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6. Illustrative examples. Here, we briefly mention some illustrative

examples arising in various scientific fields that lead to the GSM (1.2) (or the

equivalent model (1.3)). The various models presented below are scattered

throughout the literature, see, e.g., [1], [2], [3], [5], [6] and [12].

• differentiation (f ∈ L2([0, 1]), periodic on [0, 1], {ϕk}k∈N being the

complex trigonometric system on [0, 1]). The goal is to detect or es-

timate the m-th derivative f(t) = g(m)(t) (for some m ∈ N), based

on the observation of a trajectory {Yε = Yε(t)}, t ∈ [0, 1], obeying

the Gaussian white noise model (1.1) with D = [0, 1], H = {f : f ∈
L2([0, 1]),

∫ 1
0 f(t)dt = 0}, H ⊂ L2([0, 1]) and Af(t) = Ag(m)(t) = g(t).

This problem corresponds to a mildly ill-posed inverse problem since

bk → 0 (or, equivalently, σk →∞) polynomially (with β = m) fast as

k →∞.

• the Dirichlet problem of the Laplacian on the unit circle (f ∈
L2([0, 2π]), periodic on [0, 2π], {ϕk}k∈N being the trigonometric system

on [0, 2π]). The goal is to detect or estimate the boundary condition

f based on the observation of a trajectory {Yε = Yε(ϕ)}, ϕ ∈ [0, 2π],

obeying the Gaussian white noise model (1.1) with ϕ in place of t,

D = [0, 2π], H = L2([0, 2π]) and Af(t) = u(r0, ϕ), where u(r, ϕ),

r ∈ [0, 1], ϕ ∈ [0, 2π], is the solution of the Dirichlet problem of the

Laplacian on the unit circle in polar coordinates with boundary condi-

tion u(1, ϕ) = f(ϕ). This problem corresponds to a severely ill-posed

inverse problem since bk → 0 (or, equivalently, σk →∞) exponentially

fast as k →∞.

¶Some of the numbering that appears in this supplement corresponds to numbering
used in the article, Sections 1-5. Also, the references cited herein refer to the corresponding
references cited in the article. The extra references used, that are not cited in the article,
are given at the end of this supplement.
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• the heat conductivity equation (f ∈ L2([0, 1]), periodic on [0, 1],

{ϕk}k∈N being the complex trigonometric system on [0, 1]). The goal

is to detect or estimate the initial condition f based on the observa-

tion of a trajectory {Yε = Yε(x)}, x ∈ [0, 1], obeying the Gaussian

white noise model (1.1) with x in place of t, D = [0, 1], H = L2([0, 1])

and Af(t) = u(T, x), where u(t, x), t > 0, x ∈ [0, 1], is the solution

of the heat conductivity equation with periodic boundary conditions

and initial condition u(0, x) = f(x). This problem corresponds to an

extremely ill-posed inverse problem since bk → 0 (or, equivalently,

σk →∞) power-exponentially fast (with γ = 2) as k →∞.

• deconvolution (f ∈ L2([0, 1]), periodic on [0, 1], {ϕk}k∈N being the com-

plex trigonometric system on [0, 1]). The goal is to detect or estimate

the response function f based on the observation of a trajectory {Yε =

Yε(t)}, t ∈ [0, 1], obeying the Gaussian white noise model (1.1) with

D = [0, 1], H = L2([0, 1]) and Af(t) = (g ? f)(t) =
∫ 1

0 f(u)g(t− u)du,

i.e., A is the convolution operator on L2([0, 1]), where the unknown

kernel (or blurring function) g ∈ L2([0, 1]) is also periodic on [0, 1].

This problem corresponds to a mildly, severely or extremely ill-posed

inverse problem, depending on the decay of bk = |νk| to zero as k →∞,

where νk, k ∈ N, are the Fourier coefficients of g.

Remark 6.1. We mention that the GSM (1.2) can also arise in comput-

erized tomography, see, e.g., [1], [2]. However, the methods used in this Sup-

plement to study asymptotics in the considered ill-posed inverse problems

cannot be directly applied to deal with minimax hypothesis testing in this

particular problem (for the explanation, see Remark 4.2 in [9]). Arguments

and techniques used to tackle this problem and to derive analogous results

with the ones obtained in this article and the Supplement, were specifically

developed in [9], for q = 2.

7. Mildly ill-posed inverse problems with the class of analytic

functions. (A family of asymptotically minimax adaptive consistent tests

of simple structure.) A family of asymptotically minimax consistent tests of

simple structure, that is also adaptive, in the sense that it does not depend

on the unknown parameters α, β and q ∈ (0, 2], is constructed as follows.
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Let a compact set Σ = {(α, β)} ⊂ R2
+ be given. Denote by Θε,α,β(r) the

set under the alternative given by (2.4) with r = rε(α, β) and q = 2. Let

uε,α,β(r) be the value of the extreme problem (3.1) for the set Θε = Θε,α,β(r).

Observe that, for ak = exp(αk) and σk = kβ, k ∈ N, α > 0, β > 0, and for

ε small enough, in view of (4.7),

c log(ε−1) ≤ mε(α, β) ≤ C log(ε−1),

as

sup
(α,β)∈Σ

| log(uε,α,β(rε(α, β)))| = o(log(ε−1)),

where the constant c and C satisfy

0 < max
(α,β)∈Σ

α−1 < C, 0 < c < min
(α,β)∈Σ

α−1.

Set

(7.1) uε(Σ) = inf
(α,β)∈Σ

uε,α,β(rε(α, β)).

Theorem 7.1. Let ak = exp(αk) and σk = kβ, k ∈ N, α > 0,

β > 0. Consider the GSM (2.2) and the hypothesis testing problem (2.3)

where Θε,α,β(r) denotes the set under the alternative given by (2.4) with

r = rε(α, β) and q = 2, and let rε(α, β) be taken in such way that uε(Σ) in

(7.1) satisfies uε(Σ)→∞. Then, the family of tests ψε,H = 1I{tε,m̃>H} with

tε,m given by (5.1) and m̃ = C log(ε−1)+O(1) ∈ N, m̃ ≥ C log(ε−1), is adap-

tive and asymptotically minimax consistent, i.e., αε(ψε,H) → 0 as H → ∞
and one can take H = Hε → ∞ such that βε(ψε,H ,Θε,α,β(rε(α, β))) → 0,

uniformly over (α, β) ∈ Σ. In view of the embedding (4.8), these hold true

uniformly in q ∈ (0, 2].

The proof is given in Section 11.8.

Remark 7.1. As stated in Theorem 7.1, the family of tests

ψε,H=1I{tε,m̃>H}
with tε,m given by (5.1) and m̃ = C log(ε−1) + O(1) ∈ N

is adaptive with respect to the unknown parameters α, β and q ∈ (0, 2].

Furthermore, there is no price to pay for this adaptation, meaning that both
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non-adaptive and adaptive procedures for the considered ill-posed problem

share, asymptotically, the same separation rates. However, this is usually

an exception to the rule and in most cases there is a price to pay for the

adaptation which is usually appear in the form of an extra log-log factor in

the separation rates. The study of adaptivity in the remaining considered

ill-posed problems and the construction of appropriate rate optimal families

of tests is the theme of the article, Section 5.

8. Mildly ill-posed inverse problems with the Sobolev class of

functions. (A family of asymptotically minimax consistent tests of simple

structure.) If uε → ∞, then one can construct a family of asymptotically

minimax consistent tests of simpler structure than (3.3). Indeed, observe

that, by (11.10), one has

(8.1) rεam̃ ∼ cα1 , c1 = c1(α, β) > 1, uε �
r2
ε

ε2
√
m̃σ2

m̃

, m̃ = [m] ∈ N

where [m] is the integral part of m. Hence, for an integer-valued family

m̃ = m̃ε →∞, one has

(8.2) am̃+1 rε ≥ B + o(1), B > 1, uε �
r2
ε

ε2
√
m̃σ2

m̃

.

For each m ∈ N, consider the following families of test statistics and tests

(8.3) tε,m =
1√
2m

m∑
k=1

((yk/ε)
2 − 1), ψε,H = 1I{tε,m>H}.

Theorem 8.1. Consider the GSM (2.2) and the hypothesis testing prob-

lem (2.3)-(2.4) with q = 2. Let ak = kα and σk = kβ, k ∈ N, α > 0, β > 0.

Let the value uε of the extreme problem (3.1) be determined by (11.10),

and assume that uε → ∞. Then, the family of tests (8.3) with m = m̃

satisfying (8.2) and H = Hε → ∞, is asymptotically minimax consistent,

i.e., αε(ψε,Hε) → 0 and there exists c > 0 such that βε(ψε,Hε ,Θε) → 0 as

Hε < (c+ o(1))uε.

The proof is given in Section 11.4.
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9. Extremely ill-posed inverse problems with the class of gen-

eralized analytic functions. (A family of asymptotically minimax con-

sistent tests of simple structure.) The family of tests given by (3.3) are

determined by the sequence {wk}k∈N given by (3.2) and are rather compli-

cate. Furthermore, as revealed in Remark 4.13, the condition w0 = o(1) does

not hold under assumption (4.10) and, hence, these families of tests are rate

optimal only. We describe below another rate optimal family of tests that is

of simpler structure.

This procedure is determined by a family m = m(rε) such that rε ∈ ∆∗m =

[1/am, 1/am−1], m ∈ N, m ≥ 2. Take α ∈ (0, 1) small enough and consider

the collection Tm,k, 1 ≤ k ≤ m, such that

(9.1)

Tm,m = Tm,m−1 = Φ−1((1− α/6)), Tm,k = Φ−1((1− cα/(m− k − 1)2)),

where c is taking in such way that
∑m−2

k=1 k
−2 = 1/(6c). (Note that this

yields
∑m

k=1 Φ(−Tm,k) = α/2.)

Consider now the following families of events and tests

(9.2) Yε,α = {y : |yk| > εTm,k, k = 1, 2, . . . ,m}, ψε,α = 1IYε,α .

Theorem 9.1. Consider the GSM (2.2) and the hypothesis testing prob-

lem (2.3)-(2.4) with q = 2. Let {ak}k∈N and {σk}k∈N be increasing sequences

satisfying (4.10). Then, the family of tests given by (9.2) with the collec-

tion Tm,k, 1 ≤ k ≤ m described by (9.1) is asymptotically minimax consis-

tent, i.e., αε(ψε,α) ≤ α and one can take ulinε = ulinε (rε) → ∞ such that

βε(ψε,α,Θ(rε))→ 0.

The proof is given in Section 11.10.

Remark 9.1. It is evident that the statement αε(ψε,α) ≤ α in Theorem

9.1 holds uniformly for each ε small enough such that rεa2 ≤ 1. From the

proof of Theorem 9.1, it is also evident that this statement does not depend

on the assumption (4.10).

10. Possible extensions. One can consider a wider class of sets under

the alternative, than the one given by (2.4), i.e., the set under the alternative
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be determined by the following conditions

(10.1) Θε = Θpq(rε)
∆
= {η ∈ l2 :

∑
k∈N
|akσkηk|q ≤ 1,

∑
k∈N
|σkηk|p ≥ rpε}

(in other words, we separate the alternative hypothesis from the null not

in the l2-norm but in the lp-norm), where 0 < p, q < ∞, with standard

modifications for the case p =∞ and/or q =∞. In what follows, we discuss

appropriate methods for the study of these problems and mention some

theoretical results.

Observe that for p = q = 2, the proof of Theorem 4.1 (see Section 11.1)

is based on convexity arguments after the transform uk = |ηk|2, k ∈ N. A

similar property holds true for the cases p ∈ (0, 2], q ≥ p, after the transform

uk = |ηk|p, v, k ∈ N. In particular, if there exists an extreme sequence in

the extreme problem (3.1), then this determines sharp or rate asymptotics,

and centered and the normalized (under H0) weighed χ2 test statistic (3.3)

determines sharp- or rate-minimax tests. However, the extreme problem is

more complicated for p 6= 2, q 6= p. For the polynomial case ak = kα, σk =

kβ, k ∈ N, α, β > 0, and the exponential case ak = eαk, σk = eβk, k ∈ N,

α, β > 0, similar and related problems were studied in [11], Section 4.3.

However, if either p > 2 or p > q (for instance, if p = 2 > q, as in Section

4.7), then the extreme problem (3.1) is not reduced to a convex problem.

Below, we shortly describe the key ideas in order to get a convex problem

(see [11], Chapters 5 and 6, for more details).

Setting vk = ηk/ε, k ∈ N, Vε = {η/ε, η ∈ Θε}, x = y/ε, let us try

to find the asymptotically least favorable priors of product type πε(dv) =∏
k∈N πε,k(dvk) that correspond to a sequence of priors π̄ε = {πε,k} on R.

Here, we consider a sequence π̄ as elements of the linear space of singed

measures with Hilbertian structure generated by the positive semi-definite

bilinear form

(π̄, r̄) =
∑
k∈N

(πk, rk); (π, r) =

∫
R

∫
R

(ets − 1)π(dt)r(ds),

which is generated by the likelihood ratio. Namely, let π = π(dt), r =

r(ds) be one-dimensional measures and let Pπ, Pr be the mixtures of
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one-dimensional Gaussian measures Pt = N(t, 1), t ∈ R, i.e., Pπ(dx) =∫
Pt(dx)π(dt) (and similarly for Pr). One can easily see that

(π, r) = E0

((dPπ
dP0
− 1
)(dPr

dP0
− 1
))

.

We factorize this space by the equivalence aδ0 ∼ 0, a ∈ R. The bilinear

form is positive-defined on the factor-space. Let Π be the set of sequences π̄

that consists of probability measures. One can identify this set with the set

of corresponding cosets in the factor space, see [11], Section 3.3.3, for more

details.

For the product prior π(dv) =
∏
k∈N πk(dvk), π̄ ∈ Π, we have the following

inequality for the variation distance(
E0

∣∣∣dPπ
dP0
− 1
∣∣∣)2

≤ E0

(dPπ
dP0
− 1
)2

= E0

(dPπ
dP0

)2
− 1

=
∏
k∈N

(
E0

(dPπk
dP0

− 1
)2

+ 1
)
− 1

≤ exp
(∑
k∈N

(dPπk
dP0

− 1
)2)
− 1 = exp(‖π̄‖2)− 1.

This yields that the Hilbertian norm ‖π̄‖ determines the non-

distinguishability conditions in the Bayesian problem, and if the priors πε

are asymptotically supported on Vε (i.e., πε(Vε) → 1), then the relation

‖π̄ε‖ → 0 yields non-distinguishability in the minimax problem. One can

show that, under suitable assumptions on the sequence π̄ε, the quantity ‖π̄ε‖
determines the parameters of the asymptotic normality in the Bayesian log-

likelihood ratio for the priors πε, i.e., log(dPπε/dP0) ∼ N (−‖π̄ε‖2/2, ‖π̄ε‖2)

under P0-probability. These yield the following asymptotic lower bounds for

the error probabilities in the Bayesian problem (testing P0 against Pπε)

(10.2) βε(α) ≥ Φ(H(α) − ‖π̄ε‖) + o(1), γε ≥ 2Φ(−‖π̄ε‖/2) + o(1)

(with similar inequalities for the minimax problem if πε(Vε)→ 1). Therefore,

in order to get “asymptotically best” lower bounds, we have to minimize ‖π̄ε‖
over the sets of sequences π̄ε such that product priors πε are asymptotically

supported on Vε.
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Introduce now the set

Πε = {π̄ ∈ Π :
∑
k∈N

σpkEπk |t|
p ≥ (rε/ε)

p,
∑
k∈N

aqkσ
q
kEπk |t|

q ≤ ε−q},

with standard modifications for the case p =∞ and/or q =∞ (observe that

Πε is a convex set), and consider the following extreme problem, analogous

to (3.1),

(10.3) uε = inf
π̄∈Πε

‖π̄‖.

Often, one can take product priors π̃ε such that

‖π̃ε‖ = uε + o(1), π̃ε(Vε)→ 1.

This yields the following lower bounds in the minimax problem

(10.4) βε(Θε, α) ≥ Φ(H(α) − uε) + o(1), γε(Θε) ≥ 2Φ(−uε/2) + o(1).

In order to obtain the upper bounds, let us consider tests ψπ̄,α based on the

statistic

lπ̄(x) = ‖π̄‖−1
∑
k∈N

(
dPπk
dP0

(xk)− 1

)
.

One can check that

E0(lπ̄) = 0, Var0(lπ̄) = 1, Ev(lπ̄) = (π̄, v̄)/‖π̄‖ = (δ̄v, r̄),

where r̄ = π̄/‖π̄‖, and δ̄v = {δvk}k∈N ∈ Πε. Under the additional relations

Varv(lπ̄) = 1 + o((δ̄v, r̄)
2), lπ̄ → ξ ∼ N (0, 1) under P0,(10.5)

lπ̄ − (δ̄v, r̄)→ ξ ∼ N (0, 1) under Pv, v ∈ Vε : (δ̄v, r̄) = O(1),(10.6)

we then get, for the tests ψπ̄,H = 1Ilπ̄>H ,

α(ψπ̄,H) = Φ(−H) + o(1), βε(η, ψπ̄,H) = Φ(H − (δ̄v, r̄)) + o(1),

and we have to take π̄ in order to maximize h(π̄)
∆
= infv∈Vε(δ̄v, r̄). By con-

vexity and applying formally the minimax theorem, we get

sup
r̄∈Π:‖r‖=1

inf
v∈Vε

(δ̄v, r̄) ≥ sup
r̄∈Π:‖r‖≤1

inf
π̄∈Πε

(π̄, r̄) = inf
π̄∈Πε

sup
r̄∈Π:‖r‖≤1

(π̄, r̄)

= inf
π̄∈Πε

‖π̄‖ = uε.
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Therefore, taking tests ψπ̄ε,H which correspond to extreme sequences π̄ε in

(10.3), we have

(10.7) β(Θε, ψπ̄ε,H) ≤ Φ(H − uε) + o(1).

Comparing (10.2) and (10.7), we get the sharp Gaussian asymptotics of the

form (2.8).

Therefore, it suffices to verify only the relations (10.5) and (10.6) for the

extreme sequence in the extreme problem (10.3). One can show that this

sequence consists of symmetric three-point measures

πhk,zk = (1− hk)δ0 +
hk
2

(δ−zk + δzk), hk ∈ (0, 1], zk ≥ 0, k ∈ N

(two-point measures for hk = 1, k ∈ N), see [11], Section 5.4. Therefore,

the extreme problem (10.3) is reduced to the extreme problem (4.15) with

constraints similar to (4.16), and the statistics lπ̄ε are of the form (4.21) (if

hk = 1, k ∈ N, then the extreme problem (10.3) is reduced to an extreme

problem similar to (3.1), and the statistics lπ̄ε can be replaced by (3.3)). The

assumptions (10.5)-(10.6) can be verified (for slightly modified test statistics

combined with thresholding (4.20)) under some constraints on the extreme

sequences z̄ and h̄ (roughly speaking, it suffices to consider a sequence zk,

k ∈ N, that is bounded or tends to infinity not too fast).

Thus, one has to study an extreme problem similar to (4.15)-(4.16), and

to verify the required properties of the extreme sequences z̄ and h̄ as well

as other required assumptions. These were done in [11] for the polynomial

case ak = kα, σk = kβ, k ∈ N, α > 0, β > 0, with lq-ellipsoids (bodies), q ∈
(0, 2], for Sobolev classes of functions. Gaussian asymptotics were obtained

(namely, “dense” and “sparse” type of asymptotics).

The dense type of Gaussian asymptotics corresponds to the case when

the “main mass” of the extreme sequence π̄ε corresponds to hk = 1, k ∈ N.

In this case, we have the rate relations u2
ε � mz4

0 , where the “efficient value”

z0 = z0,ε and the “efficient dimension” m = mε satisfy

mβ+1/pz0 � rε/ε, mα+β+1/qz0 � 1/ε

(these holds for instance for p = q = 2). For the sparse type, where the “main

mass” corresponds to hk ∈ (0, 1), k ∈ N, we have the relation u2
ε � nh2

0,
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where the “efficient sparsity” h0 = h0,ε and the “efficient dimension” n = nε

satisfy

nβ+1/ph
1/p
0 � rε/ε, nα+β+1/qh

1/q
0 � 1/ε

(these holds for instance for p = 2 > q > 0). The separation rates r∗ε =

r∗ε(α, β, p, q) are determined by the relation uε � 1. Observe that z0 � m−1/4

for the dense type and h0 � n−1/2 for the sparse type, when uε � 1.

There are regions of parameters (α, β, p, q) where the Gaussian asymp-

totics do not hold (the main reasons are that either uε = 0 or the extreme

sequence π̄ε do not exist). We have different types of asymptotics in these re-

gions. The most interesting seems to be the “degenerate” type: the Bayesian

likelihood is not asymptotically Gaussian but asymptotically constant (these

holds for instance for the case p = ∞). The asymptotically minimax tests

ψDε,α are of the form (4.22) and do not depend on (α, β, p, q) from the region

of degenerate asymptotics. The division of the set of (α, β, p, q)-values (in

terms of the parameters r = β, s = α+ β) to the regions of various types of

asymptotics is given in [11], Section 6.4.

Finally, let us compare the separation rates r∗ε(α, β, p, q) with the rates

Rε = Rε(α, β, p, q) of accuracy in the estimation problem for the loss func-

tion determined by a similar norm of lp-type, i.e.,

Rε = inf
η̂

sup
η∈Θq,α+β

(
Eε,η

∑
k∈N
|kβ(η̂k − ηk)|p

)1/p

, 0 < p <∞,

where the infimum is taken over all possible estimators η̂ of η, the later

belonging to the following class of sequences

Θq,α+β = {η ∈ l2 :
∑
k∈N
|k(α+β)ηk|q ≤ 1}, 0 < q <∞

(with standard modification for the case p = ∞ and/or q = ∞). Using

known results on the asymptotics of Rε(α, β, p, q) (see, for instance, Delyon

& Juditsky (1996), Donoho et al. (1995), Lepski et al. (1997)), one can see

that

r∗ε(α, β, p, q)� Rε(α, β, p, q) for the regions of Gaussian asymptotics
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and

r∗ε(α, β, p, q) � Rε(α, β, p, q) for the region of degenerate asymptotics.

We believe that a similar study is possible for a wider class of ill-posed

inverse problems (for instance, the exponential case ak = eαk and/or σk =

eβk, k ∈ N, α, β > 0, for various lp and lq-norms, 0 < p, q ≤ ∞, considered

in the set under the alternative). This is a possible topic of future research

that we hope to address it elsewhere.

11. Proofs. We present below detailed proofs of Theorems 4.1-4.9, The-

orems 5.1-5.4, Theorems 7.1, 8.1 and 9.1, along with detailed proofs of the

auxiliary statements used in their proofs.

11.1. Proof of Theorem 4.1. To prove the theorem, we utilize techniques

and results presented in Chapters 3 and 4 of [11] for minimax hypothesis

testing in infinite dimensional settings. In particular, in order to get the lower

bounds, we replace the minimax problem by a Bayesian one. Let π = πε be

a prior (probability measure) on the sequence space such that π(Θ(rε)) =

1. Let Pε,π = Eπ(Pε,η) be the mixture over π and Lε,π = dPε,π/dPε,0 =

EπdPε,η/dPε,0 be the likelihood ratio. Denote by β(P0, P1, α), γ(P0, P1) the

minimal type I error probability for a given level α and the minimal total

error probability, respectively, for testing the simple null hypothesis H0 :

P = P0 against the simple alternative hypothesis H1 : P = P1, for the

measure P of the observations. It is well known (see, e.g., [11], Section 2.4.2)

that, for any α ∈ [0, 1],

(11.1)

βε(Θ(rε), α) ≥ β(Pε,0, Pε,π, α), γε(Θ(rε)) ≥ γ(Pε,0, Pε,π) = 1−1

2
‖Pε,0−Pε,π‖1,

where ‖Pε,0−Pε,π‖1 = Eε,0|Lε,π − 1| is the variation distance. Therefore, as

ε→ 0, in order for γε(Θ(rε))→ 1, it suffices ‖Pε,0 − Pε,π‖1 → 0. Since

‖Pε,0 − Pε,π‖21 ≤ ‖Pε,0 − Pε,π‖22 = Eε,0(Lε,π)2 − 1,

it suffices Eε,0(Lε,π)2 → 1. By (2.5), this leads to βε(Θ(rε)), α)→ 1−α. Also

the relation Eε,0(Lε,π)2 = O(1) implies lim inf γε(rε) > 0 and βε(rε, α) >

1− α for any α ∈ (0, 1), see [11], Proposition 2.12.
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To proceed, we need a definition. A set V is called sign-symmetric (or

orthosymmetric) if v = {vi}i∈N ∈ V , then ṽ = {±vi}i∈N ∈ V for all changes

of signs of the coordinates. Observe now that Θ(rε) is a sign-symmetric set.

For η ∈ Θ(rε), let us consider the product prior πε =
∏
k∈N πε,k, where

πε,k = 1
2(δηk + δ−ηk), k ∈ N, are symmetric two-points priors. Note that,

πε(Θ(rε)) = 1 by the sign-symmetric condition. Let P
(k)
ε,ηk be the measure for

yk = ηk + εξk, ξk ∼ N (0, 1), k ∈ N, and

L(k)
ε,ηk

= dP (k)
ε,ηk

/dP
(k)
ε,0 = exp((−η2

k/2ε
2 + ηkyk/ε

2)),

L(k)
ε,πk

= Eπk(L(k)
ε,ηk

) = e−η
2
k/2ε

2
cosh(ykηk/ε

2).

Simple calculations give Eε,0(Eπk(L
(k)
ε,ηk))2 = cosh(η2

k/ε
2), k ∈ N. There-

fore, using the inequality cosh(t) ≤ exp(t2/2) (which follows from Taylor’s

expansions), we have

Eε,0(L2
ε,π) = Eε,0

∏
k∈N

Eπk(L(k)
ε,ηk

)2 =
∏
k∈N

Eε,0Eπk(L(k)
ε,ηk

)2

=
∏
k∈N

cosh(η2
k/ε

2) ≤ exp(ε−4
∑
k∈N

η4
k/2)→ 1,

if u2
ε(η) = 1

2ε
−4
∑

k∈N η
4
k → 0, and in order to get the best η ∈ Θ(rε) we use

the extreme problem (3.1). Also if u2
ε(η) = O(1), then we get Eε,0(L2

ε,π) =

O(1). This completes part (1)(a) of the theorem.

In order to get the sharp lower bounds, take π that corresponds to the

extreme sequence η̃ε of the problem (3.1). In order to get the relation

βε(Pε,0, Pε,π, α) ≥ Φ(H(α) − uε) + o(1), γε(Pε,0, Pε,π) ≥ 2Φ(−uε/2) + o(1),

it suffices to show that

(11.2) log(Lε,π) = −u2
ε/2 + uεξε + δε,

where uε = uε(η̃ε) = O(1) and ξε → ξ ∼ N (0, 1), δε → 0 in Pε,0-probability

(see [11], Section 4.3.1). Setting xε,k = yk/ε, vε,k = η̃ε,k/ε, k ∈ N, we note

that
∑

k∈N v
4
ε,k = 2u2

ε. We have

log(Lε,π) =
∑
k∈N

(−v2
ε,k/2 + log(cosh(xε,kvε,k))).
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Using the inequality

| log(cosh(t))− t2/2 + t4/12| ≤ Bt6, t ∈ R,

for some B > 0, we have (11.2) with δε = δε,1 + δε,2, where

ξε =
1

2uε

∑
k∈N

v2
ε,k(x

2
ε,k − 1), δε,1 =

1

12

∑
k∈N

v4
ε,k(3− x4

ε,k),

|δε,2| ≤ δε,3 = B
∑
k∈N

v6
ε,kx

6
ε,k.

Since xε,k ∼ N (0, 1), k ∈ N, under Pε,0, the relations δε,1 → 0, δε,2 → 0

follow from Eε,0δε,1 = 0 and, for some constants Bl > 0, l = 1, 2, 3, 4,

Varε,0δε,1 = B1

∑
k∈N

v8
ε,k ≤ B2u

4
εw

2
0 = o(1),

Eε,0δε,3 = B3

∑
k∈N

v6
ε,k ≤ B4u

3
εw0 = o(1),

since δε,3 ≥ 0. Also, Eε,0ξε = 0, Varε,0ξε = 1 and the asymptotic

N (0, 1) normality of ξε under Pε,0 follows from Lyapunov condition: if

zε,k = v2
ε,k(x

2
ε,k − 1) then

∑
k∈NEε,0z

4
ε,k/(

∑
k Eε,0z

2
ε,k)

2 ≤ Bw2
0 → 0 for

some B > 0. This completes the lower bounds of part (1)(b) of the theorem.

In order to obtain the upper bounds let us calculate the expectations

and variances of the statistics tε of the form (3.3) for a sequence wk =

η̃k/uε, wk ≥ 0, k ∈ N,
∑

k∈Nw
2
k = 1/2; w0 = supk∈Nwk ∈ (0, 2−1/2], where

η̃ and u2
ε are the extreme sequence and the extreme value in (3.1). We have

Eε,0tε = 0, Varε,0tε = 1, Eε,ηtε = ε−2
∑
k∈N

wkη
2
ε,k =: hε(η),(11.3)

Varε,ηtε = 1 + 4ε−2
∑
k∈N

w2
kη

2
k; 1 ≤ Varε,ηtε ≤ 1 + 4hε(η)w0.(11.4)

The key point is the following lemma.

Lemma 11.1.

inf
η∈Θ(rε)

hε(η) = uε.
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Proof. Denote τk = η2
k, τ̃k = η̃2

k, k ∈ N, w = {wk}k∈N and consider

the set Υ = {τ = {τk}k∈N : η = {ηk}k∈N ∈ Θ(rε)}. Observe that Υ is a

convex set (i.e., Θ(rε) is a quadratically convex set) in the sequence space

l2 and hε(η) = ε−2(τ, w) = ε−2(τ, τ̃)/(
√

2‖τ̃‖), where (·, ·) and ‖ · ‖ stand,

respectively, for the scalar product and the norm in l2. We have to check

that G := infτ∈Υ(τ, τ̃) = ‖τ̃‖2, where

(11.5) τ̃ ∈ Υ, ‖τ̃‖ = inf
τ∈Υ
‖τ‖.

First observe that G ≤ ‖τ̃‖2 since τ̃ ∈ Υ, and it suffices to check that

G ≥ ‖τ̃‖2. Suppose there exists τ0 ∈ Υ such that (τ0, τ̃) < ‖τ̃‖2, which is

equivalent to r := ((τ0 − τ̃), τ̃) < 0. Consider the interval τ(t) = τ̃ + t(τ0 −
τ̃), τ(t) ∈ Υ for all t ∈ [0, 1], by convexity of Υ. We have, for t ∈ (0, 1) small

enough,

‖τ(t)‖2 = ‖τ̃‖2 + 2tr + t2‖τ0 − τ̃‖2 < ‖τ̃‖2.

This contradicts to (11.5). The lemma now follows.

Return to the proof of the upper bounds. Let uε → ∞. Then, applying

the Chebyshev inequality and (11.3) we have, for H →∞,

αε(ψε,H) = Pε,0(tε > H) ≤ Varε,0tε
H2

→ 0.

For the alternative hypothesis, applying the Chebyshev inequality once

again, (11.4) and Lemma 11.1, we have, for H = cuε, c ∈ (0, 1) and uni-

formly over η ∈ Θ(rε),

βε(η, ψε,H) = Pε,η(tε ≤ H) = Pε,η(hε(η)− tε ≥ hε(η)−H)

≤ Varε,ηtε
(hε(η)−H)2

≤ 1 + 4w0hε(η)

((1− c)hε(η))2
→ 0.

This completes part (2) of the theorem.

Let uε � 1 and w0 = o(1). Observe that tε = ξε where ξε is the statistic

from the proof of the lower bounds, and it was shown that tε is asymptoti-

cally standard Gaussian under Pε,0. This yields αε(ψε,H) = Φ(−H) + o(1).

In order to evaluate type II error probability, let us divide the set Θ(rε) into

two sets

Θε,1 = {η ∈ Θ(rε) : hε(η) < hε}, Θε,2 = {η ∈ Θ(rε) : hε(η) > hε},
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where hε → ∞, hεw0 → 0. Similarly to evaluation above, we get

supη∈Θε,2 βε(ψε,H , η)→ 0 for any H = O(1). Let η ∈ Θε,1. By (11.4), we have

Varε,ηtε = 1 + o(1). Observe that the statistics t̂ε = (tε − hε(η))/
√

Varε,ηtε

are asymptotically standard Gaussian under Pε,η. This follows from Lya-

punov’s condition, since tε − hε(η) =
∑

k∈N t̃ε,k, where t̃ε,k are independent

and Pε,η-distributed as wk(ξ
2
k − 1 + 2vkξk), where vk = ηk/ε, ξk ∼ N (0, 1),

k ∈ N. Therefore, one has, for some constant B > 0, uniformly over η ∈ Θε,1,

Eε,η t̃
4
ε,k ≤ B(w4

k + w4
kv

4
k),∑

k∈N
(w4

k + w4
kv

4
k) ≤ w2

0

∑
k∈N

w2
k + w2

0

(∑
k∈N

wkv
2
k

)2

≤ w2
0/2 + w2

0h
2
ε → 0.

It also follows from the asymptotic normality of t̂ε that, uniformly over

η ∈ Θε,1,

βε(η, ψε,H) = Pε,η(tε ≤ H) = Pε,η(t̂ε ≤ (H − hε(η))/
√

Varε,ηtε)

= Φ(H − hε(η)) + o(1).

By Lemma 11.1 and evaluation over η ∈ Θε,2 above, we get

β(Θ(rε), ψε,H) = Φ(H − inf
η∈Θ(rε)

hε(η)) + o(1) = Φ(H − uε) + o(1).

Taking H = H(α) and H = uε/2, it completes the upper bounds for part

(1) (b) of the theorem. The theorem now follows.

11.2. Equations (4.1)-(4.2). The equations (4.1)-(4.2) are immediately

rewritten in the form

(11.6) r2
ε = z2

0J1, 1 = z2
0A
−1J2,

and, hence, the extreme problem (3.1) takes the form

(11.7) u2
ε = ε−4z4

0J0/2,
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where

J1 =
∑
k∈N

σ4
k(1−Aa2

k)+,

J2 = A
∑
k∈N

a2
kσ

4
k(1−Aa2

k)+,

J0 = J1 − J2 =
∑
k∈N

σ4
k(1−Aa2

k)
2
+.

It is also convenient to rewrite (11.6) and (11.7) in the form

(11.8) r2
ε = A

J1

J2
, u2

ε =
(rε
ε

)4 J0

2J2
1

.

Note that the first equation in (11.8) is used to calculate A.

11.3. Proof of Theorem 4.2. Set A = m−2α in (4.1); the quantity m =

mε determines the efficient dimension in the problem. Then, the extreme

sequence (4.1) in the extreme problem (3.1) takes the form

(11.9) η̃2
k = z2

0k
2β(1− (k/m)2α)+, 1 ≤ k ≤ m,

while the equations for z0 = z0,ε, m = mε and uε take the form (11.7),

(11.8), where

J1 =
1

m

∑
1≤k≤m

( k
m

)4β(
1−

( k
m

)2α)
,

J2 =
1

m

∑
1≤k≤m

( k
m

)2α+4β(
1−

( k
m

)2α)
,

J0 = J1 − J2 =
1

m

∑
1≤k≤m

( k
m

)4β(
1−

( k
m

)2α)2
.

We consider the situation m→∞ and rε → 0 as ε→ 0. Let us now find

the asymptotics of the sums J1, J2 and J0 as m→∞. Replacing the sums

J1, J2 and J0 by integrals, after some calculations, we have, as m→∞,

J1 ∼ 2α

(4β + 1)(4β + 2α+ 1)
:= d1,

J2 ∼ 2α

(4α+ 4β + 1)(4β + 2α+ 1)
:= d2,

J0 ∼ 8α2

(4β + 1)(4α+ 4β + 1)(4β + 2α+ 1)
:= d0.
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These yield

(11.10) rε ∼ cα1m−α, u2
ε ∼ c2ε

−4r(4α+4β+1)/α
ε ,

where c1 = (d1/d2)1/(2α), c2 = (d2/d1)(4β+1)/(2α)d0/(2d
2
1). Hence, the

value uε of the extreme problem (3.1) and the efficient dimensions m = mε

satisfy

(11.11) uε ∼ c1/2
2 ε−2(c1/m)(4α+4β+1)/2, m ∼ c1(ε4u2

ε/c2)−1/(4α+4β+1).

Observe also that, for the extreme sequence determined by (11.9), one has

w0 =
max1≤k≤m η̃

2
k√

2
∑m

k=1 η̃
4
k

≤ Bz2
0m

2β

z2
0m

2β+1/2
� m−1/2 → 0, B > 0.

The theorem now follows on applying Theorem 4.1.

11.4. Proof of Theorem 8.1. To prove the theorem, we need the following

proposition. (Note that its validity is true for a wider class of sequences

{ak}k∈N and {σk}k∈N, which cover all ill-posed inverse problems of interest.)

Proposition 11.1. Let {ak}k∈N and {σk}k∈N be positive increasing se-

quences. Assume that there exists B > 1, a > 0, m̃ = m̃ε ∈ N, ε0 > 0 such

that, as 0 < ε < ε0,

(11.12) rεam̃+1 ≥ B, uε ≤
ar2
ε

ε2
√
m̃σ2

m̃

.

Set

(11.13) hm̃(η) =
1

ε2
√

2m̃

m̃∑
k=1

η2
k, hm̃ = inf

η∈Θε
hm̃(η).

Then, there exists b = b(B, a) > 0 such that hm̃ ≥ buε as 0 < ε < ε0.
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Proof. By definition of Θε, since the sequences {ak}k∈N and {σk}k∈N
increase as k →∞, and by (11.12), we have, for η ∈ Θ(rε),

m̃∑
k=1

η2
k ≥ 1

σ2
m̃

m̃∑
k=1

σ2
kη

2
k ≥

1

σ2
m̃

(
r2
ε −

∞∑
k=m̃+1

σ2
kη

2
k

)

≥ 1

σ2
m̃

(
r2
ε −

1

a2
m̃+1

∞∑
k=m̃+1

a2
kσ

2
kη

2
k

)
≥ 1

σ2
m̃

(
r2
ε −

1

a2
m̃+1

)

=
r2
ε

σ2
m̃

(
1− 1

r2
εa

2
m̃+1

)
≥ b1r

2
ε

σ2
m̃

, b1 = 1−B−2 > 0.(11.14)

Therefore, we have

(11.15) hm̃ ≥
b1r

2
ε

ε2
√

2m̃σ2
m̃

≥ buε, b = b1/(
√

2a).

The proposition now follows.

We are now ready to prove Theorem 8.1. By the asymptotic normality

of tm̃ under P0,ε as m̃ → ∞ (see [11], Lemma 3.1), we have α(ψε,H) =

Φ(−H) + o(1)→ 0 as H = Hε →∞.
In order to evaluate type II error probability for the test ψε,H , take hm̃(η)

and hm̃ as in (11.13). By the asymptotic normality of tm̃−hm̃(η) under Pη,ε

as m̃→∞ (see [11], Lemma 3.1), we have

(11.16)

βε(η, ψε,H) ≤ Φ(H − hm̃(η)) + o(1), βε(Θε, ψε,H) ≤ Φ(H − hm̃) + o(1).

Proposition 11.1 implies that βε(ψε,Hε ,Θε) → 0 as Hε ≤ (c+ o(1))uε →
∞, c ∈ (0, b). The theorem now follows.

11.5. Proof of Theorem 4.3. We first consider the “standard” case q = 2.

Let the efficient dimension m = mε be determined by A = exp(−2αm) in

(4.1). Then, the extreme sequence (4.1) in the extreme problem (3.1) takes

the form

(11.17) η̃2
k = z2

0 exp(2βk)(1− exp(2α(k −m)))+, 1 ≤ k ≤ m,
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while the equations for z0 = z0,ε, m = mε and uε take the form (11.7),

(11.8) where

J1 =
∑

1≤k≤m
exp(4βk)(1− exp(2α(k −m))),

J2 = exp(−2αm)
∑

1≤k≤m
exp((2α+ 4β)k)(1− exp(2α(k −m))),

J0 = J1 − J2 =
∑

1≤k≤m
exp(4βk)(1− exp(2α(k −m)))2.

We consider the situation m→∞ and rε → 0 as ε→ 0. Let us now find the

asymptotics of the sums J1, J2 and J0 as m→∞. After some calculations,

we have, as m→∞,

J1 � J2 � J0 � exp(4βm)

and, hence, using (11.8), we get the the relations

(11.18) rε � exp(−αm)), u2
ε � ε−4r4(α+β)/α

ε .

Hence, the value uε of the extreme problem (3.1) and the efficient dimensions

m = mε satisfy

(11.19) uε � ε−2 exp(−2(α+ β)m), m =
2 log(ε−1)− log(uε)

2(α+ β)
+O(1).

Hence, the “standard” case q = 2 for the theorem follows on applying The-

orem 4.1.

Consider now the “sparse” case q ∈ (0, 2). The embedding (4.8) yields

γ(ψ,Θq(rε)) ≤ γ(ψ,Θ2(rε)). Therefore, it suffices to establish the lower

bounds. Take m = max{k : rε exp(αk) ≤ 1}, and consider the vector ηm

that contains only one non-zero coordinate, the value zn = rε exp(−βn)

at position m. One can easily check that ηm ∈ Θq(rε) for any q ∈ (0, 2).

Therefore, one cannot distinguish between H0 and H1 if zn = o(ε), which

is equivalent to rε = o(r∗ε), where r∗ε is obtained by combining uε � 1 and

(11.18). In view of the above and the results for the “standard” case q = 2,

the “sparse” case q = 2 for the theorem also follows. Hence, the theorem

follows.
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11.6. Proof of Theorem 4.4. We first consider the “standard” case q = 2.

Let the efficient dimension m = mε be determined by A = m−2α in (4.1).

Then, the extreme sequence (4.1) in the extreme problem (3.1) takes the

form

(11.20) η̃2
k = z2

0 exp(2βk)
(
1− (k/m)2α

)
+
, 1 ≤ k ≤ m,

while the equations for z0 = z0,ε, m = mε and uε take the form (11.7),

(11.8) where

J1 =
∑

1≤k≤m
exp(4kβ)

(
1−

(
k

m

)2α
)
,

J2 =
∑

1≤k≤m
exp(4kβ)

(
k

m

)2α
(

1−
(
k

m

)2α
)
,

J0 = J1 − J2 =
∑

1≤k≤m
exp(4kβ)

(
1−

(
k

m

)2α
)2

.

We consider the situation m→∞ and rε → 0 as ε→ 0. Let us now find

the asymptotics of the sums J1, J2 and J0 as m→∞. Take δ > 0, δ → 0,

such that mδ → ∞, mδ � log(m), mδ2 → 0 as m → ∞. Set k = m − l.
Then,

J1 =
∑

1≤k≤m, l=m−k
e4β(m−l)

(
1−

(
1− l

m

)2α )
= e4mβ

∑
m(1−δ)≤k≤m, l=m−k

e−4lβ
(2lα

m
+O(l2/m2)

)
+ e4mβ

∑
1≤k<m(1−δ), l=m−k

e−4lβ
(

1−
(

1− l

m

)2α )
:= exp(4mβ)(A+B).

For the term A, we have

A =
2α

m

( ∑
m(1−δ)≤k≤m, l=m−k

le−4lβ

+ m−1O
( ∑
m(1−δ)≤k≤m, l=m−k

l2e−4lβ
))

=
2α

m

(
A1 +O(m−1)

)
.
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Set t = exp(−4β). Then, the sum A1 can be rewritten in the form

A1 = A1(m,β) = exp(−4β)
( ∑
m(1−δ)≤k≤m, l=m−k

tl
)′
t
� 1,

where ()′t denotes differentiation with respect to t. Therefore,

A =
2αA1(m,β)

m
+O(m−2) � m−1.

For the term B, we have

B =
∑

1≤k<m(1−δ), l=m−k

exp(−4lβ)
(

1−
(

1− l

m

)2α )
= O(exp(−4βmδ)) = o(1/mk), k ∈ N.

Hence, combining the two terms, we get the asymptotics

J1 =
2α exp(4βm)A1(m,β)

m
(1 +O(m−1)) � exp(4βm)

m
.

For the asymptotics of J2, let us first rewrite it in the form

J2 = −J1 +
∑

1≤k≤m
exp(4βk)

(
1−

(
k

m

)4α )
= −J1(α, β) + J1(2α, β).

The asymptotics of J1(2α, β) are studied similar to ones of J1 = J1(α, β),

and we get

J2 = 2αm−1e4βmA1(m,β)(1 +O(m−1)) ∼ J1.

For the asymptotics of J0, we use the second order Taylor’s formula to

get (
1− l

m

)2α

= 1− 2α l

m
+
α(2α− 1) l2

m2
+O

(
l3

m3

)
.
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Repeating the considerations that we used for J1, l = m− k we have for

J0 = exp(4mβ)

4α2

m2

∑
m(1−δ)≤k≤m

exp(−4lβ)

(
l2 +O

(
l3

m

))
+ O(exp(4mβ(1− δ)))

= exp(4mβ)

4α2

m2

∑
m(1−δ)≤k≤m

exp(−4lβ) l2 +O(m−3)


+ o(exp(4mβ)m−3)

= exp(4mβ)

(
4α2

m2
A2 +O(m−3)

)
+ o(exp(4mβ)m−3).

Taking derivatives as in the calculation of A1, we get A2 = A2(m,β) � 1,

which implies

J0 �
exp(4βm)

m2
.

Thus, using (11.8), we obtain the following asymptotics

J1 ∼ J2 �
exp(4βm)

m
, J0 �

exp(4βm)

m2
,

r2
ε = m−2α

(
1 +

J0

J1

)
= m−2α

(
1 +

B

m

)
, B � 1,

and, hence, we get the relations

(11.21) r−1/α
ε = m+O(1), u2

ε � ε−4r4
ε exp(−4βr−1/α

ε ).

Hence, the value uε of the extreme problem (3.1) and the efficient dimensions

m = mε satisfy

u2
ε ∼ ε−4m−4α exp(−4mβ)A2/(2A

2
1),(11.22)

m ∼ 2 log(ε−1)− 2α log log(ε−1)− (log(uε)

2β
+D,(11.23)

where D � 1 hold true uniformly over (α, β) ∈ Σ for any compact set

Σ ⊂ (0,∞) × (0,∞). Hence, the “standard” case q = 2 for the theorem

follows on applying Theorem 4.1.

Consider now the “sparse” case q ∈ (0, 2). In view of the embedding (4.8),

it suffices to establish the lower bounds. Take m = max{k : rεk
α ≤ 1},m =
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r−1/a + O(1), and consider the vector ηm that contains only one non-zero

coordinate, the value zn = rε exp(−βn) at position m. One can easily check

that ηm ∈ Θq(rε) for any q > 0. Therefore, one cannot distinguish between

H0 and H1 if zn = o(ε), which is equivalent to

rε/ε = o(exp(−βr−1/α
ε +O(1)).

However, this is equivalent to uε → 0, where uε is determined by (11.21). In

view of the above and the results for the “standard” case q = 2, the “sparse”

case q = 2 for the theorem also follows. Hence, the theorem follows.

11.7. Proof of Theorem 4.5. Let the efficient dimension m = mε be de-

termined by A = exp(−2mα) in (4.1). Then, the extreme sequence (4.1) in

the extreme problem (3.1) takes the form

(11.24) η̃2
k = z2

0k
2β(1− exp(2α(k −m)))+, 1 ≤ k ≤ m,

while the equations for z0 = z0,ε, m = mε and uε take the form (11.7),

(11.8), where

J1 =
∑

1≤k≤m
k4β(1− exp(−2α(m− k))),

J2 =
∑

1≤k≤m
k4β exp(−2α(m− k))(1− exp(−2α(m− k))),

J0 = J1 − J2 =
∑

1≤k≤m
k4β(1− exp(−2α(m− k)))2.

We consider the situation m→∞ and rε → 0 as ε→ 0. Let us now find

the asymptotics of the sums J1, J2 and J0 as m→∞. We have

(11.25) J1 =
∑

1≤k≤m
k4β −

∑
1≤k≤m

k4β exp(−2α(m− k)) = A−B,

where

A =
∑

1≤k≤m
k4β = m4β+1

∑
1≤k≤m

(
k

m

)4β 1

m
∼ m4β+1

4β + 1
.

Let us now evaluate the term B in the sum (11.25). Let k = m− l. Then,

B =
∑

1≤k≤m
k4β exp(−2α(m− k))

= m4β
∑

1≤k≤m, l=m−k
(1− l/m)4β exp(−2αl) = m4βB1.
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Let α > 0. Using the Taylor’s formula, and since the series∑∞
l=1 l

k exp(−2αl), k = 1, 2, converges, we get

B1 =
∑

1≤k≤m, l=m−k

(
1− 4β l

m
+O

(
l2

m2

))
exp(−2αl) � 1.

Therefore, combining the terms A, B and B1, we get

(11.26) J1 ∼
m4β+1

4β + 1
.

Similarly, for J2, letting k = m− l, we have

(11.27)

J2 = m4β
∑

1≤k≤m, l=m−k

((
1− l

m

)4β
)

exp(−2αl)(1− exp(−2αl)) � m4β.

By (11.26) and (11.27), we have

(11.28) J0 = J1 − J2 ∼ J1 ∼ c1m
4β+1, J2 � m4β,

where c1 = 1/(4β + 1). Hence using (11.8), we get the the relations

(11.29)

rε � m1/2e−αm, u2
ε ∼ d1(rε/ε)

4m−(4β+1) ∼ d2(rε/ε)
4(log r−1

ε )−(4β+1),

where d1 = 1/(2c1) and d2 = γ1α
4β+1. Hence, the value uε of the extreme

problem (3.1) and the efficient dimensions m = mε satisfy

(11.30) u2
ε � ε−4 exp (−4αm)m−(4β−1), m ∼ log(r−1/α

ε ).

Observe also that, for the extreme sequence determined by (11.24), one has

w0 =
max1≤k≤m η̃

2
k√

2
∑m

k=1 η̃
4
k

≤ Bz2
0m

2β

z2
0m

2β+1/2
� m−1/2 → 0.

Hence, the theorem follows on applying Theorem 4.1.

11.8. Proof of Theorem 7.1. In view of the embedding (4.8), we only need

to consider the case q = 2. It was shown in the proof of Theorem 8.1 that

α(ψε,H)→ 0 as H →∞. In order to evaluate the type II error probability, it

suffices to consider only the case where uε(rε(α, β)) = o(log(ε−1)), uniformly
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over (α, β) ∈ Σ. Similar to the proof of Theorem 8.1, we have the relation

(11.16), and it suffices to evaluate the quantity

hε(α, β) = inf
η∈Θε,α,β(rε(α,β))

1

ε2
√

2m̃

m̃∑
k=1

η2
k.

Since Dmε(α, β) ≥ m̃ ≥ mε(α, β) and D = C(1 + o(1))/c > 0, we have

hε(α, β) ≥ dh∗ε(α, β), d = D−1/2(1 + o(1)),

and

h∗ε(α, β) =
1

ε2
√

2m̃(α, β)
inf

η∈Θε,α,β(rε(α,β))

m̃(α,β)∑
k=1

η2
k,

with m̃(α, β) = [mε(α, β)], where [a] is the integral part of a. By (11.29), the

assumptions of Proposition 11.1 are fulfilled uniformly over (α, β) ∈ Σ. In

particular one can take a > 0 such that (11.12) holds true for all (α, β) ∈ Σ,

as ε is small enough. Applying now Proposition 11.1, we have h∗ε(α, β) ≥
buε,α,β(rε(α, β)) ≥ buε(Σ). Therefore, we get hε(α, β) ≥ b1uε(Σ)→∞, b1 =

bd. By (11.16), this implies that it suffices to take Hε → ∞, Hε < b2uε(Σ)

with any b2 ∈ (0, b1). The theorem now follows.

11.9. Proof of Theorem 4.6. Before we prove the theorem we need the

following result.

Recall, that the extreme sequence (4.1) in the extreme problem (3.1) is

of the form

(11.31) η̃2
k = z2

0σ
2
k(1−Aa2

k)+, k ∈ N,

where the quantities z0 = z0,ε and A = Aε are determined by the equations{ ∑
k∈N a

2
kσ

2
kη̃

2
k = 1,∑

k∈N σ
2
kη̃

2
k = r2

ε .

and, thus, the value of the extreme problem (3.1) takes the form

u2
ε =

1

2ε4

∑
k∈N

η̃4
k.
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Consider now the following “truncated” version of the above system of

equations

(11.32)

{ ∑m
k=1 a

2
kσ

2
kη̃

2
k = 1,∑m

k=1 σ
2
kη̃

2
k = r2

ε ,
u2
ε =

1

2ε4

m∑
k=1

η̃4
k.

In order to solve the equations (11.31)-(11.32), let us define a function r(A),

A ∈ (0, a−2
2 ) as follows. Take m = m(A) ∈ N, m ≥ 2, such that a−2

m+1 ≤
A ≤ a−2

m and set

(11.33) r(A) =

( ∑m
k=1 σ

4
k(1−Aa2

k)∑m
k=1 σ

4
ka

2
k(1−Aa2

k)

)1/2

, A ∈ (0, a−2
2 ).

Then, for rε small enough, the quantity A = Aε in (11.31) is determined by

the equation

(11.34) rε = r(Aε).

Note first that r(A) is a positive continuous functions in A ∈ (0, a−2
2 ). The

following proposition ensures the existence of a unique solution in (11.34).

(Note that its validity does not depend on the assumption (4.10).)

Proposition 11.2. The function r(A) defined in (11.33) is strictly in-

creasing in A ∈ (0, a−2
2 ).

Proof. Let a−2
m+1 ≤ A < a−2

m , m ≥ 2. Introduce a probability measure

P = {pi}i∈I on the set I = {1, 2, . . . ,m} such that pi = σ4
i /
∑m

k=1 σ
4
k, i ∈ I.

Set

Hm(A) =

( m∑
k=1

σ4
ka

2
k(1−Aa2

k)

)2

, m ≥ 2.

We consider a = {ai}i∈I as random variable on the set I. Then, we have

(r2(A))′A =
(
∑m

k=1 σ
4
k)(
∑m

k=1 σ
4
ka

4
k)− (

∑m
k=1 σ

4
ka

2
k)

2

Hm(A)

=

(∑m
k=1 a

4
kpk − (

∑m
k=1 a

2
kpk)

2
)

(
∑m

k=1 σ
4
k)

2

Hm(A)

=

(
EP (a4)− (EP (a2))2

)
(
∑m

k=1 σ
4
k)

2

Hm(A)

=
VarP (a2)(

∑m
k=1 σ

4
k)

2

Hm(A)
> 0,
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where (·)′A denotes differentiation with respect to A. The proposition now

follows.

We are now ready to prove part (a) of the theorem. Let A = Aε be the

solution of (11.34). It then follows from (4.10) that

(11.35)

{ ∑m−2
k=1 a

2
kσ

2
kη̃

2
k = τ1a

2
m−1σ

2
m−1η̃

2
m−1,∑m−2

k=1 σ
2
kη̃

2
k = τ2σ

2
m−1η̃

2
m−1,

m−2∑
k=1

η̃4
k = τ0η̃

4
m−1,

where τi = τm,i(A), i = 0, 1, 2, are such that

τ1 ∼
σ4
m−2a

2
m−2(1−Aa2

m−2)

σ4
m−1a

2
m−1(1−Aa2

m−1)
= o(1),(11.36)

τ2 ∼
σ4
m−2(1−Aa2

m−2)

σ4
m−1(1−Aa2

m−1)
= o(1), τ0 = o(1).(11.37)

Therefore, we can rewrite the equations (11.32) in the form

(11.38){
θ1a

2
m−1σ

2
m−1η̃

2
m−1 + a2

mσ
2
mη̃

2
m = 1,

θ2σ
2
m−1η̃

2
m−1 + σ2

mη̃
2
m = r2

ε ,
u2
ε = ε−4(θ0η̃

4
m−1 + η̃4

m)/2,

with θi = θm,i(A) = 1+ τm,i(A) ∼ 1, i = 0, 1, 2. Setting z1 = η̃2
m−1, z2 = η̃2

m

we find z = (z1, z2) from (11.38):

z1 =
a2
mr

2
ε − 1

(θ2a2
m − θ1a2

m−1)σ2
m−1

, z2 =
θ2 − a2

m−1r
2
εθ1

(θ2a2
m − θ1a2

m−1)σ2
m

; u2
ε ∼
‖z‖2

2ε4
.

We have η̃m = 0 (this corresponds to A = a−2
m ) as r2

ε = r2
m−1 := a−2

m−1θm−1,

where by (11.36), (11.37), θm−1 = θm,2(a−2
m )/θm,1(a−2

m ) > 1, θm−1 ∼ 1. The

conditions z1 > 0, z2 ≥ 0 correspond to

(11.39) a−2
m < r2

ε ≤ a−2
m−1θm−1.

By (11.36), (11.37), and the definition of rm we have, as m→∞,

r2
m ∼

1

a2
m

(
1 +

σ4
m−1

σ4
m

·
(
1− a2

m−1/a
2
m

)(
1− a2

m−1/a
2
m+1

)(
1− a2

m/a
2
m+1

) )
, r2

m >
1

a2
m

.

Recalling the monotonicity of r(A), we see that if a−2
m+1 ≤ Aε ≤ a−2

m , then

rε = r(Aε) ∈ ∆m = [rm, rm−1] = [a−1
m (1 + o(1)), a−1

m−1(1 + o(1))], where

ri > a−1
i , i = m− 1, m.
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Let uε,min = minrε∈∆m uε(rε). Thus, we get

(11.40) uε(rε) ≥ uε,min � (ε2a2
mσ

2
m)−1 as rε ∈ ∆m.

Let us now consider the interval ∆∗m = [rm,1, rm−1,1], rl,1 = 1/al. For

rε ∈ ∆∗m, we set z̃ = (z̃1, z̃2), z∗ = (z∗1 , z
∗
2),

z̃1 =
a2
mr

2
ε − 1

(θ2a2
m − θ1a2

m−1)σ2
m−1

, z̃2 =
1− a2

m−1r
2
ε

(θ2a2
m − θ1a2

m−1)σ2
m

;

z∗1 =
a2
mr

2
ε − 1

(a2
m − a2

m−1)σ2
m−1

, z∗2 =
1− a2

m−1r
2
ε

(a2
m − a2

m−1)σ2
m

;

ũε = ũε(rε) =
‖z̃‖√
2ε2

, u∗ε = u∗ε(rε) =
‖z∗‖√

2ε2
.

Note that, for some B > 0,

(11.41) |u∗ε(r2)−u∗ε(r1)| ≤ B(r2
2−r2

1)/ε2σ2
m−1, as rm,1 ≤ r1 < r2 ≤ rm−1,1,

and it is easily seen that

ũε(rε) ∼ u∗ε(rε) as rε → 0; u∗ε(r) ≥ uε(r) ∀ r > 0.

Also, for δ = z̃ − z and for rε ∈ ∆m
⋂

∆∗m = [rm, rm−1,1], we have

‖δ‖ = o((a2
m−1r

2
ε + 1)/a2

mσ
2
m) = ε2o(uε,min).

These yields, as rε ∈ [rm, rm−1,1],

uε(rε) ∼ u∗ε(rε)

=
1√

2ε2(a2
m − a2

m−1)

(
(a2
mr

2
ε − 1)2

σ4
m−1

+
(1− a2

m−1r
2
ε)

2

σ4
m

)1/2

.(11.42)

Let rε ∈ [rm−1,1, rm−1] ⊂ ∆∗m−1. Observe that

0 ≤ u∗ε(rε)− uε(rε)

≤ u∗ε(rm−1,1)− uε(rm−1,1) + |u∗ε(rε)− u∗ε(rm−1,1)| = ξ1 + ξ2,

where

ξ1 = u∗ε(rm−1,1)− uε(rm−1,1), ξ2 = |u∗ε(rε)− u∗ε(rm−1,1)|.
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By (11.42),

ξ1 = o(uε(rm−1,1)) = o(uε(rε)).

Applying (11.41) for the interval ∆∗m−1 we get

ξ2 ≤ B
r2
m−1 − r2

m−1,1

ε2σ2
m−2

.

Since r2
m−1 − r2

m−1,1 = (θm−1 − 1)/a2
m−1, using (11.36), (11.37), we have

θm−1 − 1 = O(σ4
m−2/σ

4
m−1). By (11.40), these yield

ξ2 = O

(
σ2
m−2

ε2a2
m−1σ

4
m−1

)
= o(uε(rε)),

as rε ∈ ∆∗m−1. This completes part (a) of the theorem.

We now prove part (b) of the theorem. For r ∈ ∆∗m, m ∈ N, m ≥ 2,

consider the piecewise linear (in r2) function ulinε (r) defined in (4.12). We

then have, at the break points,

(11.43) ulinε (1/am) =
1

ε2a2
mσ

2
m

, ulinε (1/am−1) =
1

ε2a2
m−1σ

2
m−1

.

Using the standard inequalities

(x+ y)/
√

2 ≤
√
x2 + y2 ≤ x+ y, x ≥ 0, y ≥ 0,

we get, for r > 0 small enough,

(11.44) ulinε (r)/2 ≤ u∗ε(r) ≤ ulinε (r)/
√

2.

Part (b) of the theorem follows by (11.44) and part (a) of the theorem.

Parts (c) and (d) of the theorem follow immediately by combining Theo-

rem 4.1 and part (b) of the theorem. The theorem now follows.

11.10. Proof of Theorem 9.1. For type I error probability, we have

α(ψε,α) = Pε,0(Yε,α) ≤
m∑
k=1

Pε,0(|yk| ≥ Tm,kε) ≤ 2

m∑
k=1

Φ(−Tm,k) = α.

In order to evaluate type II error probability, observe that

β(η, ψε,α) = Pε,η(Yε,α) ≤ min
1≤k≤m

Pε,η(|yk| < Tm,kε)

≤ Φ( min
1≤k≤m

(Tm,k − ε−1ηk)),
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and it suffices to check that

(11.45)

inf
η∈Θ(rε)

(
max

1≤k≤m
(ε−1ηk − Tm,k)

)
→∞ as ulinε (rε)→∞, rε ∈ ∆∗m.

The following proposition is useful to our goal.

Proposition 11.3. Let assume (4.10) holds true. Let rε ∈ ∆∗m, consider

the collection Hm,k, 1 ≤ k ≤ m satisfying 0 < Hm,k ≤ B1(m− k + 1)B2 for

some Bl > 0, l = 1, 2 if 1 ≤ k ≤ m− 2 and Hm,m = Hm,m−1 = 1. Then

inf
η∈Θ(rε)

max
1≤k≤m

ε−2H−1
m,kη

2
k ≥ ulinε (rε)(1/(2

√
2) + o(1)).

Proof. Let η ∈ Θ(rε), take

(11.46) r2
ε =

1− t
a2
m

+
t

a2
m−1

, t ∈ [0, 1],

and suppose that

max
1≤k≤m−2

ε−2H−1
m,kη

2
k ≤ ulin(rε).

On noting that ulinε , in view of (11.46), takes the form

ulinε (r) =
1− t

ε2σ2
ma

2
m

+
t

ε2σ2
m−1a

2
m−1

, t ∈ [0, 1],

we then get

m−2∑
k=1

σ2
kη

2
k ≤ ε2ulin(rε)

m−2∑
k=1

σ2
kHm,k

� σ2
m−2

(
1− t
σ2
ma

2
m

+
t

σ2
m−1a

2
m−1

)
=: δ = o(r2

ε).

Set η̃ = (0, . . . , 0, ηm−1, ηm, . . .). It follows from the estimation above that

η̃ ∈ Θ(r̃ε), r̃
2
ε = r2

ε − bδ for some b > 0, and

uε(r̃ε) ≥ ulinε (r̃ε)(1/2 + o(1)) ≥ (1/2 + o(1))

(
ulinε (rε)−

Bδ

σ2
m−1ε

2

)
∼ 1

2

(
1−

Bσ2
m−2

σ2
m−1

)
ulinε (rε) ∼ ulinε (rε)/2 ≥ uε(rε)(1/

√
2 + o(1)).
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This implies

ε−4
∑
k∈N

η4
k = ε−4

∞∑
k=m−1

η4
k ≥ 2u2

ε(r̃ε) ≥ u2
ε(rε)(1 + o(1)).

Since
∑

k∈N a
2
kσ

2
kη

2
k ≤ 1, we have ηk ≤ (akσk)

−1 and

∞∑
k=m+1

η4
k ≤

∞∑
k=m+1

(akσk)
−4 ≤ (am+1σm+1)−4

∞∑
k=m+1

(am+1σm+1)4

(akσk)4

∼ (am+1σm+1)−4 = o(ε4u2
ε(rε)).

Thus, for m large enough,

ε−4 max(η4
m−1, η

4
m) ≥ ε−4(η4

m−1 + η4
m)/2 ≥ u2

ε(rε)(1/2 + o(1)),

which yields

ε−2 max(η2
m−1, η

2
m) ≥ uε(rε)(1/

√
2 + o(1)) ≥ ulin(rε)(1/2

√
2 + o(1)).

The proposition now follows.

We are now ready to complete the proof of the theorem. Note that Tm,k ≥
Φ−1(1− cα) are bounded away from 0. The collection Hm,k = (Tm,k/Tm,m)2

satisfies the assumption of Proposition 11.3 since, as m− k →∞,

Tm,k = Φ−1

(
1− cα

(m− k − 1)2

)
∼

√
2 log

(
(m− k − 1)2

cα

)
.

Applying now Proposition 11.3 to this collection we get that there exists

k, 1 ≤ k ≤ m such that

ε−1ηk ≥ 8−1/4(Tm,k/Tm,m)
√
ulinε (rε)(1 + o(1)),

which yield

max
1≤k≤m

(ε−1ηk − Tm,k)→∞ as ulinε (rε)→∞.

This implies (11.45). The theorem now follows.
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11.11. Proof of Theorem 5.1. We first obtain the lower bounds. Take a

collection κl such that

φ(κl) = a+ lδε, 1 ≤ l ≤ L = Lε, φ(κL) = b, δ = δε =
(b− a)

L
∼ log(3)

log(ε−1)
.

Assume, without loss of generality, that uε(κl) �
√

log log(ε−1) uniformly

in l = 1, 2, . . . , L. Observe that log(L) ∼ log log(ε−1). Set

(11.47) ml ∼
(
ε
(
log log(ε−1)

)1/4)−φ(κl)
.

By construction, we have

ml −ml−1 ∼ ml−1

(
exp

(
δ log

(
ε−1

(
log log(ε−1)

)−1/4
))
− 1
)

= ml−1(3(1 + o(1)))− 1) ∼ 2ml−1.

Set

(11.48) ∆l = {k ∈ N : ml−1 < k ≤ ml}, Ml = #(∆l)2 ∼ ml−1.

Take a collection zl > 0 such that

(11.49) z2
lMla

2
ml

(κl)σ
2
ml

(κl) = 1, 1 ≤ l ≤ L.

By (11.10), (11.11), the relation (11.49) implies that, as the quantity d in

Theorem 5.1 (a) is small enough (this corresponds to rε(κ) small enough),

one has

(11.50) z2
lMlσ

2
ml−1

(κl) ≥ r2
ε(κl), 1 ≤ l ≤ L.

Set u2
l = Mlz

4
l /(2ε

4). Observe that the relations (11.49), (11.47), (11.48)

imply

(11.51) u2
l ∼ 3 log log(ε−1)/4 � u2

ε(κl),

Therefore the relations z4
l = 2ε4u2

l /Ml, (11.47), (11.51) and (11.48) imply

(11.52) zl = o(ε).
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Consider the priors

πl =
∏
k∈∆l

(δzlek + δ−zlek)/2, π =
1

L

L∑
l=1

πl,

where {ek}k∈N is the standard basis in l2 and δη is the Dirac mass at the

point η ∈ l2. The relations (11.49), (11.50) imply, for d = d(Σ) small enough,

πl(Θκl(rε(κl))) = 1, π(Θ(Σ)) = 1. Let Pπl = EπlPε,η and Pπ = EπPε,η be

the mixtures over the priors. It suffices to check that

(11.53) Eε,0

(
(dPπ/dPε,0 − 1)2

)
= o(1).

Using evaluations similar to [11] (see formulae (3.64)–(3.69)), we have

Eε,0

(
(dPπ/dPε,0 − 1)2

)
=

1

L2

L∑
l=1

Eε,0

(
(dPπl/dPε,0 − 1)2

)
=

1

L2

L∑
l=1

(
Eε,0 (dPπl/dPε,0)2 − 1

)
≤ 1

L2

L∑
l=1

(
eũ

2
l − 1

)
,

where ũ2
l = 2Ml sinh2(z2

l /(2ε
2)) ∼ u2

l by (11.52). By (11.51) one has

(11.54)
maxl u

2
l

log(L)
∼ 3/4 < 1.

This yields (11.53) and completes part (a) of the theorem.

We now obtain the upper bounds. Recall that we have, in Theorem 5.1

(b), Lε = o(log(ε−1)), Lε → ∞. It follows from the exponential inequality

for χ2-statistics that

(11.55) log(Pε,0(tm > H)) ≤ −H2/2(1+o(1)) asH = o(
√
m), H →∞,

see, e.g., (5.22) in Ingster & Suslina (2004). This implies that, for the type

I error probability,

α(ψε) ≤
∞∑
l=Lε

Pε,0(tml > Hl) ≤
∞∑
l=Lε

l−C/2+o(1) → 0 as Lε →∞.
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Let us evaluate the type II error probability. It suffices to consider the

case uε = D
√

log log(ε−1) with D larger enough. Observe that (see (11.16))

βε(η, ψε) ≤ min
l≥Lε

Pε,η(tml ≤ Hl) = min
l≥Lε

Φ(Hl − hml(η)) + o(1),

where hm(η) is determined by (11.13). Therefore uniformly over κ ∈ Σ,

βε(Θε,κ, ψε) ≤ Φ(
√
C logL−max

l≥Lε
hml(κ)) + o(1), hml(κ) = inf

η∈Θε,κ
hml(η).

For κ ∈ Σ, let us set mε(κ) = (ε−4 log log(ε−1))1/(4α+4β+1) and take l such

that ml−1 ≤ mε(κ) < ml, i.e.,

ml = cmε(κ), c ∈ (1, 2], l ∼ 4 log(ε−1)

(4α+ 4β + 1) log(2)
> Lε.

It follows from (11.10), (8.2) that, for D = Dmax(Σ) larger enough,

rε(κ)aml+1(κ) ≥ B + o(1), with B = B(Σ) > 1 that could be taken com-

mon for all κ ∈ Σ. It follows from (8.2) that the assumptions of Propo-

sition 11.1 are fulfilled for m̃ = ml with some a(Σ) = supκ∈Σ a(κ) > 0,

uniformly over κ ∈ Σ. Applying Proposition 11.1 one can take b = b(Σ)

such that, uniformly over κ ∈ Σ, hml(κ) ≥ buε(κ). Thus, it suffices take

D(Σ) > max(Dmax(Σ), C/b(Σ)). This completes part (b) of the theorem.

Part (c) of the theorem follows immediately in view of parts (a) and (b)

of the theorem and (11.10). The theorem now follows.

11.12. Proof of Theorem 5.2. We first obtain the lower bounds. Take a

collection κl such that φ(κl) = aε + lδε, 1 ≤ l ≤ L = Lε, φ(κL) = bε, where

a < aε < bε < b, aε = a+ o(1), bε = b+ o(1) and take L such that

δε =
bε − aε
L

∼ 2

2 log(ε−1)− log log log(ε−1)
,

ml = [φ(κl)(2 log(ε−1)− log log log(ε−1)− log(c))] ∈ N, c < exp(−1/2),

where [a] is the integral part of a. By construction, ml −ml−1 ∼ 2.

Applying (11.18), we see that, if uε(κ) < d log log(ε−1) for all κ ∈ Σ and

some d > 0, then u∗ε(κ) = ε−2r
2(α(κ)+β(κ))/α(κ)
ε < d1 log log(ε−1) for all κ ∈ Σ

and some d1. Observe that, for any c > 0 from the definition of ml above,
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one can take d small enough (this corresponds to rε(κ) small enough) such

that d1 ≤ c. This yields

(11.56) exp(−αlml) ≥ rε(κl).

For κl ∈ Σ, let us take zl = ηleml , where ηl = exp(−(αl+βl)ml) and {el}l∈N
is the standard basis in l2. By (11.56) this yields ηl ∈ Θε(κl, rε(κl)) for any

q = ql > 0. Let us consider the prior

π =
1

L

L∑
l=1

δzl

and the mixture Pπ over π. Since π(Θε(Σ)) = 1, it suffices to verify that

(see [11], Section 2.5.2, Propositions 2.11, 2.12)

(11.57) Eε,0(dPπ/dPε,0 − 1)2 → 0.

One has

Eε,0(dPπ/dPε,0 − 1)2 =
1

L2

L∑
l=1

Eε,0(dPε,zl/dPε,0 − 1)2

=
1

L2

L∑
l=1

(eη
2
l /ε

2 − 1).(11.58)

The relation (11.57) holds true as L � log(ε−1) and for c small enough

(11.59)

max
1≤l≤L

η2
l /ε

2 ≤ c log log(ε−1) sup
κ∈Σ

exp(2(αl + βl)) = c1 log log(ε−1), c1 < 1.

Thus (11.59) holds true under the assumption of the theorem for d small

enough. This completes part (a) of the theorem.

In order to obtain the upper bounds, we need the following (general)

proposition and its corollary.

Proposition 11.4. Let b = {bi}i∈N and c = {ci}i∈N be positive se-

quences, b = {bi}i∈N be an increasing sequence, bi → ∞ and cibi → ∞ as
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i → ∞. Let also r > 0 be a small enough quantity and let X = {x|x =

{xi}i∈N} be a set of sequences x = {xi}i∈N that are determined by the con-

straints ∑
i∈N

bicixi ≤ 1,
∑
i∈N

cixi ≥ r, xi ≥ 0 ∀ i ∈ N.

Consider the extreme problem

w = w(r) = inf
x∈X

φ(x), φ(x) = sup
i∈N

xi.

Then, the extreme sequences x∗ = {x∗i }i∈N such that φ(x∗) = w is of the

form:

x∗1 = w, i = 1, 2, . . . ,m− 1, x∗m = w0, xi = 0 as i > m,

where the quantities w and w0, 0 ≤ w0 ≤ w, are of the form

w =
rbm − 1∑m−1

i=1 ci(bm − bi)
, w0 =

∑m−1
i=1 ci(1− rbi)

cm
∑m−1

i=1 ci(bm − bi)
,

and the integer m is determined by the inequalities

(11.60) Bm ≤ r ≤ Bm−1, Bk =

∑k
i=1 ci∑k
i=1 bici

, k = 1, 2, . . . ,m.

One further obtains the inequalities

(11.61) Cm ≤ w ≤ Cm−1, Ck =
1∑k

i=1 bici
, k = 1, 2, . . . ,m.

Proof. In order to find a minimum of a convex function defined on a con-

vex set X, we use the methods of sub-differentials (see Tikhomirov (1976)).

Consider X and φ as in the statement of the proposition, and let x ∈ X.

Then, the structure of X implies that limi→∞ xi = 0 and there exists i ∈ N
such that xi > 0.

Let as consider the sets I(x) consisting of the indices i ∈ N such that

xi = supi∈N xi. Then I(x) 6= ∅, x ∈ X, and for i ∈ I(x) we have xi > 0. The

sub-differential of the convex function φ(x) = supi xi consists of sequences

d = {di}i∈N such that di ≥ 0, i ∈ N, di = 0 for i /∈ I(x), and
∑

i∈N di = 1
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(see Lemma 1 in Section 1.4.1 of Tikhomirov (1976)). We get the following

relations for the extreme sequence x∗:

di = λci − µcibi + εi, i ∈ N,

where λ ≥ 0, µ ≥ 0 and di, εi, i ∈ N, are non-negative quantities such that:

if λ > 0, then
∑

i∈N cix
∗
i = r; if µ > 0, then

∑
i∈N bicix

∗
i = 1; if i /∈ I(x∗),

then di = 0 and x∗i εi = 0, i ∈ N,
∑

i∈N di = 1. These relations are possible

if λ > 0, µ > 0 only, and it can be rewritten in the form

di = λci(1− bi/B) + εi, i ∈ N, B > 0.

Since bi > 0 increases in i ∈ N, and bi →∞, as i→∞, then di > 0, εi = 0,

i ∈ N, x∗i = supi∈N xi := w > 0 as i ≤ m − 1, where m = m(B) = max{i :

bi ≤ B} and x∗i = 0 as i > m. The quantities B and x∗m := w0 are taken

such that bm = B, dm = εm ≥ 0,

w

m−1∑
i=1

bici + w0bmcm = 1, w

m−1∑
i=1

ci + w0cm = r, 0 ≤ w0 ≤ w.

The proposition now follows.

Corollary 11.1. Let ak = exp(αk) and σk = exp(βk), k ∈ N, α > 0

and β > 0. Let rε > 0, rε → 0. Set m = −(log rε)/α + O(1). Then, for

m1 = m+ c and c > 0 large enough, one has

inf
η∈Θ(rε)

max
1≤i≤m1

η2
i � exp(−2m(α+ β)) � ε2uε.

Proof. We apply Proposition 11.4 to i = k ∈ N, bi = a2
i , ci = σ2

i , xi = η2
i ,

X = Θ(rε) and r = r2
ε . It then follows from (11.60), (11.61) that

inf
η∈Θ(rε)

sup
i∈N

η2
i � exp(−2m(α+ β)), m = − log rε

α
+O(1).

Therefore and by (11.18) we have exp(−2m(α + β)) � r
2(α+β)/β
ε � ε2uε. It

suffices now to check that we can replace supi∈N by maxi≤m1 for m1 = m+c

and c > 0 large enough. This follows immediately from the inequalities

a2
iσ

2
i η

2
i ≤ 1, i ∈ N. This completes the proof of the corollary.
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We are now ready to obtain the upper bounds. One has

α(ψε) ≤
∞∑
l=1

Pε,0(|yl|/ε > Hl) = 2
∞∑
l=1

Φ(−Hl)

� 1√
log(L)

+
∞∑
l=L

1

lC/2
√

log(l)
→ 0.

Let us now evaluate the type II error probability. In view of the embedding

(4.8), it suffices to consider the case q = 2. We have

βε(ψε, η) ≤ min
l≥L

Pε,η(|yl|/ε ≤ Hl) ≤ min
l≥L

Φ(Hl − |ηl|/ε).

It suffices to verify that, uniformly over κ ∈ Σ,

(11.62) inf
η∈Θε(κ,rε(κ))

max
l

(η2
l /ε

2 −H2
l )→∞.

We apply Corollary 11.1. Since

m =
2 log(ε−1)− log(uε) +O(1)

2(α+ β)
= O(log(ε−1))

and, as L < l ≤ m1 = m+ c, c = O(1),

H2
l = C log(l) ≤ C log(m1) ≤ C log log(ε−1)) +O(1),

it follows from Corollary 11.1 that

inf
η∈Θε(κ)

max
l

(η2
l /ε

2 −H2
l ) ≥ inf

η∈Θε(κ)
max
l≤m1

(η2
l /ε

2 −H2
l )

≥ buε − C log log(ε−1)→∞,

as lim inf uε/ log log(ε−1) > D, for D large enough. This completes part (b)

of the theorem.

Part (c) of the theorem follows immediately in view of parts (a) and (b)

of the theorem and (11.18). The theorem now follows.

11.13. Proof of Theorem 5.3. We first obtain the lower bounds. Set H =

(ε2 log2α(ε−1) log log(ε−1))−1. Take a collection κl = (α, βl) ∈ Σ such that

1

βl
= 2aε +

2l

log(H)
, 1 ≤ l ≤ L = Lε,

1

βL
= 2bε,
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where L � log(H) ∼ 2 log(ε−1), and a < aε < bε < b, aε = a+o(1), bε = b+

o(1) are taken in such way that ml = log(Ha−2α)/2βl ∈ N. By construction,

we have ml −ml−1 = 1 and

(11.63)

m−2α
l exp(−2βlml) ∼ (aβl)

2αε2 log log(ε−1) ≤ 2−2αε2 log log(ε−1)(1 + o(1)).

Assume, without loss of generality, that uε(κl) � log log(ε−1), uniformly

in l = 1, 2, . . . , L. Taking into account (11.21), (11.22) and (11.23), we can

assume that, for d small enough (this corresponds to rε(κ) small enough),

(11.64) m−αl ≥ rε(κl).

For l = 1, 2, . . . , L, let us take ηl = zleml , where zl = m−αl exp(−βlml) and

{el}l∈N be the standard basis in l2. By (11.64), this yields ηl ∈ Θε(κl) for

any q = ql > 0. The following steps are along the lines of the proof of part

(a) of Theorem 5.2. We consider the prior

π =
1

L

L∑
l=1

δηl

and the mixture Pπ over the prior π. Since π(Θ(Σ)) = 1, it suffices to verify

(11.57). By (11.58), this relation holds true as

(11.65) lim sup
max1≤l≤L z

2
l /ε

2

log(L)
< 1.

By construction, we have log(L) ∼ log log(ε−1), and by (11.63), z2
l /ε

2 ≤
2−2α log log(ε−1)(1 + o(1)). This implies (11.65). This completes part (a) of

the theorem.

In order to obtain the upper bounds, we need the following corollary.

Corollary 11.2. Let ak = kα and σk = exp(βk), k ∈ N, α > 0, β > 0.

Let rε > 0, rε → 0. Set m = r−αε + O(1). Then, for m1 = m+ c and c > 0

large enough, one has

inf
η∈Θ(rε)

max
1≤i≤m1

η2
i � m−2α exp(−2mβ)) � ε2uε, as m1 > m.
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Proof. The first rate relation follows from Proposition 11.4 and is similar

to the proof of Corollary 11.1, the second one follows from (11.22), (11.23).

This completes the proof of the corollary.

We now obtain the upper bounds. In view of the embeddings (4.8) it

suffices to consider the case q = 2. We work along the lines of the proof

of part (b) of Theorem 5.2 and apply Corollary 11.2, (11.21), (11.22) and

(11.23). This completes part (b) of the theorem.

Part (c) of the theorem follows immediately in view of parts (a) and (b)

of the theorem and (11.21). The theorem now follows.

11.14. Proof of Theorem 5.4. We first obtain the lower bounds. By mak-

ing rε(κ) larger, we can assume, without loss of generality, that C = 1, i.e.,

for all κ ∈ Σ,

ulinε (κ, rε(κ)) = sup
κ∈Σ

ulinε (κ, rε(κ)) = ulinε (Σ),

and, some d > 0, ulinε (Σ)/ log log(ε−1) = d. Taking Aε = (ε
√
ulinε (Σ))−1, find

a collection κl, 1 ≤ l ≤M = Mε �M(Aε,Σ) such that, for m(Aε, κl) = ml,

one has

|ml −mk| > 1, ∀ k, l = 1, ...,M, k 6= l; rε(κl) ∈ ∆∗ml .

Observe that log log(Aε) ∼ log log(ε−1) and that, by (5.14),

log(M(Aε,Σ)) ∼ log(M), lim inf log(M)/ log log(ε−1) = b > 0.

For each l = 1, 2, . . . ,M, take tl ∈ [0, 1] such that

r2
ε(κl) =

1− tl
a2
ml

(κl)
+

tl
a2
ml−1(κl)

.

Let us now consider a collections of vectors ηl =

(0, 0, . . . , 0, ηlml−1, η
l
ml
, 0, 0, . . .) with

ηlml−1 =

√
tl

aml−1(κl)σml−1(κl)
, ηlml =

√
1− tl

aml(κl)σml(κl)
.
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One can easily check that ηl ∈ Θκl(rε(κl)) and

(11.66)

ε−2‖ηl‖22 = ulin(rε(κl)) = ulinε (Σ), (ηl, ηk) = 0, ∀ k, l = 1, . . . ,M, k 6= l.

We now work along similar lines of the proof of part (a) of Theorem 5.2. We

consider the prior

π =
1

M

M∑
l=1

δηl

and the mixture Pπ over π. Since π(Θε(Σ)) = 1, it suffices to verify (11.57).

Similarly to (11.58), one has, by (11.66),

Eε,0(dPπ/dPε,0 − 1)2 = M−2
M∑
l=1

(exp(‖ηl‖22/ε2)− 1) = M−1 exp(ulinε (Σ)).

Therefore, the relation (11.57) holds true as

lim sup
ulinε (Σ)

log(M)
< 1.

By (5.14), it suffices to take d ∈ (0, b). This completes part (a) of the theo-

rem.

We now obtain the upper bounds. First, observe that the family Tε,k

satisfies

∑
k∈N

Φ(−Tε,k) � T−3
ε +

∑
k>2 exp(T 2

ε /2)T−2
ε

e−T
2
ε,k/2

Tε,k

� T−3
ε +

∑
k>2 exp(T 2

ε /2)T−2
ε

1

k(log(k))3/2
= o(1).(11.67)

By (11.67) we have

α(ψε) ≤
∞∑
k=1

Pε,0(|yk|/ε ≥ Tε,k) = 2

∞∑
k=1

Φ(−Tε,k) = o(1).

Next, let η ∈ Θε,κ(rε(κ)). We have

βε(ψε, η) ≤ inf
k∈N

Pε,η(|yk|/ε < Tε,k) ≤ inf
k∈N

Φ(Tε,k − ε−1|ηk|),
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and it suffices to check that, uniformly over κ ∈ Σ and η ∈ Θε,κ(rε(κ)),

(11.68) sup
k∈N

(ε−1|ηk| − Tε,k)→∞.

Let m = m(Aε,κ, κ) where Aε,κ = (ε
√
ulinε (κ, rε(κ)))−1. We have rε(κ) ∈

∆∗m. Since the sequence T 2
ε,k ∼ 2 log(k) increases in k, the relation (11.68)

follows from

(11.69) lim inf
max1≤k≤m ε

−2η2
k

max(T 2
ε , 2 log(m))

> 2.

Applying Proposition 11.3 to the collection Hm,k = 1, k = 1, 2, . . . ,m, we

have

max
1≤k≤m

ε−2η2
k ≥ ulinε (κ, rε(κ))(1/(2

√
2) + o(1)) ≥ ulinε (Σ)(1/(2

√
2) + o(1)).

Also, since m(A, κ) increases in A, and Aε,κ ≤ bAε where Aε =

(ε
√

log log(ε−1))−1, we have

2 log(m) ≤ 2L(bAε,Σ) ≤ 2B log log(ε−1)(1 + o(1)), T 2
ε ≤ log log(ε−1).

Therefore, the relation (11.69) holds true as ulinε (Σ) > D log log(ε−1), for

D > 2
√

2 max(2B, 1). This completes part (b) of the theorem.

Part (c) of the theorem follows immediately from parts (a) and (b) of the

theorem and the definition radε (κ). The theorem now follows.
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