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S

We consider a locally stationary model for financial log-returns whereby the returns are
independent and the volatility is a piecewise-constant function with jumps of an unknown
number and locations, defined on a compact interval to enable a meaningful estimation
theory. We demonstrate that the model explains well the common characteristics of log-
returns. We propose a new wavelet thresholding algorithm for volatility estimation in this
model, in which Haar wavelets are combined with the variance-stabilising Fisz transform.
The resulting volatility estimator is mean-square consistent with a near-parametric rate,
does not require any pre-estimates, is rapidly computable and is easily implemented.
We also discuss important variations on the choice of estimation parameters. We show
that our approach both gives a very good fit to selected currency exchange datasets,
and achieves accurate long- and short-term volatility forecasts in comparison to the
 (1, 1) and moving window techniques.

Some key words: GARCH model; Haar wavelet; Locally stationary model; Variance-stabilising transform;
Wavelet thresholding.

1. I

Log-returns on speculative prices, such as stock indices, currency exchange rates, share
prices, and so on, often exhibit the following well-known properties: the sample mean of
the observed series is close to zero; the marginal distribution is roughly symmetric or
slightly skewed, has a peak at zero, and is heavy tailed; the sample autocorrelations are
‘small’ at almost all lags, although the sample autocorrelations of the absolute values
and squares are significant for a large number of lags; and volatility is ‘clustered’, in that
days of either large or small movements are likely to be followed by days with similar
characteristics.
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To capture the above properties, one needs to look beyond the stationary linear frame-
work, and in order to preserve stationarity a large number of nonlinear models have been
proposed. Among them, two branches are by far the most popular; namely the families
of  (Engle, 1982) and  (Bollerslev, 1986; Taylor, 1986) models, as well as the
family of ‘stochastic volatility’ models (Taylor, 1986). For a review of recent advances in
,  and stochastic volatility modelling, we refer the reader to Fan & Yao (2003)
and Giraitis et al. (2005).
Although stationarity is an attractive assumption from the estimation point of view,

some authors point out that the above properties can be better explained by resorting to
nonstationary nonlinear models; see for example Kokoszka & Leipus (2000), Mikosch &
Stărică (2004) and Dahlhaus & Subba Rao (2006). Underlying all these approaches is
the observation that, given the changing pace of the world economy, it is unlikely that
log-return series should stay stationary over long time intervals.
However, an interesting question which arises once one relaxes the assumption of

stationarity is whether nonlinearity is still needed to model log-returns acccurately, or
whether it is sufficient to stick to linear models, the latter being conceptually simpler and
better understood. Locally stationary linear models (Dahlhaus, 1997; Nason et al., 2000)
seem to be a particularly interesting option here, as they combine linearity with a modelling
approach whereby the time-varying parameters are modelled as ‘well-behaved’ functions
defined on a compact interval, which enables a meaningful asymptotic estimation theory.
Indeed, some authors have applied the locally stationary linear framework to the modelling
of log-returns; see for example Fryzlewicz (2005) or Clémençon & Slim (2004), who apply
the locally stationary covariance estimation methodology of Donoho et al. (2003) to
log-returns.
Motivated by the above discussion, we also follow the ‘locally stationary linear’ avenue

and propose a simple nonstationary model for log-returns in which the time-varying
volatility, i.e. the log-return variance, is a piecewise-constant function of time: this enables
the modelling of abrupt changes in the stochastic regime which are often expected to
follow the arrival of good or bad news in the market. Also, we assume that log-returns
at different time points are independent.

2. T    

2·1. T he nonstationary model

Given a financial instrument {P
t,N

}N
t=1

, such as a stock index, a currency exchange rate
or a share price, our object of interest is the log-return series X

t,N
) log(P

t,N
)− log(P

t−1,N
).

We propose the following nonstationary ‘stochastic triangular array’ model for
{X
t,N

}N
t=1

:

X
t,N
=s(t/N)Z

t
(t=1, 2, . . . , N), (1)

where s(z) : [0, 1].R
+
is a nonparametric function, and {Z

t
} is a sequence of independent

and identically distributed random variables such that E(Z
t
)=0 and E(Z2

t
)=1.

Here, s(z), or alternatively s2 (z), can be viewed as a time-dependent parameter of the
proposed model (1), which needs to be estimated from a single stretch of observations
{X
t,N
}. Note that s(z) is defined over the interval [0, 1], which is common practice in

nonparametric regression and is done in order to enable the specification of regularity
assumptions for s(z). Indeed, without such regularity assumptions, any attempts at
estimating s(z) in a consistent manner would not be possible.



689Estimation of volatility

As we are primarily interested in s2 (z), the local variance or volatility of the process
{X
t,N

}N
t=1

, rather than s(z) itself, we now specify the smoothness assumption for s2 (z)
which will be used throughout the paper.

Assumption 1. The function s2 (z) is piecewise-constant, bounded from above and away
from zero, with a finite but unknown number of jumps.

Additional assumptions on the innovation process {Z
t
} will be specified later.

In the paper, we demonstrate theoretically and empirically that piecewise stationarity,
which is arguably the simplest type of departure from stationarity, is already flexible and
powerful enough to enable the successful modelling and forecasting of volatilities. We note
that the piecewise-constant modelling of volatilities has also been considered by Mercurio
& Spokoiny (2004) and in an unpublished Weierstrass Institute technical report by
J. Polzehl and V. Spokoiny.
Our nonparametric approach allows us to avoid the restrictions imposed by the

parametric structures of ⁄ models. Similarly to Stărică & Granger (2005), by
modelling volatility as a nonparametric function, we do not claim that random effects do
not play any role in the volatility dynamics. In our modelling approach, we express our
belief that both past and future returns are manifestations of an unspecified exogeneous
economic factor about which we only assume a piecewise-constant nature. Since no
obvious candidate for explanatory exogeneous variables is at hand, we model the volatility
as a nonparametric function.
We also observe that our approach is different from the use of a piecewise-constant
noise variance in the threshold autoregressive models of Tong (1990, Ch. 3). In the latter
approach, different autoregressive regimes are followed above and below a certain
threshold, which introduces nonlinear dependence in the process. In contrast to that
approach, our model is linear. Examples of approaches to fitting piecewise-stationary
autoregressive models include Ozaki & Tong (1975) and Kitagawa & Akaike (1978).

2·2. Explanation of the common properties

Below, we demonstrate that, provided Assumption 1 holds, the nonstationary model (1)
is capable of explaining the most commonly observed properties of log-returns, mentioned
in § 1. We introduce the following notation:

X9 pN=
1

N
∑
N

t=1
Xp
t,N

, cN
Xp

(h)=
1

N
∑
N−h

t=1
Xp
t,N

Xp
t+h,N

− (X9 pN )2.

The following proposition holds.

P 1. Suppose that {X
t,N

}N
t=1

follows model (1), and that Assumption 1 holds.
Assume further that E(Z8

t
)<2. Suppose that {h

N
} is a sequence such that h

N
>0 and, for

some b�0, that h
N
/N� b as N�2. T hen we have, as N�2,

X9 1N� 0, (2)

in mean square,

X9 4N
(X9 2N )2

�E(Z4
t
)
∆1
0
s4 (z)dz

{∆1
0
s2 (z)dz}2

, (3)

in probability,

cN
X1

(h)� 0, (4)
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in mean square, for a fixed h>0, and

cN
X2

(h
N
)�P 1−b

0
s2 (z)s2 (z+b)dz−qP 1

0
s2 (z)dzr2, (5)

in mean square.

The proofs of results in this paper appear in a technical report by the authors, available
at http://www.maths.bris.ac.uk/~mapzf/hf_vol/hf_vol.pdf.
Typically, upon assuming that our observations come from a stationary, but not

necessarily linear, process, which is indeed often done in log-return analysis, we would
use the quantities on the left-hand sides of formulae (2)–(5) as measures of the mean, the
kurtosis, the autocovariance and the autocovariance of the squares of the data, respectively.
Thus, Proposition 1 demonstrates that the common properties of log-return data,
mentioned in § 1, are captured by our model. In particular, note that the ratio on the
right-hand side of formula (3) is always greater than 1, unless s2 (z) is constant in which
case it is equal to 1. Similarly, if h

N
=h>0, then the integral on the right-hand side of

formula (5) is always positive, unless s2 (z) is constant in which case it is equal to 0.
The above discussion indicates that care must be taken when applying stationary, global

tools to the analysis of log-returns, as the true underlying model might well turn out to
be nonstationary, as is indeed the case here. In particular, Proposition 1 demonstrates
that the estimated sample autocovariance evaluated under the premise that the process is
stationary gives a misleading view as to the true dependence structure of the underlying
process. More precisely, it is clear that the true correlations of the process {X2

t,N
}N
t=1
are

zero. However, for all h>0, it is straightforward to see from (5) that the autocovariance
estimator cN

X2
(h) does not necessarily converge to zero as N� 0 and the correlations

appear to persist for all values of h, thus giving the wrong impression that {X2
t,N

}N
t=1
may

be correlated, or even have the long-memory property, when in fact they are independent.
We finally note that our model naturally captures the often-observed clustering of

volatility. Indeed, the piecewise-constant form of s2 (z) means that the local variance
remains at the same level for a number of time units, thus modelling the volatility
clustering.

3. A H–F  

3·1. Motivation

In this section, we aim to estimate s2 (t/N) at time points t=1, 2, . . . , N from a single
stretch of observations {X

t,N
}N
t=1
from the nonstationary model (1). As we assume s2 (z)

to be piecewise-constant, we base our estimator on Haar wavelets, which, being also
piecewise-constant, are potentially good ‘building blocks’ for this purpose. Our estimator
uses the principle of nonlinear wavelet shrinkage, thus being potentially well-suited for
the estimation of s2 (z) even if it is spatially inhomogeneous; in other words, if the regularity
of s2 (z) varies from one region to another. For an overview of wavelet methods in statistics,
we refer the reader to the monograph of Vidakovic (1999).
The starting point for these considerations is a reformulation of (1):

X2
t,N
=s2 (t/N)Z2

t
(t=1, 2, . . . , N). (6)
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Note that X2
t,N
is an unbiased but inconsistent estimator of s2 (t/N), and thus needs to be

smoothed to achieve consistency. Obviously, (6) can be rewritten as

X2
t,N
=s2 (t/N)+s2 (t/N)(Z2

t
−1) (t=1, 2, . . . , N), (7)

so that the problem of estimating s2 (t/N) can be viewed as the problem of removing the
‘noise’ s2 (t/N)(Z2

t
−1) from {X2

t,N
}N
t=1

.
Neumann & von Sachs (1995) used a nonlinear wavelet estimation technique in a setting

similar to (7). However, their method involved finding an estimator of the local variance
of the ‘noise’, here s2 (t/N)(Z2

t
−1), which in our case would amount to finding a pre-

estimator of s2 (t/N) itself. This is an obvious drawback of the estimation procedure, and
can hamper the practical performance of the method (Fryzlewicz, 2005).
In order to avoid having to find a pre-estimator of s2 (t/N), an obvious step would be
to take the logarithmic transformation of (6):

log X2
t,N
= log s2 (t/N)+ log Z2

t
(t=1, 2, . . . , N). (8)

The logarithmic transformation transforms model (6) from multiplicative to additive,
and acts as a variance-stabiliser. This setting is similar to the representation of the log-
periodogram of a second-order stationary process considered by Wahba (1980). Several
authors proposed wavelet techniques for the estimation of the log-periodogram (Moulin,
1994; Gao, 1997), and those techniques could be adapted to our framework. However,
any wavelet estimator in the setting specified by (8) would possess two undesirable
properties. First, naturally enough, it would be an estimator of log s2 (t/N), and not of
s2 (t/N) itself. Exponentiating this estimator would yield an estimator of s2 (t/N); however,
the statistical properties of the latter, such as mean-square consistency, would not be easy
to establish; note that, generally, the existence of the second moment of a random variable
Y does not imply the existence of the second moment of exp(Y ). Secondly, any wavelet
estimator in model (8) would suffer from a bias of order E( log Z2

t
). Since, as mentioned

before, we do not assume any specific distributional form for the innovation process {Z
t
},

the magnitude of the bias correction factor would then be unknown.
In contrast to those unwelcome features, the Haar–Fisz estimation technique which we

propose below enjoys the following properties: it uses a variance-stabilising step, which
eliminates the need for a local variance pre-estimation, and it yields an asymptotically
unbiased, mean-square consistent estimator of s2 (t/N), as opposed to log s2 (t/N), which
removes the need for a bias correction factor.

3·2. T he Haar–Fisz estimation algorithm

The input to the algorithm is the vector {X2
t,N

}N
t=1

: here, we assume that N is an integer
power of two; techniques for adapting wavelet transforms to nondyadic sample sizes are
described in Wickerhauser (1994). To simplify the notation, we drop the subscript N and
consider the sequence X2

t
)X2
t,N

. We set J= log2 N. The estimation algorithm proceeds
as follows.

Stage 1. Compute the Haar decomposition of {X2
t
}N
t=1
using the following algorithm:

(a) let s
J,k
)X2
k
, for k=1, 2, . . . , 2J ;

(b) for each j=J−1, J−2, . . . , 0, recursively form vectors s
j
, d
j
and f

j
with elements

s
j,k
=

s
j+1,2k−1

+s
j+1,2k

√2
, d
j,k
=

s
j+1,2k−1

−s
j+1,2k

√2
, f
j,k
=

d
j,k

s
j,k

,

where k=1, . . . , 2j.
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Stage 2. For each j=J−1, J−2, . . . , 0 and k=1, 2, . . . , 2j, let m
j,k
)E(d

j,k
). For most

levels j, in a sense to be made precise later, estimate m
j,k
by

m@ (h)
j,k
=s
j,k

f
j,k

I( | f
j,k
|>t
j
)=d
j,k

I( | f
j,k
|>t
j
), (9)

corresponding to hard thresholding, or by

m@ (s)j,k=s
j,k
sgn ( f

j,k
) ( | f
j,k
|−t
j
)
+

, (10)

corresponding to soft thresholding, where I ( . ) and sgn(.) are the indicator and sign
functions, respectively, and (x)

+
=max(0, x). In other words, we ‘kill’ each d

j,k
if and

only if the corresponding ‘Haar–Fisz coefficient’ f
j,k
does not exceed in absolute value a

certain threshold t
j
, to be specified later. Note that this is different from classical wavelet

thresholding in that the thresholded quantity d
j,k
and the ‘thresholding statistic’ f

j,k
are

different.

Stage 3. Invert the Haar decomposition in the usual way to obtain an estimate of
s2 (t/N ) at time points t=1, 2, . . . , N. Call the resulting estimate s@2

(h)
(t/N), for hard

thresholding, or s@2
(s)

(t/N), for soft thresholding. Explicit formulae for these two estimators
are given later in this section.

Asymptotic Gaussianity and variance stabilisation for certain random variables of the
form (X−Y )/(X+Y ), where X and Y are nonnegative, independent random variables,
were studied by Fisz (1955): hence we label the f

j,k
the ‘Haar–Fisz coefficients’. The main

heuristic idea here is that the variance of f
j,k
, for most j, k, does not depend on s2 (z).

Consider the following example, with j=J−1 and k=1. The Haar–Fisz coefficient f
J−1,1

has the form

f
J−1,1

=
X2
1
−X2
2

X2
1
+X2
2
=
s2 (1/N)Z2

1
−s2 (2/N)Z2

2
s2 (1/N)Z2

1
+s2 (2/N)Z2

2
.

Suppose now that s2 (1/N)=s2 (2/N); this is likely as s2 (z) is piecewise-constant. We then
have f

J−1,1
= (Z2

1
−Z2
2
)/(Z2
1
+Z2
2
), and the variance of f

J−1,1
does not depend on s2 (z).

Thus, the thresholds t
j
in (9) and (10) also do not need to depend on s2 (z), and can

therefore be selected more easily.
In the above example, if s2 (1/N) were not equal to s2 (2/N), that is if a jump occurred
between times 1/N and 2/N, then the distribution of f

J−1,1
would depend on s2 (1/N) and

s2 (2/N) in a nontrivial way. In particular, we could expect f
J−1,1

to be significantly
deviated from zero, if the value of s2 (1/N) was much different from that of s2 (2/N). In
that case the corresponding coefficient d

J−1,1
ought to ‘survive’ the process of thresholding.

Note that the Haar–Fisz transform for Poisson data, an algorithmic device for
stabilising the variance of Poisson data and bringing their distribution closer to normality,
was introduced by Fryzlewicz & Nason (2004).
We now give precise and explicit definitions of s@2

(h)
(t/N) and s@2

(s)
(t/N) in terms of Haar

wavelet vectors. For j=0, . . . , J−1 and k=1, . . . , 2j, define the Haar wavelet vectors
{y
j,k

(t)}2J
t=1
as

y
j,k

(t)=2(j−J)/2ICtµq(k−1)2J−j+1, . . . , Ak− 1

2B 2J−jrD
−2(j−J)/2ICtµqAk− 1

2B 2J−j+1, . . . , k2J−jrD .
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Fix dµ(0, 1). For each N=2J, define the set J
N
={( j, k) : j<J*}, with 2J*=O(N1−d ).

The estimators s@2
(h)

(t/N) and s@2
(s)

(t/N) are defined as

s@2
(h)

(t/N)=X9 2N+ ∑
(j,k)µJ

N

m@ (h)
j,k
y
j,k

(t), (11)

s@2
(s)

(t/N)=X9 2N+ ∑
(j,k)µJ

N

m@ (s)
j,k
y
j,k

(t), (12)

where m@ (h)j,k and m@ (s)j,k are as in formulae (9) and (10), respectively, with

t
j
=2−(J−j−1)/2√(2 log N). (13)

Outside the set J
N
, we simply define m@ (h)

j,k
=m@ (s)
j,k
=0. Let

v)E( |Z2
t
−1|2 ), (14)

and consider the following assumption.

Assumption 2. The distribution of the random variable Z2
t
has no atom at 0, and there

exist c>0 and c�0 such that E( |Z2
t
−1|n )∏cn−2 (n!)1+cv, for all n�3.

Remark 1. By elementary properties of the Gaussian and Laplace distributions
(Johnson et al., 1994, Ch. 13, 24), Assumption 2 is satisfied, in particular, if Z

t
is standard

Gaussian, with v=2 and c=0, or standard Laplace, with v=5 and c=2. Assumption 2
can also accommodate other distributions which are leptokurtic or possess a degree of
skewness.

The following theorem, proved in the Appendix, demonstrates the mean-square
consistency of s@2

(h)
(z) and s@2

(s)
(z).

T 1. Suppose that {X
t,N

}N
t=1

follows model (1), and that Assumptions 1–2 hold.
L et (e) be either one of (h) and (s). T hen we have

1

N
∑
N

t=1
Eqs@2(e)A tNB−s2A tNBr2= v

N2
∑
N

t=1
s4A tNB+ 1

N
∑
J−1

j=0
∑
2j

k=1
E(m@ (e)j,k−mj,k )2

=O(N−min(1−d, 2/v) ), (15)

where v is defined as in formula (14).

Remark 2. Note that, if Z
t
is standard Gaussian, so that v=2, the mean-square error

rate in (15) reduces to O(N−1+d ), which is arbitrarily close to the parametric rate of
O(N−1 ). Intuitively, this is not surprising as our problem is ‘almost parametric’ in the
sense that our target function is piecewise-constant with a finite number of jumps, but
the exact number, locations or magnitudes of the jumps are not known. It is clear from
the proof of Theorem 1 that the exact parametric rate is unattainable for our estimation
procedure, because we only use nontrivial estimators of m

j,k
in the setJ

N
, which is essential

for a certain asymptotic normality effect to hold. This effect holds for any choice of d>0,
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and thus, in theory, it is beneficial to choose d to be ‘as small as possible’. If we employ
the asymptotic normality as a tool, the rate is shown to be O(N−1+d ) given that the target
function is piecewise-constant.

3·3. Noise-free reconstruction

In this section, we consider the case when the errors Z
t
in (1) are standard Gaussian.

We construct an estimator of s2 (z) which possesses the following noise-free reconstruction
property: if the true function s2 (z) is a constant function of z, then, with high probability,
our estimator of s2 (z) is also constant and equal to the empirical mean of {X2

t,N
}N
t=1

.
The noise-free reconstruction property guarantees that estimators obtained using our

method have a visually appealing character and do not exhibit spurious ‘spikes’, even for
a nonconstant s2 (z). This is achieved by requiring that, asymptotically, no pure ‘noise’
coefficient survives the thresholding procedure.
For the noise-free reconstruction property to hold, we require that the probability of

any f
j,k
exceeding tA

j
should tend to 0 as N�2, or, to be more precise,

prqpJ−1
j=0
p
2j

k=1
( | f
j,k
|>tA
j
)r� 0, (16)

as N�2, where J= log2 N, f
j,k
is the Haar–Fisz coefficient of {X

t,N
} and tA

j
are

appropriately chosen thresholds. We note that the thresholds used in this case are different
from those given in § 3·2.
In order to derive the appropriate thresholds tA

j
we use the following lemma.

L 1. L et {X
i
}2m
i=1

be a sequence of independent and identically distributed x2
1

random variables, and let X(1)=Wm
i=1

X
i
and X(2)=W2m

i=m+1
X
i
. T hen the ratio

(X(1)−X(2) )/(X(1)+X(2) )

is distributed as 2Y−1, where Y~Be (m/2, m/2).

We now derive the thresholds tA
j
. As the distribution of f

j,k
does not depend on k, we

can define a
j
(N)=pr( | f

j,k
|<tA
j
). We have the following bound for (16), based on the

Bonferroni inequality:

prqpJ−1
j=0
p
2j

k=1
( | f
j,k
|>tA
j
)r∏ ∑

J−1

j=0
2j{1−a

j
(N)}. (17)

Our objective is to choose {a
j
(N)}J−1
j=0
such that WJ−1

j=0
2j{1−a

j
(N)}� 0, as N�2. The

choice of {a
j
(N)}J−1
j=0
will determine how fast WJ−1

j=0
2j{1−a

j
(N)} approaches zero and

thus the rate of convergence. Probably the simplest option is to mimick standard universal
thresholding in a classical independent and identically distributed Gaussian nonparametric
regression setting for wavelets, where the analogue of a

j
(N) is constant across scales, that

is a
j
(N)=a(N), and the rate of convergence to 0 of the probability corresponding to (16)

is equal to (pJ log 2)−D. To guarantee such a rate we choose a(N) such that

prqpJ−1
j=0
p
2j

k=1
( | f
j,k
|>tA
j
)r∏ ∑J−1

j=0
2j{1−a(N)}=

1

√(pJ log 2)
,

which is solved uniquely by

a*(N)=1− (2J−1)−1 (pJ log 2)−D. (18)
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In the light of what was said above, a*(N) guarantees the convergence of (16) to 0 at a
rate of at least {pJ log(2)}−D.
By Lemma 1, f

j,k
has a 2Be(2J−j−2, 2J−j−2 )−1 distribution, and tA

j
’s are now easily

found numerically by solving a*(N)=pr( | f
j,k
|<tA
j
). We note that noise-free reconstruction

is also possible for random variables Z
t
which have distributions other than Gaussian,

so long as the exact distribution of (X(1)−X(2) )/(X(1)+X(2) ) is known, where X(1)=
Wm
i=1

Z2
i
and X(2)=W2m

i=m+1
Z2
i
.

Figure 1 compares the thresholds t
j
and tA

j
for J=10 and j=0, . . . , J−1. Note that t

j
’s

exceed 1 at the 4 finest scales, and therefore no coefficient at these scales survives the
thresholding; remember that | f

j,k
| is always bounded from above by 1.
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Fig. 1. Thresholds tA
j
, solid line, and t

j
, dotted line, for

J=10 and j=0, . . . , J−1. See discussion in § 3·3.

In classical Gaussian wavelet regression, some authors argue that, instead of modelling
the analogue of a

j
(N) as constant across scales, one can obtain more accurate estimators

by allowing it to decrease from finer to coarser scales (Antoniadis & Fryzlewicz, 2006).
For simplicity, we consider a linear dependence of a

j
(N) on j:

a
j
(N)=a

J−1
(N)

j

J−1
+a
0
(N)

J−1− j

J−1
.

The equation for (a0 (N), a
J−1

(N)) is

c
J
= ∑
J−1

j=0
2jq1−aJ−1 (N)

j

J−1
−a
0
(N)

J−1− j

J−1 r ,
where c

j
30 is the desired rate of convergence. This simplifies to

a
J−1

(N){2J (J−2)+2}+a
0
(N)(2J−J−1)= (2J−1−c

J
) (J−1).

One possibility is to set a
J−1

(N)=a*(N) and then solve for a0 (N). As a special case, note
that setting a

J−1
(N)=a*(N) and c

J
= (pJ log 2)−D gives the solution a0 (N)=a*(N), which

implies that a
j
(N)=a*(N) for all j; in this case, a

j
(N) does not depend on j.
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4. C   

In this section, we exhibit the performance of various versions of our Haar–Fisz
volatility estimator on two currency-exchange datasets, namely the logged and
differenced daily exchange rates between the U.S. dollar and the British pound
and between the dollar and the Japanese yen, both running from 1 January 1990 to
31 December 1999. The data are available from the U.S. Federal Reserve website
http://www.federalreserve.gov/releases/h10/Hist/default1999.htm.
We have also tested our estimator on other exchange rate datasets available from the

above website but for lack of space we only provide graphical illustration of its perform-
ance on the dollar/pound and dollar/yen series in this section. However, the discussion
below applies to all of the exchange rate time series available from the above website.
The length of each series is n=2515, but, as our estimators require the length of input

to be a power of two, we only consider the last N=2048 observations in both series, so
that J= log2 N=11. Those are plotted in Fig. 2.

0 500 1000 1500 2000
Day

0 500 1000 1500 2000
Day

_ 0.04
_ 0.03

_ 0.01

0.01 0.00

(b)(a)
0.03

Fig. 2. The last N=2048 observations of (a) the dollar/pound and (b) the
dollar/yen logged and differenced exchange rate series, running from

8 November 1991 to 31 December 1999.

We now single out a few specific versions of our Haar–Fisz volatility estimator.

Method -: Our Haar–Fisz algorithm with hard thresholding and thresholds t
j
, see

formula (13), which guarantee mean-square consistency. We take J*=J−1; see § 3·2
for details.

Method  -p-(- ): Our Haar–Fisz algorithm with hard thresholding and noise-free
reconstruction thresholds tA

j
chosen in such a way that a

J−1
=a*, see formula (18),

and a0= ( p/100)a
J−1
, where p∏100; see § 3·3 for details. The acronym  denotes the

translation-invariant version: in translation-invariant versions of wavelet-based denoising
algorithms, the final estimator is obtained as the average of the estimators obtained for
all circular shifts of the data. This is common practice in wavelet regression. The fast
O(N log N ) implementation of translation-invariant wavelet thresholding algorithms uses
the non-decimated wavelet transform (Nason & Silverman, 1995).

Method  -p-(- ): The same as above, with soft thresholding.

We have tested several versions of our estimator by looking at the behaviour of empirical
residuals for each of the datasets. To be more specific, let X

t,N
=s(t/N)Z

t
denote a series



697Estimation of volatility

of currency-exchange log-returns, and let s@2 (t/N) be any Haar–Fisz estimator of s2 (t/N).
We define the empirical residuals asZC

t
=X
t,N

/s@ (t/N). We are satisfied with the performance
of s@2 (t/N) if the sequence ZC

t
looks ‘stationary’ and displays only very little autocorrelation

in the squares; that is the p-value of the Ljung–Box test for lack of serial correlation
in ZC 2
t
is above a prespecified threshold l, with l=0·05 in all of the examples in the paper.

In an extensive empirical study which compared several parameter configurations
for several currency exchange datasets, we found that, for p=100, the corresponding
estimators -100- and -100-(-) often oversmoothed, in the sense that the empirical
residuals displayed significant dependence in the squares. The suitable value of p was then
chosen by decreasing p over the grid 100, 99, 98, . . . until the Ljung–Box test indicated no
significant correlation in the squared empirical residuals. We found that either of the two
estimators -98- or -97-, as well as their  versions, performed well for most of the
datasets considered. On the other hand, the estimators  -p- for p<100 were often
extremely ‘spiky’. Typically, -100-- produced correctly behaved empirical residuals,
although the reconstructions were also often spiky. The price for using any translation-
invariant estimator was that, naturally enough, we lost the piecewise-constant nature of
the reconstructions and increased the computational effort from O(N) to O(N log N ).
Furthermore, we found that the - estimator typically gave slightly oversmoothed

reconstructions. This was because, as mentioned in § 3·3, the thresholds t
j
were larger

than 1 at the four finest scales, which meant that no detail coefficient d
j,k
at those scales

survived the thresholding.
To summarise,  -p-,  -p-- and  -p-- were the preferred estimators. For the
dollar/pound series, the corresponding values of p for those estimators, selected by the
automatic procedure described above, were p=97, p=97 and p=100, respectively.
The respective p-values of the Ljung–Box test were 0·09, 0·06 and 0·82. For the dollar/yen
series, the selected values of p for the above three estimators were p=97, p=98 and
p=100, respectively. The respective p-values of the Ljung–Box test were 0·19, 0·18 and 0·94.
Figures 3(a), (c) and (e) show the results for the dollar/pound series. Figure 3(a) shows

the -97-- estimate and Fig. 3(c) shows the -100-- estimate. The -97-
estimate is a piecewise-constant function whose breakpoints can be loosely interpreted as
‘significant changes’ in the volatility. Figure 3(e) shows the squared returns and the
locations of the break points of -97-. For clarity, we only plot the first 250 observations,
which roughly corresponds to one business year starting on 8 November 1991. Figures
3(b), (d) and (f ) show the corresponding results for the dollar/yen series except that
Fig. 3(b) shows the -98-- estimate and Fig. 3(f ) shows the last 250 observations,
which roughly corresponds to one business year starting on 1 January 1999. Note that
translation-invariant estimates are not useful for break-point detection as they are
continuous.
Although the soft-thresholding translation-invariant estimates were smoother and

thus more visually appealing than the hard-thresholding translation-invariant estimates,
it was far from obvious that they should be preferred, as the p-values for the latter were
much higher. This might imply that some of the spikes observed in the hard-thresholding
estimates were not merely artefacts from hard thresholding but served to explain significant
transient features of the volatility function. On the other hand, the low p-values produced
by the soft-thresholding estimates might be due to the occasional bias introduced by soft
thresholding, which is a well-known phenomenon in the classical Gaussian regression
context.
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Fig. 3. (a), (c) and (e) show empirical results for the dollar/pound series; (b), (d) and (f ) show
the dollar/yen series. (a) -97-- estimate; (b) -98-- estimate; (c) -100-- estimate;
(d) -100-- estimate; (e) first 250 observations of the squared series, dotted, and the
corresponding breakpoints of the -97- estimate, dashed; (f ) last 250 observations of the
squared series, dotted, and the corresponding breakpoints of the -97- estimate, dashed.

5. F    

In this section, we describe the outcome of an empirical study designed to assess the
forecasting ability of our model and compare it to that of the benchmark stationary
 (1, 1) process with Gaussian innovations, as well as a simple ‘moving window’
procedure. Suppose that we observe X2

1,N
, X2
2,N

, . . . , X2
t,N
from model (1) and want to

forecast the volatility at times t+1, . . . , t+h, where t+h∏N. The mean-square-optimal
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forecasts are given by

s2,HF
t|t+h,N

)E(X2
t+h,N

|X2
1,N

, . . . , X2
t,N

)=s2At+h

N B .
Obviously, the true value of s2{(t+h)/N} is unknown at time t and the best that we can
do is to extrapolate it as s2,HF

t|t+h,N
=s@2 (t/N),where s@2 (t/N) is any of our Haar–Fisz estimates

of s2 (t/N). Note that contrary to the  case (Bera & Higgins, 1993) our forecasts
do not depend on the forecasting horizon. In the examples below, we use the versions
-98- and -100- of our estimator to compute s@2 (t/N) for the above forecasts. Both
estimates are computed from X2

t−1023,N
, . . . , X2

t,N
. Then, for all h, the forecast s2,HF

t|t+h,N
is

the value of our estimate at the last time point t/N.
For -based forecasts, we forecast the volatility at time t+1, . . . , t+h from

X2
1
, . . . , X2

t
using the following methods.

Method -: We fit the stationary  (1, 1) model with standard Gaussian
innovations to X

t−1023
, . . . , X

t
using the S-Plus routine garch, and then forecast the

volatility using the S-Plus routine predict.

Method -: This is similar to -, but the model is fitted to X1 , . . . , Xt .

For the simple moving window procedure, labelled , the predicted volatility at times
t+1, . . . , t+h is the empirical mean of the values (X2

t−h+1
, . . . , X2

t
). Here, we use the

rule of thumb advocated by Hull (1997, p. 233) whereby the time period over which
volatility is estimated should be set equal to the time period h over which it is to be
applied.
Let s2

t|t+h
denote a generic volatility forecast, computed using any of the above

procedures. For each of the currency-exchange datasets tested, for which details are given
below, we compute the following error measure: for each t=1024, . . . , N−250, where N,
the length of each dataset, oscillates around 2500 but varies from one dataset to another,
we compute the quantity s:2t|t+250=W

250
h=1
s2
t|t+h

, and compare it to the ‘realised’ volatility
X9 2t|t+250=W

250
h=1

X2
t+h

, using the average squared error


250,1024,N

=
1

N−1273
∑
N−250

t=1024
(s:2t|t+250−X9 2t|t+250 )2.

In other words, we forecast the volatility one business year of 250 days ahead; this is done
to compare the long-term forecasting abilities of the competitors.
Our datasets are logged and differenced currency exchange rates between the U.S.
dollar and a variety of other currencies, available from the web address given in § 4.
The other currencies in Table 1 are Australia dollar, Canada dollar, Switzerland franc,
Denmark kroner, United Kingdom pound, Hong Kong dollar, Japan yen, South Korea
Won, Norway kroner, New Zealand dollar, Sweden kronor, Singapore dollar, Thailand
baht, Taiwan new dollar and South Africa rand. Table 1 lists the values, scaled by the
number in the right-most column and rounded, of  attained by the competing methods
for each currency.
The gaps in Table 1 indicate cases in which the stationary  (1, 1) model failed to
fit at several points of the corresponding exchange-rate series, producing forecasts which
were extremely inaccurate. This was because the numerical maximiser of the likelihood
in the S-Plus routine garch failed to converge. Our -100- method and the simple 
technique performed the best, or nearly the best, for 7 out of the 15 datasets, and are
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Table 1: Currency exchange rate example. Values of  for long-
term forecasts using the methods described in § 5. T he best results,

and those within 10% of the best ones, are in italics

Currency - -  -98- -100- Scaling

 3122 3673 2944 2776 3095 108
 1610 2280 2047 1955 1770 109
 2844 2819 5168 4574 3541 108
 2183 1658 2530 1697 1746 108
 23139 15192 7796 6957 8645 109
 — — 3038 4740 3841 1013
 1060 1006 1213 1130 1056 108
 2826 — 1333 1938 1657 105

 3634 2812 2173 2885 1846 108
 14502 10414 9293 8847 10849 108
 4451 3812 741 1309 1706 108
 4709 142174 6414 5686 5122 108
 — — 3806 4127 3580 106
 — — 4419 4773 3953 108
 — — 2017 3321 2600 107

, Australian dollar; , Canada dollar; , Switzerland franc; ,
Denmark kroner; , United Kingdom pound; , Hong Kong dollar;
, Japan yen; , South Korea won; , Norway kroner; , New
Zealand dollar; , Sweden kronor; , Singapore dollar; , Thailand baht;
, Taiwan new dollar; , South Africa rand.

clearly the two preferred options here. Either of our two methods performed the best, or
nearly the best, for 10 out of the 15 datasets.
In practice, our recommendation is to use our forecasting technique based on our

Haar–Fisz estimation method with soft thresholding and noise-free reconstruction
thresholds, where a

J−1
=a* and a0 is chosen from a pre-set grid {a

0,l
}L
l=1
by comparing

the performance of the method on the observed part of the series and choosing the value
of a
0,l
which performs the best. We have found that

{a
0,l

}5
l=1
=q95+ l

100
a
J−1r5

l=1
is a good practical choice for the grid.
In our empirical study, we have also found that forecasts based on our Haar–Fisz

estimation technique with hard thresholding tend to be less accurate and therefore their
use is not recommended.
Finally we consider short-term volatility forecasting. It is well known that, even in

the simplest case of the stationary Gaussian  (1, 1) model, the  framework
provides excellent short-term volatility forecasts. In a brief simulation study, we have
compared the performance of our -98- and -100- algorithms to that of the
- technique in forecasting one-day-ahead volatility of the above datasets, except
for the five series for which  (1, 1) does not give a good fit, as explained above. We
have found that the ratio of  for the worst of our two algorithms to  for -
ranged between 0·99 and 1·09 for all of the datasets, which demonstrates good performance
of our technique also in the case of short-term forecasts.
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A

Properties of the Haar–Fisz estimator

Proof of T heorem 1. First we consider the case of (e)= (h). The first of the two equalities

in (15) arises from the orthonormality of the discrete Haar transform. Note that the term

vN−2WN
t=1
s4 (t/N) arises because of the inclusion of the term X9 2N in the estimator (11). We now

show the second equality. For notational clarity, let d
1,j,k
=s
j+1,2k−1

/√2 and d
2,j,k
=s
j+1,2k

/√2,
so that d

j,k
=d
1,j,k
−d
2,j,k
and s

j,k
=d
1,j,k
+d
2,j,k
. Also let m

i,j,k
=E(d

i,j,k
) and w2

i,j,k
=var (d

i,j,k
) for

i=1, 2. Finally, let w2
j,k
=var (d

j,k
).

For the reader’s convenience, we now give explicit formulae for d
1,j,k
and d

2,j,k
:

d
1,j,k
=2(j−J)/2 ∑

2J−j(k−1/2)

i=2J−j(k−1)+1
X2
i
, d
2,j,k
=2(j−J)/2 ∑

2J−jk

i=2J−j(k−1/2)+1
X2
i
.

We now compute the risk of m@ (h)
j,k
for ( j, k)µJ

N
.

Case 1. Here s2 (i/N))const)s2, for i=2J−j (k−1)+1, . . . , 2J−jk, so that m
1,j,k
=m
2,j,k
.

Without loss of generality, consider k=1 to shorten the notation.

Eq(d1,j,1−d
2,j,1

)IA |d1,j,1−d
2,j,1
|

d
1,j,1
+d
2,j,1
>t
jB− (m

1,j,1
−m
2,j,1

)r2
=2j−Js4ECq ∑2J−j−1

i=1
(Z2
i
−Z2
i+2J−j−1

)2+ ∑
2J−j−1

i,l=1
iNl

(Z2
i
−Z2
i+2J−j−1

)(Z2
l
−Z2
l+2J−j−1

)r
×IA |d1,j,1−d

2,j,1
|

d
1,j,1
+d
2,j,1
>t
jBD . (A1)

Note that, by symmetry arguments, for any iN l, we have

Eq(Z2i−Z2
i+2J−j−1

)(Z2
l
−Z2
l+2J−j−1

)IA |d1,j,1−d
2,j,1
|

d
1,j,1
+d
2,j,1
>t
jBr=0,

which simplifies (A1) to

s4

2
Eq(Z21−Z2

1+2J−j−1
)2IA |d1,j,1−d

2,j,1
|

d
1,j,1
+d
2,j,1
>t
jBr

∏
s4

2
[E{(Z2

1
−Z2
1+2J−j−1

)2r}]1/r prA |d1,j,1−d
2,j,1
|

d
1,j,1
+d
2,j,1
>t
jB1−1/r, (A2)
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where the above step uses Hölder’s inequality with r>1 but otherwise arbitrary. Simple algebra
gives

prA |d1,j,1−d
2,j,1
|

d
1,j,1
+d
2,j,1
>t
jB=2 prAd1,j,1−d

2,j,1
d
1,j,1
+d
2,j,1
>t
jB

=2 prC 2(j−J)/2√{v(1+t2
j
)}q ∑2J−j−1

i=1
(Z2
i
−1)(1−t

j
)− ∑

2J−j

i=2J−j−1+1
(Z2
i
−1)(1+t

j
)r

>
t
j
2(j−J)/2

√{v(1+t2
j
)}D . (A3)

Since the condition of Theorem 1 from Rudzkis et al. (1978) holds, because of our Assumption 2,
we are able to apply the Corollary to Theorem 1 from Rudzkis et al. (1978). If we recall that
t
j
=2(−J+j+1)/2√(2 log N), that t

j
� 0 on J

N
, and that 2j<2J*=O(N1−d ), it is easy to see that

t
j
2(J−j)/2

√{v(1+t2
j
)}
=oqA2(J−j)/2[√{v(1+t2

j
)}]/(1+t

j
)

2 max {c, √v} Bnr ,
as N�2, for any positive n. Therefore, by the Corollary to Theorem 1 from Rudzkis et al. (1978),
we bound (A3) from above by

2(−J+j+1)/22C prCN(0, 1)>
t
j
2(J−j)/2

√{v(1+t2
j
)}D . (A4)

Recalling again that t
j
=2(−J+j+1)/2√(2 log N) and denoting by W( . ) the cumulative distribution

function of a N(0, 1) random variable, we now bound (A4) from above using the Mill’s ratio
inequality (Shorack & Wellner, 1986, p. 850):

2CA1−WC 2√( log N)

√{v(1+t2
j
)}DB∏C expq− 4 log N

2v(1+t2
j
)r=CN−2/{v(1+t2

j
)}. (A5)

Letting C
r
=[E{(Z2

1
−Z2
1+2J−j−1

)2r}]1/r and inserting (A5) in (A2), we obtain

s4

2
C
r
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|

d
1,j,1
+d
2,j,1
>t
jB1−1/r∏s4CB rN−{2(1−1/r)}/{v(1+t2j)}, (A6)

for some appropriate positive CB
r
. Noting that t

j
∏t
J*
=O{N−d/2√( log N)} uniformly on J

N
, we

may easily show by direct comparison that N−2(1−1/r)/(v+vt2
j
)=O(N−2(1−1/r)/v ) as N�2. Upon

choosing r=2(vd)−1, we obtain the final bound for (A6) as CB
d
sup
z
s4 (z)N−2/v+d.

Case 2. Here s2 (i/N)Nconst, for i=2J−j (k−1)+1, . . . , 2J−jk, so that possibly m
1,j,k
Nm
2,j,k
.
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If m
1,j,k
=m
2,j,k
then the second summand disappears. Assume, without loss of generality, that

m
1,j,k
>m
2,j,k
. Noting that w2

i,j,k
∏v sup

z
s4 (z)/2, we bound (A7) from above by

2v sup
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s4 (z)(v+2 log N);

the first inequality is a consequence of Markov’s inequality. We now move on to the last step of
the proof, the evaluation of the full L 2 risk. Define the set

N
N
={( j, k) :s2 (i/N))const, i=2J−j (k−1)+1, . . . , 2J−jk};

see Case 1 above. Denote by M the number of jumps in s2 (z). At each scale j, at most M indices
( j, k) are inNc

N
. We have

1

N
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N

=O(N−2/v )+O(N−1 log2 N)+O(N−(1−d) )=O(N−min(1−d,2/v) ),

as N�2. This completes the proof of Theorem 1 for the case (e)= (h). The proof for the case
(e)= (s) proceeds by showing that m@ (s)

j,k
and m@ (h)

j,k
are close in the mean-square sense, and then using

the bounds for m@ (h)
j,k
obtained above. Full details are included in the technical report by the authors,

available from the web address given in § 2·2. %
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