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Abstract: We consider the problem of estimating the unknown response
function in the multichannel deconvolution model with a boxcar-like ker-
nel which is of particular interest in signal processing. It is known that,
when the number of channels is finite, the precision of reconstruction of
the response function increases as the number of channels M grow (even
when the total number of observations n for all channels M remains con-
stant) and this requires that the parameter of the channels form a Badly
Approximable M -tuple.

Recent advances in data collection and recording techniques made it
of urgent interest to study the case when the number of channels M =
Mn grow with the total number of observations n. However, in real-life
situations, the number of channels M = Mn usually refers to the number
of physical devices and, consequently, may grow to infinity only at a slow
rate as n → ∞. Unfortunately, existing theoretical results cannot be blindly
applied to accommodate the case when M = Mn → ∞ as n → ∞. This
is due to the fact that, to the best of our knowledge, so far no one have
studied the construction of a Badly Approximable M -tuple of a growing
length on a specified interval, of a non-asymptotic length, of the real line,
as M is growing. Therefore, this generalization requires non-trivial results
in number theory.

When M = Mn grows slowly as n increases, we develop a procedure for
the construction of a Badly Approximable M -tuple on a specified interval,
of a non-asymptotic length, together with a lower bound associated with
this M -tuple, which explicitly shows its dependence on M as M is growing.
This result is further used for the evaluation of the L

2-risk of the suggested
adaptive wavelet thresholding estimator of the unknown response function
and, furthermore, for the choice of the optimal number of channels M which
minimizes the L2-risk.
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1. Introduction

We consider the estimation problem of the unknown response function f(·) ∈
L2(T ) from observations y(ul, ti), l = 1, 2, . . . ,M , i = 1, 2, . . . , N , where

y(ul, ti) =

∫

T

g(ul, ti − x)f(x) dx + εli, ul ∈ U, ti = (i− 1)/N, (1.1)

where U = [a, b], 0 < a < b < ∞, T = [0, 1] and εli are standard Gaussian
random variables, independent for different l and i. We shall be interested in
the case when the blurring (or kernel) function g(·, ·) is the, so called, boxcar-like
kernel, i.e.,

g(u, t) =
γ(u)

2
I(|t| < u),

where γ(·) is some positive function such that

γ1 ≤ γ(u) ≤ γ2, u ∈ U, (1.2)

for some 0 < γ1 ≤ γ2 < ∞. (Obviously, this is true if γ(·) is a continuous
function.) Hence, (1.1) is of the form

y(ul, ti) =
γ(ul)

2

∫ 1

0

I(|ti−x| < ul)f(x) dx+εli, ul ∈ U, ti = (i−1)/N, (1.3)

for l = 1, 2, . . . ,M and i = 1, 2, . . . , N .
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In signal processing, this model is referred to as a multichannel deconvolution
model, where M is the number of channels and N is the number of observations
per channel, so that n = MN is the total number of observations. We assume
that the measurements ti in each channel are equispaced but the observer can
choose the number of channelsM and the points ul, l = 1, . . . ,M , in (1.1) prior
to the experiment as a part of experimental design. In order to be able to access
convergence rates depending on the number of channels M and the choice of
points ul, l = 1, 2, . . . ,M , we shall further assume that the total number of
observations n is fixed and very large (i.e., n→ ∞). The objective is to choose
M and ul, l = 1, 2, . . . ,M , which ensure the construction of an estimator of
the response function f with the highest possible convergence rates in terms
of n.

Note that standard deconvolution (i.e., when a = b) with the boxcar kernel
(i.e., when γ(u) = 1/u, for some fixed u > 0) is a common model in many
areas of signal and image processing which include, for instance, LIDAR remote
sensing and reconstruction of blurred images. LIDAR is a lazer device which
emits pulses, reflections of which are gathered by a telescope aligned with the
lazer, see, e.g., [24, 13]. The return signal is used to determine distance and the
position of the reflecting material. However, if the system response function of
the LIDAR is longer than the time resolution interval, then the measured LIDAR
signal is blurred and the effective accuracy of the LIDAR decreases. This loss
of precision can be corrected by deconvolution. In practice, measured LIDAR
signals are corrupted by additional noise which renders direct deconvolution
impossible. If M ≥ 2, then we talk about a multichannel deconvolution model
with blurring functions gl(t) = g(ul, t).

Although standard deconvolution models are traditionally solved using the
Fourier transform or the Fourier series, if the corresponding blurring function
g(·) is a boxcar-like kernel, implementation of the standard Fourier series based
technique is impossible. This happens when the Fourier transform of g(·) has
real zeros, e.g., when g(·) is the boxcar kernel g(x) = (2u)−1

I(|x| ≤ u), for some
fixed u > 0. When M = 1, [15] and [16] managed to circumvent this obstacle
by considering a boxcar kernel g(·) with irrational scale. Their method is based
on the fact that the Fourier coefficients of the boxcar kernel do not vanish at
frequencies (πku) when u is a Badly Approximable (BA) number. An irrational
number u is BA if the terms an = an(u) of its continued fraction expansion
[a0; a1, a2 . . .], where a0 is an integer and a1, a2, . . . is an infinite sequence of
positive integers, are bounded, i.e., supn an(u) < ∞. This notion is related to
the fact that a BA number cannot be approximated well by a rational number
which leads to the fact that f can be recovered reasonably well. Since standard
deconvolution is a particular example of linear statistical ill-posed inverse prob-
lems in the sense of Hadamard, i.e., the inversion does not depend continuously
on the observed data, [16] used number theory to prove that the degree of ill-
posedness in boxcar deconvolution is ν = 3/2. Roughly speaking, the degree of
ill-posedness specifies how much the error in the right-hand side of the equation
is amplified in the solution. For example, if f belongs to a space with a smooth-
ness index s > 0 and the degree of ill-posedness is ν > 0, then, the quadratic
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risk of the best possible estimator of the response function f is of the order

O(n− 2s
2s+2ν+1 ).

Following mathematical ideas of [2] and [7], [8] extended the results of [15]
and [16] and showed that if M is finite, M ≥ 2, one of the ul’s is a BA number,
and u1, u2, . . . , uM is a BA M -tuple, then the degree of ill-posedness is ν =
1 + 1/(2M). The notion of a BA M -tuple refers to a collection of M irrational
numbers which are difficult to approximate simultaneosly by fractions with the
same denominator. It will be discussed in depth in Section 2. Therefore, in the
case of M channels, the estimation problem requires a construction of a BA
M -tuple which has been accomplished by the number theory community (it is
described in, e.g., [27, 28]).

Recent advances in data collection and recording techniques made it of ur-
gent interest to study the case when the number of channels M = Mn grow
with the total number of observations n. It turns out that when the number of
channels M = Mn grows fast as the total number of observations n increases,
one does not need to make a special choice of the points ul, l = 1, 2 . . . ,M , and
it is sufficient to take them to be equidistant. Indeed, [26] considered the dis-
crete multichannel deconvolution model (1.1) as observations on the continuous
functional deconvolution model

y(u, t) = f ∗ g(u, t) + 1√
n
z(u, t), u ∈ U, t ∈ T, (1.4)

where z(u, t) is assumed to be a two-dimensional Gaussian white noise, i.e., a
generalized two-dimensional Gaussian field with covariance function

E[z(u1, t1)z(u2, t2)] = δ(u1 − u2)δ(t1 − t2),

where δ(·) denotes the Dirac δ-function, and

f ∗ g(u, t) =
∫

T

g(u, t− x)f(x) dx

with the blurring (or kernel) function g(·, ·) assumed to be known. If a = b,
the functional deconvolution model (1.4) reduces to the standard deconvolution
model which attracted attention of a number of researchers, e.g., [9, 1, 17, 15,
10, 16, 23, 18, 4, 5], among others.

Formulation of the functional deconvolution model (1.4) allowed [26] to study
the interplay between discrete and continuous deconvolution models. The ideal
continuous deconvolution model (1.4) assumes that one can measure y(u, t) at
any u ∈ U and t ∈ T and that n−1/2 marks the precision of these observations.
Nevertheless, this does not happen in real-life situations where one observes
y(u, t) only at the points ul ∈ U, ti = (i − 1)/N for l = 1, 2, . . . ,M and
i = 1, 2, . . . , N . Furthermore, [26] showed that the degree of ill-posedness in the
continuous deconvolution model (1.4) is ν = 1 and that it can be attained in
the discrete deconvolution model (1.1) if M = Mn ≥ c0n

1/3 for some constant
c0 > 0, independent of n. Indeed, in this case, one does not need to employ BA
numbers or BA M -tuples: it is sufficient to observe the discrete deconvolution
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model (1.1) at equidistant points ul = a+ l(b− a)/M , l = 1, 2, . . . ,M . This set
up provides the “best possible” minimax convergence rates (under the L2-risk
and over a wide range of Besov balls) in the model.

However, in real-life situations, the number of channels M usually refers to
the number of physical devices and, consequently, cannot be very big. Therefore,
M = Mn ≥ c0n

1/3 may be impossible although it is natural to assume that
M = Mn may grow to infinity at a slower rate as n → ∞. Unfortunately, the
theoretical results obtained by [8] cannot be blindly applied to accommodate the
case when M =Mn → ∞ as n→ ∞. This is due to the fact that, to the best of
our knowledge, so far no one have studied the construction of a BA M -tuple of
a growing length on a specified interval, of a non-asymptotic length, of the real
line. Therefore, this generalization requires non-trivial results in number theory.

Our aim is to investigate the situation when M = Mn grows slowly with
n and to derive necessary new results in number theory in order to devise a
technique which allows to approach minimax convergence rates (under the L2-
risk and over a wide range of Besov balls) in the continuous model (1.4) with a
factor which grows slower than any power of n. This situation seems to be of a
particular interest nowadays since data recording equipment is getting cheaper
and cheaper while overall volumes of data is growing very fast.

When M = Mn grows slowly as n increases, we develop a procedure for
the construction of a BA M -tuple on a specified interval, of a non-asymptotic
length, together with a lower bound associated with this M -tuple, which ex-
plicitly shows its dependence on M as M is growing. This result is further used
for evaluation of the L2-risk of the suggested adaptive wavelet thresholding es-
timator of the unknown response function and, furthermore, for the choice of
the optimal number of channels M which minimizes the L2-risk.

The theoretical results that we have obtained provide a cross-area between
number theory, statistics and signal processing. We hope to alert the number
theory community to a new problem of constructing a BAM -tuple on a specified
interval, of a non-asymptotic length, of the real line, as M is growing. On the
other hand, we believe that our findings will also be of interest to researchers in
statistics and signal processing.

The rest of the paper is organized as follows. Section 2 provides some number
theory background which is required for understanding the material presented in
subsequent sections. Section 3 briefly reviews the adaptive wavelet thresholding
estimator introduced in [25]. Section 4 explains the relationship between the
L2-risk of the estimator obtained in Section 3 and the theory of Diophantine
approximation, thus, motivating the derivation of the new results in number
theory obtained in Section 5. In particular, the objective of Section 5 is the
construction of a BA M -tuple on a specified interval when M = Mn → ∞ as
n→ 0 and the development of related asymptotic bounds which are necessary in
order to choose an optimal value ofM =Mn in this case. Section 6 provides the
asymptotic upper bounds for the L2-risk of the adaptive wavelet thresholding
estimator constructed in Section 3 when M =Mn is a slowly growing function
of n. We conclude in Section 7 with a brief discussion while Section 8 contains
the proofs of the theoretical results obtained in earlier sections.
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2. Background results in number theory

The theory of Diophantine approximation is an important branch of number
theory (see, e.g., [11, 19, 21, 28, 29]). One important topic of the above theory
is the simultaneous approximation of linear forms, which was pursued as early
as mid-19th century by Dirichlet and later studied by a number of profound
researchers in the field. In particular, it is known that for any real numbers
β1, β2, . . . , βM there exist integer numbers q and p1, p2, . . . , pM such that

max
i=1,2,...,M

|βiq − pi| <
M

(M + 1)
|q|−1/M . (2.1)

The above result was proved by Minkowski and has been expanded in the recent
years to cover systems of linear forms (see, e.g., [28], p. 36, pp. 40-41). We note
that in the case whereM = 1, the constant C(M) =M/(M+1) in (2.1) reduces
to 1/2 whereas, by Hurwitz’s theorem, the best possible value is 1/

√
5 (see, e.g.,

[28], Theorem 2F, p. 6). ForM = 2, C(M) takes the value 2/3; the best possible
value is unknown although if C0(2) denotes the infimum of admissible values of
C(M) for M = 2, then it is known that

√
2/7 ≤ C0(2) ≤ 0.615 (see, e.g., [28],

p. 41). Furthermore, the corresponding best constant in the case of systems of
linear forms is positive, meaning that it cannot be replaced by arbitrary small
constants (see, e.g., [28], Section 4, pp. 41-47).

We, however, are interested in the opposite result. Namely, the real num-
bers β1, β2, . . . , βM form a BA M -tuple if for any integer numbers q > 0 and
p1, p2, . . . , pM one has

max
i=1,2,...,M

|βiq − pi| ≥ B(M)q−1/M , (2.2)

for some constant B(M) > 0, dependent on M (and β1, β2, . . . , βM ) but inde-
pendent of q and p1, p2, . . . , pM (see, e.g., [28], p. 42). It is well-known that the
set of all BA M -tuples has Lebesgue measure zero, but nevertheless this set is
quite large, namely there are uncountably many BA M -tuples (see [3, 6]) and
the Hausdorff dimension of the set of all BA M -tuples is equal to M (see [27]).
In the case where M = 1, the number β = β1 which satisfies (2.2) is referred to
in the Diophantine approximation literature as a BA number (see, e.g., [28], p.
22); in view of Hurwitz’s theorem, the constant B(1) in this case must satisfy
0 < B(1) < 1/

√
5 (see, e.g., [28], pp. 41-42). Furthermore, a characterization

result exists, namely a real number, that is not an integer, is BA if and only
if its continued fraction coefficients are bounded. The latter is often used as a
definition of a BA number, however, there is no analogous characterization for
M > 1 (see, e.g., [28], Theorem 5F, p. 22). The above definitions of BA numbers
and BA M -tuples have been also extended to cover BA systems of linear forms
(see, e.g., [28], pp. 41) and their existence was proved by Perron, providing also
an algorithm for constructing BA linear forms (see, e.g., [28], Theorem 4B, p.
43). Furthermore, it has been established the existence of uncountably many
BA systems of linear forms (see [27]).
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In what follows, we are interested in the case of BA M -tuples. Although, as
indicated above, an algorithm is available for constructing BA M -tuples on the
real line, these do not necessarily belong to any specified interval of the real
line. Furthermore, if M is strictly fixed (independent of q), one can treat B in
(2.2) as a positive constant; this, however, becomes impossible if the value ofM
is growing. Using the technique described in [28], Section 4, pp. 43-45, we show
that one can construct a BA M -tuple β1, β2, . . . , βM of real numbers so that it
lies in any specified interval (a, b), a < b, of non-asymptotic length, of the real
line, and derive a lower bound for B(M) in (2.2) as M → ∞. This result is
proved in Section 5.

3. An adaptive wavelet thresholding estimator

Let ϕ∗(·) and ψ∗(·) be the Meyer scaling and mother wavelet functions, respec-
tively, in the real line (see, e.g., [22] or [20]). As usual,

ϕ∗
jk(x) = 2j/2ϕ∗(2jx− k), ψ∗

jk(x) = 2j/2ψ∗(2jx− k), j, k ∈ Z, x ∈ R,

are, respectively, the dilated and translated Meyer scaling and wavelet (or-
thonormal) basis functions at resolution level j and scale position k/2j. Simi-
larly to Section 2.3 in [15], we obtain a periodized version of the Meyer wavelet
basis, by periodizing the basis functions {ϕ∗(·), ψ∗(·)}, i.e., for j ≥ 0 and
k = 0, 1, . . . , 2j − 1,

ϕjk(x) =
∑

i∈Z

2j/2ϕ∗(2j(x+i)−k), ψjk(x) =
∑

i∈Z

2j/2ψ∗(2j(x+i)−k), x ∈ T.

Let 〈·, ·〉 denote the inner product in the Hilbert space L2(T ) (the space
of squared-integrable functions defined on T ), i.e., 〈f, g〉 =

∫
T
f(t)g(t)dt for

f, g ∈ L2(T ). Let em(t) = ei2πmt, m ∈ Z, and let fm = 〈em, f〉, gm(u) =
〈em, g(u, ·)〉, u ∈ U . For any j0 ≥ 0 and any j ≥ j0, let ϕmj0k = 〈em, ϕj0k〉 and
ψmjk = 〈em, ψjk〉, where {φj0,k(·), ψj,k(·)} is the periodic Meyer wavelet basis
introduced above.

Using the periodized Meyer wavelet basis described above, and for any j0 ≥ 0,
any (periodic) f(·) ∈ L2(T ) can be expanded as

f(t) =
2j0−1∑

k=0

aj0kϕj0k(t) +
∞∑

j=j0

2j−1∑

k=0

bjkψjk(t), t ∈ T. (3.1)

Furthermore, by Plancherel’s formula, the scaling coefficients, aj0k = 〈f, ϕj0k〉,
and the wavelet coefficients, bjk = 〈f, ψjk〉, of f(·) can be represented as

aj0k =
∑

m∈Cj0

fmϕmj0k, bjk =
∑

m∈Cj

fmψmjk, (3.2)

where Cj0 = {m : ϕmj0k 6= 0} and, for any j ≥ j0, Cj = {m : ψmjk 6= 0}. Note
that both Cj0 and Cj , j ≥ j0, are subsets of (2π/3)[−2j+2,−2j]∪ [2j , 2j+2], i.e.,

|m| ∈ (2π/3) [2j , 2j+2] (3.3)
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due to the fact that Meyer wavelets are band limited (see, e.g., [15], Sec-
tion 3.1).

Reconstruct the unknown response function f(·) ∈ L2(T ) in (1.3) as

f̂n(t) =

2j0−1∑

k=0

âj0kϕj0k(t) +

J−1∑

j=j0

2j−1∑

k=0

b̂jkI(|̂bjk| ≥ λj)ψjk(t), t ∈ T, (3.4)

where âj0k and b̂jk are the natural estimates of aj0k and bjk, respectively (see
(3.1) and (3.2)), given by

âj0k =
∑

m∈Cj0

f̂mϕmj0k, b̂jk =
∑

m∈Cj

f̂mψmjk. (3.5)

with f̂m obtained by

f̂m =

(
M∑

l=1

gm(ul)ym(ul)

)/( M∑

l=1

|gm(ul)|2
)
, ul ∈ U, l = 1, 2, . . . ,M ;

here gm(ul) and ym(ul), l = 1, 2, . . . ,M , are the discrete Fourier coefficients
of y(u, ·) and g(u, ·), respectively, obtained by applying the discrete Fourier
transform to the equation (1.3). Note that, in this case,

g0(ul) = 1 and gm(ul) = γ(ul)
sin(2πmul)

2πm
, m ∈ Z \ {0} l = 1, 2, . . . ,M.

(3.6)
The choices of the resolution levels j0 and J and the thresholds λj will be

described in Section 6 when we examine an expression for the L2-risk of the
estimator (3.4) over a collection of Besov balls, leading to an adaptive estima-
tor (i.e., its construction is independent of the Besov ball parameters that are
usually unknown in practice).

Among the various characterizations of Besov spaces for periodic functions
defined on Lp(T ) in terms of wavelet bases, we recall that for an r-regular
(0 < r ≤ ∞) multiresolution analysis with 0 < s < r and for a Besov ball
Bsp,q(A) of radius A > 0 with 1 ≤ p, q ≤ ∞, one has that, with s′ = s+1/2−1/p,

Bsp,q(A)=

{
f(·)∈Lp(T ) :

(
2j0−1∑

k=0

|aj0k|p
) 1
p

+

(
∞∑

j=j0

2js
′q

( 2j−1∑

k=0

|bjk|p
) q
p

) 1
q

≤A

}
,

(3.7)
with respective sum(s) replaced by maximum if p = ∞ or q = ∞ (see, e.g., [15],
Section 2.4). (Note that, for the Meyer wavelet basis, considered considered
above, r = ∞.)

The parameter s measures the number of derivatives, where the existence of
derivatives is required in an Lp-sense, while the parameter q provides a further
finer gradation. The Besov spaces include, in particular, the well-known Sobolev
and Hölder spaces of smooth functions but in addition less traditional spaces,
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like the space of functions of bounded variation. The latter functions are of
statistical interest because they allow for better models of spatial inhomogeneity
(see, e.g., [22]).

The precision of the estimator (3.4) is measured by the (maximal) L2-risk
given by

Rn(f̂n) = sup
f∈Bsp,q(A)

E‖f̂n − f‖22. (3.8)

We are interested in the asymptotic rate of convergence of the estimator f̂n, i.e.,
we are interested in the following asymptotical upper bounds

Rn(f̂n) ≤ Cγn as n→ ∞,

where {γn}∞n=1 is a positive sequence converging to 0 as n→ ∞ and C > 0 is a
generic constant, independent of n, which may take different values at different
places.

Hereafter, ‖·‖2 denotes the L2-norm, f̂n(·) is an estimator (i.e., a measurable
function) of f(·) ∈ L2(T ), based on observations from model (1.3), and the
expectation in (3.8) is taken under the true f(·).

4. Relation to the theory of Diophantine approximation

By direct evaluations (see also Lemma 5 and its proof in the Appendix), one
can show that

E|̂bjk − bjk|2 = N−1
∑

m∈Cj

|ψmjk|2
[
M∑

l=1

|gm(ul)|2
]−1

.

Since in the case of Meyer wavelets, |ψmjk| ≤ 2−j/2 and |Cj | ≍ 2j (see, e.g.,
[15], p. 565), we derive

E|̂bjk − bjk|2 = O
(
n−1∆1(j)

)
, (4.1)

where

∆1(j) =
1

|Cj |
∑

m∈Cj

[
M−1

M∑

l=1

|gm(ul)|2
]−1

≡ 1

|Cj |
∑

m∈Cj

[τ1(m)]−1

with τ1(m) ≡ τ1(m;u,M) = M−1
∑M
l=1 |gm(ul)|2, u = (u1, u2, . . . , uM ). By

(1.2) and (3.6), one has

τ1(m) ≍ 1

m2M

M∑

l=1

sin2(2πmul). (4.2)

Here, u(m) ≍ v(m) mean that there exist constants C1 > 0 and C2 > 0,
independent of m, such that 0 < C1v(m) ≤ u(m) ≤ C2v(m) <∞ for every m.
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Therefore, the risk of the estimator f̂n(t) defined in (3.4) is determined by
the rate of growth of ∆1(j) as j → ∞ which, in turn, depends on the rate at
which τ1(m) goes to zero as m→ ∞.

It is easy to see that for some choices of M and u (e.g., M = 1, u1 =
u = 1), one has minm τ1(m;u,M) = 0 for every m which leads to an infinite

variances of the estimated coefficients b̂jk and, consequently, to an infinite L2-
risk. Hence, the choice of M and the selection of points u is of an uttermost
importance. In particular, we want to choose points (u1, u2, . . . , uM ) such that∑M

l=1 sin
2(2πmul) is as large as possible for m ∈ Cj and large j.

Moreover, for any choice of M and any selection of points u, one has

τ1(m;u,M) ≤ K1m
−2

for some constant K1 > 0 independent of m, the choice of M and the selection
points u, so that, for any j and selection of M and u,

∆1(j) ≥ K22
2j, (4.3)

for some constant K2 > 0, independent of j. It turns out that if M = Mn

increases at least as fast as n1/3, then, by sampling ul, l = 1, 2, . . . ,M , uniformly
on U , i.e., by selecting ul = a+ (b− a)l/M , l = 1, 2, . . . ,M , one can attain

∆1(j) ≤ K32
2j

for some constant K3 > 0, independent of j, so that the upper and the lower
bounds in this case coincide up to a constant independent of n (see [26]).

Unfortunately, the above results do not hold for finite values of M or when
M =Mn is a slowly growing function of n. Indeed, in the case of small values of
M , both τ1(m;u,M) and ∆1(j) have completely different dynamics from large
M . Indeed, if M = 1, [16] and [15] showed that in the case of γ(u) = 1/u,
u1 = u∗ = a = b, one has ∆1(j) ≥ K42

3j for any choice of u∗ and some constant
K4 > 0, independent of j. Furthermore, [15] also demonstrated that if u∗ is
selected to be a BA number, then the lower bound for ∆1(j) is attainable, i.e.,
∆1(j) ≤ K52

3j for some constant K5 > 0, independent of j. Hence, in this case,
∆1(j) ≍ 23j.

These results were extended by [8] who studied the multichannel deconvolu-
tion model with a boxcar kernel and showed that the convergence rates obtained
by [15] forM = 1 can be improved by sampling at several different points. In par-
ticular, they demonstrated that if M is finite, M ≥ 2, one of the u1, u2, . . . , uM
is a BA number, and u is a BA M -tuple defined in (2.2), then

∆1(j) ≤ C(M) j2j(2+1/M) (4.4)

for some positive C(M). In particular, when M is growing with n, the value of
C(M) depends on n and, hence, affects the convergence rates of the estimator

f̂n(·) as n→ ∞.

The relation between the convergence rates of the estimator f̂n(·), given by
(3.4), of f(·) in the model (1.3) and the theory of Diophantine approximation
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becomes obvious when one notes that in (4.2), for any m ∈ Z \ {0} and any ul,
l = 1, 2, . . . ,M , one has, combining the periodic behavior of the sine function
together with a first order (linear) approximation,

4‖2mul‖2 ≤ sin2(2πmul) ≤ π2 ‖2mul‖2, l = 1, 2, . . . ,M, (4.5)

where ‖a‖ = inf{|a− k|, k ∈ Z} denotes the distance from a real number a to
the nearest integer number. Hence, (4.2) becomes

τ1(m) ≡ τ1(m;u,M) ≍ 1

m2M

M∑

l=1

‖2mul‖2, (4.6)

so that the convergence rates of the estimator f̂n(·) depend on the lower bound,
in terms of m, of the expression (4.6).

The value of C(M) in (4.4) is related to the value of B(M) in (2.2). To the
best of our knowledge, there has not been developed a procedure for construction
of a BA M -tuple on a specified interval, of non-asymptotic length, of the real
line, and there are no asymptotic lower bounds, in terms ofM , on B(M) in (2.2)
when the value of M is growing. For this reason, in order to find upper bounds
of estimator (3.4) and choose an optimal relation between the sample size n
and the number of channels M when M = Mn is a slowly growing function
of n, we need to obtain new original results in Diophantine approximations. In
particular, the objective of the next section is to construct a BA M -tuple on
the non-asymptotic interval U , of the real line, and to obtain a lower bound on
B(M) in terms of M for this BA M-tuple when M grows slowly with n.

5. Construction of a BA M-tuple on a specified interval

Below, we construct a BA M -tuple β = (β1, β2, . . . , βM ) of real numbers on a
specified interval (a, b), of a non-asymptotic length, of the real line, and derive
the lower bound on B(M) in formula (2.2). For this construction, we use the
technique described in [28], Section 4, pp. 43-45. In particular, we shall provide
an algorithm for construction of anM -tuple β1, β2, . . . , βM of real numbers such
that, as M → ∞,

1. it lies in any specified interval (a, b), a < b, of nonasymptotic length, of
the real line, and

2. it satisfies

max
i=1,2,...,M

|βiq − pi| ≥ B0 exp(−6M lnM)q−1/M , (5.1)

for any integer numbers q > 0 and p1, p2, . . . , pM , and for some con-
stant B0 > 0, independent of M , q and p1, p2, . . . , pM , so that B(M) =
B0 exp(−6M lnM) in (2.2).

Assume that M is large enough, fix a positive integer Q and consider

P (x) = (x−Q)(x− 2Q) · · · (x−MQ)− 1, (5.2)
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a monic polynomial (i.e., a polynomial with a unit leading coefficient) of the
degree M . Let ξ1, ξ2, . . . , ξM be the roots of a polynomial (5.2). Recall that ξ
is called an algebraic integer number if it is a root of some monic polynomial
with coefficients being integer numbers. Algebraic integers are called conjugate
if they are roots of the same monic polynomial with integer coefficients.

Then, the following statement is valid.

Lemma 1. If Q ≥ 5M , then ξ1, ξ2, . . . , ξM are real conjugate algebraic integer
numbers such that

(i− 1/2)Q < ξi < (i+ 1/2)Q, i = 1, 2, . . . ,M. (5.3)

Now, to construct a BA M -tuple, choose Q ≥ 5(M + 1) and construct real
conjugate algebraic integers ξ1, ξ2, . . . , ξM , ξM+1 using the process described in
Lemma 1. Let α = (α1, α2, . . . , αM ) be a solution to the following system of
equations:

M∑

i=1

ξi−1
k αi = −ξMk , k = 1, 2, . . . ,M. (5.4)

Observe that the determinant of the system of equations (5.4) is a Vandermonde
determinant; hence, it is nonzero since ξi 6= ξj for i 6= j. Therefore, the system of
linear equations (5.4) has a unique solution α = (α1, α2, . . . , αM ), which turns
out to be a BA M -tuple.

Lemma 2. The solution α = (α1, α2, . . . , αM ) of the system of equations (5.4)
is a BA M -tuple such that

|αk| ≤ 30 exp(3M lnM), k = 1, 2, . . . ,M, (5.5)

and for any integer numbers q > 0 and p1, p2, . . . , pM , as M → ∞, one has

max
i=1,2,...,M

|αiq − pi| ≥ C0 exp(−3M lnM) q−1/M (5.6)

with some constant C0 > 0, independent of M , q and p1, p2, . . . , pM .

Lemma 2 provides a BA M -tuple which, however, does not necessarily be-
long to the specified interval (a, b), of a non-asymptotic length, of the real line.
Assume, without loss of generality, that both a and b are rational numbers, oth-
erwise, replace (a, b) by (a∗, b∗) ∈ (a, b), where a∗ and b∗ are rational numbers.
Let a = pa/q0 and b = pb/q0 for some integer numbers pa, pb and q0, and let z
be an integer number such that z − 1 < 30 exp(3M lnM) ≤ z. Define

βl = a+ αl(b − a)/z, l = 1, 2, . . . ,M, (5.7)

where α = (α1, α2, . . . , αM ) is the BA M -tuple constructed in Lemma 2.

The following theorem confirms that β = (β1, β2, . . . , βM ), as constructed
above, forms a BA M -tuple on the specified (a, b), of a non-asymptotic length,
of the real line.
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Theorem 1. The real numbers β1, β2, . . . , βM defined in (5.7) lie on the interval
(a, b), of a non-asymptotic length, and form a BA M -tuple, so that, as M → ∞,
one has

max
i=1,2,...,M

|βiq − pi| ≥ B0 exp(−6M lnM) q−1/M , (5.8)

for any integer numbers q > 0 and p1, p2, . . . , pM , and for some constant B0 > 0,
independent of M , q and p1, p2, . . . , pM , so that B(M) = B0 exp(−6M lnM).

6. Asymptotical upper bounds for the L
2-risk of the adaptive

wavelet thresholding estimator

In Section 5, we constructed a BA M -tuple and derived a lower bound on
B(M) in (2.2), as M → ∞. We can now choose the resolution levels j0 and J ,
the thresholds λj in (3.4) and the optimal relation between the total number
of observations n and the number of channels M = Mn and derive asymptot-
ical upper bounds for the L2-risk of the estimator f̂n(·) given by (3.4) over a
collection of Besov balls.

In order to formulate and prove Theorem 2 we first need to obtain some
preliminary results. Recall that ‖a‖ denotes the distance from a real number a
to the nearest integer number. For this purpose, we recall the equidistribution
lemma (see Lemma 3), proved in [16], which we state here for completeness,
and formulate a new lemma (i.e., Lemma 4) which is based on application of
Lemma 3 to the BA M -tuple.

Lemma 3. (Lemma 1 in [16]) Let p/q and p′/q′ be successive convergents in
the continued fraction expansion of a real number a. Let N be a positive integer
number with N + q < q′. Let h be a non-increasing function. Then

q∑

i=4

h(i/q) ≤
N+q∑

k=N+1

h(‖ka‖) ≤ 2

q−3∑

i=1

h(i/q) + 6h(1/(2q′)).

Lemma 4. Let β1, β2, . . . , βM be a BA M -tuple constructed in Theorem 1 and
let β1 be a BA number. Let r0 be an arbitrary fixed positive real number. Denote

ℵk(j,M) =
∑

l∈Ωj

[
‖lβ1‖2 + · · ·+ ‖lβM‖2

]−k
, (6.1)

where Ωj is defined as

Ωj =
{
l : 2j ≤ |l| ≤ 2j+r0

}
. (6.2)

If M is large enough, then, as j → ∞,

ℵk(j,M) = O
(
j 2j(1+(2k−1)/M) e6(2k−1)M lnM

)
, k = 1, 2, 3, 4. (6.3)

We also need the following two lemmas which evaluate the precision of esti-
mation of aj0k and bjk.
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Lemma 5. Let β = (β1, β2, . . . , βM ) be a BA M -tuple constructed on the in-
terval (2a, 2b) according to Theorem 1 and let one of β1, β2, . . . , βM be a BA
number. Let the equation (1.3) be evaluated at the the point u with components
ul = βl/2, l = 1, 2, . . . ,M . Then, for all j ≥ j0, as n→ ∞,

E|âj0k − aj0k|2 = O
(
n−1j0 M 2j0(2+1/M) e6M lnM

)
,

E|̂bjk − bjk|2 = O
(
n−1j M 2j(2+1/M) e6M lnM

)
,

E|̂bjk − bjk|4 = O
(
n−2 j2 M2 2j(4+2/M) e42M lnM

)
.

Lemma 6. Let u1, u2, . . . , uM be as in Lemma 5. If η > 0 is a constant large
enough, then, for all j ≥ j0, as n→ ∞,

P(|̂bjk − bjk|2 ≥ η2(nM )−1j2j(2+1/M) lnn) = o
(
n−θ

)
,

where nM = (n/M) exp(−6M lnM) and θ = η2/(2Cψ) with Cψ = 2−j|Cj |.
We are now ready to formulate Theorem 2. Let the resolution levels j0 and

J and the thresholds λj be such that

2j0 = lnn, 2J = (nM )
1

3+1/M , λj = η (nM )−1/2
√
j2j(2+1/M) lnn, (6.4)

for some constant η > 0, where

nM =
n

M
exp(−6M lnM). (6.5)

Note that since the construction of j0, J and λj is independent of the Besov ball

parameters, s, p, q and A, the suggested wavelet thresholding estimator f̂n(·)
given by (3.4) is adaptive with respect to these parameters.

The following statement provides the asymptotical upper bounds for the L2-
risk, over a collection of Besov balls.

Theorem 2. Let s > 1/min(p, 2), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0.
Let β = (β1, β2, . . . , βM ) be a BA M -tuple constructed on the interval (2a, 2b)
according to Theorem 1 and let one of β1, β2, . . . , βM , say β1, be a BA number.
Let the equation (1.3) be evaluated at the the point u with components ul = βl/2,
l = 1, 2, . . . ,M . Choose

M =Mn = ν
√
lnn/(ln lnn) (6.6)

for some ν ≤ 1/
√
6, independent of n. Let f̂n(·) be the adaptive wavelet thresh-

olding estimator defined by (3.4) with j0, J and λj given by (6.4), and nM given
by (6.5). Then, as n→ ∞,

Rn(f̂n) ≤





C n− 2s
2s+3 αn, if s > 3(1/p− 1/2),

C
(

lnn
n

) s′

s′+1
αn, if s ≤ 3(1/p− 1/2),

(6.7)
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where αn is given by

αn = exp

{√
lnn

√
ln lnn

[
A1

A2

(
3ν +

1

A2ν

)
+ rn

]}
, (6.8)

with

rn =
3A1ν ln ln lnn

A2 ln lnn

(
2 ln ν

ln ln lnn
− 1

)
+

√
ln lnn√
lnn

(
A3

A2
+

A1

2A2
− 3A1

A2
2

− A1

A3
2ν

2

)

+
ln ln lnn√
lnn

√
ln lnn

(
3A1

A2
2

− A1

2A2

)
= o(1) (n→ ∞),

where

A1 = 2s, A2 = 2s+ 3, A3 = 2s, if 2 ≤ p ≤ ∞,
A1 = 2s, A2 = 2s+ 3, A3 = 4s, if 6/(2s+ 3) < p < 2,
A1 = 2s∗, A2 = 2s∗ + 3, A3 = 4s∗, if 1 ≤ p ≤ 6/(2s+ 3)

(6.9)

with s∗ = min(s′, s), s′ = s+ 1/2− 1/p.

7. Discussion

We considered the estimation problem of the unknown response function in the
multichannel boxcar deconvolution model with a boxcar-like kernel when the
number of channels grows as the total number of observations increases. This
situation seems to be of a particular interest nowadays since data recording
equipment is getting cheaper and cheaper while overall volumes of data is grow-
ing very fast. Our aim was to investigate the situation when the number of
channels M =Mn grows slowly with the number of observations n.

For this purpose, we obtained new original results in the field of Diophantine
approximation in order to devise a technique which allows the reconstruction of
the unknown response function with a precision that differs from the best pos-
sible convergence rates (which can be attained in the corresponding continuous
functional deconvolution model (1.4)) by a factor which grows slower than any
power of n.

Specifically, in Section 6, we derived asymptotical upper bounds for the L2-
risk of the adaptive wavelet thresholding estimator (3.4) of f(·) ∈ L2(T ) in the
model (1.3). In comparison, it follows from [26] that the choice of a uniform
sampling strategy (i.e., ul = a + (b − a)l/M , l = 1, 2, . . . ,M , for M = Mn ≥
(32π/3)(b − a)n1/3, leads to an adaptive wavelet block thresholding estimator

f̂B
n (·) of f(·) with the following convergence rates

Rn(f̂
B
n ) ≤





Cn− 2s
2s+3 (lnn)̺ , if s > 3(1/p− 1/2),

C
(

lnn
n

) s′

s′+1
(lnn)̺ , if s ≤ 3(1/p− 1/2),

(7.1)
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for s > 1/min(p, 2), where s′ = s+ 1/2− 1/p and

̺ =





3max(0,2/p−1)
2s+3 , if s > 3(1/p− 1/2),

max(0, 1− p/q), if s = 3(1/p− 1/2),
0, if s < 3(1/p− 1/2).

Moreover, its has been shown that the above convergence rates with ρ = 0 are
the fastest possible ones (see [26]); hence, up to the logarithmic factor (lnn)

̺
,

f̂B
n (·) attains the best possible convergence rates. By comparing the convergence
rates (6.7) in Theorem 2 to the fastest possible convergence rates (without the
extra logarithmic factor (lnn)

ρ
appearing in (7.1)), one concludes that they

differ by the extra factor αn defined in (6.8).
How fast does αn → ∞ as n→ ∞? It can be easily seen that αn grows slower

than any power of n but faster than any power of lnn, i.e., for any a1, a2 > 0,
one has

lim
n→∞

αn
na1

= 0, lim
n→∞

αn
(lnn)a2

= ∞.

Hence, although choosing M =Mn → ∞ at a rate given by (6.6) improves the
convergence rates in comparison with the finite values of M (see [8], Theorem
2), these rates are quite a bit worse than in the case when M =Mn grows at a
faster rate as n→ ∞. Since, as we have explained in Section 4, this fast growth
of M =Mn with n cannot be achieved in a number of practical situations, one
has to resign toMn growing slowly with n, in particular,M =Mn = o((lnn)α3)
for some α3 ≥ 1/2.

The interesting question, however, is whether the convergence rates (6.7) can
be improved. To uncover an answer to this question, one needs to either come
up with another procedure for constructing a BA M -tuple which belongs to
a specified interval, of a non-asymptotic length, of the real line and delivers a
higher value of B(M) in (2.2), as M → ∞, or to show that no matter what the
value of u = (u1, u2, . . . , uM ) is, there exist integer numbers q and p1, p2, . . . , pM
such that, as M → ∞,

max
i=1,2,...,M

|uiq − pi| ≤ B1 exp(−6M lnM)q−1/M ,

for some positive constant B1 independent of M , q and p1, p2, . . . , pM . At the
moment we are unable to provide answers to either of the above questions; we
challenge, however, the number theory community to work on the issue. Deriva-
tion of these results will not only enrich the theory of Diophantine approximation
but will also be valuable for the theory of statistical signal processing.

8. Appendix: Proofs

Proof of Lemma 1. Observe that for P (x) given by (5.2), one has

P ((M + 1/2)Q) > 0, (−1)P ((M − 1/2)Q) > 0, . . . , (−1)MP (Q/2) > 0,
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so that P (x) has M real roots ξ1, ξ2, . . . , ξM such that (5.3) is valid. By defini-
tion, ξ1, ξ2, . . . , ξM are algebraic integer numbers. Let us show that no proper
subset of ξ1, ξ2, . . . , ξM is itself a set of conjugate algebraic integer numbers. For
this purpose, note that

Q(|j − i| − 1/2) ≤ |ξi − jQ| ≤ Q(|j − i|+1/2), i 6= j, i, j = 1, 2, . . . ,M. (8.1)

Therefore, by (5.2), for any i = 1, 2, . . . ,M,

0 ≤ |ξi − iQ| =



M∏

j=1

j 6=i

|ξi − jQ|




−1

≤ Q−(M−1)
M∏

j=1

j 6=i

(|j − i| − 1/2)−1. (8.2)

Now, assume that ξi1 , ξi2 , . . . , ξim , i1 < . . . < im and m < M , form a set of
conjugate real integer numbers. Then, P ∗

m(i1Q) = (ξi1 − i1Q) . . . (ξim − i1Q) is
an integer number and is not equal to zero, hence, |P ∗

m(i1Q)| ≥ 1. On the other
hand, by (8.1) and (8.2),

1 ≤ |P ∗
m(i1Q)| ≤ Q−(M−1)

M∏

j=1

j 6=i1

(|j − i1| − 1/2)−1
m∏

k=2

[Q(|ik − i1|+ 1/2)].

The product in the right-hand side above takes the largest value if m =M − 1,
i1 = 1 and ik = k+1, k = 2, 3, . . . ,M − 1. In this case, for M > 2, combination
of the last two inequalities yields

1 ≤ |P ∗
m(i1Q)| ≤ 4(M − 1/2)Q−1 < 5M/Q,

which leads to a contradiction when Q > 5M .

Proof of Lemma 2. ChooseQ = 5(M+1) and construct real conjugate algebraic
integer numbers ξ1, ξ2, . . . , ξM , ξM+1 using the process described in Lemma 1.
Then, by (8.2), ξi ≈ Qi. Let q > 0 and p = (p1, p2, . . . , pM ) be integer numbers
and denote

Hk(q, p) =

M∑

i=1

ξi−1
k pi + ξMk q, k = 1, 2, . . . ,M + 1.

Note that if p is not zero and the components of the vector p/q are not integer
numbers, then Hk(q, p) 6= 0, k = 1, 2, . . . ,M + 1. Furthermore, Hk(q, p), k =
1, 2, . . . ,M + 1, are themselves real conjugate algebraic integer numbers and,
thus,

M+1∏

k=1

|Hk(q, p)| ≥ 1.

Now, note that (5.4) implies that α1, α2, . . . , αM are coefficients of the monic
polynomial with the roots ξ1, ξ2, . . . , ξM . Also, it is easy to check that for the
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solution α = (α1, α2, . . . , αM ) of the system of equations (5.4), one can write

Hk(q, p) =

M∑

i=1

ξi−1
k (pi − αiq), k = 1, 2, . . . ,M. (8.3)

Moreover, if one denotes

ωM =

M∑

i=1

αiξ
i−1
M+1 + ξMM+1, (8.4)

then HM+1(q, p) can be written as

HM+1(q, p) =

M∑

i=1

ξi−1
M+1(pi − αiq) + ωM . (8.5)

Note that (8.4) implies that ωM is the value of the polynomial

P(x) =

M∑

i=1

αix
i−1 + xM = (x− ξ1) · · · (x− ξM )

at the point ξM+1. Therefore, by (8.1) and (8.2), |ωM | ≤ KM !QM for some
constant K > 0.

Recall that ‖a‖ denotes the distance from a real number a to the nearest
integer number. Denote L = maxi=1,2,...,M |ξiq − pi|. Note that we can assume
that pi/q, i = 1, 2, . . . ,M , are not integer numbers. Otherwise, if, for instance,
p1/q = z is an integer number, then L ≥ q|ξ1 − z| ≥ q‖ξ1‖ and (5.6) is valid. If
L ≥ 1, then (5.6) is valid. Hence, consider the case of L < 1. Then L < |q| and,
by (8.3), we have

|Hk(q, p)| ≤ L

M∑

i=1

ξi−1
k < LξMk /(ξk − 1), k = 1, 2, . . . ,M.

Then, using (8.5) and an upper bound for ωM , we obtain

|HM+1(q, p)| ≤ |q|(ξMM+1/(ξM+1 − 1) +KM !QM ).

Since H1(q, p), H2(q, p), . . . , HM (q, p), HM+1(q, p) are real conjugate algebraic
integer numbers, one has

1 ≤
M+1∏

k=1

|Hk(q, p)| ≤
M∏

k=1

[
LξMk
ξk − 1

]
|q|
[

ξMM+1

ξM+1 − 1
+KM !QM

]
.

Note that, by (8.2) and Q ≥ 5M , one has |ξM+1 − (M + 1)Q| < Q−M and,
hence, |ξM+1|M ≤ 2QM (M + 1)M . Therefore

L ≥ K|q|−1/M
M∏

k=1

[
Qk − 1

kMQM

]1/M [
(M + 1)MQM

Q(M + 1)− 1
+QMM !

]−1/M

.
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Plugging in Q = 5(M + 1) into the expression above, we obtain

L ≥ B(M)|q|−1/M

with

B(M) = K [5(M + 1)]−(M+1)(M !)−1
M∏

k=1

[5k(M + 1)− 1]1/M

×
[

(M + 1)M

5(M + 1)2 − 1
+M !

]−1/M

.

Using Stirling formula,

M ! =
√
2π(M + 1)M+1/2 exp(−(M + 1))(1 + o(1)), as M → ∞,

(see, e.g., formula 8.327 of [12]) and the fact that ln(M + 1) < ln(M) + 1/M ,
after some simple algebra, we obtain that, as M → ∞,

B(M) ≥ C0 exp(−3M lnM),

for some constant C0 > 0, independent of M , q and p, which proves (5.6).
Now, it remains to prove the upper bound (5.5) for αk, k = 1, 2, . . . ,M . For

this purpose, recall that α1, α2, . . . , αM are coefficients of the monic polynomial
with roots ξ1, ξ2, . . . , ξM . Therefore, using (8.2), obtain

|αk| ≤
(
M

k

)
MQ(M − 1)Q · · · (M − k + 1)Q = k!

(
M

k

)2

Qk, k = 1, 2, . . . ,M.

Since for any k = 1, 2, . . . ,M , 5k/k! ≤ 625/24 < 30, Q = 5(M + 1) and (M +

1)(M − j) ≤M2 for j ≥ 1, one has (reading
∏−1
j=0 = 1)

|αk| ≤ 5k

k!
(M + 1)k

k−1∏

j=0

(M − j)2

≤ 30 M2[(M + 1)(M − k + 1)]2
k−2∏

j=1

[(M + 1)(M − j)2]

≤ 30M3k ≤ 30e3M lnM , k = 1, 2, . . . ,M,

which proves (5.5).

Proof of Theorem 1. It is easy to check that β1, β2, . . . , βM , as defined by (5.7),
lie on (a, b). Furthermore, by Lemma 2 and the fact that z < 30 exp(3M lnM),
as M → ∞, one has

max
i=1,2,...,M

|βiq − pi| = (zq0)
−1 max

i=1,...,M
|αk(pb − pa)q − (zq0pl − zpaq)|

≥ (zq0)
−1 C0|(pb − pa)q|−1/M exp(−3M lnM)

≥ B0 exp(−6M lnM) |q|−1/M ,

for any integer numbers q > 0 and p1, p2, . . . , pM , and for some constant B0 > 0,
independent of M , q and p.
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Proof of Lemma 4. Recall first that any real number a, which is not an integer
number, may be uniquely determined by its continued fraction expansion

a = a0 +
1

a1 +
1

a2+
1

a3+···

,

where a0 is an integer number and a1, a2, . . . are strictly positive integer num-
bers. The convergents pk/qk = pk(a)/qk(a), k = 0, 1, . . ., of a are those rational
numbers, the continued fraction expansions of which terminate at stage k, that
is, p0/q0 = a0, p1/q1 = a0 + 1/a1, p2/q2 = a0 + 1/(a1 + 1/a2), and so on. The
denominators in the above expansions grow at least geometrically

qn+i ≥ 2(i−1)/2qn, if i odd, (8.6)

qn+i ≥ 2i/2qn, if i even,

and an < qn/qn−1 ≤ an + 1, n ≥ 1. A real number a is BA if supn an <∞, i.e.,
there exists q̄ > 0 such that

qn/qn−1 ≤ q̄, n ≥ 1 (8.7)

(see, e.g., [28], Sections 3–5, pp. 7–23).
Let p/q and p′/q′ be successive principal convergents in the continued fraction

expansion of β1. Let N be a positive integer number with N + q < q′. Then,
application of Lemma 3 with h(x) = x−1 yields

N+q∑

l=N+1

‖lβ1‖−1 = O(q ln q), (8.8)

since q′ ≤ q̄q by (8.7). Now, note that by (5.8)

N+q∑

l=N+1

(
‖lβ1‖2 + · · · + ‖lβM‖2

)−k ≤
N+q∑

l=N+1

‖lβ1‖−1[max(‖lβ1‖, . . . , ‖lβM‖)]−(2k−1)

(8.9)
Combination of (5.8), (8.8) and (8.9) implies that, for k = 1, 2, 3, 4,

N+q∑

l=N+1

(
‖lβ1‖2 + · · ·+ ‖lβM‖2

)−k
= O

(
e6(2k−1)M lnM q(1+(2k−1)/M) ln q

)
.

(8.10)
Now, observe that the set of indices l in Ωj is symmetric about zero, and so

are the components of the sum. Hence, we can consider only the positive part
of Ωj which, with some abuse of notation, we keep calling it Ωj . Let qi be the
denominators of the convergents of β1, and let l be the smallest number such
that ql ≥ 2j. The geometric grows of denominators (8.6) implies that 2j+r0 <
2r0ql ≤ ql+2r0 so that Ωj ⊆ [ql−1, ql+2r0). If we denote Ds = N ∩ [ql+s−1, ql+s),
s = 0, 1, . . . , 2r0, then

Ωj ⊆
2r0⋃

s=0

Ds.
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Since, by (8.6), qi+1 ≤ q̄qi, there are at most q̄ disjoint blocks of length ql+s−1

that cover Ds. Applying (8.10) to each of those blocks, we derive, for k =
1, 2, 3, 4,

∑

l∈Ds

(
M∑

i=1

‖lβi‖2
)−k

= O
(
e6(2k−1)M lnM (ql+s−1)

1+(2k−1)/M ln ql+s−1

)
.

Note that ql−1 ≤ 2j , so that ql+s−1 ≤ q̄sql−1 ≤ q̄s2j . Therefore,

ℵk(j,M) = O




2r0∑

s=0

∑

l∈Ds

(
M∑

i=1

‖lβi‖2
)−k




= O

(
e6(2k−1)M lnM

2r0∑

s=0

(q̄s2j)(1+(2k−1)/M) ln(q̄s 2j)

)

= O
(
e6(2k−1)M lnM j 2j(1+(2k−1)/M)

)
, k = 1, 2, 3, 4,

proving, thus, (6.3).

Proof of Lemma 5. In what follows, we shall only construct the proof for the
term involving bjk since the proof for the term involving aj0k is very similar.
Denote

∆κ(j) =
1

|Cj |
∑

m∈Cj

[
1

M

M∑

l=1

|gm(ul)|2
]−2κ [

1

M

M∑

l=1

|gm(ul)|2κ
]
, κ = 1, 2,

where τ1(m) is given by (4.2) and (4.6). Note that, by (3.2) and (3.5), we have

f̂m − fm = N−1/2M−1

[
M∑

l=1

|gm(ul)|2
]−1 ( M∑

l=1

gm(ul) zml

)
,

where zml are standard Gaussian random variables, independent for different m
and l. Therefore, since in the case of Meyer wavelets, |ψmjk| ≤ 2−j/2 and |Cj | ≍
2j (see, e.g., [15], p. 565), we derive that E|̂bjk − bjk|2 is given by expression
(4.1). If κ = 2, then

E|̂bjk − bjk|4 = O


 ∑

m∈Cj

E|f̂m − fm|4

+O





 ∑

m∈Cj

E|f̂m − fm|2


2



= O


N−22−2jM−4[τ1(m)]−4

∑

m∈Cj

M∑

l=1

|gm(ul)|4



+ O
(
N−2M−22−2j[τ1(m)]−2

)
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= O
(
2−jN−2M−3∆2(j) +N−2M−2∆2

1(j)
)

= O
(
n−2[M−12−j∆2(j) + ∆2

1(j)]
)
. (8.11)

Now, recall that |gm(ul)| ≍ |m|−1 ‖mβl‖ by (4.5). Note that, by formula
(6.1), ℵk(j,M) is increasing in r0 and recall that, by the definition of the Meyer
wavelet basis, one has |m| ∈ [(2π/3)2j, (8π/3)2j] ⊂ Ωj with r0 = 3 + log2(π/3)
(see (3.3) and (6.2)). Then, direct calculations yield

∆1(j) = O(2jMℵ1(j,M)) and ∆2(j) = O(23jM4ℵ4(j,M)). (8.12)

To complete the proof, combine (6.3), (4.1), (8.11) and (8.12) and note that
Mj−12−j(1−5/M) = o(1) as n → ∞, since 2j ≥ 2j0 = lnn and M = Mn → ∞
as n→ ∞.

Proof of Lemma 6. It is easy to see that b̂jk−bjk follows a Gaussian distribution

with mean zero and variance bounded by
Cψ
2 (nM )−1j2j(2+1/M). Hence,

P

(
|̂bjk − bjk|2 ≥

η2

nM
j2j(2+1/M) lnn

)
≤ 2Φ

(
η√
Cψ

√
lnn

)
= O

(
n−η2/(2Cψ)

√
lnn

)
,

where Φ(·) is the cumulative distribution function of a Gaussian random variable
with mean zero and variance one.

Proof of Theorem 2. Due to the orthogonality of the Meyer wavelet basis, we
obtain

E‖f̂n − f‖22 = R0 +R1 +R2 +R3 +R4,

where

R0 =

2j0−1∑

k=0

E(âj0k − aj0k)
2, R1 =

∞∑

j=J

2j−1∑

k=0

b2jk,

R2 =

J−1∑

j=j0

2j−1∑

k=0

E[(̂bjk − bjk)
2
I(|̂bjk| ≥ λj)] I(|bjk| < λj/2),

R3 =
J−1∑

j=j0

2j−1∑

k=0

b2jkP(|̂bjk| < λj) I(|bjk| ≥ 2λj),

R4 =

J−1∑

j=j0

2j−1∑

k=0

E[(̂bjk − bjk)
2
I(|̂bjk| ≥ λj)] I(|bjk| ≥ λj/2),

R5 =
J−1∑

j=j0

2j−1∑

k=0

b2jkP(|̂bjk| < λj) I(|bjk| < 2λj).

Denote

ζ(s,M) =
2(3 + 1/M)

2s+ 3 + 1/M
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and observe that ζ(s,M) < 2 for s > 1/min(p, 2). First, consider the terms R0

and R1. Using Lemma 5, it is easily seen that

R0 = O
(
n−12j0ℵ1(j0,M)

)
= o

(
n−1 j0 2

j0(2+1/M) e6M lnM
)

= o((M nM )−1 ln3 n) = o
(
(nM )−

2s
2s+3+1/M

)
.

Furthermore, it is well-known (see, e.g., [14], Lemma 19.1) that if f ∈ Bsp,q(A),
then for some positive constant c∗, dependent on p, q, s and A only, we have∑2j−1
k=0 b2jk ≤ c∗2−2js∗ and, thus,

R1 = O
(
2−2Js∗

)
= O

(
(nM )−2s∗/(3+1/M)

)
.

By direct calculations, one can check that if 2 ≤ p ≤ ∞, then s∗ = s and hence

R1 = o
(
(nM )−2s/(2s+3+1/M)

)
.

On the other hand, if 1 ≤ p < 2 then s∗ = s + 1/2 − 1/p. If ζ(s,M) ≤ p < 2
then 2s∗/(3 + 1/M) ≥ 2s/(2s+ 3 + 1/M) and, hence,

R1 = O
(
(nM )−2s/(2s+3+1/M)

)
.

Similarly, if 1 ≤ p < ζ(s,M), then 2s∗/(3 + 1/M) ≥ 2s∗/(2s∗ + 2 + 1/M) and
therefore

R1 = O
(
(nM )−2s∗/(2s∗+2+1/M)

)
.

Now, consider the term R2. Using Lemma 5 and Lemma 6 with θ ≥ 2, formula
(6.4), and the fact that eM lnM = o(na) for any a > 0 as n → ∞, after some
simple algebra, one derives

R2 ≤
J−1∑

j=j0

2j−1∑

k=0

E

[
(̂bjk − bjk)

2
I(|̂bjk − bjk| ≥ λj/2)

]

≤
J−1∑

j=j0

2j−1∑

k=0

√
E[(̂bjk − bjk)4

√
P(|̂bjk − bjk|2 ≥ λ2j/4)

= O



J−1∑

j=j0

2j−1∑

k=0

Me21M lnM j2j(2+1/M)

n1+θ




= O

(
2J(3+1/M) lnn e15M lnM

nM nθ

)
= O

(
(nM )−1

)
.

For the term R3, again applying Lemma 6 with θ ≥ 2, obtain

R3 ≤
J−1∑

j=j0

2j−1∑

k=0

b2jkP(|̂bjk − bjk| ≥ λj/2) = o



J−1∑

j=j0

2−2js∗n−θ


 = o

(
n−1

)
.
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Now, consider the term R4. Let j1 be such that

2j1 = O
(
(nM )1/(2s+3+1/M)(lnn)ξ0

)
,

for some real number ξ0. First, consider the case when p > ζ(s,M). Then,

R4 ≤
J−1∑

j=j0

2j−1∑

k=0

E[(̂bjk − bjk)
2
I(|bjk| ≥ λj/2) = R41 +R42,

where

R41 =

j1∑

j=j0

2j−1∑

k=0

E[(̂bjk − bjk)
2
I(|bjk| ≥ λj/2),

R42 =

J−1∑

j=j1+1

2j−1∑

k=0

E[(̂bjk − bjk)
2
I(|bjk| ≥ λj/2).

Then, Lemma 5 yields

R41 = O




j1∑

j=j0

2j−1∑

k=0

(nM )−1 j 2j(2+1/M)




= O
(
(nM )−2s/(2s+3+1/M)(lnn)1+ξ0(3+1/M)

)
.

For term R42, one derives

R42 = O




J−1∑

j=j1+1

2j−1∑

k=0

(nM )−1 j 2j(2+1/M) |bjk|p
|λj |p




= O


(nM )−(1−p/2)(lnn)1−p

J−1∑

j=j1+1

2j[(2+1/M)(1−p/2)−s∗p]




= O
(
(nM )−ρ1(lnn)ρ2

)
,

where ρ1 = −2s/(2s+3+1/M) and ρ2 = 1− p− ξ0 [ps
∗ − (2+ 1/M)(1− p/2)].

Now, choosing w ξ0 = −2/(2s+3+1/M), and combining the above terms, one
easily arrives at

R4 = o
(
(nM )−

2s
2s+3+1/M (lnn)

2s
2s+3+1/M

)
.

Now, consider the case when 1 ≤ p < ζ(s,M). Note that, same as above,

R41 = O
(
(nM )−2s/(2s+3+1/M) (lnn)1+ξ0(3+1/M)

)
;

but ξ0 does not need to be the value chosen above. Observe that, since for R4

one has |bjk| ≤ c∗2−js
∗

and |bjk| > λj/2, then, combination of these inequalities
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requires j ≤ j2 where j2 satisfies j2 2j2 = O (nM/ lnn)
1

2s∗+2+1/M . Then, |bjk| ≤
λj/2 if j ≥ j2 + 1 and

R42 = O
(
(nM )−(1−p/2) (lnn)1−p 2j2 [(2+1/M)(1−p/2)−s∗p]

)

= O ((nM )ρ3(lnn)ρ4 ) ,

where ρ3 = −2s∗/(2s∗ + 2+ 1/M) and ρ4 = 2s∗/(2s∗ + 2+ 1/M)− p/2− [(2 +
1/M)(1− p/2)− ps∗]. Noting that, in this case, s/(2s+ 3 + 1/M)− s∗/(2s∗ +
2 + 1/M) > 0 and one arrives at R41 = o(R42) as n→ ∞. Therefore,

R4 = O

((
lnn

nM

) 2s∗

2s∗+2+1/M

(lnn)−
p
2−[(2+ 1

M )(1− p
2 )−ps

∗]

)

= O

((
lnn

nM

) 2s∗

2s∗+2+1/M

)
,

since the power of lnn in the expression above is negative.
Finally, consider the term R5. First, consider the case when ζ(s,M) ≤ p < 2.

Let j3 be such that

2j3 = O
(
(nM )

s
s∗(2s+3+1/M) (lnn)ξ1

)
,

for some real number ξ1. Then,

R5 ≤
J−1∑

j=j0

2j−1∑

k=0

b2jk I(|bjk| < 2λj) ≤ R51 +R52,

where

R51 =

J1∑

j=j3+1

2j−1∑

k=0

b2jk = O
(
(nM )−

2s
2s+3+1/M (lnn)−2s∗ξ1

)
,

R52 =

j3∑

j=j0

2j−1∑

k=0

b2jk I(|bjk| < 2λj).

Let

Ξ(j) =

2j−1∑

k=0

b2jk I(|bjk| < 2λj).

Note that
Ξ(j) = O

(
2jλ2j

)
= O

(
j 2j(3+1/M) lnn (nM )−1

)

and also

Ξ(j) = O




2j−1∑

k=0

|bjk|p |bjk|2−p I(|bjk| < 2λj)


 = O

(
λ2−pj 2−jps

∗

)
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= O
(
(nM )p/2−1 (lnn)1−p/2 j1−p/2 2j[(2+

1
M )(1− p

2 )−ps
∗]
)
.

Let j4 be such that

2j4 = O
(
(nM )

1
2s+3+1/M (lnn)ξ2

)
,

for some real number ξ2. Then

R52 =

j4∑

j=j0

Ξ(j) +

j3∑

j=j4+1

Ξ(j)

= O




j4∑

j=j0

j 2j(3+1/M) lnn (nM )−1




+ O




j3∑

j=j4+1

(nM )p/2−1(lnn)1−p/2 j1−p/2 2j[(2+
1
M )(1−p

2 )−ps
∗]




= O
(
(nM )−

2s
2s+3+1/M (lnn)2+ξ2(3+1/M)

)

+ O
(
(nM )−

2s
2s+3+1/M (lnn)2−p+ξ2[(2+

1
M )(1−p

2 )−ps
∗]
)
.

Since the bound for R52 is valid for any value of ξ2, we choose ξ2 which minimizes

max(2 + ξ2(3 + 1/M), 2− p+ ξ2[(2 + 1/M)(1− p/2)− ps∗]),

i.e., ξ2 = [s∗ + 1 + 1/p+ 1/(2M)]−1 (2s∗ + 2/p− 1). Hence

R52 = O

(
(nM )−

2s
2s+3+1/M (lnn)

2s∗+2/p−1
s∗+1+1/p+1/(2M)

)
.

Choose now ξ1 = −2/(2s+3+1/M). Then, combining the R51 and R52 terms,
obtain

R5 = O

((
lnn

nM

) 2s
2s+3+1/M

(lnn)
2s

2s+3+1/M

)
.

Now, consider the case when 1 ≤ p < ζ(s,M). Let j5 be such that

2j5 = O
(
(lnn/nM )

1
2s∗+2+1/M (lnn)ξ3

)
,

for some real number ξ3. Then

R5 ≤ R51 +R52 +R53,

where

R51 =

J−1∑

j=j5+1

2j−1∑

k=0

b2jk, R52 =

j4∑

j=j0

Ξ(j), R53 =

j5∑

j=j4+1

Ξ(j).
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It is immediate that

R51 = O




J−1∑

j=j5+1

2−2js∗


 = O

((
lnn

nM

) 2s∗

2s∗+2+1/M

(lnn)−2s∗ξ3

)
.

and that

R52 = O




j4∑

j=j0

j 2j(3+1/M) lnn

nM


 = o

(
(nM )−

2s∗

2s∗+2+1/M

)
.

After some simple algebra, one obtains

R53 = O




j5∑

j=j4+1

(nM )p/2−1 (lnn)1−p/2 j1−p/2 2j[(2+
1
M )(1− p

2 )−ps
∗]




= O

((
lnn

nM

) 2s∗

2s∗+2+1/M

(lnn)1−p/2+ξ3[(2+
1
M )(1− p

2 )−ps
∗]

)
.

Choosing ξ3 = −1/(2s∗ + 2 + 1/M), and combining the above terms, we arrive
at

R5 = O

((
lnn

nM

) 2s∗

2s∗+2+1/M

(lnn)
2s∗

2s∗+2+1/M

)
.

Finally, consider the case, 2 ≤ p ≤ ∞. In this case, j3 = j4, and we easily see
that

R5 = O

((
lnn

nM

) 2s
2s+3+1/M

)
.

Combining all the above expressions, we obtain that, as n→ ∞,

Rn(f̂n) =





O

((
lnn
nM

) 2s
2s+3+1/M

)
, if 2 ≤ p ≤ ∞,

O

((
lnn
nM

) 2s
2s+3+1/M

)
(lnn)

2s
2s+3+1/M , if ζ(s,M) ≤ p < 2,

O

((
lnn
nM

) 2s∗

2s∗+2+1/M

)
(lnn)

2s∗

2s∗+2+1/M , if 1 ≤ p < ζ(s,M).

(8.13)
Now, note that 6/(2s+ 3) < ζ(s,M) for any M > 0. Hence, if p ≤ 6/(2s+ 3),
then p < ζ(s,M). On the other hand, if p > 6/(2s+ 3), then it is easy to show
that for M large enough one has p > ζ(s,M). Observe also that p > 6/(2s+ 3)
if and only if s > 3(1/p− 1/2).

The upper bound in (8.13) depends on the choice ofM =Mn. Choose Mn of
the form (6.6). Then, from the definition of nM and formulae (6.9) and (8.13),
it follows that

Rn(f̂n) = O
(
exp

{
− (A2 + 1/M)−1[A1 ln(n− 6M lnM − lnM)−A3 ln lnn]

})
.

(8.14)
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Using Taylor expansion, we write (A2+1/M)−1 = A−1
2 −M−1A−2

2 +M−2A−3
2 +

O(M−3) as M → ∞. Recalling that lnM = ln ν + 0.5 ln lnn − 0.5 ln ln lnn
and plugging expressions for M , lnM and (A2 + 1/M)−1 into the argument of
exponent in (8.14), by direct calculations, one derives that

Rn(f̂n) = O
(
exp

(
−(A2)

−1A1 lnn+∆n

) )
,

where, as n→ ∞,

∆n =
√
lnn

√
ln lnn

(
A1

A2

[
3ν+

1

A2ν

])
− 3A1ν

√
lnn ln ln lnn

A2

√
ln lnn

(
2 ln ν

ln ln lnn
− 1

)

− ln lnn

(
A3

A2
+

A1

2A2
− 3A1

A2
2

− A1

A3
2 ν

2

)
+ ln ln lnn

(
A1

2A2
− 3A1

A2
2

)
+O(1).

Now, to complete the proof, note that the main term in ∆n is minimized by
ν = νopt = (3A2)

−1/2, and that A2 ≥ 2 for any s > 1/min(p, 2).
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77–81, Stanford University Press, Stanford. MR0146145

[7] De Canditiis, D. and Pensky, M. (2004). Discussion on the meeting on
“Statistical Approaches to Inverse Problems”. Journal of the Royal Statis-
tical Society, Series B 66 638–640.

[8] De Canditiis, D. and Pensky, M. (2006). Simultaneous wavelet decon-
volution in periodic setting. Scandinavian Journal of Statistics 33 293–306.
MR2279644

http://www.ams.org/mathscinet-getitem?mr=1627226
http://www.ams.org/mathscinet-getitem?mr=1306923
http://www.ams.org/mathscinet-getitem?mr=0075240
http://www.ams.org/mathscinet-getitem?mr=1500172
http://www.ams.org/mathscinet-getitem?mr=2440401
http://www.ams.org/mathscinet-getitem?mr=0146145
http://www.ams.org/mathscinet-getitem?mr=2279644


Multichannel boxcar deconvolution 81

[9] Donoho, D.L. (1995). Nonlinear solution of linear inverse problems by
wavelet-vaguelette decomposition. Applied and Computational Harmonic
Analysis 2 101–126. MR1325535

[10] Donoho, D.L. and Raimondo, M. (2004). Translation invariant decon-
volution in a periodic setting. International Journal of Wavelets, Multires-
olution and Information Processing 14 415–432. MR2104873

[11] Edixhoven, B. and Evertse, J.-H. (1993). Diophantine Approximation
and Abelian Varieties. Lecture Notes in Mathematics, Vol. 1566, Springer-
Verlag, Berlin. MR1288998

[12] Gradshtein, I.S. and Ryzhik, I.M. (1980). Tables of Integrals, Series,
and Products. Academic Press, New York.

[13] Harsdorf, S. and Reuter, R. (2000). Stable deconvolution of noisy lidar
signals. In Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG,
June 16–17.

[14] Johnstone, I.M. (2002). Function Estimation in Gaussian Noise: Se-
quence Models. Unpublished Monograph. (http://www-stat.stanford.
edu/~imj/)

[15] Johnstone, I.M., Kerkyacharian, G., Picard, D. and Rai-

mondo, M. (2004) Wavelet deconvolution in a periodic setting. Journal
of the Royal Statistical Society, Series B 66 547–573 (with discussion, 627–
657). MR2088290

[16] Johnstone, I.M. and Raimondo, M. (2004). Periodic boxcar deconvo-
lution and Diophantine approximation. Annals of Statistics 32 1781–1804.
MR2102493

[17] Kalifa, J. and Mallat, S. (2003). Thresholding estimators for lin-
ear inverse problems and deconvolutions. Annals of Statistics 31 58–109.
MR1962500

[18] Kerkyacharian, G., Picard, D. and Raimondo, M. (2007). Adaptive
boxcar deconvolution on full Lebesgue measure sets. Statistica Sinica 7

317–340. MR2352512
[19] Lang, S. (1966) Introduction to Diophantine Approximations. Springer-

Verlag, New York. MR1348400
[20] Mallat, S.G. (1999). A Wavelet Tour of Signal Processing, 2nd Edition,

Academic Press, San Diego. MR2479996
[21] Masser, D., Nesterenko, Yu.V., Schlickewei, H.P., Schmidt,

W.M. and Waldschmidt, M. (2003). Diophantine Approximation. Lec-
ture Notes in Mathematics, Vol. 1819, Springer-Verlag, Berlin.

[22] Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press,
Cambridge. MR1228209

[23] Neelamani, R., Choi, H. and Baraniuk, R. (2004). Forward: Fourier-
wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans-
actions on Signal Processing 52 418–433. MR2044455

[24] Park, Y.J., Dho, S.W. and Kong, H.J. (1997). Deconvolution of long-
pulse lidar signals with matrix formulation. Applied Optics 36 5158–5161.

[25] Pensky, M. and Sapatinas, T. (2009). Functional deconvolution in a
periodic case: uniform case. Annals of Statistics 37 73–104. MR2488345

http://www.ams.org/mathscinet-getitem?mr=1325535
http://www.ams.org/mathscinet-getitem?mr=2104873
http://www.ams.org/mathscinet-getitem?mr=1288998
http://www-stat.stanford.edu/~imj/
http://www-stat.stanford.edu/~imj/
http://www.ams.org/mathscinet-getitem?mr=2088290
http://www.ams.org/mathscinet-getitem?mr=2102493
http://www.ams.org/mathscinet-getitem?mr=1962500
http://www.ams.org/mathscinet-getitem?mr=2352512
http://www.ams.org/mathscinet-getitem?mr=1348400
http://www.ams.org/mathscinet-getitem?mr=2479996
http://www.ams.org/mathscinet-getitem?mr=1228209
http://www.ams.org/mathscinet-getitem?mr=2044455
http://www.ams.org/mathscinet-getitem?mr=2488345


82 M. Pensky and T. Sapatinas

[26] Pensky, M. and Sapatinas, T. (2010). On convergence rates equiva-
lency and sampling strategies in functional deconvolution models. Annals
of Statistics 38 1793–1844. MR2662360

[27] Schmidt, W. (1969). Badly approximable systems of linear forms. Journal
of Number Theory 1 139–154. MR0248090

[28] Schmidt, W. (1980). Diophantine Approximation. Lecture Notes in Math-
ematics, Vol. 785, Springer-Verlag, Berlin. MR0568710

[29] Schmidt, W. (1991). Diophantine Approximations and Diophantine Equa-
tions. Lecture Notes in Mathematics, Vol. 1467, Springer-Verlag, Berlin.
MR1176315

http://www.ams.org/mathscinet-getitem?mr=2662360
http://www.ams.org/mathscinet-getitem?mr=0248090
http://www.ams.org/mathscinet-getitem?mr=0568710
http://www.ams.org/mathscinet-getitem?mr=1176315

	Introduction
	Background results in number theory
	An adaptive wavelet thresholding estimator
	Relation to the theory of Diophantine approximation
	Construction of a BA M-tuple on a specified interval
	Asymptotical upper bounds for the L2-risk of the adaptive wavelet thresholding estimator 
	Discussion 
	Appendix: Proofs 
	Acknowledgments
	References

