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This article considers the use of wavelet methods in relation to a common signal processing problem, that of detecting transient
features in sound recordings that contain interference or distortion. In this particular case, the data are various types of underwater
sounds, and the objective is to detect intermittent departures (potential “signals”) from the background sound environment in the
data (“noise”), where the latter may itself be evolving and changing over time. We develop an adaptive model of the background
interference, using recursive density estimation of the joint distribution of certain summary features of its wavelet decomposition.
Observations considered to be outliers from this density estimate at any time are then flagged as potential “signals.” The performance
of our method is illustrated on artificial data, where a known “signal” is contaminated with simulated underwater “noise” using a
range of different signal-to-noise ratios, and a “baseline” comparison is made with results obtained from a relatively unsophisticated,
but commonly used, time-frequency approach. A similar comparison is then reported in relation to the more significant problem
of detecting various types of dolphin sound in real conditions.
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1. INTRODUCTION

For our purposes, underwater sounds can be considered
to comprise acoustic events of interest superimposed on
a background underwater sound environment. Throughout
this article, we refer to the former as “signals,” and the
latter as “noise,” although it should be appreciated that in
doing so, we use the terms rather loosely.

In the search for signals, we have some a priori knowl-
edge that allows us to focus attention on certain frequency
bands, but otherwise the nature of signals is ill-defined, and
they are perhaps best thought of as “transient features of
potential interest.” In particular, we do not have access to
obvious models for, nor any reference library of, the signals
that we wish to detect.

At the same time, the “noise” in our data will rarely con-
form to that implied by conventional statistical uses of that
term. In general, the background continuum will contain
features that depend on particular underwater conditions
and on the recording apparatus used; furthermore, these fea-
tures may change and evolve during any recording. Thus no
obvious distributional assumptions can be made to model
such noise, and its nature must be inferred from initial pe-
riods in any particular recording, when we can assume a
priori that no signals of interest are present. From these pe-
riods, we must develop an empirical model of the noise and
then allow this model to adapt with time and recording con-
ditions as appropriate, so that we can use it as a baseline at
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any time for the identification of signals; that is, significant
departures from it.

Our primary interest here is simply in detection (i.e., in
the determination of where particular signals begin and end,
sometimes referred to as “segmentation”), and we restrict
ourselves solely to that objective. In passing, however, it
should be noted that as well as having importance in its
own right, segmentation also is often a necessary prereq-
uisite to discrimination between different types of signals.
The work reported here thus may have relevance to stud-
ies concerned with classification of sonar and other high-
dimensional signals, either where neural-networks are used
(see, e.g., Gorman and Sejnowski 1988; Smith, Bailey, and
Munford 1993); or where wavelets are used as a feature
extraction method for discrimination or classification (e.g.,
Coifman and Saito 1994; Learned and Wilsky 1995; Telfer
et al., 1994).

2. UNDERWATER SOUND DATA

Our available data relate to underwater sounds of differ-
ent types, including those produced by dolphins, shrimps,
seals, whales, ice breaking, and others. They consist of se-
lected extracts from lengthy recordings taken in real life
conditions in the ocean, using a hydrophone placed several
meters beneath sea level. The recording apparatus sampled
the sound at 40.96 kHz with 16-bit resolution (near-CD
quality), and thus the volume of raw data is considerable.
The sampling rate is over twice the highest frequency of
the signals that we potentially wish to identify, so there are
few aliasing problems.

Figure 1 represents a subset of the raw data consisting of
approximately 33,000 data points with values (amplitude)
between —32,768 and 432,767 (16 bit). The section of data
portrayed corresponds to dolphin sound, and principally re-
lates to a “whistle,” although there is also a secondary se-
ries of short term “clicks” toward the end of the depicted
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Figure 1. An Example of Dolphin Sound.

.8-second time period. In this example relatively little noise
is present; however, many of our samples contain levels of
background interference that make even the most dominant
features, such as loud whistles, difficult to distinguish by
the human ear.

* Analysis of such underwater sounds has some similari-
ties with work directed towards human speech recognition.
However, as mentioned elsewhere (see, e.g., Creasey, Smith,
and Gazey 1989; Powell, Sapatinas, Bailey, and Krzanowski
1995), the special recording circumstances and the nature
of the sounds themselves give rise to unique features not
found with the more commonly analyzed speech data. For
example, underwater data have a larger amount of back-
ground interference than is generally the case in speech
recognition work, and the structure of this noise is poten-
tially more complex. Also in speech data, single frequencies
tend to predominate, biased toward the lower end of the fre-
quency range up to 20 kHz, while some of the underwater
signals of interest to us are spread across a wider range
of frequencies toward the upper end of this band. Finally,
valuable a priori knowledge that can be brought to bear in
the analysis of human speech is not available for underwa-
ter sounds; for example, we do not have a reference library
of phenotypes to assist in the analysis.

3. GENERAL APPROACH

Historically, several approaches have been used for signal
detection in underwater and other “noisy” sound data, either
by working directly with the raw sound or by using some
transformation of it.

Clearly, many mainstream developments in digital sig-
nal processing and filtering techniques are relevant to sig-
nal detection, and numerous texts cover that general field
(e.g., Ludeman 1986; Smith and Mersereau 1992). Addi-
tional methods that have been used include some based on
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techniques used in multivariate statistical process control
(e.g., Wierda 1994); others that use techniques for detect-
ing outliers in multivariate time series (e.g., Khattree and
Naik 1987); and others that use methods arising from seis-
mic signal analysis and image processing applications (e.g.,
Chen 1985; Pal and Pal 1993).

Many of the various methods for the analysis and detec-
tion of sound signals make use of the Fourier transform.
Although this transform is extremely useful and well es-
tablished, it does have drawbacks—principally difficulties
in analyzing short-term transient sound behavior. Various
short-time Fourier transforms (STFT), using a variety of
“windows” with different relative advantages, have been de-
veloped to address this problem. In addition, alternatives to
the STFT with better time-frequency localization have been
suggested; for example, the Wigner distribution and its vari-
ants.

These various time-frequency approaches have been ex-
tensively reviewed (e.g., Boashash 1990; Cohen 1989; Jones
and Parks 1992), and we do not discuss them further here.
Instead, we concentrate on exploring uses of the wavelet
transformation in signal detection. Our justification for
wishing to experiment with this alternative kind of trans-
formation is simply that signals with very short time du-
ration are frequently those of most interest in our partic-
ular underwater sound data. The resolution of the wavelet
transformation has local adaptivity, and this potentially en-
ables it to “zoom in on” irregularities and characterize them
more specifically than is possible with alternative trans-
formations. A good account of the relative advantages of
wavelet versus Fourier transforms has been given by Strang
(1993).

Some of the potential uses of wavelets for statisti-
cal problems have been recently discussed and developed
by Donoho (1993), Donoho and Johnstone (1994, 1995),
and Donoho, Johnstone, Kerkyacharian, and Picard (1995).
They have demonstrated how, by developing appropriate
thresholds on the coefficients resulting from a wavelet de-
composition, a function of unknown smoothness can be re-
covered from sampled data contaminated with white noise.
Subsequently, their ideas have been used by various re-
searchers to uncover useful structural information from
complex noisy datasets. For instance, Wang (1995) has ap-
plied these techniques in the detection of data “jumps”
and “sharp cusps,” and Ramsey, Usikov, and Zaslavsky
(1995), have applied wavelet decompositions to look for
structure in the U.S. stock market price indices. Recently,
a variety of further thresholding rules has been suggested
based on, for example, cross-validation methods, multiple-
hypothesis testing procedures, and Bayesian approaches
(e.g., Abramovich and Benjamini 1996; Abramovich, Sap-
atinas, and Silverman 1996; Nason 1995, 1996; Neumann
and Spokoiny 1995; Ogden and Parzen 1996; Wang 1996;
Weyrich and Warhola 1995). In addition, Johnstone and Sil-
verman (1997) have developed a “level-dependent” thresh-
old approach for data with correlated noise, and some of
the previous methods mentioned can also be extended to
this case.
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Although these various thresholding methods are in-
teresting, they may not necessarily be the most relevant
wavelet approach in our signal detection problem. Such
thresholding techniques are essentially concerned with the
recovery of “smooth” features against a background which
is often assumed to be “white” or “colored” noise. In our ap-
plication the signals of interest are far from smooth and, as
mentioned earlier, the real-life background underwater en-
vironment may well evolve over time and include features
arising from the recording apparatus—it cannot necessar-
ily be equated with random error, whether this be corre-
lated or otherwise. Such arguments are supported by Pow-
ell et al. (1995), who applied a number of such threshold-
ing methods to underwater sound data and showed them to
have deficiencies in relation to feature detection; in partic-
ular, some higher-frequency signals of interest were often
“thresholded-out.”

Recent work that is more relevant to the application here
involves the use of wavelet thresholding in postprocessing
to find adaptive segmentations of a possibly nonstation-
ary stochastic signal, based on local trigonometric or time-
scale decompositions. For example, von Sachs, Nason, and
Kroisandt (1996) have used nonlinear wavelet shrinkage for
smoothing to estimate the evolutionary wavelet spectrum
consistently. Their work parallels in the wavelet domain
that of Donoho, Mallat and von Sachs (1996) based on lo-
cal cosine packets to estimate the covariance of a locally
stationary process, and of Neumann and von Sachs (1997)
based on tensor wavelet thresholding to smooth pseudo—
Wigner—Ville time-frequency distributions.

Such segmentation approaches have considerable poten-
tial, but all involve predefined models that are essentially
designed for specific situations, although in some cases they
allow for a fairly broad class of signals. In this article we
prefer to approach the problem from an alternative direc-
tion. Instead of imposing an a priori model, we attempt
to build an adaptive model of the background continuum
using density estimation of the joint distribution of cer-
tain summary features of unthresholded wavelet decom-
positions. Observations considered to be outliers from this
density estimate are then flagged as signals.

This approach has some similarities to methods that have
been applied to data from an entirely different arena, and
for a different purpose, by Nason and Silverman (1995).
These authors used the “stationary” wavelet transform and
then applied kernel smoothing to the coefficient behavior in
each resolution level to produce useful analyses of datasets
from astronomy and veterinary anatomy. Their approach
was applied to individual coefficient values within separate
levels of the stationary wavelet decomposition, while we
concentrate here on summary features of the coefficients
and on exploiting their multivariate behavior both across
and within levels of the discrete wavelet transform.

The article is organized as follows. In Section 4 we very
briefly summarize some relevant aspects of wavelet the-
ory. In Section 5 we suggest summary features of wavelet
decompositions of our underwater sounds that appear to
exhibit distinctive multivariate behavior when signals oc-

cur. In Section 6 we discuss density estimation of the joint
distribution of these summary measures during periods of
noise and propose a method for detecting multivariate out-
liers from this estimated distribution. We then apply these
ideas in Section 7 to detect signals in artificial and real
sounds of different types and give a “baseline” compari-
son with results obtained from the use of a straightforward
time-frequency approach. Finally, in Section 8 we summa-
rize and discuss some implications of these results.

4. THE WAVELET DECOMPOSITION

One way to view wavelets is as orthonormal basis func-
tions for various function spaces (although strictly they
need not be orthonormal). With a wavelet series expansion,
the basis functions are all dilations and translations of a
single function referred to as the “mother wavelet” and de-
noted by . The dilation and translations of the mother
wavelet are given by:

W p(x) = 222z — k),

where j is the dilation factor and % is the translation fac-
tor. For suitable choices of ), the set of functions {v; }
forms an orthonormal basis for L?(R). Wavelets can also
form unconditional bases for other function spaces, such as
Besov or Triebel spaces (see, e.g., Meyer 1992).

For a function f € L?(R), the wavelet series representa-

tion is
F@) =" wirtik(x),
jel.kel.

where the wavelet coefficients w; ; are given by

J ke,

Wy, = /Rf(m)’l/}j,k(x) dz.

Intuitively, 1, represent “smooth wiggly functions.” In
contrast to standard Fourier sine and cosine series, wavelets
are well localized in time (via translations) and in fre-
quency/scale (via dilations).

One commonly used series of mother wavelets was con-
structed by Daubechies (1988), with each 1 in the series
indexed by N. These wavelets are compactly supported in
the time domain (0 outside a finite interval), and have high
regularity (¢ and all its derivatives up to some order are con-
tinuous); the regularity is proportional to the index N. Such
wavelets have another interesting property, that of vanishing
moments. We say that a mother wavelet ¢ has m vanishing
moments if

/wkw(m)dmzo, k=0,...,m—1.

R
This property allows the use of wavelets for compression
techniques, because they provide sparse representations of
functions. Daubechies (1992, pp. 242-244) has showed that
this property ensures that the fine-scale wavelet coefficients
will be large only where a function or its derivatives have
singularities.

The expansion of a function f € L?(R) given earlier has
a discrete analog for a dataset fi, fo, ..., fn, Wwhere n = 27
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Figure 2. Discrete Wavelet Coefficients, dj, for the Dolphin Sound
Example Shown in Figure 1, Using Daubechies’s Extremal Phase
Wavelet With N = 8.

for some J. This discrete wavelet transform (DWT) is per-
formed using an efficient algorithm that requires only O(n)
operations (see Mallat 1989) and results in n — 1 discrete
wavelet coefficients d;, where j = 0,1,...,J — 1 and
k=0,1,...,27 — 1, and one scaling coefficient labeled as
co,0- Each d; 1, describes the contribution around temporal
location 277k with frequency proportional to 27, whereas
co,0 18 a weighted total of all data.

All the subsequent wavelet analyses in this article use the
WaveThresh package developed within S-PLUS by Na-
son (1993) and described by Nason and Silverman (1994);
this package incorporates a DWT that handles periodic
boundary conditions. Throughout the applications here, we
used the Daubechies extremal phase wavelet with N = 8
(Daubechies 1992, table 6.1, p. 195); however, the methods
we suggest could be used with alternative wavelet fami-
lies, if required. Figure 2 shows the wavelet decomposi-
tion of the dolphin sound presented in Figure 1 (involving
215 = 32,768 data points) based on the Daubechies wavelet
mentioned earlier. WaveThresh displays d; ; in the form
of a “pyramid.” There are 2'5~! coefficients at the highest
frequency level (20.48 kHz), which corresponds to the bot-
tom, or lowest level, of the pyramid (5 = 14); there are then
215-2 coefficients at the second highest frequency, and so
on upward through the pyramid.

5. WAVELET DECOMPOSITIONS
AND SIGNAL DETECTION

We now consider how we might summarize a wavelet
decomposition, such as that pictured in Figure 2, in a way
that lends itself to use in signal detection.

A preliminary consideration is the choice of an appro-
priate time scale, or time “window,” over which to effect
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any summarization. Our recording apparatus sampled data
at 40.96 kHz, and thus a window containing 128 coeffi-
cients at the lowest level of the decomposition (256 data
points) corresponds to time period of .00625 seconds. The
shortest signals of interest in our applications have a min-
imum duration of around .01 seconds, and so this window
was considered to be easily sufficient to capture significant
changes in the structure of the sound.

Several summary characteristics of the wavelet decom-
position within such temporal windows may be relevant
to signal detection. The summarization that we adopt here
draws on the fact that the total sum of squares of the orig-
inal data values is preserved in the sum of squares of the
coefficients in the wavelet decomposition. If the former is
loosely interpreted as an overall measure of the “energy” in
the raw sound, then the sum of squares of the coefficients
in a particular level of the decomposition can be thought of
as relating to “energy at a particular frequency.” Thus if we
consider within each temporal window a set of variables,
each of which is based on the sum of squares of wavelet
coefficients in a different level, then we are effectively look-
ing, within small time frames, at the energy levels in the
original sound at different frequencies.

More specifically, we first subdivided any given under-
water sound recording into periods of .8 s (with each pe-
riod containing 2! = 32,768 data points). We chose these
fairly long periods to provide a compromise between com-
putational convenience and the need to minimize edge ef-
fects when summaries of the decompositions for each seg-
ment were subsequently reassembled. Each of these .8-
second segments was subjected to a wavelet analysis, and
each resulting decomposition was split into 128 time win-
dows each with a length of 128 coefficients at the lowest
level of the decomposition. The wavelet coefficients in lev-
els covering the maximal frequency range that would ever
be of interest to us (i.e., .1-20 kHz) were then summarized
in terms of eight mean sums of squares, (z;1,...,Zs), for
each time window ¢, so that

2077 o
k=1 G e
Toj—6 = i I =T

where d2 ; are taken from time window ¢.

Observations on these variables for the 128 time windows
in each of the separate, successive .8-s wavelet decomposi-
tions were then assembled sequentially to produce a contin-
uous set of observations referring to time windows covering
the entire duration of the original recording. Essentially this
may be viewed as similar to what others have referred to as
a “scalogram,” or “time marginal of scalograms di s 1n the
literature (see, e.g., Abry, Goncalves, and Flandrin 1995).

For our particular application, mean sums of squares cor-
responding to lower frequencies were actually of little in-
terest; a priori the signals with which we are concerned
are in the higher frequency ranges, and our focus in most
of the later discussion will actually be on the behavior of
(x5, %6, 2t7), which cover the range 2-10 kHz. Subse-
quently, we use X; = (245, %16, Z+,7) to denote a vector of
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multivariate observations on these three variables in time
window ¢. In other applications, where a different frequency
range is important, fewer or more of the mean sum of
squares may need to be considered, and the definition of
x; can then be adjusted accordingly.

To illustrate the relevance of x; = (x5, Z¢6, Z¢,7) tO sig-
nal detection in our particular case, we compare, in Fig-
ures 3 and 4, its behavior during typical dolphin signals
(Fig. 3) and during a period of background interference
when no ‘signals’ are present (Fig. 4). Each figure relates to
a period of .8 s, and both are taken from the same original
recording. The dolphin signals contained in the first case
are a whistle (narrowband and relatively long time dura-
tion), followed by a short series of clicks (broadband and
very short time duration). The two plots have been stan-
dardized so that the total energy across all frequencies is
the same in each of the .8-s periods. Informally, then, we
are comparing sounds of equal “volume.”

It is clear from these plots that the selected mean sums
of squares jointly behave in a significantly different way
during the dolphin signals than they do during background
interference with the same total energy when no signals are
present. Moreover, although we do not reproduce further
plots here, similar patterns in these variables tend to be re-
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peated in signals of the same general type. Notice however,
that it is the multivariate behavior of the variables that is
important—in some cases, the behavior of any of z; 5, z+ 6,
or z; 7 taken singly may remain quite similar during signal
and noise phases, but their joint behavior is distinctive.

6. A SIGNAL DETECTION TEST

The results of the previous section suggest that signal
detection might be achieved through formal detection of
changes in the joint behavior of the mean sums of squares
described there. This in turn requires a reference model of
their joint distribution during periods of background inter-
ference and, in addition, a method of detecting multivariate
outliers from this distribution.

If one were able to make some simple assumption about
the joint distribution of the mean sums of squares in the case
of such noise (e.g., multivariate normality), then one could
simply estimate the parameters of this distribution from a
period of known noise, and various techniques would be
readily available to detect single multivariate outliers, or
signals—for example, the use of Mahalanobis distance as
recently described by Penny (1996). However, the possibly
complex and changing nature of the background underwater
continuum precludes any such simple assumptions and sug-
gests taking a nonparametric and flexible data-dependent
approach to the estimation of the joint distribution.
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The idea proposed here is to develop an initial multivari-
ate density estimate of the joint distribution of the mean
sums of squares from a sufficiently long period of known
background interference or noise. Then each successive new
observation on the variables will be used to update the cur-
rent density estimate of the joint distribution, unless it is de-
tected as a potential outlier from this distribution, in which
case it will be flagged as part of a signal and then ignored.
The noise model thus adapts over time, thereby reflecting
any changes in underwater background environment that
are occurring.

To obtain density estimates, we used a multivariate kernel
density estimator with a multivariate normal kernel of the
form given by Silverman (1986, p. 78). Recall that our prac-
tical focus here is on a trivariate distribution for x; = (z; 5,
Zt6,Lt,7), Where t refers to the temporal window, so that,
given data x4, . .., Xy, the specific estimator used was

. (det §)~1/2 & (x—x)/S7L(x — x¢)
J&) = oy ZexP( 2h? ) ’

where S is a robust estimate of the covariance matrix
(see, e.g., Tukey and Tukey 1981), and h is a suitable
global bandwidth chosen on the scale of standardized data
rather than original data. Optimal choice of h was deter-
mined by simple cross-validation, maximizing the approx-
imate log-likelihood for the data, Zle log(f;(x;)), where
ft, t =1,...,T refers to the kernel density estimate based
on all the observations xy, . .., X, except x; itself. All these
methods are well established (for more details and bibli-
ographies, see, e.g., Silverman 1986 or Wand and Jones
1995). More sophisticated methods for bandwidth selection,
such as generalized cross-validation, could be adopted if re-
quired, but the straightforward approach worked sufficiently
well for our purposes. We also assume here that xq, ..., X7
are serially independent or at least have only restricted de-
pendency. Without this assumption, the accuracy of the ker-
nel estimate obtained is clearly questionable and this will
have a corresponding adverse effect upon the signal de-
tection method described in subsequent sections. Although
wavelet coefficients at any particular scale are not necessar-
ily serially uncorrelated, it has been demonstrated that the
orthogonal wavelet transform does have a strong decorre-
lation property when applied to data with correlated noise
(see, e.g., Johnstone and Silverman 1997). In addition, each
x; is a summary of several wavelet coefficients within a time
window, so that with the values of 7" adopted here, the sam-
ple xq,...,x7, actually refers to runs of several thousand
individual wavelet coefficients. The possibility of serial de-
pendence thus does not present a major practical difficulty
in our case.

The previously described kernel estimator was first ap-
plied to an initial sample, xy,...,Xp, taken from the be-
ginning of the sound recording that was known a priori
to consist of pure background interference with no sig-
nals of interest. The way in which our recordings were
obtained ensured that lengthy periods of this nature were al-
ways available. The duration, 7', of the initial sample must
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clearly be sufficiently large enough to form a reasonably
stable kernel estimate of the joint distribution, and as a ba-
sic guide we used double the minimum theoretical sample
size suggested by Silverman (1986, p. 94) to ensure accept-
able mean squared error at the origin, when estimating a
standard three-dimensional normal density using a normal
kernel and a bandwidth that-minimizes mean squared error
at the origin. But other, separate considerations also gov-
erned our choice of 7', and we return to this point later.

Once the initial density estimate was established, we then
successively considered subsequent observed vectors of the
selected mean sums of squares in the sound recording. De-
note the new vector at any stage as x, and letx;, t =1,...,T
be the set of most recent preceding points identified as
noise; that is, those on which at any time the most recent
kernel estimate of the noise distribution is based. We then
identify x as an outlier from the current kernel density esti-
mate if it produces a significantly small significance level,
the latter being given by

#{fe(x) < fx)} +1

T+1 ’
where “#{-}” means “the number of” for t = 1,...,T; f
refers to the kernel density estimate based on xy,...,X;

and ft refers to the kernel density estimate based on
X1,...,Xr but excluding x;.

This detection criterion, or test, represents a simple com-
parison of f(x) with 7" ordered examples of effectively the
same quantity for points known to be noise, with these
examples obtained by cross-validation on xi,...,xp. Its
structure resembles tests which are common in resampling
methodology and it has some similarities to those adopted in
kernel discrimination methods (see, e.g., Remme, Habbema,
and Hermans 1980). The minimum possible empirical sig-
nificance level is clearly determined by the value of T'; the
power of the test would tend to increase with 7. A judicious
choice of T thus allows a degree of fine tuning to partic-
ular circumstances whereby a lower bound is established
through the required significance level (given that this ex-
ceeds the level required for a stable density estimate; see
earlier), and then a trade-off is established between a value
sufficiently large to ensure adequate power and a value suf-
ficiently small to maintain the time localization of the cur-
rent density estimate. Note that the fo,t =1,...,T are
automatically available from the last iteration of the most
recent cross-validation used to optimize kernel bandwidth,
and so little extra computation is involved in applying the
test.

If x is identified as an outlier by this detection test, then
it is flagged as a part of a signal and subsequently ignored.
Otherwise, x; is replaced by x;41, t = 1,...,7 — 1, X re-
places xr, and then the optimal bandwidth and the kernel
density are updated before the entire process is repeated for
the next x. Thus the kernel density estimate and the critical
region of the detection test develop recursively over time
in response to any slow changes in underwater background
environment that might be occurring. In this sense the ap-
proach addresses similar issues as methods that incorporate
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explicit models to allow for a slowly varying time change in
an otherwise almost stationary noise component (see, e.g.,
Dahlhaus 1997; Donoho et al. 1996).

If the nature of the signals being sought requires it, fur-
ther adjustment to this procedure is available through the
introduction of an appropriate “lag” into the updating of the
kernel estimate. Under such a scheme, new observations are
successively tested but subsequently placed into a “buffer”
of appropriate length, without updating the kernel. When
the buffer is full, the set x;, ¢ = 1,...,T, and the kernel are
updated using all vectors in the buffer identified as noise.
The buffer is then emptied. In this way signal detection is al-
ways based on a slightly delayed background environment.
Such a lag will clearly reduce the computation involved in
updating the kernel after each new vector that is not classi-
fied as signal. However, the more significant motivation for
a lag is to help to reduce the misclassification probability
of the current vector being increased by a preceding sig-
nal in the immediate past being wrongly classified as noise
when detecting certain signals (such as dolphin “whistles”)
characterized by a slow build-up.

7. APPLICATIONS

Here we examine the results when our signal detection
method is applied to artificial data consisting of known sig-
nals contaminated with artificial underwater noise using a
range of signal-to-noise ratios (SNRs) and compare these
results to those obtained from an alternative and more con-
ventional time-frequency approach. We do this simply to
establish that our method is capable of reasonable recovery
of known signals in well-understood circumstances, rather
than to draw any general conclusions about performance.
This established, we then report the results of applying the
method to a substantial time period of “noisy” real under-
water sound involving dolphin “clicks” and “whistles” and
again compare the results to those obtained from the time-
frequency approach.

In the comparisons here we use a straightforward time-
frequency approach based on the STFT. As discussed ear-
lier, there exist a range of more sophisticated competing
model-based time-frequency or time-scale approaches for
segmentation of a possibly nonstationary stochastic sig-
nal. Indeed, we could even experiment with a segmentation
method derived from applying the sequential kernel den-
sity estimation ideas described in earlier sections to local
STFT-based periodograms, rather than wavelet decomposi-
tions. However, our objective here is not to establish that
our approach is better than other signal detection methods,
but rather to provide an additional model-free methodol-
ogy that performs relatively effectively when compared to
a straightforward “baseline” technique.

7.1 Atrtificial Sound Data

In constructing artificial sound data, it was convenient
to use easily generated human speech as the basic known
signal. Accordingly, a single spoken word was recorded
in laboratory conditions to ensure a negligible amount of
noise in the recording; this word provided a series of 13

signals when split into temporal “windows” of the duration
described in Section 5. To produce simulated underwater
noise with which to “contaminate” these known signals, a
section of typical interference was extracted from our real
underwater recordings, an STFT was performed to obtain
its spectral decomposition, and an inverse filter was then
designed using the Yule-Walker algorithm of Friedlander
and Porat (1984). The designed filter was then applied to
simulated white noise, thereby generating artificial under-
water noise with a similar spectral decomposition to the real
underwater sound background. The series of known speech
signals was then embedded additively toward the end of the
period of this simulated underwater noise, leaving an initial
section known to contain no signals.

We repeated this contamination procedure using differ-
ent SNRs to produce a range of test datasets with differ-
ent levels of interference present where for our purposes,
SNR (in dB) is defined on a logarithmic scale, as the ratio
of the energy (sum of squares) of the signal to the energy
of the noise. For the different datasets, we used SNRs of
5, 0, =5, —8, and —10 dB, where the positive value im-
plies that the signal is more powerful than the noise and
vice versa for negative values, with O corresponding to sig-
nal and noise having equal energy. In practice, at an SNR
exceeding —8 dB, speech is barely distinguishable by the
human ear, whereas at the other extreme, an SNR of 5 dB
represents clearly audible speech. Different realizations of
the simulated underwater noise were used for contamina-
tion at each different SNR level.

Each resulting test dataset was designed to provide 128
successive multivariate observations, x;, for the mean sums
of squares described in Section 5. Of these observations,
115 were known to relate only to artificial underwater noise,
whereas, as mentioned previously, 13 related to the human
speech signals with noise superimposed.

In this application, a priori knowledge of the signals to be
detected suggests use of only two mean sums of squares,
those covering the 1-3 kHz range. Accordingly we take
X; = (Zt4,%:5) as simply a bivariate observation in this
case and take the first 7' = 30 observations in each of the
test sets as sufficient to provide an initial stable kernel es-
timate of the two-dimensional density of these variables.
Recall that these observations are known to contain no sig-
nal from the way in which the test data were constructed.
The successive vectors in the remainder of each test set
were then considered, and the signal detection method de-
scribed in the previous section was applied using a 5% sig-
nificance level. As a result, each of the corresponding 98 ob-
servations were detected as signal or as background noise.
Table 1 summarises the results obtained over the various
test datasets, where “false positive” refers to the percent-
age of misclassifications when noise is classified as signal
and “false negative” gives corresponding results when sig-
nal is classified as noise.

To obtain some measure of the performance of our
method, we compared the results to those arising from an
alternative and “baseline” approach to signal detection. As
discussed briefly in Section 3, many methods for time-
frequency analysis use the STFT, and so we adopted a
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Table 1. Performance of Wavelet (DWT)-and Fourier
(STFT)-Based Signal Detection Methods

% false + VEs

% false —VEs

SNR (dB) DwT STFT DWT STFT
+5 4.7 3.5 0.0 7.6

0 6.2 0.0 0.0 53.8

-5 4.7 1.2 154 100.0

-8 11.8 1.2 154 92.3
—-10 10.6 3.5 38.5 100.0

NOTE: Comparison relates to identifying 13 known human speech signals contaminated with
artificially generated underwater noise at different SNRs, so as to form a section of sound of a
total length of 98 observations.

commonly used technique based on this transform for the
comparison here. This method compares the energy in fre-
quency “bins” within successive time “windows” with their
means over the whole period of sound, and flags a time
window as a signal if one or more of the standardized dif-
ferences exceeds predefined thresholds. This method, along
with others, has been described in detail by Boashash and
O’Shea (1990). The results of applying it here with optimal
thresholds chosen so as not to identify any signals in the
first 30 observations of known noise are given alongside the
results of our method in Table 1.

In signal detection work of this nature, it is generally the
false-negative rate that is of most concern, because the cost
associated with overlooking true signals is judged to be high
relative to that incurred by “false alarms.” Given the rela-
tively small number of signals present in the test data and
the size of 7, the results of our method indicate accept-
able numbers of such misclassifications across the whole
range of SNRs. Some variability in the trend in the rates
across different SNRs arises from the fact that different ex-
amples of simulated underwater noise are used in each of
the test datasets, but as might be expected, the number of
false negatives broadly increases as the degree of noise in-
creases. However, even at SNR levels where the signal is
virtually inaudible to the human ear, our method experi-
ences only 15% false negatives, whereas the STFT method
fails to detect any of the signals present. Within reasonable
limits, the numbers of false positives is of less importance
in practical applications, and although the Fourier method
performs better than our method in this respect, the latter
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gives acceptable results, misclassifying less than 12% even
in the worst case.

Clearly, these comparisons are not extensive enough to
draw any general conclusions about performance, which
would require repetitions within SNR levels. Unfortunately,
numerous repetitions at each SNR level are not feasible
here, because of the lack of a sufficient number of suitable
sections of known underwater noise on which to base the
contamination. Howeyver, the results do serve the purpose
for which they were designed—namely, to indicate that our
signal detection approach can reasonably recover known
sound signals against background interference of the type
likely to be encountered in real underwater applications,
and that it compares favorably in this objective with a com-
monly used time-frequency method.

7.2 Dolphin Sounds

The comparisons on the artificial data are encouraging,
but the more important question is how well our method
performs in real situations. Thus now consider a lengthy
and “noisy” section of underwater sound of 12 s dura-
tion (491,520 original data points, or 1,920 of the suc-
cessive temporal windows referred to in earlier sections).
The selected section of sound involved dolphin clicks and
whistles. It was immediately preceded on the recording
by a .8-s period that could be guaranteed a priori to
contain no such signals. This preceding period provided
T = 128 successive multivariate observations X, ..., X7,
on the three selected mean sums of squares described in
Section 5; that is, X; = (%5, 6, %t,7). This was taken
as sufficient to provide an initial stable kernel estimate
of the three-dimensional density of these variables. Suc-
cessive vectors in the immediately following 12-s period
of the recording were then considered, and the detection
method was applied using a 1% significance level. As a
result, each of the corresponding 1,920 observations was
detected either as signal or as background noise, with out-
put consisting of a white (noise) or black (signal) indica-
tor for each observation. The results are depicted for the
full 12.8-s period in Figure 5, below the corresponding
wavelet coefficients for the sound in the three levels used in
the detection; that is, between frequencies from 2-10 kHz.

Figure 5. Discrete Wavelet Coefficients, dj, Using Daubechies’s Extremal Phase Wavelet With N = 8, in Frequency Bands 2.5 kHz, 5.1 kHz,
and 10.2 kHz (with 2.5 kHz at the Top) and Wavelet Detection Results (Bottom, With Black Indicating Signal) for Selected 12.8 s (2,048 Time
“Windows”) of Dolphin Sound. The first .8 s (128 time windows) are known to contain no signals.
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Figure 6. Spectrogram (Top) and STFT Detection Results (Bottom, With Black Indicating Signal) for Selected 12.8 s (2,048 Time “Windows”) of
Dolphin Sound. The first .8 s (128 time windows) are known to contain no signals.

In total, the wavelet method identifies 727 signals in the
1,920 unclassified observations relating to the final 12 s
of the recording. Because the true signals are unknown in
this case, we have no direct way to assess the accuracy of
these detection results. However, in most cases there is a
convincing visual match between salient features visible in
the wavelet coefficients and the signal detection output.

A more objective way of assessing the results is to com-
pare them with those obtained using the detection method
based on the STFT described earlier. One way of summa-
rizing the spectral decomposition obtained from a STFT is
through a spectrogram (see, e.g., Boashash 1990). In such
a representation, the horizontal axis relates to time window
and the vertical axis to frequency bin; the energy of the
sound at each time/frequency combination (which is pro-
portional to the square of the amplitude of the appropriate
sinusoid) is then displayed as a grayscale, usually black for
low values through white for high values. The spectrogram
for the full 12.8-s section of sound is shown in Figure 6,
with 128 frequency bins covering the range up to 16 kHz
and with time windows analogous to those used in the ear-
lier wavelet analysis. The results of signal detection based
on this spectrogram using the energy detection method de-
scribed earlier are also included in Figure 6, below the spec-
trogram. Each time window is flagged as white (noise) or
black (signal). Optimal thresholds for the method were cho-
sen so as to detect no signals in the first 128 observations
of known noise.

In total, the method based on the STFT identifies 578
signals in the 1,920 unclassified observations relating to
the final 12 seconds of the recording. Comparison of the
spectrogram and the detection results in Figure 6 reveals a
reasonable visual match between the dominant sound fea-
tures visible in the spectrogram and the output of the signal
detection method. However, the STFT method has identi-
fied 149 fewer signals than the number identified by our
wavelet approach on the corresponding sound section.

When the results of our method are compared in more
detail to those based on the STFT, the two methods agree
on the identification of 519 signals and 1,134 noise observa-
tions. In the remaining 267 cases, the STFT method iden-
tifies 59 signals that are flagged as noise by our method,
and our method identifies 208 signals that are flagged as
noise by the STFT method. What is clearly unknown is

whether the latter are true signals that have been missed by
the STFT method; the results obtained on the artificial data
considered earlier would tend to suggest this hypothesis,
and it is further supported by reference to Figure 5, where
it is difficult to accept that as many as 208 of the signals
detected fail to correspond to significant visible features
in the wavelet decomposition. Of course, significant visible
features in the wavelet coefficient sequences could still a
priori be true noise, because we allow for possibly varying
background recording conditions. One way of examining
this would be through a more detailed look at the multivari-
ate density estimate for noise in the vicinity of these sound
sections, rather than the wavelet coefficient patterns. An al-
ternative is to identify sections of the recording detected
by the wavelet but not by the STFT method, then subject
these sections to an audio analysis. Although somewhat in-
formal and subjective, the latter suggests that many of the
features overlooked by the STFT approach can actually be
identified by the human ear as short-term dolphin clicks,
albeit with some difficulty. Thus it would appear that there
are a substantial number of signals in this period of sound
that do not appear in the spectrogram and are not detected
by the STFT method, but are visible in the wavelet decom-
position and are appropriately picked up by our method.
This finding lends support to our earlier arguments for pre-
ferring wavelet over Fourier transforms in this particular
application and to preferring the wavelet detection results
over those generated by the baseline STFT method.

8. CONCLUSIONS AND DISCUSSION

Wavelet analysis has been applied to underwater sounds
of differing types with the objective of detecting signals
against a potentially changing background sound environ-
ment or noise in the data. Our motivation for seeking a
signal detection method based on the use of wavelets over
one using Fourier analysis is that wavelets provide better
time-frequency localization for transients, and signals of
very short-term duration are often of primary interest in
the kind of application considered in this article.

The proposed method of signal detection constructs an
adaptive model of the background underwater sound envi-
ronment in the space of the wavelet representation, using
recursive kernel estimation of the joint distribution of cer-
tain summary measures of the wavelet coefficients. Obser-
vations considered to be outliers from the kernel estimate at
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any time are then flagged as signals. We argue for this ap-
proach, as opposed to one based on straightforward thresh-
olding of wavelet coefficients or the recent use of wavelet
thresholding in postprocessing for adaptive segmentation,
because the former are directed primarily toward the recov-
ery of smooth features, which is not our primary concern,
and the latter incoporate models that may be inappropriate
in our application.

Overall, given a priori knowledge of the broad frequency
band of interest, so that appropriate levels of the wavelet
decomposition may be selected, and also given a time se-
ries that contains an adequate initial period that is known to
contain no signals of interest, the techniques that we have
described allow the rest of the series to be identified as
signal or noise at intervals of very short time duration with
moderate computational effort. Our method does not require
any prior knowledge of suitable thresholds or features of
the noise distribution, because this knowledge is built adap-
tively through time. Furthermore, the suggested approach is
general and easily adaptable to different situations. It thus
may be applicable to data from other sources, such as those
obtaining from medical scanning, spectroscopy, or tomog-
raphy of various descriptions. Moreover, the method used
lends itself well to applications where the ultimately aim
is subsequent discrimination between detected signals. The
results clearly identify the length of signals, and their signa-
tures are characterized by the multivariate behavior of the
dominant frequency/energy measures, x;, throughout the
signal. This provides a basis for later detailed classification
of the type of signal involved.

Our detection of outliers is based on empirical consid-
erations, and it could be argued that it is a contradiction
to do this; instead, we should use basic knowledge about
the general distributional structure of the data generation
process. For example, it might be suggested that it is bet-
ter to examine broad specifications of the noise distribution
such as symmetry, or to look at location-slippage explana-
tions of outliers (see, e.g., Barnett and Lewis 1994). But,
such specifications simply are not available for our back-
ground sound environment, and we have no alternative but
to accept the limited assessment of outliers yielded by an
essentially nonparametric empirical approach. Empirical ar-
guments also apply to justify the test procedure that we have
used to decide whether any new observation is an outlier
from the most recent kernel estimate of the noise distribu-
tion. Because our noise distribution is data dependent and
contains features that change and evolve over time, it is not
possible to theoretically develop a test statistic that would
have any meaningful generality in the situations likely to
be encountered in practice.

In summary, we have presented an approach that rea-
sonably recovers known signals contaminated with varying
degrees of simulated noise. More important, it also pro-
duces plausible results when applied to noisy real record-
ings of dolphin sound. We have demonstrated that these
results compare favourably with corresponding results ob-
tained using a more conventional, straightforward time-
frequency signal detection method. Knowledge of the true
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signals present in our recordings is not available, and so
clearly we cannot conclude on the basis of these compar-
isons that our approach is better than other signal detection
methods. However, establishing this point is not our main
interest. Signal detection is a difficult practical problem and
one probably best approached using a multiplicity of meth-
ods, rather than trying to identify a single best technique.
Our method has simply been presented as a possibly useful
addition to the growing range of signal-processing tools.

[Received April 1996. Revised July 1997.]
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