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ON THE GENERALIZED RAO-RUBIN CONDITION 
AND SOME VARIANTS 

THEOFANIS SAPATINAS' 
The University of Bristol 

Summary 

This paper gives a characterization of some members of the compound 
Poisson family of distributions based on the generalized Rao-Rubin condi- 
tion. By considering some variants of this condition and using power series 
arguments, characterizations of the Poisson distribution are also obtained. 

Key words: Compound Poisson family of distributions; generalized Rao-Rubin con- 
dition; power series distributions. 

1. Introduction 

Rao & Rubin (1964) obtained the following characterization of the Poisson 
distribution: let (X, Y) be a random vector of lN+-valued components such that 
Pr(Y 5 X) = 1. If Pr(X = 0) < 1 and the conditional distribution Y I X 
(termed the survival distribution) is given by 

S(T I n) = Pr(Y = T I X = n)  = (T  = 0,. . . n; n = 071,. . .), 

where p is a fixed number in (O,l), then 

Pr(Y = T) = Pr(Y = T I X = Y) ( T  = O,I, ...) (1) 

if and only if X N Poisson. (For an elementary proof of this result we refer to 
Shanbhag, 1974.) 

The above result is known in the literature as the Rao-Rubin characteriza- 
tion of the Poisson distribution and the condition (1) as the Rao-Rubin (RR) 
condition. By working on data from toxicological experiments, Talwalker (1975) 
considered the following interesting variant of the RR condition: let (XI, Yl ) and 
(X,, Y,) be twevector random variables with N+-valued components such that 

Received February 1994; revised July 1996; accepted October 1996. 
'Dept of Mathematics, The University of Bristol, University Walk, Bristol BSB-lTW, UK. 
Acknowledgment. The author thanks Professor D.N. Shanbhag (The University of Sheffield) 
for his comments, and the Associate Editor whose useful suggestions led to substantial im- 
provements to the content and presentation of this paper. 



300 THEOFANIS SAPATINAS 

X, and X, have the same distribution gn = Pr(X = n) with go < 1, and Y, and 
Y, are such that for each n with gn > 0 

n)  E Pr(Yl = T I X, = n) = ( r  = 0, -. - t n), (2) 

n )  Pr(Y, = T I X, = n) = ( r  = 0,. . . , n),  (3) 

p , ,  p ,  < 1 are fixed. She observed that for suitable choices of p ,  and 

p i (  1 - ~ l ) " - ~  

p i (  1 - p,)'+' 

(3 
(3 

p , ,  the condition 

Pr(Yl = T )  = Pr(Y2 = T I X, = Y,) ( r  = 0,1, .  . .), (4) 

called the generalized Rao-Rubin (GRR) condition, holds when X, (and so X,) 
has a Poisson, or a binomial, or a negative binomial distribution. Later, Tal- 
walker (1980) and Rao et af. (1980) solved the converse problem of characterizing 
the distribution of X, by the GRR condition. They proved that when (X,,Y,) 
and (X,,Y,) are two-vector random variables as defined above, then (4) holds if 
and only if either 
(i) 0 < pl = p, < 1 and X, has a Poisson distribution, or 
(ii) 0 < p ,  < pl < 1 and X, has a binomial distribution with an arbitrary index 

and success parameter p = (p, - p2)/p1(1 - p,), or 
(iii) 0 < p, < p ,  < 1 and X, has a probability generating function (pgf) of the 

where so = p,(l - pl)/(pz - pl) and p(t )  is any possibly infinite measure 
such that 

dp(t )  = G(p2) dp (z)  (0 < t < 00). 

In case (iii), Talwalker (1980) and Rao et al. (1980) identified the family 
of distributions {gn}  for which (4) holds as a certain family of mixed Poisson 
distributions with the mixing distribution itself satisfying a certain functional 
equation. Recently, Alzaid et al. (1987) gave an explicit expression for the family 
of distributions {gn} and showed that the stationary measure corresponding to 
a discrete branching process is linked with this distribution. They proved that 
when (X,,Y,) and (X,,Y,) are two-vector random variables as defined in the 
GRR set-up with 0 < p1 < pz < 1, then (4) is valid if and only if 
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( j  = 0,1,. . .), where Y is a probability measure on [0, l), c is a real number lying 
in ( 0 , l )  and Ii is a normalizing constant. 

The present paper derives characterizations of some probability distribu- 
tions based on the GRR condition and certain of its variants. Section 2 gives a 
characterization of some members of the compound Poisson family of distribu- 
tions. Section 3 obtains one characterization of the Poisson distribution for the 
case when a variant of the GRR condition is valid only at the points 0 and 1 and 
assuming X, and X, to  have the same power series distribution. We find another 
characterization of the Poisson distribution when moment conditions replace the 
GRR condition, again using power series arguments. Throughout the paper, ‘ 
denotes differentiation and a(’) = a(a - 1) . . . ( a  - T + 1) (T  = 1,2,. . .; do) = 1) . 

2. Characterization of the Compound Poisson Family of Distributions 
Consider the family {I} of compound Poisson distributions specified by its 

Pgf as 
{I} = {G(s) = exp{X[h(s) - 11) : X E (O,oo), h E ‘H}, 

where ‘H is the class of pgfs of positive integer-valued random variables (i.e. every 
h E 3.1 has h(0) = 0). 

If X is a IN+-valued random variable, then its conditioning on positivity 
(CP) law is defined as Pr(X = j I X > 0) ( j  = 1,2,. . .). 
Theorem 2.1. Let (Xl,Yl) and ( X 2 , Y 2 )  be two-vector random variables with 
IN+-valued components, and let S,, S, be the survival distributions given by (2) 
and (3) respectively. Assume also that G1 E {I} and G,(s) = [Gl(s)]P with 
/3 > 0, where G1 and G2 are the pgfs of Xl and X,, respectively. Then (4)  holds 
if and only if p = plh’( l)/p2h‘(p2) and one of the following holds: 
(i) h is the CP Bernoulli pgf(i.e. h is degenerate a t  1); 
(ii) 0 < pl = p2 < 1 and h is the CP Poisson p@; 

(iii) 0 < p2 < pl < 1 and h is the CP binomid pgf with index 2 2 and success 

(iv) 0 < pl < pz < 1 and h is the CP pgfof the distribution of the form (5). 

Proof. It  can easily be seen that (4) is equivalent to 

pa rme te r  P = (P, - Pd/P# - P2); 

where 0 < pl, p2 < 1 are fixed. Under the assumptions of the theorem and after 
some simple calculations, the latter equation can be seen to be equivalent to 

w - Pl + P l 4  - 1 = P l h ( P z 4  - h(P2)I flsl I 9, (6) 
which, in’turn, is equivalent to the assertion that h’(-) exists at least on [-1,1] 
and satisfies 

h’(1 - p ,  +p,s) = - pp2 h’(p2s) (14 I 1). (7) 
Pl 
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We can also express (7) as 

h'f4 PP2 

h'( 1) ' Pl 
EI(1 - p ,  +pis) = c H ( p , s )  (Is1 5 l), where H ( s )  = - c = -. 

In view of the conditions on h,  H is clearly a well-defined pgf. Note that (8) 
implies that p = p 1 / p 2 H ( p 2 )  and H is a pgf satisfying 

If H ( s )  EE 1, then (9) is trivially met, the condition p = p 1 / p 2 H ( p 2 )  reduces 
to p = p 1 / p 2 ,  and case (i) of the assertion holds. Consider now the case when 
H ( s )  f 1. In this case, H ( p 2 )  < 1 and (9) is precisely the functional equation 
solved by Talwalker (1980), Ran et al. (1980) and Alzaid et ad. (1987). In other 
words, (9) holds if and only if either 0 < p ,  = p ,  < 1 and H is the Poisson 
pgf, or 0 < p 2  < pl < 1 and H is the binomial pgf with an arbitrary index and 
success parameter p = (pl - p2)/pl(l - p 2 ) ,  or 0 < pl < p2  < 1. and El is the pgf 
of the distribution of the form (5 ) .  This ensures that the solution of (6) obtained 
by (9) is a pgf, and conversely, any pgf solution of (6) gives a pgf solution of (9). 
This gives cases (ii), (iii) and (iv) of the assertion, and hence the theorem. 

Remark 2.1. We obtain the following characterizations: 
Case (ii). Since 

then 

Aea 
Gl(s) = exp(X[h(s) - 11) = exp 

which represents the pgf of a Poisson (A1)-Poisson (a) distribution, where A, = 
Aea/(ea - 1) > 0 and a = (1 - p1)-' logp > 0. 
Case (iii). We have 

therefore, for Is1 5 1, 

Gl(s) = exp{A[h(s) - l)]} = exp 
(P1 - P z ) S + P , ( l - P , )  y+l- l]}, 
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which represents the pgf of a Poisson (Az)-Binomial ( N , p )  distribution, where 

> 0, 

N = n + l =  1% P > 0 is an integer, and p = 

A, = A[P,(l- p,)In+' 
b,( l  - p2)In+' - bZ(1 - P1)1"+' 

Pl - Pz 
1% (P1 l P z  1 Pl(1 - PZ) * 

Case (iv). In this case, if the measure Y in ( 5 )  is taken as Lebesgue measure 
on [ O , l )  then, as Alzaid et al. (1987) observed, the distribution { g j }  in question 
reduces to a negative binomial distribution with some index a > 0 and parameter 
x = p,(l - p2)/pz(1 - p,). Thus, in this case, 

which, for Is1 5 1, is equivalent to 

G,(s) = exp{A[h(s) - 11) = exp 

This represents the pgf of a Poisson (&)-Negative Binomial (a*, x )  distribution, 
where A, = A/ [1  - (1 - #)"-'I > 0 and a" = Q - 1 = logP/log(p,/p,) > 0. 

3. Characterizations of the Poisson Distribution 

This section gives characterizations of the Poisson distribution based on 
some variants of the GRR condition. For the first characterization of the Pois- 
son distribution, consider a variant of the GRR condition to be valid only at 
the points 0 and 1 and assume that X, and Xz have the same power series 
distribution. 

Theorem 3.1. Let (X,,Y,) and (X,,Y,) be bivariate random variables with 
IN+-valued components, and let S1, Sz be the survival distributions given by (2) 
and (3) respectively. Also, assume that X, and X, have the same power series 
distribution with probability mass function (pmf) given by 

a,On 
(n = 0,1,. . . ,), 

gn = A(B) 

with a t  least one a, > 0 for n 2 k, where k is a fixed non-negative integer, and 
0 E (a ,b )  (0 5 Q < 6). Then 

Pr(Y, = T )  = P~(Y, = T I X, = yZ + I c )  (T = 0,1; all e E ( a , b ) ) ,  (10) 
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if and only if X, (and hence X,) has a Poisson distribution and p ,  = p 2 .  

Proof. The ‘if’ part of the assertion is trivial. We establish the ‘only if’ part of 
the assertion. Under the assumptions of the theorem, (10) is equivalent to 

where A*(Bp2) = C,”==, 0,+~(”~~)(0p,)~. From (11) and (12), 

which implies that 

A(0)  = k*eC6 k* > 0 ,  c = 

From the above, we easily conclude that X, (and hence X,) has a Poisson dis- 
tribution. Without loss of generality we can take k* = 1. Then, (11) can be 
written as e-c6P1 = e-c8Pz which implies that pl = p a .  This completes the proof 
of the ‘only if’ part and hence of the theorem. 

Remark 3.1. Theorem 3.1 does not remain valid if (10) is assumed to be valid 
just at the point 0, as shown by the following counter-example. 

Example 3.1. Take k = 0 and A(0)  = ec6* with c and p as positive integers. By 
choosing appropriate p, p ,  and p2 such that p ,  # p2 for which pg + (1 - p l ) p  = 1, 
it is not difficult to see that the condition 

Pr(Y, = 0) = Pr(Y, = 0 I X, = Y,) (all 0) 

is met. 

Finally, assuming that X, and X, have the same power series distribution 
and replacing the GRR condition with some conditional and marginal moments, 
leads to another characterization of the Poisson distribution. In Theorem 3.2, 
S, and S, are general survival distributions and not restricted to the parametric 
forms given by (2) and (3). 

Theorem 3.2. Let (Xl,Y,) and (X , ,Y , )  be bivariate random variables wit6 
JN+-valued components such that X, and X, have the same power series distri- 
bution with pmf given by 

anen 
gn - A(0)  

-- (72 = O,l, .  . . ,) 
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with a t  least bne a ,  > 0 for n 2 k ,  where k is a fixed non-negative integer, 
and B E (a ,b)  (0 5 a < b ) .  For some fixed s and 0 < p ,  < 1 independent 
of 6, suppose the moments of order s, s + 1, s + 2 of the survival distribution 
{Sl(r 1 n)  : r = O , l , . .  .,n} have the form dsfpf ,  dst-l)p;+' and n(s-C2)p;s2, 
respectively; assume also that S,(n I n + k) is independent of 8.  If E(Y,(')) > 0 
and Pr(X2 = Y2 + k) > 0, then 

E(Y/") = E(Y,(') I X2 = Y2 + k )  ( T  = s,s f 1,s + 2;all O ) ,  (13) 

if and only if X, (and hence X,) has a Poisson distribution and 

Proof. The 'if' part follows easily on substitution. For the 'only if' part, equa- 
tion (13) is equivalent to 

Define A,(O) = C, n(r)a,On--' and AT(O) = cn n(')a,+,J,(n I n t k)On-,, and 
note that 

A',(@) = Ar+,(e) and A;'(') = Af+l('), (15) 
for all values of T 2 0 and in particular for T = s, s + 1. A simple division in 

whence 

or equivalently 

where c, are positive constants. In view of (17), equation (16) implies 

~l{lodAr(O)I)' = { k [ K ( O ) I ) '  ( T  = svs + 1) 

A:(@) = c,[A,(O)]P1 ( T  = s,s + l), (17) 

whence As+l(0)/A,(O) is a positive constant (say el), or equivalently (using 15) 
that A,(O) = e'o+'1' with 1, > 0. Then, in view of (17)'and (14) for T = s, 

A:(@) = C,~'OP~+~IPI~, 

A(O) Ao(0) = tTsA,(B) +p, (O) ,  and 

4 x 8 )  = c % + k W  I n + k>en = (~,P,)-"A:(O) +P:(@), 
n 
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for appropriate polynomials p , (B)  and p i ( 0 )  in 0 of degree at most s - 1. (When 
s = 0, p , ( 0 )  and p i ( 0 )  are defined to be constant.) The reciprocal of (14) for 
T = s then implies 

whence 
, - lp~(~)eeo( l -PI)+( l ( l -p l )B = Pr ?, (0) (18) 

Since (18) is valid in (a ,b) ,  it holds for all 0 > 0. But letting 0 -+ 00 yields a 
contradiction, except when p , (0 )  = p:(0)  = 0. Consequently, the expressions for 
A(@)  and A,*(0) imply that 

X N Poisson and S2(n I n + k) - - (" ; k)P;s2(0 I k). 

This concludes the proof of the theorem. 

Remark 3.2. When s = 0 in Theorem 3.2, a characterization of the Poisson 
distribution based on the first two factorial moments is obtained. This result can 
be thought of as a variant of an earlier characterization given by Shanbhag & 
Clark (1972) and Srivastava & Singh (1975). Also, the conclusion of Theorem 3.2 
remains valid for k = 0 with S, satisfying S2(n I n) = p y .  
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