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We propose a wavelet shrinkage methodology for univariate natural exponential families
with quadratic variance functions, covering the Gaussian, Poisson, gamma, binomial,
negative binomial and generalised hyperbolic secant distributions. Simulation studies for
Poisson and binomial data are used to illustrate the usefulness of the proposed method-
ology, and comparisons are made with other methods available in the literature. We also
present applications to datasets arising from high-energy astrophysics and from
epidemiology.
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1. I

Wavelet shrinkage estimation has been found to be a powerful tool for the nonpara-
metric estimation of spatially variable phenomena. Most work in this area to date has
concentrated primarily on the use of wavelet shrinkage techniques in the nonparametric
regression context where the data are modelled as observations of a signal corrupted with
additive Gaussian noise. The usual approach is to expand the noisy data in wavelet series,
to extract the significant wavelet coefficients by thresholding, and then to invert the wavelet
transform of the denoised coefficients. Donoho & Johnstone (1994, 1995, 1998) and
Donoho et al. (1995) showed that wavelet shrinkage estimation, with a properly chosen
threshold, has various important optimality properties. For recent surveys of relevant
research we refer to Antoniadis (1997), Vidakovic (1999) and Abramovich et al. (2000).

If the data are counts, the standard approach is first to pre-process the data using a
normalising and variance-stabilising transformation, such as that proposed by Anscombe
(1948), and then to apply usual wavelet shrinkage techniques; see Donoho (1993) for an
application involving Poisson data. However, this approach has been criticised for frequent
oversmoothing or attenuation of fine detail structure in the underlying signal or image,
especially in situations involving very low levels of counts.
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It is therefore important to develop wavelet shrinkage estimation techniques by directly
considering the original, untransformed count data. In the context of data of a Poisson
nature, Kolaczyk (1997, 1999a) concentrated on direct applications of the wavelet shrink-
age methodology, through appropriate modifications, whilst Kolaczyk (1999b) and
Timmermann & Nowak (1999) developed multiscale models using recursive dyadic par-
titions within a Bayesian framework. For Bernoulli data, Antoniadis & Leblanc (2000)
proposed a wavelet shrinkage methodology based on diagonal linear shrinkers.

It is evident that a wavelet shrinkage methodology that could be successfully applied
to various types of data would be very useful. Towards this end, we propose a wavelet
shrinkage methodology for univariate natural exponential families with quadratic variance
functions. The Gaussian, Poisson, gamma, binomial, negative binomial and generalised
hyperbolic secant distributions are the only natural exponential families with quadratic
variance functions, that is with variance that is a constant or linear or quadratic function
of the mean (Morris, 1982, 1983).

In § 2, we briefly review the relevant material on wavelets and the exponential family
models. In § 3, we propose a wavelet shrinkage methodology for these models borrowing
ideas from modulation estimators that were originally developed for Gaussian data by
Beran & Dümbgen (1998). In § 4, simulation studies for Poisson and binomial data are
used to illustrate the usefulness of the proposed methodology, and comparisons are made
with other methods available in the literature. We also present applications to datasets
arising from high-energy astrophysics and epidemiology. The computational algorithms
related to wavelet analysis were performed using the Matlab toolbox WaveLab that is
freely available from http://www-stat.stanford.edu/software/software.html. The entire
study was carried out using the Matlab programming environment.

2. B 

2·1. T he wavelet series expansion

We assume that we are working within an orthonormal basis generated by dilation and
translation of a compactly supported scaling function w and a mother wavelet y associated
with an r-regular multiresolution analysis of L 2 ([0, 1]). For simplicity in exposition, we
work with periodised wavelet bases on [0, 1] (Mallat, 1999, § 7.5.1), letting

wper
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w
jk

(t− l), yper
jk

(t)= ∑
lµZ

y
jk

( t− l) (tµ[0, 1]),
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(t)=2j/2w(2jt−k), y
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(t)=2j/2y(2jt−k).

For any j0�0, the collection

{wper
j
0
k
, k=0, 1, . . . , 2j

0
−1; yper

j
0
k
, j� j0�0, k=0, 1, . . . , 2j−1}

is then an orthonormal basis of L 2 ([0, 1]). Despite the poor behaviour of periodic wavelets
near the boundaries, where they create high-amplitude wavelet coefficients, they are com-
monly used because the numerical implementation is particularly simple. Also, as
Johnstone (1994) has pointed out, this computational simplification affects only a fixed
number of wavelet coefficients at each resolution level and does not affect the qualitative
phenomena that we wish to present.

The idea underlying such an approach is to express any function fµL 2([0, 1]) in the
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form
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�0, k=0, 1, . . . , 2j−1).

In statistical settings we are more usually concerned with discretely sampled, rather
than continuous, functions, and therefore with the discrete wavelet transform. Given a
vector of function values f=( f (t1 ), . . . , f (t

n
))∞ at equally spaced points t

i
, the discrete

wavelet transform of f is given by d=W f, where d is an n×1 vector comprising both
discrete scaling coefficients, c

j
0
k
, and discrete wavelet coefficients, d

jk
, and W is an ortho-

gonal n×n matrix associated with the chosen orthonormal wavelet basis. The c
j
0
k
and d

jk
are related to their continuous counterparts a

j
0
k

and b
jk

, with an approximation error
of order n−1, via the relationship a

j
0
k
j n−Dc

j
0
k

and b
jk
j n−Dd

jk
. The factor n−D arises

because of the difference between the continuous and discrete orthonormality conditions.
This n−D factor is unfortunate but both the definition of the discrete wavelet transform
and the wavelet coefficients are now fixed by convention, from which originates the differ-
ent notation used to distinguish between the discrete wavelet coefficients and their continu-
ous counterparts. Note that, because of orthogonality of W, the inverse discrete wavelet
transform is simply given by f=W Td, where W T denotes the transpose of W.

If n=2J for some positive integer J, the discrete wavelet transform and the inverse
discrete wavelet transform may be performed through a computationally fast algorithm
developed by Mallat (1989) that requires only O(n) operations. In this case, for a given
j0�0 and under periodic boundary conditions, the discrete wavelet transform of f results
in an n-dimensional vector d comprising both discrete scaling coefficients c

j
0
k
, for

k=0, . . . , 2j
0
−1, and discrete wavelet coefficients d

jk
, for j= j0 , . . . , J−1 and k=

0, . . . , 2j−1.
For detailed expositions of the mathematical aspects of wavelets we refer to Meyer

(1992), Daubechies (1992) and Mallat (1999).

2·2. Natural exponential families with quadratic variance functions

This section briefly overviews some material that we shall use in subsequent sections.
For a more detailed account we refer to Morris (1982, 1983).

A parametric family of distributions with natural parameter space H5R=(−2, 2 )
is a univariate natural exponential family if random variables X governed by these
distributions satisfy

P
h
(XµA)= P

A
exp{xh−y(h)} dF(x),

where A5R, F is a Stieltjes measure onR not depending on hµH, the natural parameters,
and y(h ) is the cumulant generating function. The random variable X is the natural
observation. Exponential families that are not natural exponential families are nonlinear
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transformations of natural exponential families. The natural observation X has mean and
variance

m=y∞(h)=E
h
(X)= P x dF

h
(x), V (m)=y◊(h )=var

h
(X)= P (x−m)2 dF

h
(x)

and cumulants C
r
(m)=y(r)(h) (r=1, 2, . . . ). The function V (m) on its domain V¬y∞(H) is

called the variance function of the natural exponential family and characterises the family,
but no particular member of the family. Consider now natural exponential families for
which

V (m)=v
0
+v

1
m+v

2
m2, (1)

where v0 , v1 and v2 are real-valued constants. We shall write

X~{m, V (m)}

to denote a random variable which follows a natural exponential family with mean m and
quadratic variance function V (m) given by (1). It can be shown that exactly six basic types
of such distributions exist:

(i) the Gaussian distribution, N(m, s2) with V (m)=s2, for −2<m<2 and s2>0;
(ii ) the Poisson distribution, Po (l) with m=l and V (m)=m, for l>0;

(iii ) the gamma distribution, Ga(r, l) with m=rl and V (m)=rl2=m2/r, for r>0 and
l>0;

(iv) the binomial distribution, Bi (r, p) with m=rp and V (m)=rpq=−m2/r+m, for
r=1, 2, . . . , 0<p<1 and q=1−p;

(v) the negative binomial distribution, NeBi (r, p) with m=rp/q and V (m)=rp/q2=
m2/r+m, for r>0, 0<p<1 and q=1−p;

(vi) the generalised hyperbolic secant distribution, which is a continuous distribution
with support on (−2, 2 ) and y(h )=−log cos h (Morris, 1982, §§ 4, 5), with
V (m)=m2/r+r, for r>0.

Remark 1. The six basic types of distribution mentioned above can be extended by
convolutions, and location and scale changes, all of which preserve both the natural
exponential family and the quadratic variance function properties (Morris, 1982, § 3). In
other words, let X1 , . . . , Xn

be independent {m, V (m)} random variables and define

Y=
1

c
∑
n

i=1
(X

i
−b) (−2<b<2, c>0).

Then Y~{m*, V *(m*)}, where

m*=E(Y )=
n

c
(m−b), V *(m*)=var (Y )=v*

0
+v*

1
m*+v*

2
(m*)2,

with

v*
0
=

n

c2
V (b), v*

1
=

1

c
V ∞(b), v*

2
=

v
2
n

.

These are the key properties for developing our wavelet shrinkage methodology in § 3.
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3. W      
  

3·1. Introduction

Let Y=Y
n
={Y (t)}

tµT
be a random function observed on the set T=T

n
={1, . . . , n}.

The components Y (t) of Y are assumed to be independent random variables such that

Y (t)~[m(t), V {m(t)}] (tµT ), (2)

where

V {m( t)}=v
0
+v

1
m(t)+v

2
m2(t) (tµT )

for real-valued constants v0 , v1 and v2 . Working with functions on T rather than vectors
in Rn is convenient for our purposes. We assume hereafter that the mean vector m=
{m(t)}

tµT
consists of sampled observations at equally spaced points on [0, 1] of

an unknown but otherwise smooth function m that we wish to recover from the data
Y={Y (t)}

tµT
without assuming any particular parametric form.

Define h=Wm to be the vector of wavelet coefficients corresponding to m, where W is
the n×n orthogonal matrix associated with the discrete wavelet transform discussed in
§ 2·1. One reason for using such a transform is that only a few wavelet coefficients are
needed to obtain a good approximation of m, since m is supposed to be smooth. Squared-
error loss is widely used for studying the quality of nonparametric function estimators. In
the above context, squared-error loss can be formulated either in the wavelet domain or
in the observation domain. By the orthogonality of the wavelet transform, these two
quadratic losses are equivalent up to a factor of nD. In the wavelet domain the loss of any
estimator h̆, linear or nonlinear, which depends on h@=WY, is defined to be

L (h̆, h)=ave{(h̆−h)2},

while the loss in the observation domain is defined to be

L (Y̆, m)=ave{(Y̆−m)2}=ave{(W Th̆−W Th)2}=L (W Th̆, W Th ),

where

Y̆=W Th̆, ave(g)=
1

n
∑
tµT

g(t),

for any gµRT, the space of real-valued functions defined on T . The corresponding risk
of h̆ is

r(h̆, h)=E{L (h̆, h)} (3)

with an associated risk for Y̆=W Th̆ given by

r(Y̆, m)=E{L (Y̆, m)}=E{L (W Th̆, m)}=r(W Th̆, m). (4)

When the observed function Y is Gaussian with var(Y )=var{Y (t)}=s2 for all tµT ,
Donoho & Johnstone (1994) have developed ideal spatial adaptation in the wavelet
domain by considering diagonal linear shrinkers h@

h
=HWY, where H=diag(h) is the

diagonal matrix of order n and h : T�[0, 1]. The ideal coefficients, that yield an ideal
risk, are then provided by the oracle estimator of h given by hA=h2/(h2+s2), the division
being componentwise. The oracle estimator cannot be attained in practice since it requires
knowledge of the unknown h. The nonlinear wavelet shrinkage estimators developed by
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Donoho & Johnstone (1994, 1995, 1998), however, are surprisingly close to the oracle
estimator in case of sparse signals. A simple procedure for estimating the oracle would be
to compute unbiased estimators of s2 and h from the data, and then use these estimators
to obtain an estimator of hA . However, such an estimator involves an estimator of the
unknown h and, in general, is less efficient than the one which minimises the estimated risk.

Indeed, Beran & Dümbgen (1998) have shown that one can construct estimators of h
that are asymptotically minimax optimal over a variety of ellipsoids in the parameter
space and which take the form h@

h@
=HCW Y, where HC =diag(h@ ). The function h@ : T�[0, 1]

depends on h@=WY and is chosen to minimise the estimated risk of the linear estimator
h̆=h@

h
=HW Y over all functions h in a class H5[0, 1]T, the set of functions defined on

T and taking values in [0, 1]. Such estimators are, by construction, nonlinear and shrink
each coordinate towards zero, different coordinates being possibly treated differently.
Hereafter, we adopt the terminology of Beran & Dümbgen (1998), so that each function
h in a class H5[0, 1]T will be called a modulator and the estimators h@

h@
=HCWY will be

referred to as the modulation estimators.

3·2. Estimating the best modulator using the crossvalidation mean squared error

Since the Gaussian distribution is a particular member of our general family, our esti-
mation procedure for estimating h for the general model will be based on ideas similar to
those in § 3·1. Using the division property of natural exponential families with quadratic
variance functions, see Remark 1, and a crossvalidation approach similar to that developed
by Nowak (1997) in the case where one has more than one independent observations of
an unknown signal, we first construct a suitably consistent estimator r@ of the risk r(h@

h
, h),

with h@
h
=HWY, and we estimate h by the modulation estimator h@

h@
=HCW Y, where h@ is

any function in H that minimises r@ . By construction, h@
h@

is nonlinear.
Let Z1 , . . . , Zp be independent random variables with Z

k
={Z

k
(t)}

tµT
such that

Z
k
(t)~[n( t), R{n( t)}] (k=1, . . . , p, tµT ),

where

n(t)=
1

p
m(t), R{n(t)}=

1

p
v0+v1n(t)+pv

2
n2(t)

for real-valued constants v0 , v1 and v2 . Then, using the results in § 2·2, we have

Y= ∑
p

k=1
Z
k
, Z9=

1

p
∑
p

k=1
Z
k
=

1

p
Y.

Suppose that instead of observing data Y we observe the pseudo-sample Z1 , . . . , Zp .
Consider now an estimation procedure based on the pseudo-sample producing modulation
estimators of the form h@

h
depending on a modulator h={h(t)}

tµT
. Applying this procedure

to the pseudo-sample Z1 , . . . , Zp , without using the jth element, and defining H=diag(h),
leads to a modulation estimator

h@ (j)
h
=HWZ(j),

where

Z(j)=
1

p−1
∑
p

k=1
kNj

Z
k
,
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with corresponding signal estimator

ZC (j)=W Th@ (j)
h
=W THW Z(j).

To estimate the best modulator, we first construct a suitable consistent estimator of the
risk r(h@

h
, h) based on the crossvalidation mean squared error (Eubank, 1999, p. 43) or its

equivalent form, the prediction sum of squares. Let

P(h)= ∑
p

k=1
r(k)(h), (5)

where r(k)(h)=dHW Z(k)−WZ
k
d2. For simplicity, we will use hereafter the notation

h@=W Y=pW Z9 , h@
k
=WZ

k
and s2=var (h@ ). For tµT , let

s2(t)=
p

p−1
∑
p

k=1
qh@k( t)− 1

p
h@ (t)r2= p

p−1
∑
p

k=1
{W (Z

k
−Z9 )(t)}2.

Some algebra shows that expression (5) may be written as

P(h)=
p

p−1
∑
tµT
Cs@2( t)− 2

p
{1−h(t)}s@2(t)+

1

p2
{1−h(t)}2{s@2(t)+ ( p−1)h@ 2(t)}D . (6)

As a risk estimator for the risk r(h@
h
, h), the prediction sum of squares criterion leads to

an estimator that is biased upwards. Indeed, since the components Y (t) (tµT ) of Y are
independent [m(t), V {m(t)}] and W is orthonormal, it is not difficult to see that, for all
tµT , we have

E{h@ (t)}=h(t), E{s@2(t)}= ∑
n

l=1
w2
t,l

V {m(l)}=s2(t). (7)

Moreover, using (6) and (7) we have

E{P(h)}= ∑
tµT
C1p {1−h(t)}2h2(t)+

1

p−1
h2(t)s2(t)+s2(t)D

=
n

p
ave{(1−h)2h2+h2s2}+

n

p( p−1)
ave(h2s2 )+n ave (s2 ),

which implies that

E qpn P(h)r=r(h@
h
, h)+

1

p−1
ave(h2s2)+p ave(s2 )

and, therefore pn−1P(h) is an upwardly biased estimator of the risk r(h@
h
, h). A possible

correction to this estimator is

r@ (h)=
p

n
P(h)−

1

p−1
ave (h2s@ 2)−p ave (s@2 )

=ave{(1−h)2h@ 2}+ave{(2h−1)s@2}. (8)

We now follow the approach in Beran & Dümbgen (1998) for studying modulation
estimators in an additive Gaussian noise model, but adapting it for our general model.
Throughout, C denotes a generic universal real-valued constant which does not depend
on n, h, s2 or H, but whose value may be different at different points. Also, let J(H )
denote a functional of the uniform covering number of H (Dudley, 1987).
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P 1. L et H be any closed subset of [0, 1]T containing 0, let hA be a minimiser
of r(h@

h
, h) over hµH and let h@ minimise r@ (h) over hµH. T hen

E{ |r@ (h@ )−r(h@
hA
, h) |}∏C CJ(H)

√E{ave(h@−h)4}+√ave (s2h2)

√n
+E{ |ave(s@ 2−s2 ) |}D .

Proof. Let e=h@−h be the vector of residuals and define random functions S1=e2−s2
and S2=hΩh@ , on T . It is easy to see that

r@ (h)−r(h@
h
, h)=ave{(h2−2h+1)(S

1
+2S

2
)+ (2h−1)S},

where S=s@2−s2. Hence

sup
hµH
|r@ (h)−r(h@

h
, h) |∏4 sup

gµG
|ave(gS

1
) |+8 sup

gµG
|ave (gS

2
) |+|ave(S) |,

where G={ fg : f, gµH}. The proposition now follows from Lemmas 6.3 and 6.4 of Beran
& Dümbgen (1998), by checking that their Theorem 6.1 still holds for nonindependent
random vectors. %

Proposition 1 is about convergence of the risk r@ (h@ ). Proposition 2 establishes that h@
and hA , as well as h@

h@
and h@

hA
, converge to one another. With the same notation as for the

proof of Proposition 1, the proof of Proposition 2 mimics, with the appropriate but
obvious modifications, the proof of Theorem 2.2 of Beran & Dümbgen (1998) and it is
therefore omitted.

P 2. L et hA and h@ be as defined in Proposition 1. T hen

E[ave{(s2+h2 )(h@−hA )2}]∏CJ(H)
√E{ave(h@−h)4}+√ave (s2h2 )

√n
+E{ |ave(s@2−s2 ) |},

E[ave{(h@
hA
−h@

h@
)2}]∏CJ(H)

√E{ave(h@−h )4}

√n
+E{ |ave(s@ 2−s2 ) |}.

Remark 2. It follows from (7) and the strong law of large numbers that ave (s@2 ) is a
consistent estimator of ave (s2). Hence, in view of Propositions 1 and 2, a class H such
that J(H )=o(nD) together with the boundedness of E{ave(h@−h)4} and ave (s2h2 ) ensure
the success of the estimator h@

h@
. For instance Example 2 of Beran & Dümbgen (1998)

shows that, when H consists of piecewise constant functions on intervals of length
[log( log n)], where [x] denotes the integer part of x, we indeed get J(H )=o(nD).
Furthermore, since the components of Y are natural exponential families with quadratic
variance functions, boundedness of E{ave(h@−h)4} and ave(s2h2) follows if ave (h4 )<c,
for c>0, which can be interpreted as a smoothness assumption on m.

Remark 3. A particular consequence of Propositions 1 and 2 is that the estimator of m
derived from our modulation estimator h@

h@
attains the optimal mean integrated squared

error asymptotic rates O(n−2s/(2s+1) ) for a class of submodels for m, namely the class of
functions belonging to an ellipsoid of the Sobolev class W s

2
of smoothness index s>1

2
.

Indeed, in such a case we have ave (h4)∏O(n−4s/(2s+1) ) and, because of the smoothness of
m, it is easy to show that E{ |ave(s@2−s2 ) |}�0 at a rate n−2s/(2s+1) as n�2. The asymp-
totic rate of h@

h@
is then a direct application of Corollary 2.3 of Beran & Dümbgen (1998).

Our objective now is to choose h to minimise r@ (h) defined in (8). The optimum modu-
lation estimator is a multiple Stein estimator similar to that used in Example 2 of Beran
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& Dümbgen (1998), see Remark 2, but for practical purposes it is usually adequate to
use the simple modulator

h@=
(h@ 2−s@2 )

+
h@ 2

, (9)

where (u)
+
=max(u, 0) and the division is componentwise. Inspection of (9) shows that,

componentwise for each tµT , h@ (t)=0 when h@ 2( t)∏s@ 2(t). Hence, the modulator is set to 0
when the signal-to-noise ratio is less than 1. Moreover, componentwise for each tµT , the
modulator tends to 1 as the signal-to-noise ratio tends to 1.

The derivation of the modulator in expression (9) relies upon a realisation of a pseudo-
sample Z1 , . . . , Zp which is not observable. Moreover, one would expect better results
when the size p of this pseudo-sample is large. Our purpose now is to show that the
limiting, as p�2, form of the modulator can be approximated by an expression computed
directly from the original data. For each tµT , only s@2 (t) in (9) depends on the pseudo-
sample Z1 , . . . , Zp . Recall from (7) and the strong law of large numbers that, for each
tµT , s@2( t) is a consistent estimator of s2( t) and that E{s@ 2(t)}=Wn

l=1
w2
t,l

V {m(l)}. By
Theorem 3.2 of Morris (1983), which deals with estimation of the variance function in
natural exponential families with quadratic variance functions, the uniform minimum
variance unbiased estimator of V {m(l)} is given by VC {m(l)}=V {Y (l)}/(1+v2). If we com-
bine these facts, an intuitively appealing approximation of our modulator, overcoming
the fact that the pseudo-sample is never observed, takes the form

h@=
(h@ 2−sA2 )

+
h@ 2

, (10)

where

sA2(t)=
1

1+v
2
∑
n

l=1
w2
t,l

V {Y (l)} (tµT ), (11)

and therefore our nonlinear modulation estimator is given by

h@
h@
=

(h@ 2−sA 2)
+

h@ 2
h@ . (12)

Remark 4. In the Gaussian case, with v0=s2 and v1=v2=0, the uniform minimum
variance unbiased estimator of V {m(l)} suggested in Theorem 3.2 of Morris (1983) is not
defined. For this case we therefore suggest two alternatives. On the one hand, by consider-
ing a consistent estimator of s, such as those given in Beran & Dümbgen (1998, p. 1834),
we can obtain a modulation estimator, which is a modified James–Stein estimator, similar
to that given in Example 1 of Beran & Dümbgen (1998) based on their bootstrap estimator.
Alternatively, by considering a robust estimator of s, such as the mean absolute deviation
of the wavelet coefficients at the finest level, divided by 0·6745, we can use the wavelet
shrinkage estimator of Donoho & Johnstone (1994). In the Poisson case, with v

0
=0,

v
1
=1 and v

2
=0, our modulator in expression (10) is similar in form to that defined

heuristically in Theorem 4.1 of Nowak & Baraniuk (1999).

3·3. Computation of the modulation estimator

Expression (12) involves the projection of the variance function estimator V (Y )/(1+v2)
on to the pointwise square of the wavelet basis functions; see (11). An efficient filter-bank
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algorithm for computing such projections for one-dimensional signals can be derived from
the diagonal elements of the covariance structure of wavelet coefficients described in the
papers of Vannucci & Corradi (1999) or Kovac & Silverman (2000).

Here we use the same notation as in Vannucci & Corradi (1999). Let {X(t), tµR} be
a square-integrable stochastic process and let c

jk
and d

jk
respectively be the discrete scaling

and discrete wavelet coefficients of X(t) with respect to a wavelet basis. Assume that the
variance-covariance matrix of the discrete scaling coefficients c{j+1} at level j+1 is known
and is denoted by C{j+1}. If we use filter notation and Proposition 1 of Vannucci &
Corradi (1999) the following identities hold:

D{j}=G
j+1

C{j+1}GT
j+1

, C{j}=H
j+1

C{j+1}HT
j+1

,

where D{j} indicates the variance-covariance matrix of the wavelet coefficients d{j} at level j.
The vectors G

j+1
and H

j+1
contain elements corresponding to the quadrature mirror

filters associated with the wavelet and scaling coefficients respectively. The two covariance
matrices defined above are simply the diagonal blocks of the two-dimensional discrete
wavelet transform applied to the matrix C{j+1}.

In order to derive what we call the squared discrete wavelet transform of a positive
signal s={s(t1 ), . . . , s(tn )}, t

i
= i/n, n=2J for some positive J>0, it is therefore sufficient

to initialise the C{J} matrix at scale J by a diagonal matrix with the signal s on the
diagonal and to perform a two-dimensional wavelet transform. By construction the diag-
onal elements of the resulting matrix project the signal s on the element-wise square of
each wavelet basis element. Given the diagonal structure of C{J}, the complete squared
discrete wavelet transform of the signal s requires only O(n) operations and is therefore
computationally fast.

4. A  

4·1. Simulation study: T he Poisson case

Consider Poisson distributed time series data observed on 256 equispaced data points,
so that T={t

i
= i/n, i=1, . . . , n=256}. Three factors of interest were included in the

study, namely the morphology of the mean function, the intensity level, i.e. the Poisson
rate, and the method of estimation. With practical relevance in mind, we chose two shapes
for the underlying mean function, namely that of a burst (Kolaczyk, 1997) given by

m(t)=A+A1I1 (t)+A2I2( t)+A3I3(t),

with

I
i
( t)=qexp{−( |t−t

i,max |/sr)n}, if t∏t
i,max ,

exp{−( |t−t
i,max |/sd )n}, if t>t

i,max ,
(13)

and that of a very smooth function (Beran & Dümbgen, 1998) given by

m( t)=A+2{6·75t2(1−t)}3,

where A, A1 , A2 , A3 , t
i,max , n, s

r
and s

d
are given constants. The average intensity level

varied over 5, 50 and 200 counts per time point, so as to gain some insight into the
behaviour at low, medium and high signal-to-noise ratio of the three estimation procedures
considered. Figure 1 shows the two test functions with a medium signal-to-noise ratio.

We applied our wavelet shrinkage method proposed in § 3 and the P-splines nonpara-
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Fig. 1. Test functions for simulation study, dot-dashed, along with estimates from a single
trial, using the new method, solid, based on n=256 points per Poisson time series and a
medium signal-to-noise ratio intensity level: (a) smooth test function, (b) burst test function.

metric smoothing methodology for generalised linear models proposed by Eilers &
Marx (1996), with a smoothing parameter chosen by minimising an  criterion. We
also applied the wavelet shrinkage method proposed by Donoho (1993) which first
pre-processes the data using Anscombe’s (1948) square-root transformation, namely z=
2(y+3

8
)D, to normalise and variance-stabilise the data, after which the Gaussian thresholds

(2 log n)D are used with the usual wavelet shrinkage algorithm. At each of the 6=2×3
combinations of shape and intensity level, estimates were calculated using each of the
three methods, over 500 trials. The two wavelet methods were based on Daubechies’ nearly
symmetric wavelets of order 8. Estimates from a single trial, using our new procedure
with a medium signal-to-noise ratio, are shown in Fig. 1. The results of these simulations
are shown in Fig. 2.

As one can see from Figs 1 and 2 the new method produced estimates with the lowest
mean squared error uniformly across the various combinations of morphology and inten-
sity rate. However, the relative performance of the competing methodologies tended to
vary with these factors. For example, for bursts, the P-splines procedure fared noticeably
worse than both wavelet-based methods, even though we used a spline basis with 40 initial
nodes in order to catch the high curvature of the bursts. Finally, despite the polynomial
nature of the smooth test function, our new method performs better than the P-splines
method which is specifically designed to treat such cases. The performance of Donoho’s
wavelet smoothers in all situations confirms the method’s tendency to produce estimates
of signals with slightly reduced amplitudes.

4·2. Simulation study: T he binomial case

We performed another set of simulations with binomial distributed time series data,
which has a fully quadratic variance function, observed again on 256 equispaced data
points, so that T={t

i
= i/n, i=1, . . . , n=256}. Simulations were carried out for the burst

and smooth functions given in § 4·1, appropriately scaled to produce a positive function
bounded above by 1. Various fixed binomial weights were used for these simulations. In
order to compare the new procedure with a standard wavelet shrinkage procedure we
applied a normalising and variance-stabilising transformation to the data before applying
the classical wavelet shrinkage. The transformation consists of pre-processing the data
using Anscombe’s (1948) arcsine transformation, z=2nD arcsin{(y/n)D}, after which the
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Fig. 2. Boxplots of mean squared error for Poisson simulation results, for the three methods and for all six
combinations of signal morphology, smooth and burst test functions, and low, medium and high signal
intensity; , Donoho’s wavelet method; , the new wavelet method; , the P-splines method.
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Fig. 3. Test functions for simulation study, dot-dashed, along with estimates from a single
trial, using the new method, solid, based on n=256 points per binomial time series and a
medium signal-to-noise ratio intensity level: (a) smooth test function, (b) burst test function.

Gaussian thresholds (2 log n)D are used with the usual wavelet shrinkage algorithm. Both
wavelet methods were based on Daubechies’ nearly symmetric wavelets of order 8.
Estimates from a single trial, using our new procedure with a medium signal-to-noise
ratio, are shown in Fig. 3. The results of the simulations are shown in Fig. 4.
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Fig. 4. Boxplots of mean squared error for the binomial simulation results, for the two methods and
combinations of signal morphology, smooth and burst test functions, and low, medium and high signal

intensity; , standard wavelet method; , the new wavelet method.

The conclusions reached from the simulations are quite similar to those for the Poisson
case, although the new method was outperformed in the high-rate setting for the smooth
function. Note however that in this case the new method has much less variability.

4·3. Gamma-ray bursts

In this section we apply our method to gamma-ray data from instruments, on board
NASA’s Compton Gamma Ray Observatory (Kolaczyk, 1999b), that record the arrival
times of gamma-ray photons corresponding to detected gamma-ray bursts.

Tracking a variable object’s changes in brightness, based on photon counting data, is
a fundamental problem in astronomy. For example, the importance of activity of galactic
and extragalactic objects on time scales at and below the millisecond range led NASA to
design its X-ray and gamma-ray observatories to detect individual photons with micro-
second timing accuracy. Existing methods do not fully and correctly extract from photon
counts the scientifically useful information, which is buried in the fluctuations inherent in
the occurrence of discrete, independent events. The time series shown in Fig. 5(a) is con-
structed, as is typical in practice, by aggregating the photon arrival times into intervals
of equal length. It is usually assumed that observational errors for the binned counts are
additive and Gaussian. However, counting fluctuations are neither additive nor Gaussian.
Indeed, the photon detection phenomenon is close to a Poisson process, the major depar-
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ture from this being a lack of independence. In particular, detectors have a dead-time, in
that arrival of a photon temporarily inhibits detection of subsequent photons.

Gamma-ray bursts are non-periodic signals, localised in time, that are not part of the
global intensity. That is, the intensity of the observed signal is altered by the presence of
the bursts and is not of the simple form postulated for the global signal. Bursts can occur
randomly, periodically or in any other fashion. Figure 5(a) depicts the binned counts as
a function of time, in microseconds, for photon data from the burst called Trigger 0551.
The raw data comprise about 29 000 photons. The other curves show the intensity esti-
mates based on the two wavelet procedures used in § 4·1. These crude pulses are then used
as initial guesses for a numerical routine that deconvolves overlapping pulses by fitting a
parametric model. The initial intensity estimate is very important for encouraging conver-
gence of this fitting procedure to the global optimum.

Note that the two intensity estimates are quite similar. However, the estimate from the
new procedure shows distinct visual evidence of an additional pulse at the beginning of
the estimated intensity, which was also selected as a statistically significant local maximum
by the Bayesian blocks algorithm described in Scargle (1998).

(a) Gamma-ray bursts
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Fig. 5. Estimates of the underlying intensity function based on the new procedure, solid,
and Donoho’s wavelet method, dashed: (a) the photon detection data from the burst
called Trigger 0551, (b) monthly number of cases of poliomyelitis from March 1973 to

December 1982.

4·4. Disease incidence data

We have applied our estimation procedure to the disease incidence data described in
Zeger (1988), which lists the monthly numbers of incidences of poliomyelitis reported by
U.S. centres for disease control for the years 1970 to 1982. Of interest is whether or not
this record provides evidence of a long-term decrease in the rate of U.S. polio infection
during the period from March 1973 to December 1982. We applied both the wavelet
procedures used in § 4·1 to estimate the trend in U.S. polio incidence during this period;
see Fig. 5(b).

Both procedures produce estimated trends that are very similar and indicate a weak
decrease in the rate of polio cases per month, agreeing with the conclusion reached by
Zeger (1988) on the same dataset using a parameter-driven extension of log-linear models.
This example shows that our new method is quite robust to isolated extreme observations.
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