods available in the
literature. In particular, the regularized wavelet interpolation estimators discussed
in Section 4.2, were derived by penalizing the approximation squared error

jjImZl � f jj2L2½0;1� with a penalty function that penalizes the wavelet coefficients

(bjk) of fAH; leading to a linear wavelet method of estimation which is optimal when

H ¼ W s
2 with noninteger regularity index s41=2 (for smoothing spline methods this

is only true for integer regularity index sX1).
Assuming that the sample paths of Zl belong to such a Sobolev space is, however,

a strong assumption on the integral kernel associated with the covariance operator
C: In order to make weaker assumptions, one could work along the lines suggested
below extending thus the proposed linear wavelet methods to deal with less regular
sample paths. A natural setup, dealing in particular with inhomogeneous sample
paths, is to assume that they belong to specific Besov spaces (for example, Bs

p;p; pX2

or Bs
p;2; 1ppp2). In such cases, it is known that linear wavelet methods are not

optimal (see, for example, [22]) and that one should seek nonlinear wavelet methods
(see, for example, [1,5,6,43]). Nonlinear wavelet methods can be derived through
penalization of functionals of the form

jjImZl � f jj2 þ
XN
j¼j0

X2 j�1

k¼0

rlðjbjkjÞ

over fABs
p;p ðpX2Þ or fABs

p;2 ð1ppp2Þ: For appropriate forms of the penalties rl;

see [7].

ARTICLE IN PRESS
A. Antoniadis, T. Sapatinas / Journal of Multivariate Analysis 87 (2003) 133–158156



The classical autoregressive Hilbert model could be extended to the above
mentioned Besov spaces by using the results in [14, Chapter 6] for Banach-valued
autoregressive processes. We, therefore, conjecture that nonlinear wavelet ap-
proaches would lead to optimal consistency rates for the resulting prediction
estimators. However, a deeper analysis of the arguments to support such a
conjecture go beyond the intent of this paper, but provides an interesting topic for
future research.
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