
Biometrika (2016), 103, 3, pp. 727–733 doi: 10.1093/biomet/asw033
Printed in Great Britain

Bootstrap-based testing of equality of mean functions or
equality of covariance operators for functional data

BY E. PAPARODITIS AND T. SAPATINAS

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537,
CY 1678 Nicosia, Cyprus

stathisp@ucy.ac.cy t.sapatinas@ucy.ac.cy

SUMMARY

We investigate the properties of a simple bootstrap method for testing the equality of mean functions or
of covariance operators in functional data. Theoretical size and power results are derived for certain test
statistics, whose limiting distributions depend on unknown infinite-dimensional parameters. Simulations
demonstrate good size and power of the bootstrap-based functional tests.
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1. INTRODUCTION

Functional data are collected in many fields of research; see, e.g., Ramsay & Silverman (2005),
Ferraty & Vieu (2006) and Horváth & Kokoszka (2012). When working with more than one population of
functional data, testing the equality of certain characteristics of the distributions between the populations,
like their mean functions or their covariance operators, is widely discussed in the literature. Benko et al.
(2009) and Horváth & Kokoszka (2012, Ch. 5) have developed functional testing procedures for the equal-
ity of two or more mean functions. Panaretos et al. (2010), Fremdt et al. (2012) and an unpublished 2014
paper by G. Boente, D. Rodriguez and M. Sued (ArXiv:1404.7080) have developed tests of the equality
of two covariance operators. Critical points for these tests are typically obtained by means of asymptotic
approximations.

To improve such asymptotic approximations, bootstrap-based functional testing approaches have also
been considered. Benko et al. (2009) considered testing the equality of two mean functions and used the
bootstrap to obtain critical values, but their procedure is tailored to the test statistic used. Similarly, in the
two-sample problem, Zhang et al. (2010) have considered a bootstrap procedure that generates functional
pseudo-observations that do not satisfy the null hypothesis and whose validity depends on the test statis-
tic. A different idea for improving asymptotic approximations has been used by the paper by G. Boente
et al. (ArXiv:1404.7080) in the context of testing the equality of covariance operators where a bootstrap
procedure has been used to calibrate the critical values of the test. Again, this bootstrap is tailored to the
test statistic considered. Finally, permutation tests for equality of covariance operators applied to different
distance measures between two covariance functions have been considered by Pigoli et al. (2014).

In order to test equality of mean functions or of covariance operators, we investigate the properties of
a simple bootstrap-based procedure which is potentially applicable to different test statistics and to sev-
eral populations. The basic idea has been previously used in the finite-dimensional set-up; see, e.g., Efron
& Tibshirani (1993) and Davison & Hinkley (1997). In our functional set-up, we bootstrap the observed
functional dataset in such a way that the pseudo-observations satisfy the null hypothesis. This generates
pseudo-functional observations within the different populations which have identical mean functions or
identical covariance operators, depending on the null hypothesis. A test statistic is then calculated using
the pseudo-observations and its distribution is evaluated by Monte Carlo simulation. We show the consis-
tency of the bootstrap procedure in estimating the null distribution of certain two-sample test statistics. In
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particular, we demonstrate the advantages of the bootstrap by focusing on test statistics based on natural
global distance measures, the asymptotic distributions of which are awkward due to their dependence on
unknown infinite-dimensional parameters; see Benko et al. (2009), Horváth & Kokoszka (2012, Ch. 5)
and the paper by G. Boente et al. (ArXiv:1404.7080). This has motivated many researchers to consider
test statistics that are based on finite-dimensional projections, leading to more tractable asymptotic distri-
butions; see Horváth & Kokoszka (2012, Ch. 5), Panaretos et al. (2010) and Fremdt et al. (2012). How-
ever, our bootstrap procedure does not require the choice of a truncation parameter and the test statistics
have good power. Our proposal yields accurate approximations in finite-sample situations. We evaluate the
finite-sample behaviour of our functional tests by simulation and compare our results with other proposals.

2. BOOTSTRAP-BASED FUNCTIONAL TESTING

2·1. Preliminaries

We work with random functions X defined on a probability space (�,A, P) with values in the separable
Hilbert space L2 = L2(I, R), the space of square-integrable R-valued functions on the compact interval
I = [0, 1]. We assume that E(‖X‖2) < ∞ and denote by μ = E(X) the mean function of X , i.e., the unique
function μ ∈ L2 satisfying E(〈X, x〉) = 〈μ, x〉, x ∈ L2. We also denote by C = E{(X − μ) ⊗ (X − μ)} the
covariance operator of X , where the operator u ⊗ v : L2 	→ L2 is defined as (u ⊗ v)w = 〈v,w〉u, u, v ∈ L2.
Notice that C( f )(t) = ∫

I C(t, s) f (s)ds, where C(t, s) = E[{X (t) − μ(t)}{X (s) − μ(s)}], t, s ∈ I, is the
covariance function of X , i.e., C is an integral operator with kernel C ; C is also a Hilbert–Schmidt operator.
Denote by ‖·‖S the Hilbert–Schmidt norm.

It is assumed that we have available a collection of random functions satisfying

Xi, j (t) = μi (t) + εi, j (t), i = 1, . . . , K , j = 1, . . . , ni , t ∈ I,

where K (2 � K < ∞) denotes the number of populations, ni denotes the number of observations from
the i th population and N = ∑K

i=1 ni denotes the total number of observations. We also assume that the
observations are all independent and, for each i = 1, . . . , K , the errors εi,1, . . . , εi,ni are L2-valued ran-
dom samples with E(εi, j ) = 0 and E(‖εi, j‖2) < ∞. Let X N = {Xi, j : i = 1, . . . , K , j = 1, . . . , ni } and
let Ci = E{(Xi, j − μi ) ⊗ (Xi, j − μi )} ( j = 1, . . . , ni ; i = 1, . . . , K ) be the covariance operator of the i th
population.

2·2. Testing the equality of covariance operators

We are interested in testing the following hypothesis

H0 : C1 = · · · = CK versus H1 : there exist k, l ∈ {1, . . . , K }, k |= l, with Ck |= Cl . (1)

The equality under H0 means that ‖Ck − Cl‖S = 0 for any pair of indices (k, l), k |= l, while under H1 we
have ‖Ck − Cl‖S > 0 for at least one pair of indices (k, l), k |= l.

Let TN be a test statistic for testing H0. Suppose that TN rejects H0 when TN > dN ,α , where, for α ∈
(0, 1), dN ,α denotes the critical value of this test. The bootstrap-based functional testing procedure for
testing H0 can then be described as follows.

Step 1. Calculate the sample mean functions Xi,ni (t) = n−1
i

∑ni
j=1 Xi, j (t) (t ∈ I) and the residual func-

tions ε̂i, j (t) = Xi, j (t) −Xi,ni (t), t ∈ I (i = 1, . . . , K , j = 1, . . . , ni ).

Step 2. Generate bootstrap functional pseudo-observations X∗
i, j (i = 1, . . . , K , j = 1, . . . , ni ) accord-

ing to

X∗
i, j =Xi,ni + ε∗

i, j , where ε∗
i, j = ε̂I,J . (2)

Here, I is a discrete random variable with probability pr(I = i) = ni/N (i = 1, . . . , K ) and, given I = i ,
the discrete random variable J satisfies pr(J = j | I = i) = n−1

i (i = 1, . . . , K ; j = 1, . . . , ni ).
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Step 3. Let T ∗
N be TN calculated using the X∗

i, j (i = 1, . . . , K ; j = 1, . . . , ni ). Denote by D∗
N ,T the

distribution function of T ∗
N . For any given α ∈ (0, 1), reject H0 if and only if TN > d∗

N ,α , where d∗
N ,α

denotes the α-quantile of D∗
N ,T , i.e., D∗

N ,T (d∗
N ,α) = 1 − α.

Clearly, since the random functions ε∗
i, j are generated independently from each other, for any two dif-

ferent pairs of indices, say (i1, j1) and (i2, j2), the corresponding pseudo-observations X∗
i1, j1 and X∗

i2, j2 are

independent. Furthermore, the X∗
i, j satisfy E∗(X∗

i, j ) =Xi,ni and have covariance operators C∗
i = E∗{(X∗

i, j −
Xi,ni ) ⊗ (X∗

i, j −Xi,ni )} = N−1
∑K

i=1 ni Ĉi = ĈN . Here, E∗ refers to expectation with respect to the bootstrap

distribution, Ĉi = n−1
i

∑ni
j=1(Xi, j −Xi,ni ) ⊗ (Xi, j −Xi,ni ) is the sample estimator of the covariance oper-

ator Ci , and ĈN is the corresponding pooled estimator of the covariance operator. Thus, conditional on
X N , the X∗

i, j have, within each population i , the same mean function Xi,ni , which may be different for
different populations. Furthermore, the covariance operator in each population i equals the pooled sample
covariance operator ĈN . That is, the X∗

i, j satisfy H0 in (1).
Consider the case K = 2. It is natural to compare the covariance operators in the two populations by

evaluating the Hilbert–Schmidt norm of their differences. Such an approach has been recently proposed
by the paper by G. Boente et al. (ArXiv:1404.7080) by using the test statistic

TN = N‖Ĉ1 − Ĉ2‖2
S.

If n1/N → θ ∈ (0, 1), E(‖Xi,1‖4) < ∞ (i = 1, 2), and H0 given in (1) with K = 2 is true, then, as n1,
n2 → ∞, Theorem 3.1 of the paper by G. Boente et al. (ArXiv:1404.7080) shows that TN converges weakly
to

∑∞
l=1 λl Z2

l , where Zl are independent standard Gaussian random variables and λl are the eigenvalues
of the operator B = θ−1B1 + (1 − θ)−1B2. Here, Bi is the covariance operator of the limiting Gaussian
random element Ui to which n1/2

i (Ĉi − Ci ) converges weakly as ni → ∞. Since the limiting distribution
of TN depends on an infinite number of unknown eigenvalues, implementation of this asymptotic result
for calculating critical values is difficult. Let

T ∗
N = N‖Ĉ∗

1 − Ĉ∗
2‖2

S,

where Ĉ∗
i = n−1

i

∑ni
j=1(X∗

i, j −X∗
i,ni

) ⊗ (X∗
i, j −X∗

i,ni
) (i = 1, 2). Theorem 1 shows that this bootstrap proce-

dure leads to consistent estimation of the critical values of interest.

THEOREM 1. If E(‖Xi,1‖4) < ∞, i ∈ {1, 2}, and n1/N → θ ∈ (0, 1), then, as n1, n2 → ∞,

sup
x∈R

∣
∣
∣pr

(
T ∗

N � x | X N

) − prH0

(
TN � x

)∣∣
∣ → 0,

in probability, where prH0
(TN � ·) is the distribution function of TN when H0 in (1) with K = 2 is true and

B1 =B2.

Remark 1. If H1 is true, i.e., if ‖C1 − C2‖S > 0, then, as n1, n2 → ∞, TN → ∞, in probability.
Theorem 1 and Slutsky’s theorem then imply that the test TN based on the bootstrap critical values obtained
from the distribution of T ∗

N is consistent, that is, its power approaches unity.

2·3. Testing the equality of mean functions

We are interested in testing the following hypothesis

H0 : μ1 = · · · = μK versus H1 : there exist k, l ∈ {1, . . . , K }, k |= l, with μk |=μl . (3)

As in the previous section, equality under H0 means that ‖μk − μl‖ = 0 for any pair of indices (k, l),
with k |= l, while under H1 we have ‖μk − μl‖ > 0 for at least one pair of indices (k, l), k |= l.

 at U
niversity of C

yprus on Septem
ber 4, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


730 E. PAPARODITIS AND T. SAPATINAS

This testing problem can be addressed by changing Step 2 of the bootstrap resampling algorithm of
§ 2·2. In particular, we replace equation (2) by

X+
i, j =XN + ε+

i, j , (4)

where XN = N−1
∑K

i=1

∑ni
j=1 Xi, j is the pooled mean estimator and ε+

i, j = ε̂i,J . Here, J is a discrete ran-
dom variable satisfying pr(J = j) = 1/ni ( j = 1, . . . , ni ; i = 1, . . . , K ). This ensures that the covariance
structure of the functional observations in each population i is retained by the bootstrap algorithm. This
covariance structure may be different for different populations, although the bootstrap procedure gen-
erates K populations of functional pseudo-observations having identical mean functions. In particular,
conditional on X N , we have E+(X+

i, j ) =XN and the X+
i, j have covariance operators Ĉi , where E+ refers to

expectation with respect to the bootstrap distribution.

Remark 2. If, instead of equation (4), we use X◦
i, j =XN + ε∗

i, j ( j = 1, . . . , ni ; i = 1, . . . , K ) to generate
pseudo-observations and ε∗

i, j defined as in Step 2 of the algorithm in § 2·2, then the X◦
i, j will have an

identical mean function equal toXN and an identical covariance operator equal to ĈN . This could be applied
for testing simultaneously the equality of mean functions and covariance operators.

Consider again the case K = 2. For testing the equality of two mean functions, a natural approach is to
compute the L2-distance between the sample mean functionsX1,n1 andX2,n2 . This approach was considered
by Benko et al. (2009) and Horváth & Kokoszka (2012, Ch. 5) using the test statistic

SN = n1n2

N
‖X1,n1 −X2,n2‖2.

If n1/N → θ ∈ (0, 1), E(‖Xi,1‖4) < ∞, i ∈ {1, 2}, and H0 given in (3) with K = 2 is true, then, as n1,
n2 → ∞, Theorem 5.1 of Horváth & Kokoszka (2012) shows that SN converges weakly to

∫
I �2(t)dt ,

where �2(t) = (1 − θ)�2
1(t) + θ�2

2(t) and {�1(t), t ∈ [0, 1]} and {�2(t), t ∈ [0, 1]} are two independent
Gaussian processes with mean zero and covariance operators C1 and C2. The limiting distribution of SN

depends on the unknown infinite-dimensional parameters C1 and C2, so analytical calculation of critical
values is difficult. Let

S+
N = n1n2

N
‖X+

1,n1
−X+

2,n2
‖2.

Theorem 2 shows that the bootstrap consistently estimates the critical values of the test SN .

THEOREM 2. If E(‖Xi,1‖4) < ∞, i ∈ {1, 2}, and n1/N → θ ∈ (0, 1), then, as n1, n2 → ∞,

sup
x∈R

∣
∣
∣pr

(
S+

N � x | X N

) − prH0

(
SN � x

)∣∣
∣ → 0,

in probability, where prH0
(SN � ·) is the distribution function of SN when H0 given in (3) with K = 2 is

true.

Remark 3. Under the same assumptions as in Theorem 5.2 of Horváth & Kokoszka (2012) and if H1

is true, i.e., ‖μ1 − μ2‖ > 0, then, as n1, n2 → ∞, SN → ∞, in probability. Thus, Theorem 2 and Slutsky’s
theorem imply consistency of the test SN using the bootstrap critical values obtained from the distribution
of S+

N , that is, its power approaches unity.

3. NUMERICAL RESULTS

3·1. Simulations

We investigate below the size and power of the bootstrap-based tests and compare them with corre-
sponding projection-based tests. Motivated by Kraus & Panaretos (2012), we generate non-Gaussian curves
X1 and X2, via Xi (t) = ∑10

k=1{21/2k−1/2 sin(πkt)Vi,k + k−1/2 cos(2πkt)Wi,k}, t ∈ I, (i = 1, 2), where Vi,k

and Wi,k (i = 1, 2; k = 1, 2, . . . , 10) are independent t5-distributed random variables. All curves were sim-
ulated at 500 equidistant points in the interval I, and transformed into functional objects using the Fourier
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Table 1. Empirical size and power (%) of T2,N and T ∗
N for the equal-

ity of two covariance operators

n1 = n2 = 25 n1 = n2 = 50

γ Test α = 1% 5% 10% α = 1% 5% 10%

1·0 T2,N 0 0·6 2·2 0 1·6 4·1
T ∗

N 0·3 2·5 8·2 0·6 3·2 7·6
1·2 T2,N 0 1·6 3·9 0·3 2·6 7·2

T ∗
N 0·5 5·0 14·7 0·8 9·8 23·1

1.4 T2,N 0 1·1 5·2 0·2 6·5 22·1
T ∗

N 1·6 16·8 36·8 12·8 46·1 67·6
1·6 T2,N 0 1·0 9·5 1·4 28·5 55·9

T ∗
N 4·7 33·8 61·2 37·0 79·6 90·3

1·8 T2,N 0 3·6 23·0 6·6 57·4 82·1
T ∗

N 10·4 55·7 82·3 61·2 91·5 96·6
2·0 T2,N 0 7·0 40·5 24·5 83·6 95·7

T ∗
N 17·7 66·6 89·2 74·2 93·7 97·7

basis with 49 basis functions. We considered 2000 replications and took sample sizes of n1 = n2 = 25 or
n1 = n2 = 50 random curves.

First, consider the problem of testing the equality of two covariance operators. We considered the boot-
strap test based on T ∗

N of § 2·2 and the asymptotic test based on Tp,N using p functional principal compo-
nents considered in Fremdt et al. (2012); see also Panaretos et al. (2010) and Kraus & Panaretos (2012).
Three nominal levels, α = 1%, 5%, 10%, are considered and all bootstrap calculations are based on 1000
repetitions. To evaluate the power of the tests, we modified the curves generated in the second group
according to X2(t) = γ X1(t) (t ∈ I) for selected values of the scaling parameter γ ; γ = 1 corresponds
to the null hypothesis of equality of covariance operators. Table 1 gives results for T ∗

N as well as the best
results obtained for Tp,N that corresponds to the choice p = 2. The test based on Tp,N heavily underes-
timates the size whereas that based on T ∗

N shows much better behaviour. Furthermore, T ∗
N has, overall,

higher power than Tp,N . Results for other choices of p are reported in the Supplementary Material; the
quality of the asymptotic χ2

p(p+1)/2 approximation of Tp,N under H0 becomes worse as p increases.
Consider next testing the equality of two mean functions. Here, we investigate the size and power of S+

N

and S(1)
p,N and S(2)

p,N based on p functional principal components; see Horváth & Kokoszka (2012, Ch. 5).
The curves are generated using the above-mentioned non-Gaussian simulation set-up with X2(t) = δ +
X1(t) (t ∈ I) for selected values of the shift parameter δ; δ = 0 corresponds to the null hypothesis of
equality of mean functions. The simulation results are reported in Table 2 where the best results obtained
for the projection-based tests are shown and which correspond to the case p = 2. These results demonstrate
the improved size and power of S+

N . Furthermore, for testing the equality of means, the results obtained
using S(1)

p,N and S(2)
p,N seem to be less sensitive to the choice of p than for testing equality of covariance

operators.

3·2. Mediterranean fruit flies

We apply the tests to egg-laying trajectories of Mediterranean fruit flies, Ceratitis capitata, or medflies
for short; see the Supplementary Material for more details. The tests have been applied to smooth curves
obtained using a Fourier basis with 49 basis functions, with bootstrap calculations based on 1000 replica-
tions. Table 3 shows the p-values for the absolute and the relative egg-laying curves of the tests for the
equality of the two covariance operators, using Tp,N with different values of p and T ∗

N . Both tests lead

 at U
niversity of C

yprus on Septem
ber 4, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


732 E. PAPARODITIS AND T. SAPATINAS

Table 2. Empirical size and power (%) of S(1)
2,N , S(2)

2,N and S+
N for the

equality of two mean functions

n1 = n2 = 25 n1 = n2 = 50

δ Test α = 1% 5% 10% α = 1% 5% 10%

0·0 S(1)
2,N 0·8 3·5 7·6 1·0 3·7 8·4

S(2)
2,N 0·7 3·6 7·5 0·8 4·0 8·4
S+

N 1·2 5·8 11·8 0·7 4·4 8·5
0·2 S(1)

2,N 0·8 6·4 11·9 3·0 9·6 17·4
S(2)

2,N 0·8 6·6 11·6 3·3 9·3 16·7
S+

N 2·4 8·8 15·8 4·0 13·0 20·6
0·4 S(1)

2,N 5·1 15·3 24·7 13·5 31·9 42·2
S(2)

2,N 4·3 14·4 23·5 12·3 29·6 41·1
S+

N 5·7 20·6 32·0 18·2 40·6 54·0
0·6 S(1)

2,N 14·7 30·2 41·5 40·6 62·0 72·6
S(2)

2,N 13·4 28·8 39·9 36·3 60·6 72·2
S+

N 21·6 44·8 59·3 54·2 77·9 86·8
0·8 S(1)

2,N 29·8 53·4 64·9 71·0 84·0 91·0
S(2)

2,N 27·8 52·0 62·1 67·9 83·6 90·2
S+

N 47·3 71·2 81·3 86·1 96·1 98·2
1·0 S(1)

2,N 50·1 69·7 78·3 87·6 93·7 96·3
S(2)

2,N 46·0 67·1 79·2 85·6 93·8 96·3
S+

N 73·7 90·7 95·2 98·0 99·5 99·7

Table 3. p-values of Tp,N and T ∗
N for the equality of the two covariance operators applied to the absolute

and relative egg-laying curves

Absolute Relative

T ∗
N 0·179 0·003

Tp,N p = 4 p = 5 p = 6 p = 7 p = 8 p = 5 p = 6 p = 7 p = 8 p = 9
0·253 0·211 0·385 0·545 0·520 0·004 0·021 0·064 0·130 0·121

f p 0·940 0·958 0·974 0·982 0·989 0·845 0·912 0·949 0·974 0·985

to similar conclusions. At the commonly used α-levels, the null hypothesis cannot be rejected. However,
this is not the case for the relative egg-laying curves where for Tp,N , the conclusion depends on p. In this
case, T ∗

N does not reject the null hypothesis. The value f p = (
∑p

k=1 λ̂k)/(
∑N

k=1 λ̂k) reported in Table 3
describes the fraction of the sample variance explained by the p-first functional principal components.
Table 4 shows the p-values for the absolute egg-laying curves for testing the equality of the two mean
functions. The behaviour of S(1)

p,N depends on the value of p while that of S(2)
p,N is more stable. On the other

hand, S+
N rejects the null hypothesis. For the relative egg-laying curves, S(1)

p,N , S(2)
p,N and S+

N reject the null
hypothesis, hence we do not report these results. This example demonstrates the advantages of the boot-
strap which allows the use of test statistics based on natural global distance measures and which avoids
selecting truncation parameters, like the number of functional principal components.
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Table 4. p-values of S(1)
p,N , S(2)

p,N and S+
N for the equality of the two mean functions applied to the absolute

egg-laying curves

S+
N 0·011

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

S(1)
p,N 0·021 0·029 0·056 0·099 0·154 0·054 0·025 0·040

S(2)
p,N 0·007 0·008 0·009 0·009 0·010 0·010 0·010 0·010

f p 0·837 0·899 0·939 0·958 0·973 0·982 0·989 0·994
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HORVÁTH, L. & KOKOSZKA, P. (2012). Inference for Functional Data with Applications. New York: Springer-Verlag.
KRAUS, D. & PANARETOS, V. M. (2012). Dispersion operators and resistant second-order functional data analysis.

Biometrika 99, 813–32.
PANARETOS, V. M., KRAUS, D. & MADDOCKS, J. H. (2010). Second-order comparison of Gaussian random functions

and the geometry of DNA minicircles. J. Am. Statist. Assoc. 105, 670–82.
PIGOLI, D., ASTON, J. A. D., DRYDEN, I. L. & SECCHI, P. (2014). Distances and inference for covariance operators.

Biometrika 101, 409–22.
RAMSAY, J. O. & SILVERMAN, B. W. (2005). Functional Data Analysis. New York: Springer-Verlag.
ZHANG, C., PENG, H. & ZHANG, J.-T. (2010). Two samples tests for functional data. Commun. Statist. A 39, 559–78.

[Received July 2015. Revised June 2016]

 at U
niversity of C

yprus on Septem
ber 4, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/

