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LOG-GAMMA DISTRIBUTION

This distribution can be derived by using a
transformation* of the form X = log(dY),
where Y follows a gamma distribution* with
scale and shape parameters # and k, respec-
tively. In that case, X follows a log-gamma
distribution (Bartlett and Kendall [3]) with

0.6 .

0.5

0.4

0.3

0.2 +

0.1 +

probability density function given by
|
gilxi k) = F(Z:—) log(kx — €%),

—oo < x < %%, k>0,

where T'(+) is the gamma function. The form
of g, reduces to the standard extreme-value
distribution* on setting ¥ = 1. Some important
properties of the log-gamma distribution are
given below.

1. Shape Properties: g\ is negatively skewed,
with skewness decreasing as k increases.
Figure 1 shows the shape of the distribution
for several values of k.

Moment Generating Function:

M () =T + k)/TK).

Cumulative Distribution Function:
F*() = La(k), —»<x <=,
k>0,

where I,() is the incomplete gamma func-
tion.

Cumulants:
k¥ = d" log T'(k)/dk".




5. Mean and Variance:
uo= EX) = k),
o? = Var(X) = ¢'(k),
where (k) = d log T'(k)/dk (see DIGAM-
MA FUNCTION) and '(k) = d? log T'(k)/
. dk* (see TRIGAMMA FUNCTION).
Infinite Divisibiliry*: It follows from

Shanbhag et al. [13] that the log-gamma

distribution is self-decomposable and there-
fore infinitely divisible.

The log-gamma distribution with density
function g; and various reparametrizations
given below) have been shown to be very
useful as lifetime models. By using the asymp-
totic formulae ¢(k) ~ log k and ¢'(k) ~ 1/k,
Prentice [10] has suggested a reparametrization
of the density function g, as

Pl

0 exp[x/—lxjx —k exp(—\/%)],
k>0,

galx k)=
—o < x < ™,

and showed that as k — <, g,(x; k) converges
to the standard normal density function. He
has also considered a reparametrization which
replaces k with ¢ = k™2, and extended the
family of models with density function g» to
include distributions with ¢ < 0. By setting

= (Z — p)/o, a further reparametrization
of the density function g, is given by

el

—o0 < 7 < ™,

gl ok) =

[ﬁ(z*#) —kexp(

kk—lll

where —e < p <, ¢ >0, and k > 0 are
the location, scale, and shape parameters,
respectively. Uesaka [15] has demonstrated
graphically the relationship between skewness
and kurtosis for the density function g3, and has
obtained an approximation to the log-gamma
distribution by the generalized logistic. Henna
[7] has studied the identifiability* of some
countable mixtures of the density function g3
(see MIXTURE DISTRIBUTIONS), and has obtained
a sufficient condition for the identifiability of
these mixtures provided that the supports of
mixing distributions are well-ordered sets for a
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total ordering of the parameter space. He has
also shown that all finite mixtures of distribu-
tions with density g5 are identifiable. Moreover,
he has studied the identifiability of countable
and finite mixtures of the reversed log-gamma
distribution with moment generating function
M (2) = e#' (=0t + k)/T (k).

Prentice {10} and Farewell and Prentice [4]
have fitted the above distributions to data sets
from industrial and medical failure-time stud-
ies in order to model distributional shape and
to discriminate between special cases. They
have also considered maximum likelihood es-
timation* for regression models based on the
density function g3. The usual approach for
obtaining the maximum likelihood estima-
tors (MLEs) &, &, and k would be to maxi-
mize log L(u, o, k), where L is the likelihood
based on a sample zj,22,...,2,. This would
be achieved by simultaneously solving the
equations 9 log L/du = 0, 9 log L/d0 = 0,
and 8 log L/dk = 0. However, this presents
problems in this case, since it involves the
calculation of the derivatives of log L with
respect to k. This obstacle is overcome by
performing interactions in two stages, treat-
ing k as fixed in the first case. For a sin-
gle value of k, one finds the values f(k)
and &(k) that maximize log L by solving
dlog L/du = 0 and 3 log L/dc = 0. By re-
peating the procedure for different values of k,
the maximized likelihood function Lya.(k) =
L{j{k), &(k), k) can be determined sufficiently
accurately to obtain the MLE k, which is the
value that maximizes Lgax(k). Thus, one ob-
tains the MLEs 4 = /1(12), & = &(k), and £,
and the maximized relative likelihood function
Ruax(k) = Lmax(k)/L(f, &, k) can be deter-
mined. A graph of Rp,«(k) portrays plausible
k-values and is useful with likelihood ratio
tests.

Balakrishnan and Chan [2] have studied
MLEs for w, o, and k under doubly Type II
censored samples (see PROGRESSIVE CENSOR-
ING SCHEMES). They have presented the second
derivatives of log L with respect to all three pa-
rameters, so that the Newton—Raphson method
can be used to obtain the estimates. They have
also derived the expected Fisher information*
matrix through which the asymptotic variances
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and covariances of the MLEs are tabulated for
various proportions of censoring.

When the samples are uncensored and & is
known, a different picture emerges. Lawless
[8, 9] has studied exact inference procedures
for parameters, and also for quantiles, when
k is known. Such results are important be-
cause firstly, good inference procedures are dif-
ficult to obtain with % assumed unknown, and
secondly, in real situations, a model with a
particular value of & often is actually chosen
for analysis. In that case, convenient estima-
tors are the MLEs ji(k) and &(k), obtained by
solving the following equations (arising from
dlog L/du = 0 and 4 log L/do = 0):

n e y
exp(fi) = (Z:‘-—-: exi(w/o- JE))
F o4 i — Z?:] i exP(zi/a- \/E)
Z \//\—’ Z:l::l exp(zi/o"- \/E)

These are solved using the given value of k.
Another pair of convenient estimators are the
sample mean 4 = & and the scaled standard
deviation & =[3" (z — 2)2/n]", which
are also the MLEs of u and o for the standard
normal distribution (k = «). To give confi-
dence intervals for the parameters &, o and
the quantiles, Lawless [8] has shown that the
pth quantile x; , of the random variable X
with density function g, can be expressed in
terms of the pth quantile ,yék)_p of a chi-
square distribution* with 2k degrees of freedom
by the formula Xep =k Iog[(2k)"x§k‘p].
Therefore, the pth quantile zp of the ran-
dom variable Z with density function g3 is
expressed as z, = u + oXi, p. By consider-
ing the pivotal quantities W, = (& — w)/&,
Wiy = /0o, and W, = (& — z,)/&, noting
that W, = W, — Xip W5 ! and further that the
quantities a; = (z; — @)/&, i = 1,2,...,n,
are ancillary statistics*, confidence intervals
and tests for u, o, or Zp can be based on the
conditional distributions of W, W,, and W,
given a’ = (ay,...,a,).

Balakrishnan and Chan [1] have studied
MLEs under doubly Type Il censored sam-
ples of the parameters x and o of the density
function g3 when k is known. They have ob-
tained expressions of the likelihood equations

for u and o, and have given simulated values
of the bias, variances, and covariances of the
MLEs for various sample sizes, choices of cen-
soring, and k-values. They have also derived
the expected Fisher information matrix through
which the asymptotic variances and covari-
ances of the MLEs are tabulated for various
proportions of censoring. Moreover, they have
discussed how one is able to construct confi-
dence intervals or carry out tests of hypotheses
concerning the parameters x and o, based on
the pivotal quantities Py = /n (4 — w)/6 and
Py = /n&/o. Since the small-sample distri-
butions of P and P, are intractable, they have
simulated the percentage points of P, and P,
(based on 3001 Monte Carlo runs) for sample
sizes n = 20, 25, 40, various proportions of
censoring, and different k-values. They have
also applied asymptotic normal approximations
to the distributions of P, and P-: the normal
approximation to the distribution of P is fairly
good even for a sample of size 40, but the ap-
proximation to the distribution of P, requires
a much larger sample size.

In the statistical literature another distribu-
tion is also referred to as a log-gamma distri-
bution. If ¥ follows a gamma distribution with
scale and shape parameters 6 and &, respec-
tively, then X = ¢~" follows a log-gamma dis-
tribution (sometimes it is called a unit-gamma
distribution; see Ratnaparkhi [11]) with proba-
bility density function given by

g 0.k) = ix”"(-—log X)F
L(k)
0<x<l,

where 6, k > 0. The form of g, reduces to the
uniform distribution when # = k = | and rep-
resents power-function distributions when 8 >
0 and k = 1. The fact that a suitable choice of
6 and k gives almost any form corresponding
to the beta distribution* has led to the density
function g4 being considered as an alternative
to the beta [6, 11, 15]. Distributional properties
of g4 have been given by Grassia [6]; it is useful
where inoculation is used to estimate bacteria
or virus density in dilution assay with host vari-
ability to infection, and could be considered as
a prior density in conjunction with the bino-
mial or a zero-truncated binomial distribution.




Taguchi et al. [14] have used the density func-
tion g4 in conjunction with income distribution*
models, and Schultz [12] has studied it in the
context of splitting models as a mass—size dis-
tribution. Fosam and Sapatinas [5] have used
g4 as a survival distribution in the context of
multiplicative damage models* and have ob-
tained characterizations of the Pareto distribu-
tion* based on power-type regression functions
(see CHARACTERIZATIONS OF DISTRIBUTIONS).
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Let X),X5,....Xy be iid. positive ran-
dom variables with a common cdf F(-), and
Yy,Ys,...,Yy be a sequence of such random
variables with a common cdf G(-). Here X; is
observable iff X; = Y;. The n truncated obser-
vations are denoted by X?, Y,~0, i=1,...,n for

N
n = Z I(X,»a)’,),

i=]

where Iy, is the indicator function.

Lynden-Bell [1] in his study of truncated
data with applications to astronomy proposed
to estimate F(-) and G(*) via

1 — F,@t) =]_[(1 - A—L”-g-fl>,

st RN(S)

Gult) = g(l = é%);

where Ly(s) = S Iy<xi<sp Rw(s) =
Zi:] 1{}',sssx,-}, and QN(S) = Zi.—_l I{Y,-SS.Y,-SX,-}




