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Abstract

Functional mixed-effects models are very useful in analyzing functional data. A general functional mixed-effects model that
inherits the flexibility of linear mixed-effects models in handling complex designs and correlation structures is considered. A
wavelet decomposition approach is used to model both fixed-effects and random-effects in the same functional space, meaning that the
population-average curve and the subject-specific curves have the same smoothness property. A linear mixed-effects representation is
then obtained that is used for estimation and inference in the general functional mixed-effects model. Adapting recent methodologies
in linear mixed-effects and nonparametric regression models, hypothesis testing procedures for both fixed-effects and random-effects
are provided. Using classical linear mixed-effects estimation techniques, the linear mixed-effects representation is also used to obtain
wavelet-based estimates for both fixed-effects and random-eftects in the general functional mixed-effects model. The usefulness of
the proposed estimation and hypothesis testing procedures is illustrated by means of a small simulation study and a real-life dataset
arising from physiology.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, a form of data, called functional data (see e.g., Ramsay and Silverman, 1997), are collected in many
fields of research. Such data are encountered, for example, when units are observed over time or when, although a
whole function itself is not observed, a sufficiently large number of evaluations over individual is available—a common
feature of modern recording equipments. Functional data tend to involve a large number of repeated measurements per
subject, and these measurements are usually recorded at the same, often equally spaced, time points for all subjects,
and with the same high sampling rate. Among the aims of functional data analysis are the following: estimation of
individual (and functional of these) curves from noisy data, characterising homogeneity and patterns of variability
among curves, and assessing the relationships of shapes of curves to covariates (see Rice, 2004).

It is therefore challenging to build models for functional data that are reasonably flexible, yet feasible to fit. Linear
mixed-effects models provide a flexible likelihood framework to model such data parametrically (see Laird and Ware,
1982). In the corresponding analysis, however, the parametric assumption in linear mixed-effects models may not always
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be appropriate. Extensions of linear mixed-effects models by including nonparametric fixed-effects and parametric
random-effects have been considered by many researchers (see e.g., Wang, 1998; Guo, 2002a; Durban et al., 2005). The
limitation of these approaches, however, is that they have used parametric random-effects, which may not be adequate to
handle flexible subject-specific deviations. Various approaches to include, directly or indirectly, nonparametric methods
for serial correlation in functional data analysis models have also been proposed (see e.g., Rice and Silverman, 1991;
Rice and Wu, 2001).

Although much work has been done on the estimation in various functional mixed-effects models, only limited
work has been done regarding inference in these or more complex models. Both estimation and inference in a general
functional mixed-effects model were recently considered by Guo (2002b). The idea behind his formulation is to model
the fixed-effects as a single realisation of a partially diffuse integrated Wiener process, while the random-effects are
modelled as random realisations from the same partially integrated Wiener process with proper variances. Then, an
estimation procedure can be developed by taking advantage of the connection between cubic smoothing splines (at the
design points) and linear mixed-effects models, a fact that originally pointed out by Speed (1991). A likelihood-ratio
(LR) test was also proposed by Guo (2002b) for testing the fixed-effects using the connection between cubic smoothing
splines (at the design points) and linear mixed-effects models, and the non-standard asymptotic theory for LR tests
developed by Self and Liang (1987). However, inference for the random-effects was not considered in Guo (2002b).

Although cubic smoothing splines provide a continuum of models from a trend linear in time to treating time as a
factor (obtained as the smoothing parameter tends to oo and 0, respectively), the corresponding modelling methodology
of Guo (2002b) seems to have its own drawbacks. Formulating cubic spline smoothing as a mixed-effects model is
simply a mathematical device; the suggested logical distinction between the fixed linear trend and the random smooth
variation about it is artificial, so one should not freely adopt random-effects methodology in this context (see Green,
1999). More importantly, as emphasised in subsequent sections, the non-standard asymptotic theory for LR or restricted
likelihood ratio (RLR) tests, which is used when the parameter under the null hypothesis is on the boundary of the
parameter space (see Self and Liang, 1987), cannot be blindly applied for testing variance components in linear mixed-
effects models; an approach adopted by Guo (2002b) for testing fixed-effects in a general functional mixed-effects
models.

A general functional mixed-effects model, similar to the one studied by Guo (2002b), has also been recently studied
by Morris and Carroll (2006). Their methodology is based on a fully Bayesian wavelet-based approach, yielding
nonparametric estimates of both fixed-effects and random-effects, as well as the various between-curve and within-
curve covariance matrices. Using the posterior samples for all model quantities, pointwise or joint Bayesian inference
or prediction on the quantities of the model is discussed. However, formal frequentist functional hypothesis testing
procedures for both fixed-effects and random-effects, which is the main focus of the present paper, is lacking from the
analysis described in Morris and Carroll (2006).

In this paper, our aim is to study both estimation and inference in a general functional mixed-effects model, similar
to the models studied by Guo (2002b) and Morris and Carroll (2006). The proposed estimation and testing procedures
will be built upon an appropriate wavelet decomposition approach. Wavelet decompositions allow one to characterise
different types of smoothness conditions assumed on the response function by means of its wavelet coefficients for
a wider range of function classes than the ones obtained by, e.g., their Fourier or smoothing splines counterparts. In
other words, these later methods may not be suitable for the spatially heterogeneous data encountered in many practical
situations, such as the motivating example presented in Section 2.

The paper is organised as follows. In Section 2, we introduce a functional dataset, arising from physiology, that has
motivated our methodological thinking. In Section 3, we first provide a formulation for a general functional mixed-
effects model. We then briefly recall some relevant facts about the wavelet series expansion and the discrete wavelet
transform (DWT) that we need further. A wavelet decomposition approach is then developed to model both fixed-effects
and random-effects in the same functional space. Finally, a linear mixed-effects representation, that is subsequently used
for estimation and inference in the general functional mixed-effects model, is also derived. In Section 4, adapting recent
methodologies in linear mixed-effects and nonparametric regression models, we provide hypothesis testing procedures
for both fixed-effects and random-effects in the general functional mixed-effects model. In Section 5, we illustrate
the usefulness of the proposed testing procedures first by means of a small simulation study and then by applying
them on the motivated example described in Section 2, along with wavelet-based estimates for both fixed-effects and
random-effects that are readily obtained by using classical linear mixed-effects estimation techniques. Finally, in the
Appendix, we provide outlines of the proofs of the theoretical results stated in earlier sections.
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2. The motivating example: orthosis data

Human movement data were acquired and computed at the Laboratoire Sport et Performance Motrice, Grenoble
University, France (see Cahouét et al., 2002). In this experiment, stepping-in-place was a relevant task to investigate
how muscle redundancy could be appropriately used to cope with an external perturbation while complying with
the mechanical requirements related either to balance control and/or minimum energy expenditure. For this purpose,
seven young male volunteers wore a spring-loaded orthosis of adjustable stiffness under four experimental conditions:
a Control condition (without orthosis), an Orthosis condition (with the orthosis only), and two conditions (Springl,
Spring2) in which stepping in place was perturbed by fitting a spring-loaded orthosis onto the right knee joint. The
experimental session included 10 trials of 20 s under each experimental condition for each subject. Data sampling
started 5 s after the onset of stepping, and lasted for 10s for each trial. So, anticipatory and joint movements induced
by the initiation of the movement were not sampled. For each of the seven subjects, 10 stepping-cycles of data were
analyzed under each experimental condition. The resultant moment at the knee is derived by means of body segment
kinematics recorded with a sampling frequency of 200 Hz. For each stepping-in-place replication, the resultant moment
was computed at 64 time points equally spaced and scaled so that a time interval corresponds to an individual gait
cycle. The dataset consists of 280 separate runs and involves the seven subjects over four described experimental
conditions, replicated 10 times for each subject. Fig. 3(a) shows the available dataset; typical moment plots over gait
cycles. The inhomogeneous behaviour of the involved curves makes them natural candidates for the proposed functional
mixed-effects methodology. One of the aim of the analysis is to understand how a subject can cope with the external
perturbation, and we need to quantify the ways in which the individual mean cross-sectional functions differ over the
various conditions.

3. Functional mixed-effects models
3.1. The general setup

Suppose that ¥;; (1 =1,2,...,n;j=1,2,...,m;)1is the response of the ith subject at point #;; (where ¢ is an index
such as time or distance) and can be modelled as

Yij =X B(tij) + Zijo D (ti) + &ij. M

where (1) = (f, (@), ..., ,/J",,(t))T isa p x 1 vector of fixed functions, &) (r) = (ocgl)(t), R oc((;)(t))T isaqg x 1 vector
of stochastically independent random functions that are modelled as realisations of zero-mean Gaussian processes
a(t)=(ai(t),...,aq (t))T (ag x 1 collection of such independent processes) with parametrically structured covariances
modelled in the wavelet domain (see Section 3.4), X;; = (X;;[1], ..., X;;[p]) and Z;; = (Z;;[1], ..., Z;jlq]) are,
respectively, 1 x p and 1 x g design vectors that can include dummy variables as well as covariates, and ¢;; are
independent and identically distributed Gaussian random variables (independent of a(¢)) with zero-mean and variance
ag, denoted by ¢; ~ N(0, 03). Model (1) can be easily extended to accommodate (possibly different number of)
repetitions per subject, say [; (i =1, 2, ..., n). Hereafter, “T” denotes the transpose of a vector or matrix.

Similar to the interpretation of linear mixed-effects models in longitudinal data settings, X;; B(¢) can be interpreted
as the population-average curve profile, Z;; a)(¢) can be interpreted as the ith curve-specific deviation (also called
the subject-specific deviation if each curve is from a different subject) from the population-average curve profile that
accounts for correlation, and X;;B(¢) + Z,‘joc(")(t) can be interpreted as the ith curve-specific function. Model (1)
includes many useful models commonly used in the literature for analysing functional data, including, e.g., linear
mixed-effects models, functional regression models, functional fixed-effects analysis of variance models, functional
analysis of covariance models, nonparametric mixed-effects models, functional mixed-effects analysis of variance
models, smoothing spline mixed-effects analysis of variance models, and nested and crossed samples of curves models
(see e.g., Guo, 2002b).

In the nonparametric analysis of functional data, both the fixed functional components of f(#) and the random
functional components of a(¢) should be modelled as nonparametric functions lying in infinite dimensional spaces
(since the basic unit in functional data analysis is the curve). Since deviations from smooth effects may be present, this
behaviour should also be included in the modelling formulation. A natural framework to include non-smooth effects is
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through wavelet decompositions, and it is developed below. We briefly recall first some relevant facts about the wavelet
series expansion and the DWT that we need further.

3.2. The wavelet series expansion and the DWT

Throughout the paper we assume that we are working within an orthonormal basis generated by dilations and
translations of a compactly supported scaling function, ¢ (¢), and a compactly supported mother wavelet, y/(¢), associated
with an r-regular (» > 0) multiresolution analysis of (L[0, 1], (-, -)), the space of squared-integrable functions on [0, 1]
endowed with the inner product ( f, g) = f[o,l] f(t)g(¢)dt. For simplicity in exposition, we work with periodic wavelet
bases on [0, 1] (see e.g., Mallat, 1999, Section 7.5.1), letting

@O =2 bu =D and YL )= Y~ forrelo.1]

leZ leZ

where ¢ ;; (1) =27/2¢(2/t —k) and  ;; (1)=27/2(2/ 1t — k). For any given primary resolution level jo >0, the collection

(@ k=0,1,....20 — 15 B, j>jo; k=0,1,...,2/ =1
is then an orthonormal basis of LZ[0, 1]. The superscript “p” will be suppressed from the notation for convenience.
Despite the poor behavior of periodic wavelets near the boundaries, where they create high amplitude wavelet co-
efficients, they are commonly used because the numerical implementation is particular simple. Therefore, for any
f € L?[0, 1], we denote by Uik = (fs Pjor) k=0,1,..., 2/0 — 1) the scaling coefficients and by wjk = (f, ¥ i)
(j=Jjos k=0,1,...,2/ — 1) the wavelet coefficients of f for the orthonormal periodic wavelet basis defined above;
the function f'is then expressed in the form

2/0—1 0o 2/-1
FO =" ujgrkdjn @+ DD wid (1), 1[0, 1].
k=0 j=jo k=0

In statistical settings, we are more usually concerned with discretely sampled, rather than continuous, functions. It
is then the wavelet analogy to the discrete Fourier transform which is of primary interest and this is referred to as the
DWT. Given a vector of function values f = (f(t1), ..., f(t,)) at equally spaced points #;, the DWT of f is given
by d = W,,x,f, where d is an n x 1 vector comprising both discrete scaling coefficients, ¢y, and discrete wavelet
coefficients, d i, and W, is an orthogonal n x n matrix associated with the orthonormal periodic wavelet basis
chosen. The ¢y« and dj; are related to their continuous counterparts u o, and wj; (with an approximation error of
order n~!) via the relationships ¢y ~ Jnu jok and dj ~ Jnw jk- Note that, because of orthogonality of Wj,,, the
inverse DWT (IDWT) is simply given by f = WL, d, where WL, denotes the transpose of W, . If n =2/ for some

positive integer J, the DWT and IDWT may be performed through a computationally fast algorithm (see e.g., Mallat,
1999, Section 7.3.1) that requires only order n operations.

3.3. A wavelet-based model specification for the fixed and random effects

An approach to modelling the fixed and random effects, that allows a wide range of irregular effects (for both
fixed-effects and random-effects), is through the sequence space representation of Besov spaces. The (inhomogeneous)
Besov spaces on the unit interval, B;I .10, 11, consist of functions that have a specific degree of smoothness in their
derivatives. The parameter p; can be viewed as a degree of function’s inhomogeneity while s is a measure of its
smoothness. Roughly speaking, the (not necessarily integer) parameter s indicates the number of function’s (fractional)
derivatives, where their existence is required in an LP1-sense; the additional parameter p, is secondary in its role,
allowing for additional fine tuning of the definition of the space. For a detailed study on (inhomogeneous) Besov spaces
we refer to, e.g., Donoho and Johnstone (1998).

By exploiting the relation between the hyperparameters of a prior model and the parameters of those Besov spaces
within which realisations from the prior will fall, as suggested by Abramovich et al. (1998), the fixed functional
components of B(¢) and the random functional components of a(¢) can be both made to share the same degree of
smoothness, i.e., they should lie in the same Besov space.
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Fix now a primary resolution level jo >0 and consider the orthonormal periodic wavelet basis {¢ ;. k=0,1,...,

2J0 — 1, x//jk, j=Jjo; k=0,1,..., 2/ — 1} discussed in Section 3.2. For each r; = 1,2, ..., p, assume that ﬁr| IS
B;l’pz[o, IJforO<s<r,1<py, py<oo. Foreachi=1,2,...,nandrp, =1, 2, ..., g, consider now the following
random wavelet series expansion:

2/0 -1 0o 2/-1

d0y=>" 00+ Y D00, relo 1],

k=0 Jj=jo k=0
where, foreachi=1,2,...,nandrp, =1, 2, ..., g, the wavelet coefficients H%’i) are assumed to be independent and
identically distributed random variables, distributed as

02" ~ N, v, 2)

Furthermore, we assume that, foreachi =1,2,...,nandrn, = 1,2, ..., g, the quantities v(.;f’i) are functions of the

resolution level j only. In particular, we assume that they decrease exponentially as a functions of the resolution level
Jj, 1.e.,

(rz D 22 7% for some &; >0,

where aé is some positive quantity.

A relationship between the Besov space parameters and the hyperparameters of the prior model considered above can
be now established. Exploiting the equivalence between the Besov norm of the function oc(') (#) and the corresponding
sequence space norm (see e.g., Donoho and Johnstone, 1998), and using Theorem 1 in Abramov1ch et al. (1998), for
any given values ofc(r2 D k=01, 2/0 —1),andforeachi =1,2,...,n;rm=1,2,...,q,

ol (1) € B [ p,10, 11 almost surely
if and only if
s+1/2 —0;/2<0
or
s+1/2—0;/2=0 for 1<p; <oco and p, =00

The above results show that, in each case, the fixed functional components of f(¢) and the random functional

components of a(¢) can be both made to share the same degree of smoothness (i.e., they can both lie in the same
functional space, Bls)1 P2 [0, 1], withO < s <7, 1 < pq, py <00), by appropriately relating the Besov space parameters s,
py and p, to the hyperparameter o; of the prior model discussed above.
Remark 3.1. The hyperparameter vj kz’ is the prior variance of the important wavelet coefficient at resolution level j
and scale k. The above model corresponds to the prior belief that all wavelet coefficients on all levels have the same
probability of being non-zero. This actually characterises self-similar processes, such as Brownian motion, the overall
regularity depending on the value of «;. This model allows us to capture key characteristics of variations in multiple
curves.

3.4. A linear mixed-effects representation

In this section, we provide a linear mixed-effects representation that is subsequently used for estimation and testing in
the general functional mixed-effects model (1). Observations from different subjects are independent, while observations
from the same subject are correlated to various degrees. We assume that the within-subject design is equispaced on
fine grid, a common model for many instrumental devices usually used to collect functional data. Furthermore, we
take m; =m forall i = 1,2, ..., n with m = 2’ for some positive integer J. This setting allows one to consider the
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DWT which can be performed through the computationally fast algorithm mentioned in Section 3.2. Note that this
assumption is not especially restrictive, since if the grid is fine enough, interpolation can be used to obtain a common
grid (of power two) without substantively changing the observed data.

Fix now a primary resolution level jo > 0 and consider the orthonormal periodic wavelet basis { qﬁjok, k=0,1,...,2/0—
1; wjk, j>jo: k=0,1,...,2/ —1} discussed in Section 3.2. Foreachr; =1, 2, ..., p, we set By =B, (1), ...,
[3,1 (tm))T, where t = (t1,...,t,) with t; = j/m for j =1,2,..., m. Considerations related to asymptotic minimax

optimality theory suggest taking as a maximal resolution level j; a level such that m/In(m) <2/' <2m/In(m) (see
Delyon and Juditsky, 1996). We recommend hereafter the choice m* = 2/! falling in this interval, because the resulting
wavelet estimators perform well for both smooth and piecewise smooth functions with isolated points of singularity.
(Obviously, such a choice does not affect the conclusions of Abramovich et al. (1998, Theorem 1) discussed in Section
3.3.) With this notation, we can write Brl (t) = WnT1 drl, where W,,«x,, 1s the m* x m matrix associated with the
orthonormal periodic wavelet basis, and &,1 is the m™ x 1 vector of the corresponding scaling and wavelet coefficients
B, k=01, .. —1; d%W, j=jo.....j1i—1: k=0,1,...,2/ —1}. Weassume that, foreachr1 =1, 2, ... p,
By (1) € B;l’pz[O, 1] for0<sl <r, 1< py, py<00.

Regarding the random-effects, the random components of their wavelet coefficients will help us to incorporate the
correlation structure and subject-specific features of functional data in the estimation process in the proposed functional
mixed-effects model Foreachi=1,2,...,nandrn=1,2,...,q, weset ocrlz) t)= (ocﬁ’z) (1), . ocrz) (tm))T and we can
00

mxm* r

xm*

write oc,z) t)= where again W= «,,, is the m™ x m matrix associated with the orthonormal periodic wavelet

basis, and 0(’) is the m* x 1 vector of the corresponding scaling and wavelet coefficients {c(r2 D= 0,1,...,20 —

H(rzl), j=jJos...,ji—1; k=0,1,...,2/ —1}. We assume that, foreachi=1,2,...,nandr,=1,2, ..., q, the

wavelet coefficients é;rkz”) are independent and identically distributed N (0, v(r2 ')) random variables. This independence
assumption implicitly restricts the time-domain covariance matrices to the Class of matrices diagonalisable by the DWT.
Moreover, since the variances (diagonal elements) are allowed to vary across the wavelet scales, the above model
accommodates only stationary covariance structures for the between curves covariance matrix from the same subject.
However, even with such restrictions, the model is flexible enough to capturing key characteristics of subject-specific
deviations encountered in practice. By analogy to Section 3.3, we take v(?f D= 22 7% for some o; >0, where 0'(29
is some positive quantity. Certain combinations of the Besov parameters and hyperparameters of the prior model can
now be exploited in order the fixed functional components of B(z) and the random functional components of a(t) lie
in the same Besov space By, , [0, 1], with 0 <s <r, 1 <py, pp <00 (see Section 3.3). For identifiability reasons, that
will become clear later, we assume that [#(In(m) — g)] > p, where [x] denotes the integer part of x. Finally, we assume

that, foreachi =1,2,...,nandrp=1,2,...,¢q, ¢ and 9 2 D are independent.
LetY;=(Y1, ..., Yi,,,)T andd=@d]. ..., d})T andletX; _X,W<P> andZ;=Z; W where X; =diag(X;1, . . ., Xim)
(each element is an appropriately constructed matrix containing dummy variables and/or covariates), W») =

diag(WnT1 e WnTi ) (p blocks), Z; = diag(Z;1, . .., Z;n) (each element is an appropriately constructed matrix
containing dummy variables and/or covariates), W,(,q) =diag(W@, ..., W) (nblocks) and W? —dlag(WTxm* ey
WnT1 «m*) (g blocks). Let also 0; = (9,-1, e, é,-q)Tand €& = (&1, ..., sim) . With this notation, the general functional

mixed-effects model (1) can be rewritten as
Y=Xd+7Z0+¢, 3)

where Y=(YT,...,.YD".X=XT,.... XD, Z=ZT,....Z)",0=@0],...,6)) ande= T, ..., €"HT. Model
(3) is clearly a linear mixed-effects model with one variance component where the fixed-effects are parameterised by the
wavelet coefficients of f8, (t) (r = 1,2, ..., p) and the random-effects are parameterised by the wavelet coefficients
of ) (i =1,2,....m n=1,2,...,9)

ObV10usly, [E(H e) = (Onm=q» ,,m)T, where Oy, is a k x k matrix with zero entries. Moreover, it is not difficult to see
that \/(0, ol = dlag(a%)):, o 2Ym), Where X = diag():(l), I 30 (n-components) with P being a diagonal matrix
with diagonal entries corresponding to the elements 2-J% foreachi=1,2,....n (the same forallm =1,2,...,q),
and Iy is the k x k identity matrix. It is easily seen from the above that the corresponding covariance surface for the

Gaussian process modelling the random-effects oc,z) (t) is given by 09 Wi somr O WT

s+ Lhis matrix describes how the
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functions vary one from another and the parameters «; and ag have a clear impact on any inference that is done, but such
a specification seems unavoidable since the large dimension of the covariance matrices make it infeasible to estimate
them in a completely unstructured fashion. Ideally, estimates of these parameters could be obtained from some prior
information or assumptions about, e.g., the regularity of realisations of the random-effects ocg) (t). In practice, however,
itis often difficult to elicit such a prior information about the regularity properties. We therefore suggest to estimate these
parameters form the data by maximum likelihood. Therefore, the parameters associated with the covariance matrices
are substituted by their estimates without taking their precision into account in the inference that is done subsequently.
Summarizing, we can now write

E(Y)=Xd and V(Y)=02V,,

where V, =1, + JZXZ" and = aé / ag. The parameter A can be considered as a ratio of the curve-to-curve variability
and the within-curve noise. Note that 0(2, =0 if and only if 4 = 0, and the parameter space for / is [0, 00).

Remark 3.2. The independence assumption of the random effects in the wavelet domain discussed above only implies
independence in the data domain when the variance components of the random effects are identical across all resolution
levels j and locations k, implying that our modelling methodology allows to model correlation between observations
over the same individual.

4. Inference in functional mixed-effects models
4.1. Testing for random-effects

According to the modelling formulation in Section 3.4, testing for random-effects in the general functional mixed-
effects model (1) is equivalent to testing for a zero variance component in the linear mixed-effects model (3) which, in
turn, is equivalent to testing the following hypotheses:

Ho: 05 =0 (2=0) versus Ha: o3>0 (> 0). 4)

Testing the above hypotheses is non-standard because the parameter under the null hypothesis is on the boundary
of the parameter space. Therefore, using the non-standard asymptotic theory developed by Self and Liang (1987) for
independent data, one may be tempted to conclude that the finite sample null distributions of the resulting LR and
RLR tests could be approximated by a 0.56(0) + 0.5 X% distribution, i.e., a 50:50 mixture of a point mass at zero and a
chi-square distribution with one degree of freedom. However, a second problem is lack of independence, at least under
the alternative hypothesis. Because the response variable Y in the linear mixed-effects model (3) is usually not a vector
of independent random variables, the non-standard asymptotic theory of Self and Liang (1987) does not apply. With
this in mind, Crainiceanu and Ruppert (2004) have recently derived finite sample and asymptotic null distributions for
the LR and RLR test statistics in linear mixed-effects model with one variance component. This is the approach that
we consider in the following development for testing the hypotheses in (4).

4.1.1. Profile and restricted profile log-likelihood functions
Twice the log-likelihood function for the linear mixed-effects model (3) is (up to a constant that does not depend on
the parameters)

(Y —Xd)TV; (Y - Xd)

2
O¢

L(d, 2, 02) = —nmlog(c2) — log |V;| —

&)

Under the alternative hypothesis Hy4 in (4), by fixing 4 and solving the first order minimum conditions for d and ag,
one gets the maximum profile likelihood estimates

d) = X'V;'X)XTv Y (6)
and

G2(J) = %(Y - iﬁ(ﬂ.))Tvgl (Y — Xd()). (7)
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Plugging the expressions (6) and (7) into (5) we obtain (up to a constant that does not depend on the parameters), the
profile log-likelihood function

L(})=—1log|V;| — nmlog(Y'PIV;'P,Y), (8)

where P; =L, — XXV 'X)"IXTV L

In order to take into account the loss in degrees of freedom due to estimation of the m* p-dimensional d parameters,
and thereby to obtain unbiased variance components estimators, Patterson and Thompson (1971) introduced the notion
of restricted (or residual) maximum likelihood (RML) (or generalised maximum likelihood in the spline smoothing
literature). RML consists of maximizing the likelihood function associated with (any) (nm —m* p) linearly independent
contrasts. Twice the restricted log-likelihood function for the linear mixed-effects model (3) is (up to a constant that
does not depend on the parameters)

1@, 2, 0%) = L(d, 2, 67) — m* plog(a?) — log(IX"V;'X]). )

Using arguments similar to the ones used to obtain the maximum profile likelihood estimates, the maximum restricted
profile likelihood estimate of d (/) is still given by (6) while the maximum restricted profile likelihood estimate of ag()»)
is now given by

305 1 3o Ty-1 =41

02(l)= — (Y —Xd(1) V, (Y — Xd(2)). (10)

’ nm —m*p ~

The restricted profile log-likelihood function (up to a constant that does not depend on the parameters) is then given by
[(7) = —log |V;| — log X"V 'X| — (nm — m* p) log{Y"P]V'P,Y}. (11

By following Crainiceanu and Ruppert (2004) and Claeskens (2004), and taking into account the restriction [n (In(m)—
q)] > p (see Section 3.4), one can show that both profile and restricted profile log-likelihood functions can be written
as functions of latent eigenvalues. In particular, the profile log-likelihood function (8) can be written, up to a constant
that does not depend on the parameters, as

nm*q nm*q 1 nm—m*p
, 5 2 2 2
L()y=—Y log(l + A& ) —nmlog{os y T + ) ot
s=1 s=1 i s=nm*q+1
while, the restricted profile log-likelihood function (11), can be written as
nm*q nm*q 1 nm—m*p
, , 2 2 2
(A =-— Z log(1 + Apt ) — (nm — m™ p)log { o Z mws + Z w5 (s
s=1 s=1 g s=nm*q+1

where wj are independent and identically distributed N (0, 1) random variables, and i ,,,, and &g ,,,,, are the eigenvalues
of the matrices K, = 212ZTPyZE'/? and K:= IRV AVANIES respectively. Here, /2 is the unique symmetric square
root of £ and Py =1I,,,, — X(XX)~'XT.

4.1.2. Finite sample and asymptotic null distributions of the LR and RLR tests
The finite sample LR test statistic is defined as

LR, = sup LRy, )= sup (L(A) — L(0)),
220 230

while the finite sample RLR test statistic is defined as

RLR,,,, = sup RLR,,, (2) = sup ((2) — 1(0)).
A=>0 2=0

The following theorem gives the spectral representations of the finite sample null distributions of the LR, and RLR,,,,
test statistics that can be used for testing the hypotheses in (4).
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Theorem 4.1. Let yg ,,,, and Cg .y, be the eigenvalues of the matrices K, = 2‘/22TP02>:‘/2 and K¢ = UEYAVANE
respectively, where Py = 1, — X(X'X)~'XT. Then, under the null hypothesis Hy in (4),

Nom(G)] "
(
LR, = sup | nmlog {1 + } — log(1 + ¢, ) (12)
nm ) > 0 Dnm (/1 ; s,nm
and
P N, 1 nm*q
RLR,,,, = sup | (nm — m*p)log {1 + L()} — Z log(1 + Aty ) | » (13)
A=>0 Dnm (/L s—1
where the notation “= 2 denotes equality in distribution,
nm*q )’u nm*q nm—m*p
Nam(2) = ) ——""—ay, zzmmz)—-Ej + > o
s=1 1+ ’Lux,nm o= 1 + /“:uv nm s=nm*q+1
and wg, s = 1,2, ..., nm*q, are independent and identically distributed N (0, 1) random variables.

Each of the finite sample null distributions of the LR,,, and RLR,,, test statistics has a probability mass at zero,
and this mass can be very large indeed. Although there is no simple expression for these probabilities, there is a good
approximation (see Crainiceanu and Ruppert, 2004).

The finite sample null distributions of the RL,,, and RLR,,;, test statistics depend only on the eigenvalues y ,,, and
&g nm- Following Crainiceanu and Ruppert (2004), the following algorithm, which we have used in the analysis of the
examples presented in Section 5, provides a simple way to simulate the finite sample null distributions of the LR,
and RLR,,, test statistics, once the eigenvalues f; ,, and ¢, ,,,, have been calculated.

Step 1: Define a grid 0 = 4] < Ay < - -+ < Ak of possible values of A.

Step 2: Simulate nm*q independent X% random variables w%, ey wﬁm* .

Step 3: Independently of step 2, simulate Xy m*p.am+q = Z?':";r::ﬁ:;ﬂ |

@F With 7, e g distribution.
Step 4: For every grid point 4;, compute

nm*q N nm*q 2

N Ails nm 2 _ Wy
Nnm(/tz) = ; mwb and Dnm()v) = ; m + Xnm,m*p,nm*ll‘

Step 5: Determine AL « which maximises

fERG) = | nmlog {1 +

Mmu,} i
T 1 log(1 + /1 s,nm
Dy (4i) Z & ¢ )

and Aﬁlgf which maximises
Nam(i)| "
RLR * nm 4
)= (mm—m p)log{l+— — log(1 + A it 1)
Dnm (ﬂvi) ; s
over A1, Az, ..., Ak.

Step 6: Compute
LR = fu

max

Step 7: Repeat Steps 2—0.
The above algorithm could, however, be computationally very expensive since its speed depends on the number of
random-effects, nm™q, in the linear mixed-effects model (3) (which obviously depends on the number of subjects, 7,
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the number of observations, m, per subject, and the number of random-effects, ¢, in the general functional mixed-effects
model (1)).

Alternatively, the asymptotic null distributions of the LR,,;, and RLR,,,, test statistics can be easily obtained; they
actually depend on the asymptotic behaviour of the eigenvalues g ,,,, and &g ., used to calculated the finite sample
null distributions of the LR,,, and RLR,,,, test statistics. When these eigenvalues cannot be computed explicitly it
may be simple to study the asymptotic behaviour of the corresponding matrices. Once the asymptotic behaviour of the
eigenvalues (i ,,, and &; ,,, is available, one can either obtain closed-form expressions for or easily simulated from
the corresponding asymptotic null distributions.

The following theorem provides the asymptotic null distributions of the LR,,, and RLR,,, test statistics.

Theorem 4.2. Let g ,,,, and ¢, be the eigenvalues of the matrices Ky, = Zl/zzTPOZZI/z and K¢ = ZI/ZZTZ)Zl/z,
respectively, where Py = 1,,,, — i(iTi)_liT. Suppose that there exists a constant 1>0 so that, for every s, the
eigenvalues i ., and &g ., satisfy 1imym s oo (nm) g 0 = ptg and im0 (nm) &, = &, where pg # 0 for
at least one s. Then, under the null hypothesis Hy in (4),

nm*q

wf — Z log(1+d & )
s=1

nm*q

duS nm
LR, = sup —_—
" d=>0 sZZ] I+ d:us,nm

and
nm*q du nm*q
RLR,,, = sup %wf — > log(l+d g ) £ -
VN +d s —1
where the notation “=" denotes weak convergence and wg, s = 1,2, ...,nm*q, are independent and identically

distributed N (0, 1) random variables.

Each of the asymptotic null distributions of the LR,,, and RLR,,, test statistics has a probability mass at zero, and
this mass can be very large indeed. Although there is no simple expression for these probabilities, there is a good
approximation (see Crainiceanu and Ruppert, 2004). We point out again that the asymptotic null distributions depend
on the asymptotic behaviour of the eigenvalues g ,,,, and ¢ - In the following, we treat a simple example of practical
interest showing how these conditions can be reduced to a simple expression.

Example 4.1 (Balanced one-way functional mixed-effects ANOVA model). Consider the following balanced one-way
functional mixed-effects ANOVA model with n levels, m discretised values per level, and / repetitions per level, i.e.,

Yie = Btij) + oD ij) veje, i=1,....n, j=1,...om, k=1,...,1, (14)

where f(¢) is an unknown functional mean, o (1) are realisations of a zero-mean Gaussian process a(t), and &;jy are
independent and identically distributed N (0, ag) random variablgs that are also independent of a(¢). Using the wavelet
transform parameterisation discussed in Section 3.4, the matrix X for fixed-effects is simply an nml x m* matrix with
nl block columns equal to WZ o+ and the matrix Z for random-effects is the nml x nm™ matrix, with / row blocks each
made by a block diagonal nm x nm™ with the matrix WmT «m+ 0N the diagonal. We consider the asymptotic situation,
where the number of levels 7 is fixed, while m, | — oco. Recall that Py denotes the orthogonal projector of R™! onto
the space orthogonal to the column space of X. By the orthogonality of the columns of WZX %> 1L 1S easy to see that
the rank of X is m* and, therefore, Py has nml —m* eigenvalues equal to 1 and m* eigenvalues equal to 0. Using again
the orthogonality of the columns of W;: «m*> it 18 easy to prove that Z"PyZ has m*(n — 1) eigenvalues equal to / and
the remaining eigenvalues equal to 0. Moreover, the eigenvalues of K, are given by the product of eigenvalues of X
and ZTPOZ while the eigenvalues of K¢ are given by the product of eigenvalues of X and Z"7Z. Given the behaviour of
the diagonal matrix X, it follows that both i ,,,, and & ,,,, are therefore /(1 (m*)~"). The conditions on the asymptotic
behaviour of the eigenvalues g ,,, and & ,,, mentioned above reduce now in assuming that there exists a constant

=0 such that !~ (nm)" (m*) ™ = O(1).
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4.1.3. Estimators for the ratio of the curve-to-curve variability and the within-curve noise

We discuss below two possible ways of obtaining consistent estimators of the parameter A = a% / ag.

Profile and restricted profile maximum likelihood estimators: By maximizing (8) or (11) one can obtain the profile and
restricted profile maximum likelihood estimators JR and JRER respectively, of 2. Under some regularity conditions,
one can show that A*R and JRR are consistent estimators of 1 (see Claeskens, 2004).

A wavelet domain based estimator: It is not difficult to see that, for each individual data curve, the empirical
wavelet coefficients of the data, at each resolution level j, are independent random variables, distributed as Gaussian

distributions with appropriate means and variances, depending on v;.;(z’l). The maximum likelihood estimators of v(.;f”)

J
g, a consistent estimator of 0(2) can now be obtained in closed form. Indeed, by noting

that for j = 0 one gets v;.?f’i) = o%, an estimator of 0'%) can be obtained for each value of r, =1, 2, ..., g, and then

can be obtained explicitly. Given ¢

estimate a%) by averaging its g estimates obtained, resulting in the estimator 6'(2).

However, in most applications, the noise variance 03 can also be estimated in the wavelet domain. In wavelet function

estimation, the common practice is to robustly estimate g by the median of the absolute deviation of the empirical
wavelet coefficients of the data at the highest resolution level divided by 0.6745. This can be done for all the individual
data curves and then estimate o by averaging its n robust estimates obtained from each individual data curve, resulting
in the estimator 2. A consistent estimator of 2 is then simply obtained by vl = 6’5 /62.

4.2. Testing for fixed-effects

The wavelet decomposition proposed in Section 3.4 for the general functional mixed-effects model (1) can also
provide an efficient way to make meaningful inference on the fixed-effects by testing whether certain fixed-effects or
contrasts are equal to zero. The proposed method will be based on an appropriately defined F-test based procedure for
testing that the expectation of a Gaussian vector with nm independent components belongs to a linear subspace of R™"
against a nonparametric alternative. The testing procedure is available even when the variance of the observations is
unknown and does not depend on any prior information on the alternative. The properties of the test are nonasymptotic
and the test will be rate optimal (up to a logarithmic factor) over various classes of alternatives simultaneously.

To begin with, consider the linear mixed-effects model (3) and take the case where ag is unknown but the parameter
A= a%) / ag is known. The general functional mixed-effects model (1) and the specific wavelet-based modelling approach
that we have used in Section 3.3 for representing the random-effects functional components show that the vector of

observations Y is Gaussian. In this case, the image of the vector Y by V)_l/ ? leads to the linear regression model

A

Y; = VTI/ZY = V;ﬁl/ziaﬁ— Ugn, (15)

A

where # is a random vector with independent and identically distributed standard Gaussian components, i.e., 1; ~
N(, 1) fori =1,2,...,nm.Letvdenote the expectation of Y and let p be its image by V;l/ 2. The space of means

& of model (15) is the m™ p-dimensional linear subspace of R spanned by the columns of the matrix V)fl/ X, ie.
&={peR™ p=v,"’Xd with d e R"'7).

Testing for significant fixed-effects functional components or contrasts is formally a test of the null hypothesis
H,: A.d = 0 for a suitable defined matrix A, against general alternatives. A powerful approach to such a high-
dimensional hypothesis testing is available by adapting the model selection based procedures proposed recently in
Baraud et al. (2003), which are naturally generalised to our present scenario.

Let 7", be the linear subspace of & defined by

Ve={(v,'*Xd, A.d=0)

for a suitable defined contrast matrix A.. Following the idea of Baraud et al. (2003), we propose below a testof & € ¥
against that it does not. The testing procedure relies upon appropriately defined F-statistics which have been widely
used for hypothesis testing in the linear model framework due to their intuitional appeal and their equivalence to LR
for fixed-effects models. It is described as follows.
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We consider a finite collection {S¢: € € £} of linear subspaces included in the orthogonal complement ’Vﬁ Né& of
V"¢ in &, such that foreach £ € &, Sy # vV~ f‘ N & and Sy # {0}. The index set £ is allowed to depend on the number
of observations nm. Given a suitable sequence {zy: ¢ € ¥} of numbers in (0, 1), we consider for each £ € %, the
Fisher test of level o, for testing

Hoc: pe v versus Hppipe (Ve + SO\ e, (16)

and denote by T¢ , the corresponding test statistic. The resulting test can then be regarded as an adaptive test of linear
hypothesis based on a multiple testing procedure rejecting Ho  against Hy ¢ as soon as there exists £ € . such that
T, ¢ is larger than some threshold.

To pursue, let us first introduce notations that will be repeatedly used throughout this section. The distribution of
the vector of observations Y will be denoted by P,. For any linear subspace .o/ of R"™, we denote by I1 ., the
orthogonal projector onto ./ (with respect to the Euclidean norm || - ||). For any u € R, ®(u), yp(u) and Fp n(u)
denote, respectively, the probability for a standard Gaussian variable, a chi-square with D degrees of freedom, and a
Fisher with D and N degrees of freedom to be larger than u. For any ¢, d. will denote the dimension of ¥", and, for
each £ € ¥, Dy and N, will, respectively, denote the dimensions of Sy and (7", + Sg)l N &. Let also k. be the rank
of A..

4.2.1. Description of the test
Leta € (0, 1) be a fixed significance level. Assume that the collection {S; : £ € £} of linear subspaces of ¥~ CL né&
is such that 1 < Dy <nm —m*p + k. — 1. We set

_ NIs Yo
Dy ||H(«;fp+sz)ing/l ||2 '

c,t

and we define

Ts = sup(Te.e — Fpp, y, G0)), (17
te&

where {0, : £ € £} is a sequence of numbers in (0, 1) such that, for all p € ¥, Zeeg’ og <. We then reject the
null hypothesis (16) when T} is positive.

4.2.2. Level of the test
We first study the level of the test statistic defined in (17) and show that it is of level a. Indeed, the following theorem
holds.

Theorem 4.3. The test statistic Ty, defined in (17), under the null hypothesis (16), satisfies
Yue v, Pu{Ti>0)<a

The proof of Theorem 4.3 shows clearly that the above procedure is a Bonferroni-like procedure in which the p-value
o is composed by #. significance levels, where #.% is the total number of models that are tested. It is well known that
the Bonferroni approach is overly conservative when #.% is large; the choice of .Z is therefore important and connected
to optimal model selection procedures (see Section 4.2.4).

4.2.3. Power of the test
We now study the power of the test statistic defined in (17). Let 0 <y < 1, and let us first introduce some quantities
that depend on ay, 7, Dy and N,. For each u > 0 and each £ € &, we set

Ly =log(1/a¢), L =log(2/y), re=2exp(4L¢/Ne),
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D¢+ Ly

K((u)=l+2/Nie+2mNi€, A0 =25 (14 max(Ke(Lo), 7o) =37

A2(£)=2.5,/1+Kf(L)(1+ %) and
14
_ reKe(L) Dy
A3(0) =25 [max (T 5)] (1 + 2@) )

Under the condition, oy > exp(—N¢/10) and y>2exp(—N¢/21), for all £ € #, which is usually met for reasonable
choices of {S¢ : £ € ¥} and {oy : € € £}, the quantities A1 (€), A,(¢) and A3(€) behave like constants (see Baraud
et al., 2003).

With the above notation, the following theorem holds.

Theorem 4.4. Let Ty be the test statistic defined by (17), and assume that X* VA_IX converges to a positive definite
matrix as m — oo. Let # ,,, and pi be defined as follows:

T = {'u/(a) €&, d,%l(a, an) Zp%n} s
and
2 . 2 5
P = zlen;) [(l +A1(0) dy (I Lo g s Se) + W] .
where
2 2 2
|:A2(Z) Dy 10g< ) + A3(0) 10g< )i| 0;8 .
ag) | m*p
Then,

mli_r)noo ~suB P#(&) (T3<0)=0
des

According to Theorem 4.4, one can see that the larger the %, is the better the power of the test. The definition of
the set 7, suggests that we would take advantage in considering a collection of linear subspaces {Se: € € £} with
good approximation properties in order to decrease the bias term, d;, 2 (11, 7 LngH Se) (as well as pm) In fact, there is a

balance to achieve between d,%l (1,1 pmt, Se) and v%. If, for example, the collection {Sy : £ € £} is totally ordered

for the inclusion, d,%, (1)1 ~gtt, Se) decreases with Dy but v% increases with D,. Therefore, the choice of % has to be
done carefully, as we see fora specific case in Section 4.2.4.

The proposed test statistic (17) cannot directly be computed in practical applications because it depends on the
unknown quantity 4. However, this problem can be solved by replacing 4 with a consistent estimator, regardless that Hy
is true or not (see Horowitz and Spokoiny, 2001, Section 2.5). This is exactly the case for the signal-to-noise estimators
AR RER and 7% discussed in Section 4.1.3. The method we have developed operates just as if the parameter 4
substituted is the true one, without taking the uncertainty in estimating 4 into account in the inference that is done
subsequently.

4.2.4. Nonasymptotic minimax rates for testing the nullity of functional fixed-effects contrasts

Here, we derive an upper bound for the rate of testing the nullity of a given contrast of the functional fixed-effects in
the general functional mixed-effects model (1). We are therefore able to evaluate the general bounds and power of the
testing procedure discussed above. The connection with the procedure given above is clear when relating the discrete
wavelet coefficients d with the mean vector g (d), which is in this case nothing else than the vector of sampled values
of the contrast, at least when the sampling grid is the same for all individuals. Indeed, for two functions fand g sampled
on an equidistant grid on [0, 1] of size m, we set ||f — g||fn =31 (f ) — g(ti))z/m and d,, (f, g) = ||If — g||,n. For



4806 A. Antoniadis, T. Sapatinas / Computational Statistics & Data Analysis 51 (2007) 4793 —-4813

u and v in R™ we set ||lu — v||%1 =30 (i — v;)?/m and dy, (u, v) = |Ju — v||,,.. Note that if u and v (in R™) are the
discrete wavelet coefficients of the functions f and g, respectively, sampled on an equidistant grid on [0, 1] of size m,
we then have that [[u — v||2, = ||f — g||?, (see Antoniadis, 1994).

Lets € (0, 1] and R > 0. We assume that the functional fixed-effects contrast that we wish to test its nullity belongs
to a class within a Besov space 93;‘)0,00([0, 1], R) (a Holder space on [0, 1] of regularity s),

Brooo(l0. 11, B)y ={f: |f(x) = FODI<RIx = yI'},

i.e., the desired class is expressed as
F (RS, pp) ={f € B oo ([0, 11, R) 1 d(F, (@) =, }.

where /,L(&) is the wavelet reconstruction from the wavelet coefficients of the true mean of the estimated contrast.

Here, our concern will be the rate at which the distance between the null and alternative hypotheses can decrease
to zero while still permitting consistent testing, the set of alternatives should be also separated away from the null
hypothesis in the d,,-distance by p,,. Theorem 4.5 gives a upper bound for the minimum separation from zero (see
e.g., Abramovich et al., 2004), uniformly over % (R, s, p,,), by considering a specific collection of subspaces S, and
a series of levels ay.

Denote by .4, the set of all indices j such that 27 <[m /2]. Foreachindex j € My, let Kj ={k:1<k< 27 } and set
Byj=[(k— 1)/2/, k/27). Therefore, for each j € .#,,, the intervals (Bkj)keK_,- define a partition of [0, 1) =Uyek; By;.
For each j € ./, the subspaces S; that we consider is the linear space spanned by the following set of vectors
{(1/#Bkj)2;”:12ti63kje,-; k € K}, where #By; =#{t; € Byj, i=1,...,m}and (eq, ..., ey) be the canonical basis
of R™. Note that S, as it is defined above, is related to the basis of piecewise constant functions on [0, 1). Indeed, for
each j € .4y, and foreach k € K;, denoting by gk (x) =1, (x), it is easily seen that S; is the vector space spanned by
the vectors g = (gx(*1), - - ., gk(tm)). (When ¥~ = {0}, i.e., we test the nullity of the corresponding functional contrast
¢, Sjisin ¥ F =R")

For a given f, let pﬁl (f) be the “indifference threshold” for testing f = 0 against that f € # (R, s, p,,). With the
above notation, the following theorem holds.

Theorem 4.5. Assume that R> > (ag /m)~/In In(m). Let o be an overall significance level. Then, there exists a constant
Cs (depending on o), such that for all s € (0, 1], one has

2 2
P = sup 0, (f)
fG'ﬂF’(R,S,/),,,)

0_2 4s/(1+4s) 02
<Cy |:R2/(1+4S) (—’H/ln ln(m)> +R*m™ % + —1n ln(m)} :
m m

Recall that the optimal rate of testing is the fastest rate at which p}, can approach zero while permitting consistent
testing uniformly over Z (R, s, p};,). Note that when é—ltgs <1, the rate of testing of our procedure, in the sense of
Ingster and Yu (1982), is ((1/m)+/In In(m))>/(1+49)  The minimax rate of testing is, however, m~2/(1+49) The loss
of efficiency by a In In(m) factor is unavoidable and is due to the fact that our procedure is adaptive with respect to s
and R (see e.g., Spokoiny, 1996). On the other hand, when s < }‘, the rate of testing is of order m~*, but it is not known
whether such a rate is optimal or not. When O'% is assumed to be known, the rate of testing for regular functions, as the
ones we consider for testing contrasts, is m~ /4 (see Baraud, 2002).

5. Applications

The purpose of this section is to illustrate the usefulness of the proposed functional hypotheses testing procedures,
described in Section 4, first by means of a small simulation study and then by applying them on the orthosis dataset
discussed in Section 2.
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Fig. 1. Simulated data with n = 4 and m = 256 according to the balanced one-way functional mixed-effects ANOVA model (19) (the fixed-effect
function is superimposed).

5.1. A simulation study

A small simulation study on synthetic data has been carried out in order to evaluate the performance of the proposed
procedure for testing the significance of a functional fixed-effect in the presence of random-effects, using the test statis-
tics that were described in Section 4.2. When testing for no fixed-effect, the alternative hypothesis was modelled using
the Heavisine function, which is very popular in the wavelet literature when evaluating thresholding procedures. In
particular, the synthetic data were generated according to a version of the balanced one-way functional mixed-effects
ANOVA model described in Example 4.1, i.e.,

Yij=Btij) + o) +opeij; i=1,...,n, j=1,...,m, (19)

where, for each level i, each curve was discretised on a equidistant grid of m values, and where the ¢;; are independent
and identically distributed N (0, 1) random variables that are also independent of the random effects functions oD (1).
For the fixed-effect function, we have considered

p(t) =4sin(4nt) — sign(t — 0.3) — sign(0.72 — t),

normalised to have || §]|>=1. The random-effects curves o) (r) (i=1, . . ., n) were obtained by performing the IDWT on

the sets of wavelet coefficients randomly sampled from (2). The hyperparameters in (2) were of the form vyk) = 052_1 “

and several values for («, 05) were tried. In all simulations, the compactly supported Symmlet 4-tap filter mother wavelet
was used. In what follows, we present the simulation results for n = 15, m = 256, o = 2.1 and for two values of a:
o9 = 3000 and oy = 0. The value of ¢; was chosen to yield a given ratio of the standard deviation of the signal and of
the noise (RSNR); therefore the RSNR controls the degree of departure from the null hypothesis.

Fig. 1 shows an example with four realisations (n = 4) from model (19). The function (¢) is superimposed to the
noisy observations as the reference curve. A large value of oy implies a strong presence of random-effects while a
value close to zero indicates no presence of random-effects. From a practical point of view, in this simulated example,
one is interested in how the suggested fixed-effect test performs well under various RSNR conditions. In what follows,
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Fig. 2. Empirical power functions for testing the presence of a fixed-effect obtained from n = 15 synthetic signals generated according to the balanced
one-way functional mixed-effects ANOVA model (19). (Left panel): power versus RSNR for the testing procedure with estimated hyperparameters
(solid line) and with true values: o = 2.1 and g9 = 3000 (dotted line). The sample size is m = 256 and the number of replications is M = 200. (Right
panel): power versus RSNR for the testing procedure with estimated hyperparameters (solid line) when there is no presence of random-effects in the
data (dotted line).

we have taken m* = 64 and jp = 0 and, in order to make the proposed procedure fully automated in practice, the
hyperparameters gy and o, were assumed unknown during the simulations and estimated from the data by the wavelet

domain based methods described in Section 4.1.3. (Noting that we have chosen v;rkz’i) = 052_1‘“, i=12,...,n,

and using the consistent estimator of 0(29, the value of « is also easily estimated.) The number of simulations used for
each set of parameters is M = 200. For each simulation, the computed test statistics where compared to the threshold
corresponding to the (fixed) significance level 2=0.05, thus obtaining an estimate of the power function of the suggested
test for the significance level a.

Fig. 2 shows the empirical power function based on M =200 replications for each RSNR as a function of RSNR when
using the hyperparameters described above. To investigate the effect of estimating o, g9 and g on the empirical power,
we performed an analogous study with the true values of o, 6y and g, (see also Fig. 2). For strong noise (small RSNR),
the fully automated procedure tends to yield somewhat larger values of the test statistic. In particular, its significance
level (power at RSNR = 0) turns out to be higher than the assumed 0.05. The differences in the two empirical power
curves vanish as RSNR increases due to the improving accuracy in estimating the values of « and gy. The left panel of
Fig. 2 shows that the empirical power of the suggested test increases fast with RSNR, and for RSNR = 2 the empirical
power is already about 0.7. On the other hand, the right panel shows that the test has a very good behaviour even when
in reality there is no presence of random-effects in the data.

5.2. Orthosis data

Abramovich et al. (2004) analysed this dataset as arising from a fixed-effects functional analysis of variance model
with two qualitative factors (Subjects and Treatments), 1 quantitative factor (Time) and 10 replications for each level
combination. They considered a block design model, treating subjects as blocks, which allowed them to make inference
about the treatments of interest; they found significant global differences between treatments although under Spring 1
and Spring 2 conditions the subjects behave similarly, the same being less true under Control and Orthosis conditions.
They also found a highly significant global trend over time.

However, as in Abramovich and Angelini (2006), it is more reasonable to treat subjects as random-effects and to apply
the proposed estimation and testing procedures. (We point out at this point that testing for functional random-effects
is lacking from the mixed-effects functional analysis of variance testing methodology of Abramovich and Angelini
(2006).) Averaging over the 10 repetitions for each subject, following the wavelet-based formulation, and using the
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matrix notation of Section 3.4, it is not difficult to see that, in this particular situation, we have n =28, m =64 (m* =16,
Jjo=0), p=4and g =1, and the general functional mixed-effects model (1) can be expressed as a linear mixed-effects
model with one variance component, written as

Y=Xd+7Z0+¢,
using the compactly supported Symmlet 4-tap filter mother wavelet, where

o Y=(YT,..., Ygg)T (a 1792 x 1 vector of data points);

o X=XW® (a1792 x 64 fixed-effects design matrix), X = (AT, AT, AT, AD)T, where 4; (i =1,...,4)are 7 x 4
block-zero matrices apart from their ith column which consists of seven identity matrices each one of size 64 x 64,
and W& = diag(WY, (6. ---» W) (4 blocks);

od= (&T, e, &4T)T (a 64 x 1 vector of fixed-effects wavelet coefficients);

o« 7= I1790W®® (a 1792 x 448 random-effects design) and W%) = diag(Wg‘le, R W(;Elxlb) (28 blocks);
o« 0= (5T, .. ,EES)T (a 448 x 1 vector of random-effects wavelet coefficients);

o €= (%T Yo ,%J;S)T (a 1792 x 1 vector of standard Gaussian errors).

One of the aim of the analysis is to understand how a subject can cope with the external perturbation, and we need
to quantify the ways in which the individual mean cross-sectional functions differ over the various conditions. Below,
we apply our general methodology described in previous sections in order to test both functional fixed-effects (i.e.,
if there is difference between specific functional contrasts of interest) and functional random-effects (i.e., if there is
any random-effect present in the dataset) as well as to estimate the various functional components. Following the
wavelet-based model formulation for random-effects discussed in Section 3.3, and in order to reduce the computational
time, we have taken below o; = o for all i = 1, 2, ..., n. Noting that, in this case, vﬁz”) = 5(2)2—1“, i=1,2,...,n,

and using the consistent estimator of 0’(2) obtained in the wavelet domain, as discussed in Section 4.1.3, the value of o
is easily estimated.

Regarding the functional random-effects, the application of the testing methodology presented in Section 4.1 reveals
that 69 =40.313, 5=4.082 and &, = 1.080 resulting in A*¢ = 1393.531. The finite sample RLR test statistic, computing
on a grid of 400 points and taking 100 000 simulations from the null, takes the value of 3.490 and the corresponding
probability at zero value is 0.528 which shows that the corresponding testing methodology is feasible. Fig. 4(a) shows
the histogram with 50 bins of the RLR test statistic values under the null hypothesis. The corresponding p-value is
0.028, showing that there is significant evidence of random-effects in this case.

Regarding the functional fixed-effects, the application of the testing methodology presented in Section 4.2 reveals
that a piecewise constant functions collection {Sy : ¢ € £} of orders 1, 3, 7 and 15 gives the following Bonferroni
based test statistic value (where, in each case, each of the corresponding Bonferroni level is taken as 0.0125): 4.847
for Spring 1 vs Spring 2 conditions, 8.992 for Control vs Orthosis conditions, and 48.751 for Spring 1 4 Spring 2 vs
Control + Orthosis conditions. These show that the various fixed-effects hypotheses of a similar behaviour under the
different conditions are all rejected (the overall p-values were 0.020, 0.001 and 0, respectively). This supports the fact
that individuals adjust their posture differently under perturbations of different nature. Note that the different behaviour
under Spring 1 and Spring 2 conditions, that is further supported by the empirical evidence of the scientists provided us
with the data, it is not captured by the testing methodologies of Abramovich et al. (2004) and Abramovich and Angelini
(2006).

Using classical linear mixed-effects estimation techniques, the linear mixed-effects representation (3) is also used
to obtain wavelet-based estimates for both fixed-effects and random-effects. More specifically, for the estimation of
the functional fixed-effects (i.e., the population-average curve profiles), we apply the classical weighted least-squares
(WLS) methodology, which is easily implemented. On the other hand, for the estimation of the functional random-
effects (i.e., the curve-specific functions), we apply RML estimation of variance components, as is commonly used
in standard liner mixed-models software such as, e.g., PROC MIXED in SAS and lme () in S-PLUS (see e.g., Ngo
and Wand, 2004). Fig. 3 (b) shows the random-effects estimates of the averaged curves in each group based on RML
estimation of variance components. Fig. 4(b) shows the corresponding group means estimates based on the WLS
method.
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Fig. 3. (a): Orthosis dataset: the panels in rows correspond to “Treatments’, while the panels in columns correspond to ‘Subjects’ (there are 10 repeated measurements in each panel); (b): Random-effects
estimates of the averaged curves in each group for the Orthosis dataset.
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Fig. 4. (a): Random-effects testing for the Orthosis dataset: the histogram with 50 bins of the RLR test statistic values under the null hypothesis; (b):
Fixed-effects estimates for the Orthosis dataset (‘S2’ (Spring 2), ‘S1” (Spring 1), ‘C’ (Control) and ‘O’ (Orthosis)).

The entire model fitting for the Orthosis data example took 49 min in Matlab on a Mac G5 computer 1.8 GHz with
1 GB RAM. The most time consuming step is the estimation of the fixed-effects by the WLS method.
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Appendix A.

Proof of Theorem 4.1. The proof of the theorem can be obtained by working along the same lines of the proof of
Theorem 1 in Crainiceanu and Ruppert (2004), taking into account that [n(In(m) — g)] > p. U

Proof of Theorem 4.2. The proof of the theorem can be obtained by working along the same lines of the proof of
Theorem 2 in Crainiceanu and Ruppert (2004), taking also into account the discussion in their Section 3 and that

[n(In(m) —¢)]>p. O

Proof of Theorem 4.3. The proof of the theorem can be obtained by arguing along the same lines of the arguments
given in Section 2.2 in Baraud et al. (2003). Indeed, under the null hypothesis (16), and for each £, the random variables
1s,Y; % and || IT O ot SN oY) ||? are independent and distributed as > variables with D, and N, degrees of freedom,
respectively. Thus, for each £ € &, the test statistics 7, ¢ are distributed under the null as Fisher variables with D, and
N¢ degrees of freedom and, therefore, we have

Ve e, Pullee>Fpl y, G0} <o.

The claim now follows by applying the Bonferroni inequality. [

Proof of Theorem 4.4. The proof of the theorem can be obtained by working along the same lines of the proof of
Theorem 1 in Baraud et al. (2003), by taking into account the way the space ¥, is defined, which follows by noting
that the extra assumption on the design matrix X and the properties of the DWT of a discretised function do not affect
the orders of dr%(Hﬂfﬁmsa“v S¢) and of vy, [
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Proof of Theorem 4.5. Let D, be the dimension of S;. Note first that for all j € .#,,, Dj < 2/ Since, by assumption,
forall j € .#,, we have that s/ <[m/2], we get

P ()< inf {(1 + Q) d2 (£, S;) + ks [\/2/’ <ln (i> +1In ln(m)>
jedl 2 O
2
+1n <i> +1n ln(m):| 0—8} ,
O m

where a,, = o/#.#,, and k; is a positive constant depending only on a. Now, by definition,

1 m
dp (8, Sj) = inf 13 % (f (i) = [gnl)* 1, ()

ngS'

i=l kek;
2
1 m
< inf { — sup | f(x;) —gj(xi)l ¢ » (20)
ngSj m ;kgj Bkj

where g ; is apiecewise constanton [0, 1] which coincides with a constant on each interval By and such that g ; (x;)=[g;];.
By Corollary 3.1 in Dahmen et al. (1980), we know that each function in %%, ([0, 1], R) is uniformly approximated
by a piecewise function on [0,1]. Therefore, there exists a piecewise constant function g, which is constant on each
rectangle By; for each j € K, such that SUP, e By [ f(x) —g;i(x)| <CR27/%, where C > 1 is a constant. Using (20),
we easily get

d2 (£, ;) = C*R?272J. 1)

The cardinality of the set .#,, is less than log, ([m/2]). Therefore, for all j € .#,,, we have that a,,, > C/log,([m/2]),
and that

In <ln_(m)) < In In(m). (22)

o‘m

Using inequalities (21) and (22), we obtain

: 0'2 - 62
pn(f)<C [ inf {Rzz_z” + =2/ In ln(m)} + - 1n ln(m)] : (23)
jel m m

Atm

The conclusion of the theorem now follows by working along the same lines of the proof of Corollary 2 in Baraud et
al. (2003). Indeed, note that

2

y . . RZ
R¥2725 <% /27 n In(m) if and only if 2/ > p* = ( m

2/(1+4s)
m 62y/In ln(m))

By the assumptions, we therefore have p* > 1. If there exists a j' € .#,, such that p* < 27 /, then

2 2
inf {R22_2” +%. /27 ln(m)} <22 /27 In In(m)
m m

JEMp

2
<2V2RY/(1+49) <ﬁ In In(m)
m

4s/(1+4s)
) (24)
Otherwise, take j’ € .#,y, such that m/4 <2/ <m/2. Since 2/' < max(p*, m/2), we obtain the upper bound

. 2 - o —2s
inf {RZZZJS + 2. /27 ln(m)} <2R¥2'S ngz(@) .
jedly m 4
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Since s <1, we obtain

2
inf {R222” +% /27 ln(m)} <CR*n%. (25)
JEM m

From (23)—(25), the requested inequality is proved. [J
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