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SUMMARY

We consider the problem of estimating the unknown response function in the Gaussian white
noise model. We first utilize the recently developed Bayesian maximum a posteriori testimation
procedure of Abramovich et al. (2007) for recovering an unknown high-dimensional Gaussian
mean vector. The existing results for its upper error bounds over various sparse l p-balls are
extended to more general cases. We show that, for a properly chosen prior on the number
of nonzero entries of the mean vector, the corresponding adaptive estimator is asymptotically
minimax in a wide range of sparse and dense l p-balls. The proposed procedure is then applied
in a wavelet context to derive adaptive global and level-wise wavelet estimators of the unknown
response function in the Gaussian white noise model. These estimators are then proven to be,
respectively, asymptotically near-minimax and minimax in a wide range of Besov balls. These
results are also extended to the estimation of derivatives of the response function. Simulated
examples are conducted to illustrate the performance of the proposed level-wise wavelet estimator
in finite sample situations, and to compare it with several existing counterparts.

Some key words: Adaptive estimation; Besov space; Gaussian sequence model; Gaussian white noise model; l p-ball;
Multiple testing; Thresholding; Wavelet estimation.

1. INTRODUCTION

We consider the problem of estimating the unknown response function in the Gaussian white
noise model, where one observes Gaussian processes Yn(t) governed by

dYn(t) = f (t)dt + σ

√ n
dW (t), t ∈ [0, 1]. (1)
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The noise parameter σ > 0 is assumed to be known, W is a standard Wiener process and
f ∈ L2[0, 1] is the unknown response function. Under some smoothness constraints on f , such
a model is asymptotically equivalent in Le Cam sense to the standard nonparametric regression
setting (Brown & Low, 1996).

In a consistent estimation theory, it is well known that f should possess some smoothness
properties. We assume that f belongs to a Besov ball Bs

p,q (M) of a radius M > 0, where
0 < p, q ! ∞ and s > max(0, 1/p − 1/2). The latter restriction ensures that the corresponding
Besov spaces are embedded in L2[0, 1]. The parameter s measures the degree of smoothness while
p and q specify the type of norm used to measure the smoothness. Besov classes contain various
traditional smoothness spaces such as Hölder and Sobolev spaces as special cases. However, they
also include different types of spatially inhomogeneous functions (Meyer, 1992).

The fact that wavelet series constitute unconditional bases for Besov spaces has caused various
wavelet-based estimation procedures to be widely used for estimating the unknown response
f ∈ Bs

p,q (M) in the Gaussian white noise model (1). The standard wavelet approach for the
estimation of f is based on finding the empirical wavelet coefficients of the data and denoising
them, usually by some type of thresholding rule. Transforming them back to the function space
then yields the resulting estimate. The main statistical challenge in such an approach is a proper
choice of a thresholding rule. A series of various wavelet thresholds originating from different
ideas has been proposed in the literature during the last decade, e.g. the universal threshold
(Donoho & Johnstone, 1994a), Stein’s unbiased risk estimation threshold (Donoho & Johnstone,
1995), the false discovery rate threshold (Abramovich & Benjamini, 1996), the crossvalidation
threshold (Nason, 1996), the Bayes threshold (Abramovich et al., 1998) and the empirical Bayes
threshold (Johnstone & Silverman, 2005).

Abramovich & Benjamini (1996) demonstrated that thresholding can be viewed as a multiple
hypothesis testing procedure, where one first simultaneously tests the wavelet coefficients of the
unknown response function for significance. The coefficients concluded to be significant are then
estimated by the corresponding empirical wavelet coefficients of the data, while the nonsignificant
ones are discarded. Such a testimation procedure evidently mimics a hard thresholding rule.
Various choices for adjustment to multiplicity on the testing step lead to different thresholds. In
particular, the universal threshold of Donoho & Johnstone (1994a) and the false discovery rate
threshold of Abramovich & Benjamini (1996) fall within such a framework corresponding to
Bonferroni and false discovery rate multiplicity corrections, respectively.

In this paper, we proceed along the lines of this testimation approach, where we utilize the
recently developed maximum a posteriori Bayesian multiple testing procedure of Abramovich &
Angelini (2006). Their hierarchical prior model is based on imposing a prior distribution on the
number of false null hypotheses. Abramovich et al. (2007) applied this approach to estimating a
high-dimensional Gaussian mean vector and showed its minimax optimality where the unknown
mean vector was assumed to be sparse.

We first extend the results of Abramovich et al. (2007) to more general settings. Consider the
problem of estimating an unknown high-dimensional Gaussian mean vector, where one observes
yi governed by

yi = µi + σn zi (i = 1, 2, . . . , n). (2)

The variance σ 2
n > 0, which may depend on n, is assumed to be known, zi are independent N (0, 1)

random variables and the unknown mean vector µ = (µ1, . . . , µn)T is assumed to lie in a strong
l p-ball l p[ηn], 0 < p ! ∞, of a normalized radius ηn , that is, ‖µ‖p ! Cn , where Cn = n1/pσnηn .
Abramovich et al. (2007) considered the Gaussian sequence model (2) with σ 2

n = σ 2 and derived
upper error bounds for the quadratic risk of an adaptive Bayesian maximum a posteriori estimator



Bayesian wavelet thresholding 183

of µ in the sparse case, where 0 < p < 2 and ηn → 0 as n → ∞. We extend their results for
all combinations of p and ηn and for the variance in (2) that may depend on n. We show, in
particular, that for a properly chosen prior distribution on the number of nonzero entries of µ,
the corresponding estimator, up to a constant factor, is asymptotically minimax for almost all
l p-balls including both sparse and dense cases.

We then apply the proposed approach to the wavelet thresholding estimation in the Gaussian
white noise model (1). We show that, under mild conditions on the prior distribution on the
number of nonzero wavelet coefficients, the resulting global wavelet estimator of f , up to a
logarithmic factor, attains the minimax convergence rates simultaneously over the entire range of
Besov balls. Furthermore, we demonstrate that estimating wavelet coefficients at each resolution
level separately, allows one to remove the extra logarithmic factor. Moreover, the procedure can
also be extended to the estimation of derivatives of f . These results, in some sense, complement
the adaptively minimax empirical Bayes estimators of Johnstone & Silverman (2005).

2. ESTIMATION IN THE GAUSSIAN SEQUENCE MODEL

2·1. The Bayesian maximum a posteriori estimation procedure

We start by reviewing the Bayesian maximum a posteriori estimation procedure for the Gaussian
sequence model (2) developed by Abramovich et al. (2007).

For this model, consider the multiple hypothesis testing problem, where we wish to simultane-
ously test

H0i : µi = 0 versus H1i : µi ! 0 (i = 1, 2, . . . , n).

A configuration of true and false null hypotheses is uniquely defined by the indicator vector
x = (x1, . . . , xn)T, where xi = I(µi ! 0) and I(A) denotes the indicator function of the set A. Let
κ = x1 + · · · + xn = ‖µ‖0 be the number of nonzero µi , i.e. ‖µ‖0 = #{i : µi ! 0}. Assume some
prior distribution πn on κ with πn(κ) > 0, κ = 0, . . . , n. For a given κ , all the corresponding
different vectors x are assumed to be equally likely a priori, that is, conditionally on κ ,

pr

(

x
∣∣∣∣

n∑

i=1

xi = κ

)

=
(

n
κ

)−1

.

Naturally, µi | xi = 0 ∼ δ0, where δ0 is a probability atom at zero. To complete the prior speci-
fication, we assume that µi | xi = 1 ∼ N (0, τ 2

n ).
For the proposed hierarchical prior, the posterior probability of a given vector x with κ nonzero

entries is

πn(x, κ | y) ∝
(

n
κ

)−1

πn(κ) I
(

n∑

i=1

xi = κ

)
n∏

i=1

(
B−1

i
)xi , (3)

where the Bayes factor Bi of H0i is

Bi = √(1 + γn) exp

{

− y2
i

2σ 2
n (1 + 1/γn)

}

(4)

and γn = τ 2
n /σ 2

n is the variance ratio (Abramovich & Angelini, 2006).
Given the posterior distribution πn(x, κ | y), we apply the maximum a posteriori rule to choose

the most likely indicator vector. Generally, to find the posterior mode of πn(x, κ | y), one should
look through all 2n possible sequences of zeroes and ones. However, for the proposed model, the
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number of candidates for a mode is, in fact, reduced to n + 1 only. Indeed, let x̂(κ) be a maximizer
of (3) for a fixed κ that indicates the most plausible vector x with κ nonzero entries. From (3), it
follows immediately that x̂i (κ) = 1 at the κ entries corresponding to the smallest Bayes factors
Bi and zeroes otherwise. Due to the monotonicity of Bi in |y|i in (4), it is equivalent to setting
x̂i (κ) = 1 for the κ largest |y|i and zeroes for others. The proposed Bayesian multiple testing
procedure then leads to finding κ̂ that maximizes

log πn{x̂(κ), κ | y} = c +
κ∑

i=1

y2
(i) + 2σ 2

n (1 + 1/γn) log






(
n
κ

)−1

πn(κ)(1 + γn)−κ/2






for some constant c or, equivalently, minimizes
n∑

i=κ+1

y2
(i) + 2σ 2

n (1 + 1/γn) log

{(
n
κ

)

π−1
n (κ)(1 + γn)κ/2

}

,

where |y|(1) " · · · " |y|(n). The κ̂ null hypotheses corresponding to |y|(1), . . . , |y|(κ̂) are rejected.
The resulting Bayesian estimation yields a hard thresholding with a data-driven threshold λ̂MAP =
|y|(κ̂), i.e.

µ̂i =
{

yi , |yi | " λ̂MAP,
0, otherwise.

(5)

If κ̂ = 0, then all yi (i = 1, 2, . . . , n), are thresholded and µ̂ ≡ 0.
From a frequentist view, the above estimator µ̂ = (µ̂1, . . . , µ̂n)T in (5) is evidently a penalized

likelihood estimator with the complexity penalty

Pn(κ) = 2σ 2
n (1 + 1/γn) log

{(
n
κ

)

π−1
n (κ)(1 + γn)κ/2

}

. (6)

In this sense, it can also be considered within the framework of Birgé & Massart (2001). In the
following section, we will discuss these relations in more detail.

2·2. Upper error bounds

Abramovich et al. (2007, Theorem 6) obtained upper error bounds for the l2-risk of (5) in the
Gaussian sequence model (2) for sparse l p[ηn]-balls, where 0 < p < 2 and ηn → 0 as n → ∞.
We now extend these results to more general settings.

Fix a prior distribution πn(κ) > 0 (κ = 0, . . . , n) on the number of nonzero entries of µ, and
let γn = τ 2

n /σ 2
n be the variance ratio.

PROPOSITION 1. Let µ̂ be the estimator (5) of µ in the Gaussian sequence model (2), where µ ∈
l p[ηn], 0 < p ! ∞. Assume that there exist positive constants γ− and γ+ such that γ− ! γn ! γ+.

(1) Let 0 < p ! ∞. Assume that πn(n) " e−c0n for some c0 > 0. Then, as n → ∞,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
(
nσ 2

n
)
.

(2) Let 2 ! p !∞. Assume that there exists β " 0 such that πn(0) " n−c1n−β
for some c1 > 0.

Then, as n → ∞,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
(
σ 2

n nη2
n
)
+ O

(
σ 2

n n−β log n
)
.
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(3) Let 0 < p < 2. Assume πn(κ) " (κ/n)c2κ for all κ = 1, 2, . . . , αnn, where
n−1(2 log n)p/2 ! αn ! exp{−c(γn)}, c(γn) = 8(γn + 3/4)2 > 9/2, and for some c2 > 0.
Then, as n → ∞,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
{
σ 2

n nηp
n
(
2 log η−p

n
)1−p/2}

for all n−1(2 log n)p/2 ! ηp
n ! αn.

(4) Let 0 < p < 2. Assume that there exists β " 0 such that πn(0) " n−c1n−β
for some c1 > 0.

Then, as n → ∞,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
(
σ 2

n n2/pη2
n
)
+ O

(
σ 2

n n−β log n
)

for all ηp
n < n−1(2 log n)p/2.

The proof of Proposition 1 is given in the Appendix. Similar to Abramovich et al. (2007),
analogous results can be obtained for other types of balls, e.g. weak l p-balls, 0 < p < ∞, and
l0-balls, with necessary changes in the proofs; see Chapter 3 of a 2009 University of Cyprus PhD
thesis by Petsa.

Since the prior assumptions in Proposition 1 do not depend on the parameters p and ηn of
the l p-ball, the estimator (5) is inherently adaptive. The condition on πn(n) guarantees that its
risk is always bounded by an order of nσ 2

n , corresponding to the risk of the maximum likelihood
estimator, µ̂MLE

i = yi , in the Gaussian sequence model (2).
The following corollary of Proposition 1 essentially defines dense and sparse zones for

2 ! p ! ∞, and dense, sparse and super-sparse zones for 0 < p < 2 of different behaviour
for the quadratic risk of the proposed estimator (5). To evaluate its accuracy, we also compare the
resulting risks with the corresponding minimax risks R(l p[ηn]) = inf µ̃ supµ∈l p[ηn] E(‖µ̃ − µ‖2

2)
that can be found, e.g. in Donoho & Johnstone (1994b). In what follows, g1(n) * g2(n) denotes
that 0 < lim inf{g1(n)/g2(n)}! lim sup{g1(n)/g2(n)} < ∞ as n → ∞.

COROLLARY 1. Let µ̂ be the estimator (5) of µ in the Gaussian sequence model (2), where µ ∈
l p[ηn], 0 < p ! ∞. Assume that there exist positive constants γ− and γ+ such that γ− ! γn ! γ+.
Define c(γn) = 8(γn + 3/4)2 > 9/2 and let the prior πn satisfy the following conditions:

(1) πn(0) " n−c1n−β
for some β " 0 and c1 > 0;

(2) πn(κ) " (κ/n)c2κ for all κ = 1, 2, . . . , αn, where α = exp(−9/2) or α = exp{−c(γ−)} if
γ− is known, and for some c2 > 0; and

(3) πn(n) " e−c0n for some c0 > 0.

Then, as n → ∞, depending on p and ηn, one has the following.

Case 1. Let 0 < p ! ∞, ηp
n > α. Then,

sup
µ∈l p[ηn]

E
(∥∥µ̂ − µ

∥∥2
2

)
= O

(
nσ 2

n
)
, R(l p[ηn]) * nσ 2

n .

Case 2. Let 2 ! p ! ∞, ηp
n ! α. Then,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
(
σ 2

n nη2
n
)
+ O

(
σ 2

n n−β log n
)
, R(l p[ηn]) * σ 2

n nη2
n .
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Case 3. Let 0 < p < 2, n−1(2 log n)p/2 ! ηp
n !α. Then,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
{
σ 2

n nηp
n
(
2 log η−p

n
)1−p/2}

, R(l p[ηn]) * σ 2
n nηp

n
(
2 log η−p

n
)1−p/2.

Case 4. Let 0 < p < 2, ηp
n < n−1(2 log n)p/2. Then,

sup
µ∈l p[ηn]

E
(
‖µ̂ − µ‖2

2
)

= O
(
σ 2

n n2/pη2
n
)
+ O

(
σ 2

n n−β log n
)
, R(l p[ηn]) * σ 2

n n2/pη2
n .

For β = 0 one can easily verify that all three conditions of Corollary 1 are satisfied, for example,
for the truncated geometric prior TrGeom(1 − q) (0 < q < 1), where πn(κ) = (1 − q)qκ/(1 −
qn+1) (κ = 0, . . . , n). On the other hand, for any β, no binomial prior Bin(n, pn) can kill three
birds with one stone. The requirement πn(0) = (1 − pn)n " n−c1n−β

necessarily implies pn → 0
as n → ∞. However, to satisfy πn(n) = pn

n " e−c0n , one needs pn " e−c0 .
The impact of Corollary 1 is that, up to a constant multiplier, the proposed estimator (5) is

adaptively minimax for almost all l p-balls (0 < p ! ∞), except those with very small normalized
radiuses, where η2

n = o(n−{β+2/ min(p,2)} log n). Hence, while the optimality of most existing
threshold estimators, e.g. universal, Stein’s unbiased risk, false discovey rate, has been established
only over various sparse settings, the Bayesian estimator (5) is appropriate for both sparse and
dense cases. To the best of our knowledge, such a wide adaptivity range can be compared only
with the penalized likelihood estimators of Birgé & Massart (2001) and the empirical Bayes
threshold estimators of Johnstone & Silverman (2004b, 2005); see the PhD thesis by Petsa for
more details.

There are interesting asymptotic relationships between the Bayesian estimator (5) and the
penalized likelihood estimator of Birgé & Massart (2001) that may explain their similar behaviour.
For estimating the normal mean vector in (2) within l p-balls, Birgé & Massart (2001) considered
a penalized likelihood estimator with a specific complexity penalty

P̃n(κ) = Cσ 2
n κ{1 + √ (2Lκ )}2, (7)

where Lκ = log(n/κ) + (1 + θ)(1 + log(n)/κ) for fixed C > 1 and θ > 0 (Birgé & Massart,
2001, § 6.3). For large n and κ < n/e, this penalty is approximately of the following form:

P̃n(κ) ∼ 2σ 2
n cκLκ ∼ 2σ 2

n c̃1

{

log

(
n
κ

)

+ c̃2κ

}

(8)

for some positive constants c, c̃1, c̃2 > 1; see also Lemma A1 in the Appendix. Thus, within
this range, P̃n in (7)–(8) behaves in a way similar to a particular case of the penalty Pn in
(6) corresponding to the geometric type prior πn(κ) ∝ (1/c̃2)κ . This prior satisfies the second
condition on πn of Corollary 1. Such a Bayesian interpretation can also be helpful in providing
some intuition behind the penalty P̃n motivated in Birgé & Massart (2001) mostly due to technical
reasons. In addition, under the conditions of Corollary 1, Pn(n) ∼ P̃n(n) ∼ cn.

Furthermore, for sparse cases, where κ + n, under the conditions on the prior πn of
Corollary 1, both penalties Pn and P̃n are of the same so-called 2κ log(n/κ)-type penalties
of the form 2σ 2

n ζκ{log(n/κ) + cκ,n}, where ζ > 1 and cκ,n is negligible relative to log(n/κ).
Such types of penalties have appeared within different frameworks in a series of recent works on
estimation and model selection (Foster & Stine, 1999; George & Foster, 2000; Birgé & Massart,
2001; Abramovich et al., 2006, 2007).
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3. ESTIMATION IN THE GAUSSIAN WHITE NOISE MODEL

3·1. General algorithm

In this section we apply the results of § 2 on estimation in the Gaussian sequence model (2) to
wavelet estimation of the unknown response function f in the Gaussian white noise model (1).

Given a compactly supported scaling function φ of regularity r > s and the corresponding
mother wavelet ψ , one can generate an orthonormal wavelet basis on the unit interval from a
finite number C j0 of scaling functions φ j0k at a primary resolution level j0 and wavelets ψ jk at
resolution levels j " j0 and scales k = 0, . . . , 2 j − 1 (Cohen et al., 1993; Johnstone & Silverman,
2004a). For clarity of exposition, we use the same notation for interior and edge wavelets, and in
what follows denote φ j0k by ψ j0−1,k .

Then, f is expanded in the orthonormal wavelet series on [0, 1] as

f (t) =
∞∑

j= j0−1

2 j −1∑

k=0

θ jkψ jk(t),

where θ jk =
∫ 1

0 f (t)ψ jk(t)dt . In the wavelet domain, the Gaussian white noise model (1) becomes

Y jk = θ jk + ε jk ( j " j0 − 1, k = 0, . . . , 2 j − 1),

where the empirical wavelet coefficients Y jk are given by Y jk =
∫ 1

0 ψ jk(t)dY (t) and ε jk are
independent N (0, σ 2/n) random variables.

Define J = log2 n. Estimate wavelet coefficients θ jk at different resolution levels j by the
following scheme:

(1) set θ̂ j0−1,k = Y j0−1,k ;
(2) apply the Bayesian estimation procedure of Abramovich et al. (2007) described in § 2 to

estimate θ jk at resolution levels j0 ! j < J by the corresponding θ̂ j,k ;
(3) set θ̂ jk = 0, j " J .

The resulting wavelet estimator f̂n of f is then defined as

f̂n(t) =
C j0−1∑

k=0

Y j0−1,kψ j0−1,k(t) +
J−1∑

j= j0

2 j −1∑

k=0

θ̂ jkψ jk(t). (9)

Theorem 1 below shows that, under mild conditions on the prior πn , the resulting global
wavelet estimator (9) of f , where the estimation procedure is applied to the entire set of wavelet
coefficients at all resolution levels j0 ! j < J , up to a logarithmic factor, attains the minimax
convergence rates over the whole range of Besov classes. Furthermore, Theorem 2 demonstrates
that performing the estimation procedure at each resolution level separately allows one to remove
the extra logarithmic factor. Moreover, a level-wise version of (9) allows one to estimate the
derivatives of f at optimal convergence rates as well.

3·2. Global wavelet estimator

The number of wavelet coefficients at all resolution levels up to J is ñ = 2J − 2 j0 ∼ n for
large n. Let πn(κ) > 0 (κ = 0, . . . , ñ), be a prior distribution on the number of nonzero wavelet
coefficients of f at all resolution levels j0 ! j < J , and let the prior variance of nonzero co-
efficients at the j th resolution level be τ 2

j /n; the corresponding level-wise variance ratios are
γ j = τ 2

j /σ
2.
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It is well known (Donoho & Johnstone, 1998) that, as n → ∞, the minimax convergence rate
for the L2-risk of estimating the unknown response function f in the model (1) over Besov balls
Bs

p,q (M), where 0 < p, q !∞, s > max(0, 1/p − 1/2) and M > 0, is given by

inf
f̃n

sup
f ∈Bs

p,q (M)
E

(
‖ f̃n − f ‖2

2
)

* n−2s/(2s+1).

THEOREM 1. Let ψ be a mother wavelet of regularity r and let f̂n be the corresponding
global wavelet estimator (9) of f in the Gaussian white noise model (1), where f ∈ Bs

p,q (M),
0 < p, q ! ∞, 1/p < s < r and M > 0. Assume that there exist positive constants γ− and γ+
such that γ− ! γ j ! γ+ for all j = j0, . . . , J − 1. Let the prior πn satisfy πn(κ) " (κ/n)cκ for all
κ = 1, 2, . . . , exp(−9/2)n or, for a shorter range κ = 1, 2, . . . , exp{−c(γ−)}n if γ− is known.
Then, as n → ∞,

sup
f ∈Bs

p,q (M)
E

(
‖ f̂n − f ‖2

2
)

= O

{(
log n

n

) 2s
2s+1

}

. (10)

The proof of Theorem 1 is based on the relationship between the smoothness conditions
on functions within Besov spaces and the conditions on their wavelet coefficients. Namely,
if f ∈ Bs

p,q (M), then the sequence of its wavelet coefficients {θ jk, k = 0, . . . , 2 j − 1, j =
j0, . . . , J − 1} belongs to a weak l2/(2s+1)-ball of a radius aM , where the constant a depends
only on a chosen wavelet basis (Donoho, 1993, Lemma 2). One can then apply the corresponding
results of Abramovich et al. (2007) for estimation over weak l p-balls. Details of the proof of
Theorem 1 are given in the Appendix.

The resulting global wavelet estimator does not rely on the knowledge of the parameters s, p,
q and M of a specific Besov ball and it is, therefore, inherently adaptive. Theorem 1 establishes
the upper bound for its L2-risk and shows that the resulting adaptive global wavelet estimator
is asymptotically near-optimal within the entire range of Besov balls. In fact, the additional
logarithmic factor in (10) is the unavoidable minimal price for adaptivity for any global wavelet
threshold estimator (Donoho et al., 1995; Cai, 1999), and in this sense, the upper bound for
the convergence rates in (10) is sharp. To remove this logarithmic factor one should consider
level-wise thresholding.

3·3. Level-wise wavelet estimator

Consider now the level-wise version of the wavelet estimator (9), where estimation is applied
separately at each resolution level j . The number of wavelet coefficients at the j th resolution
level is n j = 2 j . Let π j (κ) > 0 (κ = 0, . . . , 2 j ), be the prior distribution on the number of
nonzero wavelet coefficients, and let τ 2

j /n be their level-wise prior variance, j0 ! j < J ; the
corresponding level-wise variance ratios are γ j = τ 2

j /σ
2.

THEOREM 2. Let ψ be a mother wavelet of regularity r and let f̂n(·) be the corresponding
level-wise wavelet estimator (9) of f in the Gaussian white noise model (1), where f ∈ Bs

p,q (M),
0 < p, q ! ∞, 1/p < s < r and M > 0. Assume that there exist positive constants γ− and
γ+ such that γ− ! γ j ! γ+ for all j = j0, . . . , J − 1. Let the priors π j satisfy the following
conditions for all j = j0, . . . , J − 1:

(1) π j (0) " 2−c1 j for some c1 > 0;
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(2) π j (κ) " (κ2− j )c2κ for all κ = 1, . . . , α j 2 j , where c2 > 0 and 0 < cα !α j ! exp{−c(γ j )}
for some constant cα > 0, and the function c(γ j ) = 8(γ j + 3/4)2 was defined in Proposi-
tion 1; and

(3) π j (2 j ) " e−c02 j
for some c0 > 0.

Then, as n → ∞, sup f ∈Bs
p,q (M) E(‖ f̂n − f ‖2

2) = O(n− 2s
2s+1 ).

For f ∈ Bs
p,q (M), the sequence of its wavelet coefficients at the j th resolution level belongs to

l p[η j ], where η j = C0n1/22− j(s+1/2) for some C0 > 0 (Meyer, 1992, § 6.10). The conditions on
the prior in Theorem 2 ensure that all the four statements of Proposition 1 simultaneously hold at
all resolution levels j0 ! j < J with β = 0, and one can exploit any of them at each resolution
level. It is necessary for adaptivity of the resulting level-wise wavelet estimator (9).

As mentioned in § 2·2, all three conditions of Theorem 2 hold, for example, for the truncated
geometric prior TrGeom(1 − q j ), where q j are bounded away from zero and one.

It turns out that requiring a slightly more stringent condition on π j (0) allows one also to
estimate derivatives of f by the corresponding derivatives of its level-wise wavelet estimator f̂n

at the optimal convergence rates. Such a plug-in estimation of f (m) by f̂ (m)
n is, in fact, along the

lines of the vaguelette-wavelet decomposition approach of Abramovich & Silverman (1998).
Recall that, as n → ∞, the minimax convergence rate for the L2-risk of estimating an mth

derivative of the unknown response function f in the model (1) over Besov balls Bs
p,q (M), where

0 ! m < min{s, (s + 1/2 − 1/p)p/2}, 0 < p, q ! ∞ and M > 0, is given by (Donoho et al.,
1997; Johnstone and Silverman, 2005)

inf
f̃ (m)
n

sup
f ∈Bs

p,q (M)
E

(∥∥ f̃ (m)
n − f (m)∥∥2

2

)
* n−2(s−m)/(2s+1).

The following Theorem 3 is a generalization of Theorem 2 for simultaneous level-wise wavelet
estimation of a function and its derivatives.

THEOREM 3. Let ψ be a mother wavelet of regularity r and let f̂n be the level-wise wavelet es-
timator (9) of f in the Gaussian white noise model (1), where f ∈ Bs

p,q (M), 0 < p, q ! ∞,
1/p < s < r and M > 0. Assume that there exist positive constants γ− and γ+ such that
γ− ! γ j ! γ+ for all j = j0, . . . , J − 1. Let the priors π j satisfy the following conditions for
all j = j0, . . . , J − 1:

(1) π j (0) " 2−c1 j2−β j
for some β " 0 and c1 > 0;

(2) π j (κ) " (κ2− j )c2κ for all κ = 1, . . . , α j 2 j , where c2 > 0 and 0 < cα !α j ! exp{−c(γ j )}
for some constant cα > 0, and the function c(γ j ) = 8(γ j + 3/4)2 was defined in Proposi-
tion 1;

(3) π j (2 j ) " e−c02 j
for some c0 > 0.

Then, for all mth derivatives f (m) of f , where 0 ! m ! β/2 and m < min{s, (s + 1/2 −
1/p)p/2}, as n → ∞,

sup
f ∈Bs

p,q (M)
E

(∥∥ f̂ (m)
n − f (m)∥∥2

2

)
= O

(
n− 2(s−m)

2s+1

)
.

Theorem 2 is evidently a particular case of Theorem 3 corresponding to the case m = 0, for
β = 0 in the condition on π j (0). Theorem 3 shows that the same proposed adaptive level-wise
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wavelet estimator (9) is simultaneously optimal for estimating a function and an entire range of
its derivatives. This range is the same as that for the empirical Bayes shrinkage and threshold
estimators appearing in Theorem 1 of Johnstone & Silverman (2005). The proof of Theorem 3 is
given in the Appendix.

4. NUMERICAL STUDY

4·1. Preamble

In this section, we present a simulation study to illustrate the performance of the developed
level-wise wavelet estimator (9) and compare it with three empirical Bayes wavelet estimators: the
posterior mean and the posterior median of Johnstone & Silverman (2005), and the Bayes Factor
of Pensky & Sapatinas (2007); and two other estimators: the block wavelet estimator NeighBlock
of Cai & Silverman (2001) and the complex-valued wavelet hard thresholding estimator of
Barber & Nason (2004). All the above Bayesian estimators and the block wavelet estimator are
asymptotically minimax in a wide range of Besov balls. Although no such theoretical results
have been established so far for the complex-valued wavelet estimator, it has performed well in
simulations (Barber & Nason, 2004).

In practice, one typically deals with discrete data of a sample size n and the sampled data
analogue of the Gaussian white noise model (1) is the standard nonparametric regression model

Yi = f (i/n) + εi (i = 1, . . . , n),

where εi are independent N (0, σ 2) random variables. The corresponding global and level-wise
Bayesian maximum a posteriori wavelet estimation procedures then use the empirical wavelet
coefficients obtained by the discrete wavelet transforms of the data. However, utilizing the
machinery of Johnstone & Silverman (2004a, 2005) for development of appropriate boundary-
corrected wavelet bases, one can show that discretization does not affect the order of magnitude
of the accuracy of the resulting wavelet estimates (Johnstone & Silverman, 2004a, 2005; PhD
thesis at University of Cyprus of Petsa).

The computational algorithms were performed using the WaveLab and EbayesThresh software.
The entire study was carried out using the Matlab programming environment.

4·2. Estimation of parameters

To apply the proposed level-wise wavelet estimator (9) one should specify the priors π j , the
noise variance σ 2 and the prior variances τ 2

j or, equivalently, the variance ratios γ j = τ 2
j /σ

2.
We used the truncated geometric priors TrGeom(1 − q j ) discussed in § 3·3. Since the parameters
σ 2, q j and γ j are rarely known a priori in practice, they should be estimated from the data in the
spirit of empirical Bayes.

The unknown σ was robustly estimated by the median of the absolute deviation of the empirical
wavelet coefficients at the finest resolution level J − 1, divided by 0·6745 as suggested by Donoho
& Johnstone (1994a), and usually applied in practice. For a given σ , we then estimate q j and γ j
by the conditional likelihood approach of Clyde & George (1999).

Consider the prior model described in § 2·1. The corresponding marginal likelihood of the
observed empirical wavelet coefficients, say Y jk , at the j th resolution level is then given by

L(q j , γ j ; Y j ) ∝
2 j∑

κ=0

π j (κ)

(
2 j

κ

)−1

(1 + γ j )−κ/2
∑

xi :
∑

k xik=κ

exp

{
γ j

∑
k xikY 2

jk

2σ 2(1 + γ j )

}

,
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where π j (κ) = (1 − q j )qκ
j /(1 − q2 j +1

j ) and xi are indicator vectors. Instead of direct maximiza-
tion of L(q j , γ j ; Y j ) with respect to q j and γ j , regard the indicator vector x as a latent variable
and consider the corresponding loglikelihood for the augmented data (Y j , x), i.e.

l(q j , γ j ; Y j , x) = c + log π j (κ) − log

(
2 j

κ

)

− κ

2
log(1 + γ j ) +

γ j
∑

k xkY 2
jk

2σ 2(1 + γ j )
, (11)

where c is a constant. The EM-algorithm iteratively alternates between computation of the expec-
tation of l(q j , γ j ; Y j , x) in (11) with respect to the distribution of x given Y j evaluated using the
current estimates for the parameters’ values at the E-step, and then updating the parameters by
maximizing it with respect to q j and γ j at the M-step. However, for a general prior distribution
πn and for the truncated geometric prior, in particular, the EM-algorithm does not allow one to
achieve analytic expressions on the E-step. Instead, we apply the conditional likelihood estimation
approach originated by George & Foster (2000) and adapted to the wavelet estimation context by
Clyde & George (1999). The approach is based on evaluating the augmented loglikelihood (11)
at the mode for the indicator vector x at the E-step rather than using the mean as in the original
EM-algorithm (Abramovich & Angelini, 2006).

For a fixed number κ of its nonzero entries, it is evident from (11) that the most likely vector
x̂(κ) is x̂k(κ) = 1 for the κ largest |Y jk | and zero otherwise. For the given κ , maximizing (11)
with respect to γ j after some algebra yields γ̂ j (κ) = max{0,

∑κ
k=1 Y 2

(k)/(κσ 2) − 1}. To simplify
maximization with respect to q j , approximate the truncated geometric distribution π j in (11)
by a non-truncated one. This approximation does not strongly affect the results, especially
at sufficiently high resolution levels, and allows one to obtain analytic solutions for q̂ j , i.e.
q̂ j (κ) = κ/(κ + 1). It is now straightforward to find κ̂ that maximizes (11) together with the
corresponding γ̂ j (κ̂) and q̂ j (κ̂). The above conditional likelihood approach results, therefore, in
rapidly computable estimates for γ j and q j in closed forms.

4·3. Simulation study

We now present and discuss the results of the simulation study. For all three empirical Bayes
wavelet estimators, we used the double exponential prior, where the corresponding prior parame-
ters were estimated level-by-level by marginal likelihood maximization, as described in Johnstone
& Silverman (2005). The prior parameters for the proposed level-wise wavelet estimator (9) were
estimated by conditional likelihood maximization procedure described in § 4·2 above. For the
block wavelet estimator, the lengths of the blocks and the thresholds were selected as suggested
by Cai & Silverman (2001). Finally, for all competing methods, σ was estimated by the median
of the absolute value of the empirical wavelet coefficients at the finest resolution level divided by
0·6745 as discussed in § 4·2.

In the simulation study, we evaluated the above six wavelet estimators for a series of test
functions. We present here the results for the now-standard Bumps, Blocks, Doppler and Heavisine
functions of Donoho & Johnstone (1994a), and the Wave (Marron et al., 1998; Antoniadis et al.,
2001) and Peak (Angelini et al., 2003) functions defined, respectively, as

f (t) = 0·5 + 0·2 cos 4π t + 0·1 cos 24π t (0 ! t ! 1)

and

f (t) = exp{−|t − 0·5|} (0 ! t ! 1).

See Fig. 1 for Wave and Peak test functions.
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Fig. 1. Wave (left) and Peak (right) test functions.

For each test function, M = 100 samples were generated by adding independent Gaussian
noise ε ∼ N (0, σ 2) to n = 256, 512 and 1024 equally spaced points on [0,1]. The value of the
root signal-to-noise ratio was taken to be 3, 5 and 7 corresponding respectively to high, moderate
and low noise levels. The goodness-of-fit for an estimator f̂ of f in a single replication was
measured by its mean squared error.

For brevity, we report the results only for n = 1024 using the compactly supported mother
wavelet Coiflet 3 (Daubechies, 1992, p. 258) and the Lawton mother wavelet (Lawton, 1993)
for the complex-valued wavelet estimator. The primary resolution level was j0 = 4. Different
choices of sample sizes and wavelet functions yielded similar results in magnitude.

The sample distributions of mean squared errors over replications for different wavelet esti-
mators in the conducted simulation study were typically asymmetrical and affected by outliers.
Therefore, we preferred the sampled medians of mean squared errors rather than means to gauge
the estimators’ goodness-of-fit. Thus, for each wavelet estimator, test function and noise level,
we calculated the sample median of mean squared errors over all 100 replications. To quantify
the comparison between the competing wavelet estimators over various test functions and noise
levels, for each model we found the best wavelet estimator among the six, i.e. the one achieving
the minimum median mean squared error. We then evaluated the relative median mean squared
error of each estimator defined as the ratio between the minimum and the estimator’s median
mean squared errors; see Table 1.

As expected, Table 1 shows that there is no uniformly best wavelet estimator. Each one has
its own favourite and challenging cases, and its relative performance strongly depends on the
specific test function. Thus, the complex-valued estimator indeed demonstrates excellent results
for Donoho & Johnstone’s functions as has been reported in Barber & Nason (2004), but is much
less successful for Peak and Wave. The block estimator is the best for the Peak and Doppler
but the worst for Blocks and Bumps. The proposed Bayesian estimator (9) outperforms others
for Wave but is less efficient for Donoho & Johnstone’s (1994a) examples. Interestingly, the
relative performance of the estimators is much less sensitive to the noise level. For each of the
test functions, the corresponding best estimator is essentially the same for all noise levels.

The minimal relative median of mean squared errors of an estimator over all cases reflects its
inefficiency at the most challenging combination of a test function and noise level, and can be
viewed as a natural measure of its robustness. In this sense, the posterior mean estimator is the
most robust although it is not the winner in any particular case.
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Table 1. Relative median mean squared errors, MSE, for various test functions, levels of the root
signal-to-noise ratio, RSNR, and different wavelet estimators

Signal RSNR MAP BF Postmed Postmean Block CW

Peak 3 0·8697 0·1763 0·8279 0·6589 1 0·5795
5 0·7772 0·1497 0·7864 0·6525 1 0·6234
7 0·8033 0·186 0·8501 0·6958 1 0·6979

Wave 3 1 0·5614 0·9841 0·9103 0·4570 0·9189
5 0·9841 0·4603 1 0·9165 0·6072 0·8265
7 1 0·6241 0·9900 0·9303 0·7498 0·7793

Bumps 3 0·5968 0·6254 0·6814 0·7569 0·4769 1
5 0·5221 0·5641 0·5893 0·6671 0·4788 1
7 0·5132 0·5537 0·5707 0·6420 0·5202 1

Blocks 3 0·6595 0·6807 0·8815 0·9500 0·5606 1
5 0·6875 0·727 0·8541 0·9065 0·4416 1
7 0·6921 0·7134 0·7806 0·8535 0·4288 1

Doppler 3 0·7214 0·611 0·8277 0·8709 0·9878 1
5 0·6962 0·6739 0·8116 0·8583 1 0·9119
7 0·7655 0·7122 0·8236 0·883 1 0·9382

Heavisine 3 0·7523 0·3566 0·9333 0·9154 0·8406 1
5 0·6640 0·3764 0·8622 0·8427 0·5796 1
7 0·6931 0·3505 0·8298 0·8424 0·5028 1

MAP, the proposed Bayesian estimator; BF, Bayes factor; Postmed, posterior median; Postmean, posterior mean; Block,
block; and CW, complex-valued hard thresholding.

We also compared different thresholding estimators in terms of sparsity measured by
the average percentage of nonzero wavelet coefficients that remained after thresholding; see
Table A1. The posterior mean estimator was not included in this comparison since it is a nonlinear
shrinkage but not a thresholding estimator. Similar to the previous results on the goodness-of-
fit, the relative sparsity strongly depends on the test function. However, except for the Doppler
example, the estimator (9) is consistently the most sparse among Bayesian estimators.

Apart from providing a theoretical justification, our numerical results show that our estimator
demonstrates good performance in finite sample settings and can, therefore, be viewed as a
contribution to the list of useful wavelet-based function estimation tools.
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APPENDIX

Throughout the proofs we use C to denote a generic positive constant, not necessarily the same each
time it is used, even within a single equation.

Proof of Proposition 1. We start the proof of the proposition with the following lemma that establishes
the bounds for binomial coefficients.
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Table A1. Average percentages of remaining coefficients for various test functions, levels of the
root signal-to-noise ratio and different wavelet thresholding estimators

Signal RSNR MAP BF Postmed Block CW

Peak 3 7·57 14·87 8·92 1·64 1·74
5 5·62 15·89 8·39 1·61 1·93
7 4·26 12·93 7·81 1·63 2·05

Wave 3 11·39 18·81 12·79 5·21 5·52
5 11·51 20·19 12·52 6·30 6·28
7 10·38 20·84 13·07 6·30 7·01

Bumps 3 10·63 12·13 10·86 16·63 12·23
5 11·17 12·60 12·45 21·13 14·52
7 12·65 13·90 13·80 23·70 16·03

Blocks 3 17·10 15·32 11·62 12·27 8·39
5 10·39 12·20 11·72 18·03 12·07
7 11·12 12·87 12·63 22·47 14·20

Doppler 3 11·46 14·73 8·58 5·69 5·13
5 7·24 9·23 6·52 6·63 6·60
7 6·42 9·58 6·57 7·27 7·86

Heavisine 3 6·35 19·27 10·75 1·98 2·17
5 8·11 19·73 10·62 3·17 2·69
7 10·87 18·52 12·55 4·00 3·39

LEMMA A1. For all n " 2 and κ = 1, 2, . . . , n − 1,

(n
κ

)κ

!
(

n
κ

)
<

(ne
κ

)κ

. (A1)

In particular, for κ ! n/e,
(

n
κ

)
<

(n
κ

)2κ

. (A2)

This lemma generalizes Lemma A.1 of Abramovich et al. (2007), where the upper bound similar to that
in (A1) was obtained for κ = o(n).

Proof of Lemma A1. The obvious lower bound for the binomial coefficient in (A1) has been shown in
Lemma A.1 of Abramovich et al. (2007). To prove the upper bound in (A1), using Stirling’s formula one
has

(
n
κ

)
!

(n
e

)n
(

e
n − κ

)n−κ ( e
κ

)κ

=
(n

κ

)κ
(

n
n − κ

)n−κ

(A3)

for all n " 2 and κ = 1, 2, . . . , n − 1.
Note that log{x/(x − 1)} < 1/(x − 1) for all x > 1. In particular, for x = n/κ it implies log{n/(n −

κ)} < κ/(n − κ) and, therefore, ( n
n−κ

)n−κ < exp(κ) that together with (A3) completes the proof of (A1).
The second statement (A2) of the lemma is an immediate consequence of (A1) for κ ! n/e. This

completes the proof of Lemma A1. #

We now return to the proof of Proposition 1 and consider separately all the four cases covered by the
proposition. The proof will exploit the general results of Abramovich et al. (2007) on the upper error
bounds for the l2-risk of the estimator (5), adapting them also for the case where the variance in the
Gaussian sequence model (2) may depend on n.
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Case 1. Under the condition πn " e−c0n, c0 > 0, the definition (5) of µ̂ and (6) immediately imply
‖y − µ̂‖2 ! ‖y − µ̂‖2 + Pn(k̂) ! Pn(n) = O(nσ 2

n ). Thus,

E(‖µ̂ − µ‖2) ! 2{E(‖y − µ̂‖2) + E(‖y − µ‖2)} = O
(
nσ 2

n

)
.

Case 2. Applying Corollary 1 of Abramovich et al. (2007) for κ = 0 yields

E
(
‖µ̂ − µ‖2

2

)
! c0(γn)

{
n∑

i=1

µ2
i + 2σ 2

n (1 + 1/γn) log π−1
n (0)

}
+ c1(γn){1 − πn(0)}σ 2

n ,

where the exact expressions for c0(γn) and c1(γn) are given in Theorem 2 of Birgé & Massart (2001) with
their K = 1 + 1/(2γn); see the proof of Theorem 1 of Abramovich et al. (2007). In particular, under the
assumptions of the proposition on the boundness of γn , the functions c0(γn) and c1(γn) are also bounded
from above. For 2 ! p !∞, the least favorable sequence µ0 that maximizes

∑n
i=1 µ2

i over l p[ηn] is
µ01 = · · · = µ0n = Cnn−1/p = ηnσn . As n → ∞, one then has

E
(
‖µ̂ − µ‖2

2

)
! c0(γn)

{
σ 2

n η2
nn + 2σ 2

n (1 + 1/γn) log π−1
n (0)

}
+ c1(γn){1 − πn(0)}σ 2

n

= O
(
σ 2

n nη2
n

)
+ O

(
σ 2

n n−β log n
)
.

Case 3. This is essentially a sparse case considered in Abramovich et al. (2007) and its proof is a
direct consequence of their Theorem 6.

Case 4. The proof for this case is similar to that of Case 2 except that for 0 < p < 2, the least favourable
sequences µ0 that maximize

∑n
i=1 µ2

i over µ ∈ l p[ηn] are permutations of the spike (Cn, 0, . . . , 0) and
therefore

∑n
i=1 µ2

0i ! σ 2
n n2/pη2

n . Repeating the arguments used in the proof of Case 2 for κ = 0, under the
requirements of the proposition on boundedness of γn , we then get as n → ∞,

E
(
‖µ̂ − µ‖2

2

)
! c0(γn)

{
σ 2

n n2/pη2
n + 2(1 + 1/γn)σ 2

n log π−1
n (0)

}
+ c1(γn){1 − πn(0)}σ 2

n

= O
(
σ 2

n n2/pη2
n

)
+ O

(
σ 2

n n−β log n
)
.

for all ηp
n < n−1(2 log n)p/2. This completes the proof of Proposition 1. #

Proof of Theorem 1. Let R j =
∑2 j −1

k=0 E{(θ̂ jk − θ jk)2}, j " j0 − 1, be the L2-risk of the global wavelet
estimator (9) at the j th resolution level. Due to the Parseval relation, E(‖ f̂n − f ‖2) =

∑
j " j0−1 R j . Scaling

coefficients are not thresholded and therefore R j0−1 = C j0σ
2n−1 = o(n−2s/(2s+1)) as n → ∞. At very high

resolution levels, where j " J , all wavelet coefficients θ̂ jk are set to zero and, therefore, as n → ∞,

∞∑

j=J

R j =
∞∑

j=J

2 j −1∑

k=0

θ2
jk = O(n−2s ′

) = o
(
n−2s/(2s+1)),

where s ′ = s + 1/2 − 1/ min(p, 2) (Johnstone & Silverman, 2005).
Consider now

∑J−1
j= j0 R j . The set of wavelet coefficients {θi } of a function f ∈ Bs

p,q (M) lies within a
weak lr -ball of a radius aM with r = 2/(2s + 1), where the constant a depends only on a chosen wavelet
basis: mr [ηn] = {θ : |θ |(i) ! (aM)i−1/r } (Donoho, 1993, Lemma 2). The corresponding normalized radius
ηn = (σ/ √ n)−1ñ−1/r aM = O(n−s), where ñ = n − 2 j0 ∼ n for large n.

Under the conditions of the theorem, one can then apply Theorem 6 of Abramovich et al. (2007) for
mr [ηn] to get

J−1∑

j= j0

R j ! sup
θ∈mr [ηn ]

E
(
‖θ̂ − θ‖2

2

)
= O

{
ηr

n

(
2 log η−r

n

)1−r/2
}

= O

{(
log n

n

)2s/(2s+1)
}

as n → ∞. This completes the proof of Theorem 1. #
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Proof of Theorem 3. Let R j =
∑2 j −1

k=0 E(θ̂ jk − θ jk)2, j " j0 − 1, be now the L2-risk of the level-wise
version of the wavelet estimator (9) at the j th resolution level. Johnstone & Silverman (2005, § 5.6) showed
that E(‖ f̂ (m)

n − f (m)‖2) *
∑

j " j0−1 22mj R j .
For any f ∈ Bs

p,q (M), the sequence of its wavelet coefficients at the j th resolution level belongs to a
strong l p-ball of a normalized radius η j = C0n1/22− j(s+1/2) for some C0 > 0 (Meyer, 1992, § 6.10).

Define

j1 = 1
2s + 1

log2

(
nC2

0

c2/p
α

)
∼ 1

2s + 1
log2 n.

For sufficiently large n, j1 > j0. Note that η
p
j " cα for j ! j1 and η

p
j < cα for j > j1 with obvious

modifications for p = ∞. Consider the following cases:

(1) Scaling coefficients: j = j0 − 1. Similarly to the global wavelet estimator, for a fixed primary
resolution level j0, 22m( j0−1) R j0−1 = O(n−1) = o(n−2(s−m)/(2s+1)) as n → ∞.

(2) Coarse resolution levels: j0 ! j ! j1. Applying the first statement of Proposition 1 for each level,
one has, as n → ∞,

j1∑

j= j0

22mj R j ! C
j1∑

j= j0

22mj n−1σ 2n j ! Cn−1
j1∑

j= j0

2(2m+1) j = O
(
n−2(s−m)/(2s+1)).

(3) Middle and high resolution levels: j1 < j < J . Consider separately the cases (a) 2 ! p !∞ and
(b) 0 < p < 2.

(a) 2 ! p ! ∞. Under the conditions of the theorem, the second statement of Proposition 1 at the
j th resolution level yields

R j ! Cn−1(n jη
2
j + n−β

j log n j
)
! C(2−2 js + n−12−β j j)

and, hence, as n → ∞,

J−1∑

j= j1+1

22mj R j ! C
(
2−2 j1(s−m) + n−1 J 2) ! C

(
n−2(s−m)/(2s+1) + n−1 log2

2 n
)

= O
(
n−2(s−m)/(2s+1)).

(b) 0 < p < 2. Let j2 be the largest integer for which η
p
j " n−1

j (2 log n j )p/2. One can easily verify
that j1 < j2 < J .

Using the monotonicity arguments, η
p
j " n−1

j (2 log n j )p/2 for all middle resolution levels j1 <

j ! j2. One can then apply the third statement of Proposition 1, and after some algebra, to get, for
m < (s + 1/2 − 1/p)p/2,

j2∑

j= j1+1

22mj R j ! Cn−1
j2∑

j= j1+1

2(2m+1) j n p/22− j p(s+1/2){ log(n−p/22 j p(s+1/2))
}1−p/2

! Cn−(1−p/2)2− j1 p(s+1/2−(2m+1)/p) log
(
n−p/22 j1 p(s+1/2))

= O
(
n−2(s−m)/(2s+1))

as n → ∞.
At high resolution levels j2 < j < J , η

p
j < n−1

j (2 log n j )p/2, and the fourth statement of
Proposition 1 implies

R j ! C
(
2−2 j(s+1/2−1/p) + n−12− jβ j

)
.
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Hence, for 0 ! m ! β/2 and m < min{s, (s + 1/2 − 1/p)p/2}, one has

J−1∑

j= j2+1

22mj R j ! C
(
2−2( j2+1)(s+1/2−1/p−m) + n−1 J 2) = S1 + S2,

where evidently S2 = O(n−1 log2
2 n) = o(n−2(s−m)/(2s+1)) as n → ∞. From the definition of

j2, 2( j2+1)(s+1/2−1/p) > √{nC/( j2 + 1)} > √ (nC/ log2 n), which after some algebra yields S1 =
o(n−2(s−m)/(2s+1)) as n → ∞.

(4) Very high resolution levels: j " J . Using the results of Johnstone & Silverman (2005), as n → ∞,
the tailed sum

∑

j " J

22mj R j = O
(
n−2(s ′−m)) = o

(
n−2(s−m)/(2s+1)),

where s ′ = s + 1/2 − 1/ min(p, 2). Summarizing,
∑

j " j0−1

22mj R j = O
(
n−2(s−m)/(2s+1))

as n → ∞. This completes the proof of Theorem 3. #
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