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a b s t r a c t

The problem of comparing the entire second order structure of two functional processes
is considered and a L2-type statistic for testing equality of the corresponding spectral
density operators is investigated. The test statistic evaluates, over all frequencies, the
Hilbert–Schmidt distance between the two estimated spectral density operators. Under
certain assumptions, the limiting distribution under the null hypothesis is derived. A
novel frequency domain bootstrap method is introduced, which leads to a more accurate
approximation of the distribution of the test statistic under the null than the large
sample Gaussian approximation derived. Under quite general conditions, asymptotic
validity of the bootstrap procedure is established for estimating the distribution of the
test statistic under the null. Furthermore, consistency of the bootstrap-based test under
the alternative is proved. Numerical simulations show that, even for small samples,
the bootstrap-based test has a very good size and power behavior. An application to
a bivariate real-life functional time series illustrates the methodology proposed.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Functional data analysis is a branch of statistics that in recent years has grown considerably and has created great
esearch interest in the scientific community, especially in connection with the increasing number of situations in which
heoretical and applied scientists have to deal with data of a continuous nature (i.e., curves, images, surfaces, etc.). For
arious works and references in different branches of functional data analysis, we refer to the recent special issues of
oia and Vieu [1] and Aneiros et al. [2]. See also the monograph by Horváth & Kokoszka [17] which discusses inference
roblems in a variety of setting concerning independent as well as dependent functional data.
In our work, we focus on dependent functional data and, in particular, on functional time series analysis. Functional

ime series occurs in many applications such as daily curves of financial transactions, daily images of geophysical and
nvironmental data and daily curves of temperature measurements. Such curves or images are viewed as functions in
ppropriate spaces since an observed intensity is available at each point on a line segment, a portion of a plane or a
olume. Moreover, and most importantly, such functional time series exhibit temporal dependence and ignoring this
ependence may result in misleading conclusions and not appropriate inferential procedures.
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Comparing characteristics of two or more groups of functional data forms an important problem of statistical inference
ith a variety of applications. For instance, comparing the mean functions between independent groups of independent
nd identically distributed (i.i.d.) functional data has attracted considerable interest in the literature, see, e.g., Benko
t al. [4], Zhang et al. [36], Horváth and Kokoszka [17] (Chapter 5), Horváth et al. [18] and Paparoditis and Sapatinas [25].
n contrast to comparing mean functions, the problem of comparing the entire second order structure of two independent
unctional time series has been much less investigated. Notice that for i.i.d. functional data this problem simplifies to the
roblem of testing the equality of (the lag zero) covariance operators, see, e.g., Panaretos et al. [21], Fremdt et al. [14],
igoli et al. [26] and Paparoditis and Sapatinas [25]. The same problem of testing the equality of the (lag-zero) covariance
perators of two sets of independent functional time series has also been investigated by Zhang and Shao [37] and by
ilvakis et al. [28].
However, the comparison of the entire second order structure of independent functional time series, is a much more

nvolved problem due to the temporal dependence between the random elements considered. In describing the second
rder structure of functional time series, the spectral density operator, introduced in the functional set-up by Panaretos
nd Tavakoli [22], is a very useful tool since it summarizes in a nice way the entire autocovariance structure of the
nderlying functional time series; see also Hörmann et al. [16]. It is, therefore, very appealing to develop a spectral
pproach for testing equality of the entire second order structure of two functional time series. Tavakoli and Panaretos [33]
roposed an approach based on projections on finite dimensional spaces of the differences of the estimated spectral
ensity operators of the two functional time series. Projection-based tests have the advantage to lead to manageable
imiting distributions. However, such tests have no power for alternatives which are orthogonal to the projection
pace considered. Furthermore, the number of projections appears as an additional tuning parameter which has to be
hosen by the user. Finally, simulations in the much simpler i.i.d. set-up suggest that the quality of the large sample
aussian approximations of the corresponding test, is affected by the number of projections used; see Paparoditis and
apatinas [25]. In this paper we focus on tests which evaluate the differences between the entire, infinite dimensional,
tructure of the two spectral density operators compared. For this, the Hilbert–Schmidt norm of the differences between
he estimated spectral density operators, evaluated over all frequencies, is used as the basic building block of the test
tatistic considered.
The contribution of this paper is twofold. First, we focus on testing the equality of the entire second order structure

etween two independent functional processes by evaluating for each frequency, the Hilbert–Schmidt norm between the
estimated) spectral density operators of the functional process at hand. Integrating these differences over all possible
requencies, leads to a global, L2-type, measure of deviation which is used to test the null hypothesis of interest. We
how that under the assumption of a linear Hilbertian processes, the limiting distribution of an appropriately centered
ersion of such a test statistic under the null, is Gaussian. This Gaussian distribution does not depend on characteristics
f the underlying functional processes beyond those of second order. Second, and because of the slow convergence of the
istribution of the considered L2-type test statistic under the null against the derived limiting Gaussian distribution, we
evelop a novel frequency domain bootstrap procedure to estimate this distribution. The frequency domain bootstrap
ethod works under minimal conditions on the underlying functional process and its range of applicability is not

estricted to the particular class of processes considered and which is used to derive the limiting distribution of our
est. We prove under very general conditions, that the bootstrap procedure correctly approximates the distribution of
he proposed test statistic under the null. Furthermore, consistency of the bootstrap-based test under the alternative
s established. Our theoretical deviations are accompanied by a simulation study which shows a very good behavior of
he bootstrap procedure in approximating the distribution of interest and the good size and power performance of the
est based on bootstrap critical values. Notice that the frequency domain bootstrap method proposed in this paper, can
otentially be used to improve the performance of other tests too, like for instance, the projections based test of Tavakoli
nd Panaretos [33].
Developing bootstrap procedures for functional time series has attracted considerable interest in the literature. Politis

nd Romano [29] established weak convergence results for the stationary bootstrap, Dehling et al. [8] for the (non-
verlapping) block bootstrap in a testing context, Raña et al. [30] applied a stationary bootstrap to functional time series,
erraty and Vieu [11] a residual-based bootstrap and Franke and Nyarige [13] established consistency of a model-based
ootstrap for functional autoregressions. Pilavakis et al. [27] derived theoretical results for the moving block bootstrap and
or the tapered block bootstrap, Shang [32] applied a maximum entropy bootstrap and Paparoditis [24] introduced a sieve
ootstrap for functional time series. In contrast to the aforementioned contributions, the bootstrap procedure proposed
n this paper acts solely in the frequency domain and generates replicates of the periodogram kernels stemming from
unctional processes that satisfy the null hypothesis of interest.

A test related to ours and proposed after the first preprint of this paper has been appeared (see Leucht et al. [20]), is that
f van Delft and Dette [34], which deals with testing a different set of hypotheses, so-called relevant hypotheses, about
he second order dynamics of two functional processes. Important differences between the two procedures appear which
ill be discussed in more detail later on. However, we stress here the fact that the test statistic proposed in this paper

s not a special case of the test statistic used in the aforementioned paper and, consequently, the limiting distribution of
ur test statistic is different and not covered by the asymptotic results derived in that paper. See Remark et al. for more
etails.
The remainder of the paper is organized as follows. Section 2 contains the main assumptions on the underlying

unctional linear processes and states the hypothesis testing problem under study. Section 3 is devoted to the suggested
2
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test statistic and its asymptotic behavior while Section 4 presents the frequency domain bootstrap procedure proposed to
estimate the distribution of the test statistic under the null. Asymptotic validity of the bootstrap procedure is established
and consistency of the corresponding test under the alternative also is proved. Section 5 contains numerical simulations
and an application to a bivariate meteorological functional time series while Appendix concludes our findings. Auxiliary
results containing some new results on frequency domain properties of linear Hilbertian processes as well as proofs of
the main results are deferred to the Appendix and to the Supplementary Material.

2. Assumptions and the testing problem

Suppose that observations X1, . . . , XT and Y1, . . . , YT stem from functional processes (Xt )t∈Z and (Yt )t∈Z, respectively,
atisfying the following assumption.

ssumption 1. (Xt )t∈Z and (Yt )t∈Z are independent functional linear processes, given by

Xt =

∑
j∈Z

Aj(εt−j) and Yt =

∑
j∈Z

Bj(et−j), t ∈ Z, (1)

with values in L2R([0, 1], µ), where µ denotes the Lebesgue measure. The innovation functions (εt )t∈Z and (et )t∈Z are
wo i.i.d. mean zero Gaussian processes with values in L2R([0, 1], µ) and covariance operators Cε and Ce with continuous
ovariance kernels cε and ce, respectively. The sequences (Aj)j∈Z and (Bj)j∈Z of bounded linear operators from L2R([0, 1], µ)
o L2R([0, 1], µ) where A0 = B0 is the identity operator, satisfy

∑
j∈Z |j|(∥Aj∥L + ∥Bj∥L) < ∞ with ∥ · ∥L denoting the

perator norm.

We are interested in testing for equality of the entire second order structure of the two functional processes given in
1). Notice that considering linear processes in Assumption 1 should not be considered as restrictive since our interest
s solely focused on the comparison of the second order structure, i.e., of the autocovariance structure of the underlying
unctional processes. Furthermore, and as we will see later on, the assumption of Gaussian innovation functions εt and
t is not essential. It is solely imposed in order to simplify the already quite involved technical arguments used to derive
he limiting distribution of the test.

For the testing problem considered it turns out that a spectral approach is very appealing. Towards this notice first
hat we can define a spectral density operator in the sense of Panaretos and Tavakoli [22] in the present set up which
eneralizes the concept of spectral densities for univariate time series and spectral density matrices for multivariate time
eries. Here and in the sequel, we will abbreviate L2R([0, 1]

d, µ) by L2 if the dimension d becomes clear from the context.

emma 1. Suppose that (Xt )t∈Z and (Yt )t∈Z are functional processes satisfying Assumption 1. Then, for arbitrary λ ∈ (−π, π],

fX,λ(·, ·) =
1
2π

∑
t∈Z

e−iλt rX,t (·, ·), fY ,λ(·, ·) =
1
2π

∑
t∈Z

e−iλt rY ,t (·, ·)

with rX,t and rY ,t denoting the autocovariance kernels of X and Y at lag t, respectively, converge absolutely in L2. Moreover,
for all σ , τ ∈ [0, 1],

rX,t (σ , τ ) =

∫
(−π,π ]

fX,λ(σ , τ ) eiλt dλ, rY ,t (σ , τ ) =

∫
(−π,π ]

fY ,λ(σ , τ ) eiλt dλ ∀t ∈ Z,

where equality holds in L2. The operators FX,λ and FY ,λ, induced by right integration of fX,λ and fY ,λ, are self-adjoint, nonnegative
definite and it holds

FX,λ =
1
2π

∑
t∈Z

e−iλtRX,t , FY ,λ =
1
2π

∑
t∈Z

e−iλtRY ,t ,

where RX,t and RY ,t denote the autocovariance operators of X and Y at lag t, induced by right integration of rX,t and rY ,t ,
respectively. Convergence holds in nuclear norm.

The kernels fX,λ and fY ,λ are called the spectral density kernels (at frequency λ) and the operators FX,λ and FY ,λ are
referred to as the corresponding spectral density operators.

Under the assumptions of Lemma 1, we can now state the hypothesis testing problem of interest as follows

H0 :FX,λ = FY ,λ for µ-almost all λ ∈ (−π, π],

H1 :FX,λ ̸= FY ,λ ∀λ ∈ A for some A ⊂ [0, π] with µ(A) > 0.
(2)
3
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3. The test statistic and its asymptotic behavior

We first estimate the unknown spectral density operator FX,λ by an integral operator F̂X,λ induced by right integration
with the kernel

f̂X,λ(σ , τ ) =
1
bT

N∑
t=−N

W
(
λ− λt

b

)
p̂X,λt (σ , τ ), for all σ , τ ∈ [0, 1],

nd, similarly, FY ,λ by an integral operator F̂Y ,λ induced by right integration with the kernel

f̂Y ,λ(σ , τ ) =
1
bT

N∑
t=−N

W
(
λ− λt

b

)
p̂Y ,λt (σ , τ ), for all σ , τ ∈ [0, 1].

ere, N = [(T − 1)/2] and λt = 2π t/T , t ∈ {−N, . . . ,N}, denote the Fourier frequencies. Furthermore, b = bT > 0 is an
symptotically vanishing bandwidth and W denotes a weight function. Moreover, as in Panaretos and Tavakoli [22],

p̂X,λ(σ , τ ) =
1

2πT

T∑
s1,s2=1

Xs1 (σ )Xs2 (τ ) exp(−iλ(s1 − s2)), for all σ , τ ∈ [0, 1],

and

p̂Y ,λ(σ , τ ) =
1

2πT

T∑
s1,s2=1

Ys1 (σ )Ys2 (τ ) exp(−iλ(s1 − s2)), for all σ , τ ∈ [0, 1],

enote the periodogram kernels based on X1, . . . , XT and Y1, . . . , YT , respectively. The periodogram operators IX,λ, and
Y ,λ are defined as integral operators induced by right integration of the periodogram kernels p̂X,λ and p̂Y ,λ, respectively.

For the hypothesis testing problem (2), we propose the following test statistic

UT =

∫ π

−π

∥F̂X,λ − F̂Y ,λ∥
2
HS dλ, (3)

hich evaluates the distance between the estimated spectral density operators via the Hilbert–Schmidt norm ∥ · ∥HS . The
ollowing theorem states the asymptotic properties of the suitably normalized test statistic UT when the null hypothesis
0 is true.

heorem 1. Suppose that the stretches of observations X1, . . . , XT and Y1, . . . , YT stem from the two functional processes
(Xt )t∈Z and (Yt )t∈Z, respectively, satisfying Assumption 1. Moreover, assume that

(i) b ∼ T−ν for some ν ∈ (1/4, 1/2),
(ii) W is bounded, symmetric, positive, and Lipschitz continuous, has bounded support on (−π, π] and satisfies

∫ π
−π

W (x) dx
= 2π .

Then, under H0,
√
bT UT − b−1/2µ0

d
−→ Z ∼ N (0, θ20 ), (4)

where

µ0 =
1
π

∫ π

−π

{
trace(FX,λ)

}2 dλ ∫ π

−π

W 2 (u) du,

θ20 =
4
π2

∫ 2π

−2π

{∫ π

−π

W (u)W (u − x) du
}2

dx
∫ π

−π

∥FX,λ∥
4
HS dλ .

Note that the assumptions (i) and (ii) on the weight function W and the bandwidths (bT )T , respectively, in Theorem 1
re identical to the assumptions for multivariate time series used in Dette and Paparoditis [9].

emark 1. In our work, we have considered the case where the sample sizes of both time series (Xt )Tt=1 and (Yt )Tt=1
re equal. In principle, we could also consider time series of different length, that is (Xt )

T1
t=1 and (Yt )

T2
t=1. Under certain

egularity conditions, such as
√
b1T1/(

√
b1T1 +

√
b2T2) → η ∈ (0, 1) as T1 + T2 → ∞, and with minor, but tedious

modifications of the proof, one can also show asymptotic normality of (
√
b1T1 +

√
b2T2)UT1,T2 , after a suitable centering.

Here, UT1,T2 =
∫ π

−π
∥F̂ (T1)

X,λ − F̂ (T2)
Y ,λ ∥

2
HS dλ relies on the estimated spectral density operator F̂ (T1)

X,λ , based on (Xt )
T1
t=1, and the

estimated spectral density operator F̂ (T2)
Y ,λ , based on (Yt )

T2
t=1, using bandwidths b1 and b2, respectively.
4
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Remark 2. A careful inspection of the proof of Theorem 1 shows that the assumption of Gaussianity on the functional
innovations (εt )t∈Z and (et )t∈Z in (1) is solely used to simplify somehow the technical arguments applied in proving
asymptotic normality of the quadratic forms involved in proving assertion (4) of Theorem 1. Notice that this assumption
is not required in order to prove convergence of the mean and of the variance of

√
bT UT to the limits given in

the aforementioned theorem. Consequently, this assumption can be replaced by other assumptions on the stochastic
properties of the innovations (εt )t∈Z and (et )t∈Z, which will allow for the use of different technical arguments, for instance
arguments based on the convergence of all cumulants of the random sequence

√
bT UT −b−1/2µ0 to the appropriate limits,

in order to establish the desired asymptotic normality. Furthermore, the bootstrap approach proposed in the next section
does not rely on and it does not make use of the structural assumptions imposed on the underlying functional processes
in order to derive the limiting distribution of the test.

Remark 3. A closely related null hypothesis H0 :
∫ b
a ∥FX,λ − FY ,λ∥

2
HS dλ ≤ ∆ has been considered in van Delft and

Dette [34] for prespecified constants a < b ∈ [0, π] and∆ > 0. Although their test statistic proposed looks at a first glance
similar to ours, see equation (3.19) in the aforecited paper, several differences appear. Notice first that the convergence
rate of the nominator and of the denominator of their statistic is of order OP (

√
Tb) and not OP (T

√
b), as of the test statistic

(3) considered in this paper. Apart from the fact that a different set of null hypotheses is considered in the two papers,
the main reason for this difference in the convergence rates, lies in the fact that the limiting distribution of the test
statistic considered in van Delft and Dette [34] is essentially dominated by the differences F̂X,λ − FX,λ, respectively,
F̂Y ,λ−FY ,λ, which are of order

√
Tb. On the other hand, the distribution of our test statistic is dominated by the quadratic

term ∥F̂X,λ − F̂Y ,λ∥
2
HS , which in the test statistic considered by van Delft and Dette [34] disappears; see Lemma 3.1 of

heir paper. Consequently, to establish asymptotic normality of the test statistic considered in van Delft and Dette [34],
ssentially, a central limit theorem for

√
Tb(F̂X,λ−FX,λ), respectively, for

√
Tb(F̂Y ,λ−FY ,λ) is involved. In contrast to this,

our test statistic deals with weighted sums of the quadratic terms
⟨
F̂X,λ1 − F̂Y ,λ1 , F̂X,λ2 − F̂Y ,λ2

⟩
HS
, for which central limit

theorems for generalized quadratic forms have to be invoked. Even in the finite dimensional case, central limit theorems
for generalized quadratic forms are established under more structural assumptions on the underlying processes than those
needed to deal with the sequence

√
Tb(F̂X,λ − FX,λ); see for instance Eichler [10] who uses summability conditions on

the cumulants of all order or Dette and Paparoditis [9] who use linearity assumptions on the underlying vector processes.
The technical challenges in dealing with the test statistic (3), also justify the additional structural assumptions imposed
in this paper in order to establish the limiting distribution of UT , as compared to those used in van Delft and Dette [34].

Based on Theorem 1, the procedure to test hypothesis (2) is then defined as follows: Reject H0 if and only if

tU =

√
bT UT − b−1/2µ̂0

θ̂0
≥ z1−α, (5)

where z1−α is the upper 1 − α percentage point of the standard Gaussian distribution and µ̂0 and θ̂0 are consistent
stimators of µ0 and θ0, respectively. Such estimators can be, for instance, obtained if the unknown spectral density
ernel fX,λ is replaced by the pooled estimator f̂λ(τ , σ ) = f̂X,λ(τ , σ )/2 + f̂Y ,λ(τ , σ )/2. Notice that, under H0, fX,λ = fY ,λ =

fX,λ/2 + fY ,λ/2, that is (asymptotically), it makes no difference if fX,λ in µ0 and θ0 is replaced by f̂X,λ (or by f̂Y ,λ) instead
of the pooled estimator f̂λ. However, under H1 it matters and, for this reason, we use the pooled estimator f̂λ(τ , σ ) in
applying the studentized test statistic tU defined in (5); see also Lemma 1 in Section 2. Under the assumption that the
pooled estimator f̂λ is uniformly consistent, (see also Assumption 2), it is easily seen that, under H0,

tU =

√
bT UT − b−1/2µ0

θ0
+ oP (1),

i.e., Theorem 1 implies that the studentized test tU is an asymptotically α-level test under H0, for any desired level
α ∈ (0, 1).

Remark 4. Notice that the test statistic tU is asymptotically pivotal, i.e., its distribution under the null does not depend on
any unknown characteristics of the underlying functional processes. Furthermore, the denumerator θ0 can be estimated
using the estimators of the spectral density operators involved in calculating the test statistic UT . A problem, however,
occurs from the well-known fact that, even in the finite-dimensional case, the convergence of the distribution of such
L2-norm based tests towards their limiting (Gaussian) distribution is very slow; see, e.g., Härdle and Mammen [15],
Paparoditis [23] and Dette and Paparoditis [9]. In this case, bootstrap-based approaches may be very effective. This issue
is addressed in the next section where a frequency domain bootstrap procedure is developed and its asymptotic validity
is established.

4. Bootstrapping the test statistic

In this section we propose a novel frequency domain bootstrap procedure which can be used to estimate the
distribution of the test statistic U defined in (3) and, of the studentized test t defined in (5) under H . The frequency
T U 0

5
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[

domain bootstrap approach proposed is of interest on its own and can potentially be applied to other test statistics or
testing problems developed for comparing frequency domain characteristics of the functional processes.

We begin by recalling the fact that for any k ∈ N and any set of points 0 ≤ s1 < s2 < · · · < sk ≤ 1 in the interval
0, 1], the corresponding k-dimensional vector of finite Fourier transforms

JX,λ =

(
JX,λ(sj) = (2πT )−1/2

T∑
t=1

Xt (sj)e−itλ, j ∈ {1, 2, . . . , k}
)
,

satisfies for λ ∈ (0, π ),⎛⎜⎜⎝
JX,λ(s1)
JX,λ(s2)
...

JX,λ(sk)

⎞⎟⎟⎠ d
→ NC

(⎛⎜⎜⎝
0
0
...

0

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
fX,λ(s1, s1) fX,λ(s1, s2) . . . fX,λ(s1, sk)
fX,λ(s2, s1) fX,λ(s2, s2) . . . fX,λ(s2, sk)

...
... . . .

...

fX,λ(sk, s1) fX,λ(sk, s2) . . . fX,λ(sk, sk)

⎞⎟⎟⎠
  

= Σλ

)
, (6)

where NC denotes a circularly-symmetric complex Gaussian distribution with mean zero and complex-valued covariance
matrix Σλ. Furthermore, for two different frequencies 0 < λj ̸= λk < π , the corresponding vectors of finite Fourier
transforms JX,λj and JX,λk are asymptotically independent; see, e.g., Theorem 5 in Cerovecki and Hörmann [6]. These
properties of JX,λ and JY ,λ as well as the fact that p̂X,λ(σ , τ ) = JX,λ(σ )JX,λ(τ ), for σ , τ ∈ [0, 1], is the periodogram kernel,
motivate the following bootstrap procedure to approximate the distribution of the test statistic UT defined in (3) under
H0.

Step 1: For λt = 2π t/T , t ∈ {1, . . . ,N}, N = [(T − 1)/2], estimate the pooled spectral density operator Fλt by

F̂λt =
1
2
F̂X,λt +

1
2
F̂Y ,λt (7)

and denote by f̂λt (σ , τ ), for σ , τ ∈ {s1, . . . , sk}, the corresponding estimated pooled spectral density kernel.
Step 2: Generate two independent vectors J∗X,λt and J∗Y ,λt as

J∗X,λt ∼ NC (0, Σ̂λt ) and J∗Y ,λt ∼ NC (0, Σ̂λt ),

independently for λ1, . . . , λN , where Σ̂λ is the matrix obtained by replacing in Σλ the unknown spectral density
kernel fX,λ by its pooled estimator f̂λ. For σ , τ ∈ {s1, . . . , sk}, let

p∗

X,λt (σ , τ ) = J∗X,λt (σ )J
∗

X,λt (τ ) and p∗

Y ,λt (σ , τ ) = J∗Y ,λt (σ )J
∗

Y ,λt (τ )

while, for t ∈ {−1, . . . ,−N}, set

p∗

X,λt (σ , τ ) = p∗

X,−λt (σ , τ ) and p∗

Y ,λt (σ , τ ) = p∗

Y ,−λt (σ , τ ).

Furthermore, set for simplicity J∗X,0 = J∗Y ,0 = 0.
Step 3: For σ , τ ∈ {s1, . . . , sk}, let

f̂ ∗

X,λt (σ , τ ) =
1
bT

N∑
s=−N

W
(
λt − λs

b

)
p̂∗

X,λs (σ , τ )

and

f̂ ∗

Y ,λt (σ , τ ) =
1
bT

N∑
s=−N

W
(
λt − λs

b

)
p̂∗

Y ,λs (σ , τ ).

Step 4: Approximate the distribution of the test statistic UT defined in (3) by the distribution of the bootstrap test statistic
U∗

T ,k given by

U∗

T ,k =
2π
Tk2

N∑
l=−N

k∑
i,j=1

⏐⏐⏐̂f ∗

X,λl (si, sj) − f̂ ∗

Y ,λl (si, sj)
⏐⏐⏐2.

Remark 5. The set of points 0 ≤ s1 < s2 < · · · < sk ≤ 1 at which the k-dimensional complex-valued random vectors J∗X,λt
and J∗Y ,λt are generated can be set equal to the set of sampling points at which the functional random elements Xt and Yt
are observed in reality. However, and as it is commonly done in functional data analysis, these finite-dimensional vectors
6
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can be transformed to functional objects using a basis in L2, for instance, the Fourier basis. In this case, the bootstrap
pproximation of the test statistic UT defined in (3) will then be given by

U∗

T =
2π
T

N∑
l=−N

∫ 1

0

∫ 1

0

⏐⏐⏐̂f ∗

X,λl (τ , σ ) − f̂ ∗

Y ,λl (τ , σ )
⏐⏐⏐2dτdσ =

2π
T

N∑
l=−N

∥F̂∗

X,λl − F̂∗

Y ,λl∥
2
HS . (8)

From an asymptotic point of view both bootstrap approximations, U∗

T ,k and U∗

T , will lead to the same result, provided that
for U∗

T ,k the number of points k increases to infinity as the sample size T increases to infinity. In our theoretical derivations
we will concentrate on U∗

T .

Remark 6. In the case where the sample sizes of both time series (Xt )
T1
t=1 and (Yt )

T2
t=1 are different (see Remark 1), the

bootstrap algorithm can be adapted accordingly. In particular, the estimated pooled spectral density operator F̂λ, used in
Step 1 above, can be obtained for any frequency λ ∈ [0, π] as

F̂λ =
T1

T1 + T2
F̂ (T1)

X,λ +
T2

T1 + T2
F̂ (T2)

Y ,λ ,

where the estimated spectral density operators F̂ (T1)
X,λ and F̂ (T2)

Y ,λ are given in Remark 1. Then, J∗X,λt1 and J∗Y ,λt2 can be
generated as in Step 2, but for the Fourier frequencies λt1 and λt2 corresponding to the sample sizes T1 and T2, respectively.
lthough a bootstrap version of the test statistic UT1,T2 given in Remark 1 can be defined, the theoretical derivations to
stablish bootstrap consistency in this case are more involved and beyond the scope of this paper.

Following the bootstrap procedure described in Steps 1–4, a bootstrap-based test then rejects H0 if

tU ≥ t∗U,1−α,

here t∗U,1−α denotes the upper 1 − α percentage point of the distribution of the bootstrap studentized test

t∗U = (
√
bT U∗

T − b−1/2µ̂∗

0)/̂θ
∗

0 , (9)

where U∗

T is defined in (8) and µ̂∗

0 and θ̂∗

0 are obtained by replacing the unknown spectral density kernel fX,λ in the
expressions for µ0 and θ0 given in Theorem 1 by its pooled estimator f̂ ∗

λ (σ , τ ) = f̂ ∗

X,λ(σ , τ )/2 + f̂ ∗

Y ,λ(σ , τ )/2, for all
σ , τ ∈ [0, 1]. Notice that this distribution can be evaluated by Monte Carlo.

Remark 7. It is worth mentioning that, by the definition of µ̂∗

0 and θ̂∗

0 , the bootstrap studentized test t∗U imitates correctly
also the randomness in tU which is introduced by replacing the unknown spectral density kernel fX,λ appearing in µ0 and
θ0 by its pooled estimator f̂λ; see (5). A computationally simpler alternative will be to ignore this asymptotically negligible
effect, that is, to use, instead of t∗U given in (9), the studentized version t+U = (

√
bT U∗

T −b−1/2µ̂0)/̂θ0 of the bootstrap-based
test.

Before describing the asymptotic behavior of the bootstrap test statistic U∗

T defined in (8), we state the following
assumption which clarifies our requirements on the pooled spectral density kernel estimator f̂λ used.

Assumption 2. The pooled spectral density kernel estimator f̂λ satisfies

sup
λt∈{2πk/T |k=1,...,N}

⏐⏐⏐ ∫ 1

0

∫ 1

0

(̂
fλt (σ , τ ) − fλt (σ , τ )

)
dσdτ

⏐⏐⏐ = oP (
√
b), as T → ∞,

where fλ is the spectral density kernel of the pooled spectral density operator Fλ = (1/2)FX,λ + (1/2)FY ,λ.

Notice that the above assumption can be easily verified by using results for uniform consistency of spectral density
estimators of univariate time series, since∫ 1

0

∫ 1

0
f̂X,λ(σ , τ )dσdτ =

1
Tb

N∑
t=−N

W
(λ− λt

b

) ∫ 1

0

∫ 1

0
p̂X,λt (σ , τ )dσdτ

can be interpreted as a kernel estimator of the spectral density of the univariate time series
∫ 1
0 Xt (s)ds, t = 1, . . . , n,

he periodogram of which at frequency λt equals
∫ 1
0

∫ 1
0 p̂X,λt (σ , τ )dσdτ . For instance, for the linear functional process

Xt , t ∈ Z} considered in this paper,
∫ 1
0 Xt (s)ds is a univariate linear process as well and, under certain conditions,

ssumption 2 is satisfied; see Franke and Härdle [12]. Assumption 2 can also be fulfilled under different conditions on
he integrated process

∫ 1
0 Xt (s)ds; see Wu and Zaffaroni [35] for a discussion.

The following theorem establishes the asymptotic validity of the suggested bootstrap procedure.
7
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Theorem 2. Suppose that Assumption 2 as well as the conditions (i) and (ii) of Theorem 1 are satisfied. Then, conditional on
X1, . . . , XT and Y1, . . . , YT , as T → ∞,

√
bT U∗

T − b−1/2µ̃0
d

→ N (0, θ̃0),

in probability, where

µ̃0 =
1
π

∫ π

−π

{trace(Fλ)}2dλ
∫ π

−π

W 2 (u) du,

θ̃20 =
4
π2

∫ 2π

−2π

{∫ π

−π

W (u)W (u − x) du
}2

dx
∫ π

−π

∥Fλ∥4
HS dλ

and Fλ is the pooled spectral density operator given in Assumption 2.

Notice that, under H0, µ0 = µ̃0 and θ20 = θ̃20 since FX,λ = FY ,λ (or, respectively, fX,λ = fY ,λ). Thus, in this case, the
asymptotic behavior of the test statistics UT and U∗

T is identical, that is, the bootstrap procedure estimates consistently
the distribution of the test statistic UT under H0. Furthermore, under H1, the following holds true.

Remark 8. As Theorem 2 shows, the limiting distribution of the appropriately centered bootstrap test statistic U∗

T is
obtained under validity of Assumption 2 and without imposing any particular assumptions on the weak dependence
structure of the underlying functional processes {Xt , t ∈ Z} and {Yt , t ∈ Z}. That is, this bootstrap procedure will lead to
(asymptotically) valid approximations for the same test if assertion (4) of Theorem 1 is established under a different set
of weak dependence conditions on the underlying functional processes than those stated in Assumption 1.

Proposition 1. Suppose that the conditions of Theorem 1 are satisfied. Then, under H1 and as T → ∞,

tU =
√
bT
∫ π

−π

∥FX,λ − FY ,λ∥
2
HSdλ+ oP (

√
bT ) → +∞, in probability.

The above result, together with Theorem 2 and Slutsky’s theorem, imply that the power of the studentized test tU
ased on the bootstrap critical values obtained from the distribution of the bootstrap studentized test t∗U converges to
nity as T → ∞, i.e., the test tU is consistent.

. Numerical results

.1. Choice of the smoothing parameter

Implementing the studentized test tU requires the choice of the smoothing bandwidth b. For univariate and multi-
ariate time series, this issue has been investigated in the context of a cross-validation type criterion by Beltrão and
loomfield [3], Hurvich [19] and Robinson [31]. However, adaption of the multivariate approach of Robinson [31] to
he spectral density estimator f̂X,λ(σr , τs), for r, s ∈ {1, . . . , k}, faces problems due to the high dimensionality of the
periodogram operator involved.

We propose a simple approach to select the bandwidth b used in our testing procedure which is based on the idea to
overcome the high-dimensionality of the problem by selecting a single bandwidth based on the ‘‘on average’’ behavior
of the pooled estimator f̂λ(σr , τs), that is, its behavior over all points r, s ∈ {1, . . . , k} in [0, 1]2 for which the functional
random elements Xt and Yt are observed. To elaborate, define first the following quantities. The averaged periodogram

ÎT (λ) =
1
k2

k∑
r=1

k∑
s=1

{1
2
p̂X,λ(σr , τs) +

1
2
p̂Y ,λ(σr , τs)

}
and the averaged pooled spectral density estimator

ĝb(λ) =
1
k2

k∑
r=1

k∑
s=1

{1
2
f̂X,λ(σr , τs) +

1
2
f̂Y ,λ(σr , τs)

}
.

Notice that ÎT (λ) can be interpreted as the periodogram at frequency λ of the pooled, real-valued univariate process
{Vt =

1
2

∫ 1
0 Xt (s)ds +

1
2

∫ 1
0 Yt (s)ds, t ∈ Z} while ĝb(λ) is an estimator of the spectral density g of {Vt , t ∈ Z}. We then

choose the bandwidth b by minimizing the objective function

CV (b) =
1
N

N∑
t=1

{
log(̂g−t (λt )) + ÎT (λt )/̂g−t (λt )

}
,

over a grid of values of b, where ĝ−t (λt ) = (Tb)−1∑
s∈Nt

W ((λt − λs)/b)̂IT (λs) and Nt = {s : −N ≤ s ≤ N and s ̸= ±t}.
That is, ĝ−t (λt ) is the leave-one-out kernel estimator of g(λ), i.e., the estimator obtained after deleting the tth frequency;
see also Robinson [31].
8
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Fig. 1. Density plots of the estimated exact standardized distribution of tU (red line), the standard Gaussian distribution (black line) and three
ootstrap approximations (blue lines). Left panel, T = 50 (h = 0.2), right panel T = 500 (h = 0.04). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Due to the computational complexity of the simulation analysis studied in the next section, the use of this automatic
hoice of the bandwidth b will only be illustrated in the real-life data example considered in Section 5.3.

.2. Monte-Carlo simulations

We generated functional time series stemming from the following functional moving average (FMA) processes,

Xt = A1(εt−1) + α2εt−2 + εt , (10)

Yt = A1(et−1) + et , (11)

t ∈ {1, . . . , T }, where the εt and et are generated as independent from each other i.i.d Brownian bridges and A1 is an
integral operator with kernel function ψ(·, ·) given by

ψ(u, v) =
e−(u2+v2)/2

4
∫ 1
0 e−t2dt

, (u, v) ∈ [0, 1]2.

All curves were approximated using 21 equidistant points in the unit interval and transformed into functional objects
using the Fourier basis with 21 basis functions. Three sample sizes T = 50, T = 100 and T = 200 were considered and
he bootstrap test was applied using three nominal levels, α = 0.01, α = 0.05 and α = 0.10. All bootstrap calculations
ere based on B = 1000 bootstrap replicates and R = 500 model repetitions. To investigate the empirical size and power
ehavior of the bootstrap test, we consider a selection of a2 values, i.e., a2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, and various

bandwidths b. (Notice that a2 = 0 corresponds to the null hypothesis while a2 ̸= 0 to the alternative.)
We first demonstrate the ability of the bootstrap procedure to approximate the distribution of the test statistic under

the null. For this, and in order to estimate the exact distribution of the studentized test tU (see (5)), 10,000 replications of
the process (10) and (11) with a2 = 0 have been generated, and a kernel density estimate of this exact distribution
has been obtained using a Gaussian kernel with bandwidth h. The suggested bootstrap procedure is then applied to
three randomly selected time series and the bootstrap studentized test t∗U (see (9)) has been calculated. Two sample
sizes of T = 50 and T = 500 observations have been considered. Fig. 1 shows the results obtained together with the
approximation of the distribution of tU provided by the central limit theorem, i.e., the N (0, 1) distribution. As it can be
seen from this figure, the convergence towards the asymptotic Gaussian distribution is very slow. Even for sample sizes
as large as T = 500, the exact distribution retains its skewness which is not reproduced by the N (0, 1) distribution. In
contrast to this, the bootstrap approximations are very good and the estimates of the exact densities, especially in the
critical right hand tale of this distribution, are very accurate.

We next investigate the finite sample size and power behavior of the bootstrap studentized test under the aforemen-
tioned variety of process parameters and three different sample sizes, T = 50, T = 100 and T = 200. The results obtained
are shown in Table 1. As it is evident from this table, the bootstrap studentized test shows a very good empirical size and
power behavior even in the case of T = 50 observations. In particular, the empirical sizes are close to the nominal ones
and the empirical power of the test increases to one as the deviations from the null become larger (i.e., larger values of
a2) and/or the sample size increases.

5.3. A real-life data example

We applied the bootstrap studentized test to a data set consisting of temperature measurements recorded in Nicosia,
Cyprus, for the winter period, December 2006 to beginning of March 2007 and for the summer period, June 2007 to end
9
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Table 1
Empirical size and power of the bootstrap studentized test for functional time series generated according
to models (10) and (11).
T a2 b = 0.2 b = 0.3

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

50 0.0 0.010 0.048 0.096 0.020 0.058 0.106
0.2 0.016 0.082 0.158 0.030 0.092 0.164
0.4 0.062 0.238 0.338 0.048 0.154 0.276
0.6 0.178 0.390 0.518 0.124 0.334 0.500
0.8 0.346 0.616 0.736 0.258 0.502 0.670
1.0 0.488 0.768 0.872 0.464 0.728 0.840

a2 b = 0.1 b = 0.2

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

100 0.0 0.018 0.050 0.092 0.008 0.046 0.080
0.2 0.028 0.112 0.210 0.028 0.112 0.196
0.4 0.138 0.328 0.472 0.122 0.344 0.470
0.6 0.382 0.652 0.764 0.374 0.622 0.766
0.8 0.650 0.858 0.922 0.624 0.836 0.922
1.0 0.872 0.968 0.984 0.874 0.966 0.990

a2 b = 0.06 b = 0.1

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

200 0.0 0.014 0.042 0.088 0.004 0.044 0.100
0.2 0.046 0.154 0.272 0.056 0.164 0.290
0.4 0.298 0.576 0.698 0.364 0.620 0.760
0.6 0.708 0.910 0.956 0.788 0.956 0.978
0.8 0.924 0.992 0.998 0.960 0.996 0.998
1.0 0.992 1.000 1.000 1.000 1.000 1.000

of August 2007. It is well-known that the mean temperatures during winter periods are smaller than those of summer
periods. Our aim is to test whether there is also a significant difference in the autocovariance structure of the winter
and summer periods. The data consists of two samples of curves {(Xt , Yt ), t ∈ {1, . . . , 92}}, where Xt represents the
temperature of day t for Dec2006–Jan2007–Feb2007–March2007 and Yt for Jun2007–Jul2007–Aug2007. More precisely,
X1 represents the temperature of the 1st of December 2006 and X92 the temperature of the 2nd of March 2007, whereas Y1
represents the temperature of the 1st of June 2007 and Y92 the temperature of the 31st of August 2007. The temperature
recordings were taken in 15 min intervals, i.e., there are k = 96 temperature measurements for each day for a total
of T = 92 days in both groups. These measurements were transformed into functional objects using the Fourier basis
with 21 basis functions. All curves were rescaled in order to be defined in the unit interval. Fig. 2 shows the centered
temperature curves of the winter and summer periods, i.e., the curves in each group are transformed by subtracting the
corresponding group sample mean functions.

Using the cross-validation algorithm described in Section 5.1, the bandwidth chosen is equal to bCV = 0.075 and
the corresponding p-value of the bootstrap based studentized test is equal to 0.030 (based on B = 10,000 bootstrap
replications), leading to a rejection of the null hypothesis for almost all commonly used α-levels. This implies that the
dependence properties, as measured by autocovariances, of the temperature measurements of the winter period differ
significantly from those of the summer period.

In order to understand the reasons leading to this rejection, we decompose the standardized test tU after ignoring the
centering sequence b−1/2µ̂0 and approximating the integral of the (squared) Hilbert–Schmidt norm by the corresponding
Riemann sum over the Fourier frequencies λj = 2π j/T , as follows:

√
bT UT

/
θ̂0 ≈ 2π

√
b

N∑
j=−N
j̸=0

∥F̂X,λj − F̂Y ,λj∥
2
HS

/
θ̂0 =

N∑
j=−N
j̸=0

Q̂T ,λj , (12)

here

Q̂T ,λj = 2π
√
b ∥F̂X,λj − F̂Y ,λj∥

2
HS

/
θ̂0 ≥ 0.

Expression (12) shows the contributions of the differences ∥F̂X,λj − F̂Y ,λj∥
2
HS for each frequency λj to the total value of

the test statistic UT . Large values of Q̂T ,λj pinpoint, therefore, to frequency regions from which large contributions to the
test statistic UT occur. A plot of the estimated quantities Q̂T ,λj against the frequencies λj, j ∈ {0, . . . ,N}, is, therefore, very
informative in identifying frequency regions where differences between the two spectral density operators are large and
is very helpful for interpreting the results of the testing procedure.

Complementary to the decomposition Q̂T ,λj of the test statistic UT , one also can identify the regions in [0, 1] × [0, 1]
which deliver large contributions to the test statistic and which lead to a rejection of the null hypothesis. In particular,
10
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Fig. 2. Centered temperature curves of winter period (left panel) and of summer period (right panel). There are 92 centered curves in each period,
rescaled in order to be defined in the unit interval.

the test statistic also can be written as

Q̂T ,λj ≈

T∑
r=1

T∑
l=1

D̂2
T (σr , τl), D̂2

T (σ , τ ) =
2π

√
b

T 2

N∑
j=−N
j̸=0

⏐⏐̂fX,λj (σ , τ ) − f̂Y ,λj (σ , τ )
⏐⏐2/θ̂0.

Notice that D̂2
T (σr , τl) shows the contribution of the differences between the estimated spectral density kernels (averaged

over all Fourier frequencies) at the points (σr , τl) ∈ [0, 1]×[0, 1] to the test statistic UT . Large values of D2
T (σr , τl) pinpoint

to points (σr , τl) ∈ [0, 1] × [0, 1] where large differences (averaged over all frequencies) between the corresponding
spectral density kernels occur. Combined with the frequency decomposition QT ,λj , the decomposition DT (σr , τl) may
further help in better understanding the test results.

Fig. 3(a) shows for the real-life temperature data example considered the plot of Q̂T ,λj at a log-scale. Fig. 3(b) shows, for
the same data set, a plot of the differences D̂T (σr , τl). As it can be seen from Fig. 3(a), the large values of the test statistic
UT which leads to a rejection of the null hypothesis, are mainly due to the large differences between the two spectral
density operators at the low frequency region. That is, differences in the long term periodicities between the winter and
the summer temperature curves seem to be the main reason for rejecting the null hypothesis. Fig. 3(b) shows that the
main differences between the spectral density kernels of the two functional time series, occur in the afternoon period
and, more specifically, between the hours 12.00 to 4.00 p.m. The differences of the (averaged) spectral density kernels,
for values of τ and σ within this time frame, seem to be the largest. These findings are probably due to the fact that in
Cyprus, compared to the rather day-long stable weather conditions of the summer period, the weather conditions in the
winter period are more volatile, change gradually during the day and reach their peak in the afternoon.
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Appendix. Auxiliary results and proofs

First, we introduce some notation that will be used throughout our proofs. ∥·∥2 denotes the norm of L2, ∥·∥N the nuclear
norm of an operator T , T ∗ is the adjoint operator and ⟨·, ·⟩HS the inner product on the space of Hilbert–Schmidt operators;

−iλ ∑
−ijλ
see the Supplementary Material for more details. Furthermore, we write A(e ) = j∈Z Aje with the operators Aj

11



A. Leucht, E. Paparoditis, D. Rademacher et al. Journal of Multivariate Analysis 189 (2022) 104889

b
v

d
λ

w

L

L

Fig. 3. (a) Plot of Q̂T ,λj (vertical axes, log-scale) against the frequencies λj , j ∈ {0, 1, . . . ,N} (horizontal axes), for the temperature data, using the
andwidth b = bCV = 0.075. (b) Plot of the difference D̂T (σr , τl) between the estimated spectral density kernels using the same bandwidth for the
alues (σr , τl), with (r, l) ∈ {1, . . . , 96} × {1, . . . , 96}.

efined as in Assumption 1. The periodogram operators of the innovations time series εt and et , t = 1, . . . , n, at frequency
, Iε,λ and Ie,λ, respectively, are defined as the integral operators induced by right integration of

p̂ε,λ(σ , τ ) =
1

2πT

T∑
s1,s2=1

εs1 (σ )εs2 (τ ) exp(−iλ(s1 − s2)),

p̂e,λ(σ , τ ) =
1

2πT

T∑
s1,s2=1

es1 (σ )es2 (τ ) exp(−iλ(s1 − s2)).

(13)

The centered counterparts are denoted by Icε,λ and Ice,λ. Finally, define

Q c
X,λ := A(e−iλ)Icε,λA(e

−iλ)∗, Q c
Y ,λ := B(e−iλ)Ice,λB(e

−iλ)∗.

Here, ST denotes the composition S(T (·)) of the operators S and T .

Proof of Lemma 1. The assertions of the lemma are immediate consequences of Proposition 2.1 in Panaretos and
Tavakoli [22] if

∑
t∈Z ∥RX,t∥N < ∞ and

∑
t∈Z ∥rX,t∥2 < ∞ and similar results for the process (Yt )t∈Z hold true.

The first inequality follows from expression (1.4) of the supplement. For the second result, use the expression RX,t =∑
j∈Z Aj+tCεA∗

j , see the Supplement Material, and get
∑

t∈Z ∥rX,t∥2 =
∑

t∈Z ∥RX,t∥HS ≤
∑

t∈Z
∑

j∈Z ∥Aj+t∥L ∥Cε∥HS ∥Aj∥L,
hich is finite under Assumption 1.

The proof of Theorem 1 uses the following two lemmas, the proofs of which are given in the Supplementary Material.

emma 2. Suppose that the assumptions of Theorem 1 hold true. Then
√
bT MT ,0 − b−1/2 µ0 = oP (1),

where

MT ,0 =

∫ π

−π

1
b2T 2

N∑
t=−N

W 2
(
λ− λt

b

)Q c
X,λt − Q c

Y ,λt

2
HS dλ . (14)

emma 3. Suppose that the assumptions of Theorem 1 hold true. Then,

var(
√
bT LT ,0) −→ θ2
T→∞
0

12
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for θ0 defined in Theorem 1, where

LT ,0 =
1

b2T 2

∫ π

−π

∫ 1

0

∫ 1

0

N∑
t1,t2=−N, t1 ̸=t2

W
(
λ− λt1

b

)
W
(
λ− λt2

b

)
dλ

×

⟨
Q c
X,λt1

− Q c
Y ,λt1

,Q c
X,λt2

− Q c
Y ,λt2

⟩
HS
.

(15)

roof of Theorem 1. From Theorem 1.2 of the Supplementary Material we obtain

IX,λ = A(e−iλ)Iε,λA(e−iλ)∗ + RT ,λ with sup
λ∈{2π t/T |t=−N,...,N}

E∥RT ,λ∥
2
HS = O(T−1).

his gives

√
bT UT =

√
bT
∫ π

−π

 1
bT

N∑
t=−N

W
(
λ− λt

b

) [
A(e−iλt )Iε,λtA(e

−iλt )∗ − B(e−iλt )Ie,λtB(e
−iλt )∗

]
2

HS

dλ

+ OP (b1/4) =:
√
bT UT ,0 + oP (1) (16)

f we can show that
√
bT UT ,0 = OP (1). To this end, first note that under H0 FX = FY . Now, it follows from (1.5) in the

Supplementary Material that
1
2π

A(e−iλt ) Cε A(e−iλt )∗ = FX = FY =
1
2π

B(e−iλt ) Ce B(e−iλt )∗.

Additionally, we have Êpε,λ(σ , τ ) = cε(σ , τ )/(2π ) and Êpe,λ(σ , τ ) = ce(σ , τ )/(2π ) in L2 for the i.i.d. noises. Combining
both facts, we can rewrite UT ,0 as

UT ,0 =

∫ π

−π

 1
bT

N∑
t=−N

W
(
λ− λt

b

) [
A(e−iλt )Icε,λtA(e

−iλt )∗ − B(e−iλt )Ice,λtB(e
−iλt )∗

]
2

HS

dλ. (17)

e can further split up UT ,0 = MT ,0 + LT ,0 where MT ,0 and LT ,0 are defined as in Lemmas 2 and 3, respectively. In view
f Lemma 2, it remains to show that

√
bTLT ,0

d
−→ Z . To this end, we abbreviate

wt1,t2,T =
1

b3/2T

∫ π

−π

W
(
λ− λt1

b

)
W
(
λ− λt2

b

)
dλ

and use the Karhunen–Lóeve expansion for the Gaussian innovations εt and et . In particular, we have

εs(σ ) =

∑
l

ξ
(s)
l ϕl(σ ), s ∈ Z, σ ∈ [0, 1],

where ϕl ∈ L2, l ∈ N, denotes the set of orthonormal eigenfunctions of the operator Cε and the random variables
ξ
(s)
l =

∫ 1
0 εs(σ )ϕl(σ ) dσ are centered normal and satisfy cov(ξ (s)l1

, ξ
(s)
l2
) = 0 for l1 ̸= l2. Notice that the above expression for

εs(σ ) is valid in L2-sense and that Fubini’s theorem gives cov(ξ (s1)l1
, ξ

(s2)
l2

) = 0 for s1 ̸= s2. A similar expansion holds true
for es with a possibly different set of orthonormal eigenfunctions (φl)l∈N instead of (ϕl)l∈N. Now, we define approximating
periodogram operators Ic,Kε,λt , K ∈ N, with kernels

p̂c,Kε,λt =

K∑
l1,l2=1

ϕl1ϕl2
1

2πT

∑
s1,s2

eiλt (s1−s2) [ξ
(s1)
l1
ξ
(s2)
l2

− E(ξ (s1)l1
ξ
(s2)
l2

)]

and similarly for Ic,Ke,λt . Moreover, define

Q c,K
X,λ := A(e−iλ)Ic,Kε,λ A(e

−iλ)∗ and Q c,K
Y ,λ := B(e−iλ)Ic,Ke,λ B(e

−iλ)∗.

hen, we can introduce

√
bT L(K )T ,0 =

N∑
t1,t2=−N, t1 ̸=t2

wt1,t2,T

⟨
Q c,K
X,λt1

− Q c,K
Y ,λt1

,Q c,K
X,λt2

− Q c,K
Y ,λt2

⟩
HS

=:

N∑
t1,t2=−N,t1 ̸=t2

Ht1,t2,T .

rom this, we get

lim lim sup E(
√
bT ( LT ,0 − L(K )T ,0))

2
= 0. (18)
K→∞ T→∞

13
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To this end, first note that under Gaussianity |ELT ,0| + |EL(K )T ,0| = o(1) for any K due to independence of the spectral
density operators at different frequencies |t1| ̸= |t2|. Thus, it suffices to investigate var(

√
bT ( LT ,0 − L(K )T ,0)). With the same

rguments as in the proof of Lemma 3 it suffices to show that

sup
|t1|̸=|t2|,|s1|̸=|s2|

cov
( ⟨

Q c
X,λt1

− Q c
Y ,λt1

,Q c
X,λt2

− Q c
Y ,λt2

⟩
HS

−

⟨
Q c,K
X,λt1

− Q c,K
Y ,λt1

,Q c,K
X,λt2

− Q c,K
Y ,λt2

⟩
HS
,⟨

Q c
X,λs1

− Q c
Y ,λs1

,Q c
X,λs2

− Q c
Y ,λs2

⟩
HS

−

⟨
Q c,K
X,λs1

− Q c,K
Y ,λs1

,Q c,K
X,λs2

− Q c,K
Y ,λs2

⟩
HS

)
onverges to zero as K → ∞ in the cases t1 = ±s1, t2 = ±s2 and t1 = ±s2, t2 = ±s1. Exemplarily we only investigate

sup
|t1|̸=|t2|

cov
( ⟨

Q c
X,λt1

,Q c
X,λt2

⟩
HS

−

⟨
Q c,K
X,λt1

,Q c,K
X,λt2

⟩
HS
,⟨

Q c
X,λt1

,Q c
X,λt2

⟩
HS

−

⟨
Q c,K
X,λt1

,Q c,K
X,λt2

⟩
HS

)
n detail. With similar arguments as in Lemma 3 it can be shown that all remaining summands vanish, too. Using symmetry
rguments and adding zeros, it suffices to consider

sup
|t1|̸=|t2|

cov
(⟨

Q c
X,λt1

− Q c,K
X,λt1

,Q c
X,λt2

⟩
HS
,

⟨
Q c
X,λt1

,Q c
X,λt2

⟩
HS

)
(19)

nd similar terms. To this end, let

C (K )
ϵ = E

[(
K∑
l=1

ξ
(0)
l ϕl

)
⊗

(
K∑
l=1

ξ
(0)
l ϕl

)]
.

n analogy to the proof of Lemma 3, (19) can be bounded from above by

sup
|t1|̸=|t2|

∥A(e−iλt1 )∥4
L

E([Icε,λt1 − Ic,Kε,λt1 ] ⊗ Icε,λt1

)
HS

∥FX,λt2
∥
2
HS ≤ K ∥Cε − C (K )

ϵ ∥HS + o(1)

or some finite constant K, where the last inequality can be obtained similarly to Lemma 1.7 and Theorem 1.3 in the
upplement. Mercer’s Theorem finally gives ∥Cε − C (K )

ϵ ∥HS → 0 as K → ∞. We aim at applying a CLT of de Jong [7] for
eighted U-statistics of independent random vectors. To this end, we rewrite

√
bT L(K )T ,0 =

N∑
t1,t2=1,t1 ̸=t2

H̃t1,t2,T +

N∑
t=−N

[Ht,0,T + H0,t,T ] +

N∑
t1=−N

Ht1,−t1,T − 2H0,0,T ,

where

H̃t1,t2 = Ht1,t2,T + H−t1,t2,T + Ht1,−t2,T + H−t1,−t2,T .

Straightforward calculations yield that
N∑

t=−N

[Ht,0,T + H0,t,T ] +

N∑
t1=−N

Ht1,−t1,T − 2H0,0,T = oP (1)

in L2. Now, we apply Theorem 2.1 of de Jong [7] to

W̃T =

N∑
t1,t2=1
t1 ̸=t2

H̃t1,t2 =

N∑
t1,t2=1
t1 ̸=t2

H̃t1,t2 (Xt1 ,Xt2 ),

where Ht1,t2 is a Borel function and

Xt =
1

√
2πT

T∑
s=1

(ξ (1)s cos(λts), ξ (1)s sin(λts), . . . , ξ (K )s cos(λts), ξ (K )s sin(λts))′

in their notation. First, note that the assumption of Gaussian innovations implies independence of X1, . . . ,XN . Moreover,
this yields E(H̃t1,t2 | Xt1 ) = E(H̃t1,t2 | Xt2 ) = 0 a.s. for t1 ̸= t2 which implies that W̃T is clean (see Definition 2.1 in de
Jong [7]). It remains to check conditions (a) and (b) of Theorem 2.1 of de Jong [7]. Similar to Lemma 3 we obtain that
var(W̃T ) converges to the finite constant

θK :=
4
2

∫ 2π {∫ π

W (u)W (u − x) du
}2

dx
∫ π

∥A(e−iλt1 ) E[Ic,Kε,λt ] A(e−iλt1 )∗∥4
HS dλ.
π −2π −π −π

1

14
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Subsequently, we only consider the non-trivial case of θL > 0. For condition (a), it remains to verify that

max
t1∈{1,...,N}

N∑
t2=1
t2 ̸=t1

var
(
H̃t1,t2

)
= o(1).

This is an immediate consequence of var(Ht1,t2 ) = 0 for |t1 − t2| > bT and

var(Ht1,t2 ) = O
(

1
b T 2

)
= o

(
1
bT

)
for |t1 − t2| ≤ bT . Finally, we have to check assumption (b) of Theorem 2.1 of de Jong [7], i.e.,

EW̃ 4
T −→

T→∞

3θ2K .

To this end, we argue that EW̃ 2
T −→

T→∞

θ2K and that the fourth-order cumulant of W̃T vanishes asymptotically due to the
ndependence of the periodograms at different Fourier frequencies. Finally, note that θK → θ0 as K → ∞ which finishes
he proof by Proposition 6.3.9 in Brockwell and Davis [5].

roof of Theorem 2. Recall first that in the following calculations all indices in the sums considered, run in the set
−N,−N+1, . . . ,−1, 1, . . . ,N−1,N}, where N = [(T−1)/2]. Let {vj, j ∈ N} be an orthonormal basis of L2C := L2C([0, 1], µ)
and recall that {vi ⊗ vj, i, j ∈ N} is an orthonormal basis of the Hilbert space HS(L2C). The bootstrap test statistic

U∗

T =
2π
T

N∑
l=−N

∥F̂∗

X,λt − F̂∗

Y ,λt ∥
2
HS (20)

an then be decomposed as

U∗

T =
2π
T 3b2

N∑
t1=−N

N∑
t2=−N

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

)
⟨I∗X,λt1 − I∗Y ,λt1 , I

∗

X,λt2
− I∗Y ,λt2 ⟩HS

=
2π
T 3b2

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
∥I∗X,λt − I∗Y ,λt ∥

2
HS

+
2π
T 3b2

N∑
t1,t2=−N

t| ̸=t2

W
(λl − λt1

b

)
W
(λl − λt2

b

)
⟨I∗X,λt1 − I∗Y ,λt1 , I

∗

X,λt2
− I∗Y ,λt2 ⟩HS := M∗

T + L∗

T ,

with an obvious notation for M∗

T and L∗

T . In the following we use the notation

D∗

t (j1, j2) := ⟨I∗X,λt − I∗Y ,λt , vj1 ⊗ vj2⟩ = ⟨J∗X,λt , vj1⟩⟨vj2 , J
∗

X,λt ⟩ − ⟨J∗Y ,λt , vj1⟩⟨vj2 , J
∗

Y ,λt ⟩,

and the expansion

I∗X,λt − I∗Y ,λt = J∗X,λt ⊗ J
∗

X,λt − J∗Y ,λt ⊗ J
∗

Y ,λt =

∞∑
j1=1

∞∑
j2=1

D∗

t (j1, j2)(vj1 ⊗ vj2 ).

Notice that ⟨J∗X,λt , vj⟩ is for every j ∈ N, a complex Gaussian random variable. We show that
√
bTM∗

T − b−1/2 µ̃0
P

→ 0, (21)

nd
√
bTL∗

T
d

→ N (0, θ̃20 ). (22)

Let I∗
C

X,λt = IX,λt − F̂λt and similarly for I∗
C

Y ,λt . Verify that

E⋆⟨I∗
C

X,λt , vj1 ⊗ vj2⟩HS⟨I
∗
C

X,λt , vj1 ⊗ vj2⟩HS = E⋆⟨I∗
C

X,λt (vj2 ), vj1⟩⟨I
∗
C

X,λt (vj2 ), vj1⟩

= ⟨E⋆I∗
C

X,λt (vj2 ) ⊗ I
∗
C

X,λt (vj1 ), vj1 ⊗ vj2⟩HS

= ⟨F̂λt (vj1 ) ⊗ F̂λt (vj2 ), vj1 ⊗ vj2⟩HS

= ⟨F̂ (v ), v ⟩⟨v , F̂ (v )⟩. (23)
λt j1 j1 j2 λt j2

15
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Furthermore,

cov∗(D∗

t (j1, j2),D
∗

t (r1, r2)) = E⋆(D∗

t (j1, j2)D
∗

t (r1, r2))

= E⋆⟨I∗
C

X,λt , vj1 ⊗ vj2⟩HS⟨I
∗
C

X,λt , vr1 ⊗ vr2⟩HS + E⋆⟨I∗
C

Y ,λt , vj1 ⊗ vj2⟩HS⟨I
∗
C

Y ,λt , vr1 ⊗ vr2⟩HS

= 2⟨F̂λt (vr2 ), vj1⟩⟨vj2 , F̂λt (vr1 )⟩ = 2⟨F̂λt (vr2 ) ⊗ F̂λt (vr1 ), vj1 ⊗ vj2⟩HS, (24)

where the last two equalities follow using the derivations in (23).
Consider first (21). Using (23), we get

E∗(
√
bTM∗

T ) =
2π

T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
E⋆⟨I∗

C

X,λt − I∗
C

Y ,λt , vj1 ⊗ vj2⟩
2
HS

=
2π

T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

){
E⋆⟨I∗

C

X,λt , vj1 ⊗ vj2⟩HS⟨I
∗
C

X,λt , vj1 ⊗ vj2⟩HS

+ E⋆⟨I∗
C

Y ,λt , vj1 ⊗ vj2⟩HS⟨I
∗
C

Y ,λt , vj1 ⊗ vj2⟩HS
}

=
4π

T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
⟨F̂X,λt (vj1 ), vj1⟩⟨vj2 , F̂X,λt (vj2 )⟩

=
4π

T 2b3/2

N∑
t=−N

N∑
l=−N

W 2(λl − λt

b

)(
trace(F̂λt )

)2
=

4π
T 2b3/2

N∑
t=−N

N∑
l=−N

W 2(λl − λt

b

)(
trace(Fλt )

)2
+ oP (1).

nd, therefore,

b1/2E∗(
√
bTM∗

T ) =
4π
T 2b

N∑
t=−N

N∑
l=−N

W 2(λl − λt

b

)(
trace(Fλt )

)2
+ oP (1)

P
→ µ̃0. (25)

Furthermore,

var∗(
√
bTM∗

T ) =
4π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W 2
(λl1 − λt1

b

)
W 2
(λl2 − λt2

b

)
× cov∗(D∗

t1 (j1, j2),D
∗

t2 (r1, r2))

hich due to the independence of D∗
t1 (j1, j2) and D∗

t2 (j1, j2) for |λt1 | ̸= |λt2 |, is reduced to four terms with a typical one
iven by

4π2

T 4b3

N∑
t=1

N∑
l1,l2=−N

W 2
(λl1 − λt

b

)
W 2
(λl2 − λt

b

)
×

∞∑
j1,j2=1

∞∑
r1,r2=1

cov∗(D∗

t (j1, j2),D
∗

t (r1, r2))

nd which is easily seen to be of order OP ((Tb)−1). Similar arguments applied to the other three terms show that
hey also are asymptotically negligible from which we get that var∗(

√
bTM∗

T )
P

→ 0. In view of (25) this implies that
√
bTM∗

T − b−1/2 µ̃0
P

→ 0.
Consider next (22). Notice that

var∗(
√
bTL∗

T ) =
4π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

t1 ̸=t2

N∑
t3,t4=−N

t3 ̸=t4

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl1 − λt2

b

)

× W
(λl2 − λt3

b

)
W
(λl2 − λt4

b

){
E∗
(
D∗

t1 (j1, j2)D
∗
t3 (r1, r2)

)
E∗
(
D∗

t2 (j1, j2)D
∗
t4 (r1, r2)

)
+ E∗

(
D∗

t1 (j1, j2)D
∗
t4 (r1, r2)

)
E∗
(
D∗

t2 (j1, j2)D
∗
t3 (r1, r2)

)
+ cum⋆

(
D∗

t1 (j1, j2),D
∗
t2 (j1, j2),D

∗

t3 (r1, r2),D
∗
t4 (r1, r2)

)}
= V ∗

1,T + V ∗

2,T + V ∗

3,T ,
16
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with an obvious notation for V ∗

i,T , i ∈ {1, 2, 3}. Since E∗
(
D∗
t (j1, j2)D∗

s (r1, r2)
)

= 0 for |t| ̸= |s| we get using (24) and
∞

j1,j2=1⟨F̂λt1 (vr2 ) ⊗ F̂λt1 (vr1 ), vj1 ⊗ vj2⟩HS(vj1 ⊗ vj2 ) = F̂λt1 (vr2 ) ⊗ F̂λt1 (vr1 ), that

V ∗

1,T =
16π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
× ⟨F̂λt1 (vr2 ) ⊗ F̂λt1 (vr1 ), vj1 ⊗ vj2⟩HS⟨F̂λt2 (vr2 ) ⊗ F̂λt2 (vr1 ), vj1 ⊗ vj2⟩HS

=
16π2

T 4b3

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
× ⟨F̂λt2 (vr2 ), F̂λt1 (vr2 )⟩⟨F̂λt1 (vr1 ), F̂λt2 (vr1 )⟩

=
16π2

T 4b3

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
⟨F̂λt1 , F̂λt2 ⟩

2
HS

=
4

T 2b3

N∑
t1,t2=−N

(2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

))2
⟨F̂λt1 , F̂λt2 ⟩

2
HS

→
2
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2

dx
∫ π

−π

∥Fλ∥4dλ,

where the last convergence follows by the same arguments as in proving assertion (i) appearing in the proof of Lemma
3 in the Supplementary Material.

Along the same lines, the same expression is obtained for the probability limit of V ∗

2,T , while under the assumptions
made, V ∗

3,T → 0 in probability. To see why the last statement is true, use the notation

w(i, j, k, l) = W
(λli − λk

b

)
W
(λlj − λk

b

)
W
(λli − λl

b

)
W
(λlj − λl

b

)
,

nd observe that D∗
−t (j1, j2) = D∗

t (j1, j2). By the independence of the random variables D∗
t (j1, j2) and D∗

s (j1, j2) for
requencies |t| ̸= |s|, we get that

V ∗

3,T =
1

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

t1 ̸=t2

N∑
l1,l2=−N

w(l1, l2, t1, t2)cum∗

(
D∗

t1 (j1, j2),D
∗

t1 (r1, r2),D
∗

t2 (j1, j2),D
∗

t2 (r1, r2)
)

=
1

T 4b3

N∑
t1,t2=1
t1 ̸=t2

N∑
l1=−N

N∑
l2=−N

{
w(l1, l2,−t1,−t2)cum∗

(
D∗

t1 (j1, j2),D
∗

t1 (r1, r2),D
∗

t2 (j1, j2),D
∗

t2 (r1, r2)
)

+ w(l1, l2,−t1, t2)cum∗

(
D∗

t1 (j1, j2),D
∗

t1 (r1, r2),D
∗

t2 (j1, j2),D
∗

t2 (r1, r2)
)

+ w(l1, l2, t1,−t2)cum∗

(
D∗

t1 (j1, j2),D
∗

t1 (r1, r2),D
∗

t2 (j1, j2),D
∗

t2 (r1, r2)
)

+ w(l1, l2, t1, t2)cum∗

(
D∗

t1 (j1, j2),D
∗

t1 (r1, r2),D
∗

t2 (j1, j2),D
∗

t2 (r1, r2)
) }

which vanishes due to the independence of the bootstrap finite Fourier transforms and consequently of the random
variables D∗

t1 (·) and D∗
t2 (·) for 1 ≤ t1 ̸= t2 ≤ N .

We next show that
√
bTL∗

T
D

→ N (0, θ̃0). Toward this we write
√
bTL∗

T =
∑

∞

j1,j2=1
∑

1≤t1<t2≤N H∗
t1,t2 (j1, j2), where

H∗

t1,t2 (j1, j2) = 2
{
h∗

t1,t2 (j1, j2) + h∗

−t1,t2 (j1, j2) + h∗

t1,−t2 (j1, j2) + h∗

−t1,−t2 (j1, j2)
}

(26)

nd

h∗

t,s(j, r) =
2π

b3/2T 2

N∑
l=−N

W
(λl − λt

b

)
W
(λl − λs

b

)
D∗

t (j, r)D
∗

s (j, r).

et
√
bTL∗

T ,K =
∑K

j1,j2=1
∑

1≤t1<t2≤N H∗
t1,t2 (j1, j2) and

θ̃20,K =
4
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2

dx
K∑ ∫ π

−π

⟨vj1 ⊗ vj2 ,Fλ⟩
2
HS⟨vr1 ⊗ vr2 ,Fλ⟩

2
HSdλ.
j1,j2,r1,r2=1
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W

i

E

T
a

f

Then, to establish the desired weak convergence it suffices to prove that
(i)

√
bTL∗

T ,K
D

→ N (0, θ̃20,K ) as n → ∞ for every K ∈ N,
ii) θ̃20,K → θ̃20 as K → ∞,
iii) For every ϵ > 0, limK→∞ lim supn Pr

(⏐⏐√bTL∗

T ,K −
√
bTL∗

T

⏐⏐ > ϵ
)

= 0.
Consider (i). Observe that

√
bTL∗

T ,K is a quadratic form in the independent random variables Dt (i, j) and Ds(i, j), t ̸= s.
e can, therefore, use Theorem 2.1 of de Jong [7] to establish the weak convergence (i). For this we need to show that

(a) σ−2(T )max1≤i≤N
∑

1≤j≤N σ
2
i,j → 0,

(b) E∗

(∑K
j1,j2=1

∑
1≤t1<t2≤N H∗

t1,t2 (j1, j2)
)4
/σ 4(T ) → 0,

n probability as T → ∞, where σ 2(T ) =
∑

1≤t1<t2≤N σ
2
t1,t2 and

σ 2
t1,t2 =

K∑
j1,j2,r1,r2=1

cov∗(H∗

t1,t2 (j1, j2),H
∗

t1,t2 (r1, r2)).

valuating σ 2
t1,t2 = E∗(

∑K
j1,j2=1 H

∗
t1,t2 (j1, j2))

2 for 1 ≤ t1 < t2 ≤ N , using (26), yields the expression

4
K∑

j1,j2,r1,r2=1

∑
m1∈{−t1,t1}

∑
s1∈{−t2,t2}

∑
m2∈{−t1,t1}

∑
s2∈{−t2,t2}

cov∗(h∗

m1,s1 (j1, j2), h
∗

m2,s2 (r1, r2)).

aking into account the independence of the random variables involved, (t1 ̸= t2), the covariance terms in the above sum
re very similar with a typical one given, for instance for m1 = t1, s1 = t2,m2 = −t1, s2 = −t2, by

1
T 4b3

∑
l1

∑
l2

W
(λl1 − λt1

b

)
W
(λl1 − λt2

b

)
W
(λl2 + λt1

b

)
W
(λl2 + λt2

b

)
× ⟨F̂λt1 (vr2 ) ⊗ F̂−λt1

(vr1 ), vj1 ⊗ vj2⟩HS⟨F̂λt2 (vr2 ) ⊗ F̂−λt2
(vr1 ), vj1 ⊗ vj2⟩HS

=
1

4π2T 2b3

(2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

))(2π
T

N∑
l=−N

W
(λl + λt1

b

)
W
(λl + λt2

b

))
× ⟨F̂λt1 (vr2 ) ⊗ F̂−λt1

(vr1 ), vj1 ⊗ vj2⟩HS⟨F̂λt2 (vr2 ) ⊗ F̂−λt2
(vr1 ), vj1 ⊗ vj2⟩HS = OP (T−2b−1),

where the OP (T−2b−1) term is uniform in t1 and t2 because

|⟨F̂λt1 (vr2 ) ⊗ F̂−λt1
(vr1 ), vj1 ⊗ vj2⟩HS | ≤ ∥F̂λt1 ∥HS∥F̂−λt1

∥HS = OP (1),

uniformly in t1, t2, and

2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

)
=

∫
W
(λ− λt1

b

)
W
(λ− λt2

b

)
+ O(T−1)

= b
∫

W
(
u −

λt1

b

)
W
(
u −

λt2

b

)
du + O(T−1) = b

∫
W
(
x −

λt1 − λt2

b

)
W
(
x
)
dx + O(T−1) = O(b),

uniformly in t1, t2. Taking into account that 0 < σ 2(T ) = E∗(
∑K

j1,j2=1
∑

1≤t1<t2≤N H∗
t1,t2 (j1, j2))

2
= OP (1), which follows

rom the calculations of var∗(
√
bTL∗

T ), we get that

1
σ 2(T )

max
1≤t1≤N

∑
1≤t2≤N

σ 2
t1,t2 = OP (T−1b−1) → 0,

as T → ∞, which establishes (a).
Consider Condition (b). From (26), the fourth moment of∑K

j1,j2=1
∑

1≤t1<t2≤N H∗
t1,t2 (j1, j2) equals

16
K∑

j1,...,j8=1

∑
1≤t1<t2≤N

∑
1≤t3<t4≤N

∑
1≤t5<t6≤N

∑
1≤t7<t8≤N

∑
r1∈{−t1,t1}

r2∈{−t2,t2}

∑
k1∈{−t3,t3}

k2∈{−t4,t4}

×

∑
n1∈{−t5,t5}

n2∈{−t6,t6}

∑
v1∈{−t7,t7}

v2∈{−t8,t8}

E∗

(
h∗

r1,r2 (j1, j2)h
∗

k1,k2 (j3, j4)h
∗

n1,n2 (j5, j6)h
∗

v1,v2
(j7, j8)

)
,
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where only for the following four cases the expectation term is different from zero: (1) (r1, r2) = (k1, k2) ̸= (n1, n2) =

v1, v2), (2) (r1, r2) = (n1, n2) ̸= (k1, k2) = (v1, v2), (3) (r1, r2) = (v1, v2) ̸= (k1, k2) = (n1, n2) and (4) (r1, r2) = (k1, k2) =

n1, n2) = (v1, v2) and where the notation (i, j) = (l, k) means i = l and j = k. Straightforward calculations show that
ase (4) vanishes asymptotically while cases (1), (2) and (3) converge to the same limit as σ 4(T ) converges, from which
e conclude assertion (b).
Condition (ii) follows immediately from the fact that, as K → ∞,

K∑
j1,j2=1

⟨vj1 ⊗ vj2 ,Fλ⟩
2
HS →

∞∑
j1,j2=1

⟨vj1 ⊗ vj2 ,Fλ⟩
2
HS = ∥Fλ∥2

HS .

Finally to establish the validity of condition (iii) notice that

√
bT (L∗

T − L∗

T ,K ) =
√
bT
( K∑
j1=1

∞∑
j2=K+1

∑
1≤t1<t2≤N

H∗

t1,t2 (j1, j2)

+

∞∑
j1=K+1

K∑
j2=1

∑
1≤t1<t2≤N

H∗

t1,t2 (j1, j2) +

∞∑
j1=K+1

∞∑
j2=K+1

∑
1≤t1<t2≤N

H∗

t1,t2 (j1, j2)
)

=

3∑
r=1

Q ∗

r,T ,

with an obvious notation for Q ∗

r,T , r = 1, 2, 3. Consider Q ∗

1,T . We then have

E∗(Q ∗

1,T )
2

=

∞∑
j1,r1=1

∞∑
j2,r2=K+1

∑
1≤t1<t2≤N

∑
1≤s1<s2≤N

cov∗(H∗

t1,t2 (j1, j2),H
∗

s1,s2 (r1, r2)).

Now, evaluating the covariance term cov∗(H∗
t1,t2 (j1, j2),H

∗
s1,s2 (r1, r2)) as in the calculations for var∗(

√
bTL∗

T ), using (24) and
the fact that Fλ is self adjoint, we get that

lim
n→∞

∑
1≤t1<t2≤N

∑
1≤s1<s2≤N

cov∗(H∗

t1,t2 (j1, j2),H
∗

s1,s2 (r1, r2))

=
4
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2 ∫ π

−π

⟨Fλ(vr2 ), vj1⟩
2
⟨Fλ(vj2 ), vr1⟩

2dλ.

Therefore,

lim
n→∞

E∗(Q ∗

1,T )
2

=
4
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2 ∫ π

−π

( K∑
j1=1

∞∑
j2=K+1

⟨vj1 ,Fλ(vj2 )⟩
2
)2

≤
4
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2 ∫ π

−π

( ∞∑
j2=K+1

∞∑
j1=1

⟨vj1 ,Fλ(vj2 )⟩
2
)2

=
4
π2

∫ 2π

−2π

(∫ π

−π

W (u)W (u − x)du
)2 ∫ π

−π

( ∞∑
j2=K+1

∥Fλ(vj2 )∥
2
)2

→ 0,

as K → ∞ since limK→∞

∑
∞

j2=K+1 ∥Fλ(vj2 )∥
2

= 0. By the same arguments we get that
limK→∞ lim supn→∞ E∗(Q ∗

2,T )
2

= 0 and limK→∞ lim supn→∞ E∗(Q ∗

3,T )
2

= 0, in probability. Condition (iii) follows then
using the bound

√
bTE∗(L∗

T − L∗

T ,K )
2

≤ C
∑3

r=1 E
∗(Q ∗

r,T )
2.

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104889. The
nline supplement contains some useful technical tools, some new results on frequency domain properties of linear
ilbertian stochastic processes and the proofs that were omitted in this paper.
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