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CHARACTERISATIONS OF SOME INCOME DISTRIBUTIONS 
BASED ON MULTIPLICATIVE DAMAGE MODELS 

E.B. FOSAM' AND T. SAPATINAS* 

Sheffield Hdlarn Unjversit.y and Exeter University 

Summary 

This paper characterises the Pareto and scaled beta distributions within 
the context of multiplicative damage and generating models. The results 
obtained allow the destructive or generating mechanism to have more general 
distributions on (0 , l )  than the beta(l,l) distribution considered by several 
authors, thus generalising some recent results. Errors in earlier work are 
mentioned. 
Key words: Damage model; generating model; regression function; Pareto, be ta  and 
log-gamma distributions. 

1. Introduction 

In  most practical situations, people recording an observation X are affected 
by some destructive or generative influences so that Y ,  the recorded value, is 
different from the true value X. Various examples have been cited in the litera- 
ture including income distribution analysis (where people have the tendency to  
under-report their incomes for tax purposes) and insurance claim distribution 
analysis (where people have the tendency to over-report their true insurance 
claim). 

Krishnaji (1970) envisaged, in the case of income under-reporting, that  the 
recorded income Y is related to  actual X in a multiplicative way 

d where X and R (R E (0,l))  are independent random variables and = denotes 
equality in distribution; we refer to (1) as the multiplicative damage model. 
Instead of (1) we can view some recorded insurance Y as being related to actual 
insurance X by 

Y 4 X / R ,  (2) 
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where X and R ( R  E (0 , l ) )  are independent random variables; we refer to (2) 
as the multiplicative generating modeI. 

Krishnaji (1970), considering model (1) and taking R N beta(!, l ) ,  obtained 
two characterisations for the Pareto distribution. By his first result (Kl)  the 
distribution of Y truncated to  the left at some point xo is the same as the 
distribution of X, assuming Pr{X > xo} > 0, if and only if X N Pareto. His 
second result (K2) posits the existence of a random variable 2 such that the 
regression E(Z I X = x) is linear. It proves, subject to a smoothness condition, 
that E( Z I Y = RX = y) is linear if and only if X N Pareto. This connects with 
subsequent work of Dimaki & Xekalaki (1990) who claim that these regression 
functions determine the distribution of X. While that is true for the cases 
discussed by these authors, our Example 2.1 below shows it is not true in general. 
Chauhey & Srivastava (1991) have also obtained characterisation resuIts based 
on model (1); however their main theory has a focus different from ours. 

The present paper shows that K 1  holds for any distribution R E (0 , l )  
such that logR is non-arithmetic (Theorem 2.1 below), and extends K2 in a 
similar way to allow R to be beta(!, m) ,  or log-gamma(!, m)  distributed (! > 0, 
m E IN = {1,2,. . .}) (Theorem 2.2 below). Several authors have commented 
implicitly on the general version of K1; for example see Rao (1983), Arnold (1983 
pp.83-84) and Ramachandran & Lau (1991 p.47). Our Theorem 2.1 below states 
explicitly the general version and the proof is simple. 

We note that if one considers the generating model (2), then one can obtain 
characterisations for a scaled beta distribution. These results are immediate 
deductions from Theorems 2.1 and 2.2 below, via the transformations R -, R-’ 
and X - X-’. 

2. Main Results 

Theorem 2.1. Let xo > 0 and X be a positive random variable such that 
Pr{X > rO} = 1, and let R be a random variable independent of X with R E 
( 0 , l )  almost surely (as.)  such that the distribution of log R is non-arithmetic. 
Assume also that Pr{RX > xo} > 0. Then 

Pr{RX > y I R X  > zo) = Pr{X > y} (y > zo), (3) 

if and only if X N Pxe to  on (q,,cm). (The result also holds if ‘>’  in (3) is 
replaced by ( 2 ’ everywhere, and simultaneously Pr{ RX- > xo} > 0 is replaced 
by Pr{RX 2 xo} > 0.) 

Remark 2.1. The ‘if’ part of Theorem 2.1 is valid for any arbitrary distribution 
R E (0, l), as observed by Krishnaji (1970). 

Proof. Write equation (3) as 
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which is equivalent to 

Pr{X* > R' + z 1 X' > R'} = Pr{X' > x} (z > 0), 
where X' = log(X/zo), R' = -log R and x = logy'. Hence, the conclusion 
follows immediately from the 'strong lack of memory property' of the exponential 
distribution (see, e.g. Ramachandran & Lau, 1991 p.40) on noting that when 
Z - Exp(X) for some X > 0 then, for some xo > 0, W = x o e z  - Pareto(X) on 

Remark 2.2. (i) If (3) is replaced by the condition 
(XO, 4. 

E(Y --.z I Y > Z) = E(X - 2 I X > Z) (Z > 20, ZO > 0), 
with E(X+) < 00, where X+ = max{O,X}, the conclusion of Theorem 2.1 
remains unchanged. Kotz & Shanbhag (1980) have shown each side of this 
condition to be sufficient to determine the distribution of the random variable. 
(ii) Talwalker (1980) has given two characterisation theorems on the Pareto 
distribution based on model (1). Her Theorem 1 holds as a corollary to the 
'strong lack of memory property' of the exponential distribution without her 
assumption that the distribution function of the random variable X is continuous. 
Her Theorem 2 is not correct, because her proof assumes -F'(z)/(l  - F ( x ) )  to  
be a non-decreasing function of Z, whenever F ( x )  is a concave function of 2. 
However, her result holds even if the assumption that F is concave is replaced 
by an assumption that F is log-concave. 
Remark 2.3. In their Theorem 2.1, Dimaki 8~ Xekalaki (1990) claim to have 
extended K2. Roughly speaking, they proved that, under some conditions, arbi- 
trary regressions h ( z )  = E(Z I X = x) and X(y) = E(Z 1 Y = RX = y )  uniquely 
determine the distribution of X. Their proof uses the unstated assumptions that 
X(y) is differentiable and that h(y)  < X(y), although these are satisfied in their 
applications. Also, their assumption that h ( z )  is non-constant is not sufficient 
to  yield the result, as shown by the following counter-example. 

Example 2.1. Let R, -Y and V be independent integrable random variables 
with R N beta(1, l), E(V) given, and the part of the distribution of X for X > c 
known, where c is such that Pr{RX > c} > 0. Define 

V if RX 5 c, 

V + R X  i f R X > c .  
z = {  

Then we have, 

if y 5 c, 

if y > c. 
h(x) = E(V) + xE(RI(R > c / x ) )  and X(y) = { E(V) 

E(V) + y 

Consequently, h(s) and X(y) can be computed without any knowledge of the 
distribution of X except that its right extremity is greater than c. 
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Now we consider (1) with some regression conditions to  characterise the 
Pareto distribution. In the case where the distribution of R on (0,l)  has a more 
general form than that of a beta(!, l), and the regression functions h, A are more 
general than linear, the problem of unique determination of the random variable 
X becomes more complicated. In the sequel, however, we extend K2 by assuming 
R to be beta(!, m )  or log-gamma(& 713) distributed ( l  > 0, rn E IN), and taking 
power-type regression functions. 

Theorem 2.2. Let xo > 0 and A' be an absolutely continuous positive random 
variable such that Pr{X > z,,} = 1, and let 2 be another random variable such 
that 

E(Z 1 X = Z) = S + pxca (x > 201, (4) 

for some 6 E IR and C U , ~  E R\{O}. Furthermore, let R be a random variable 
independent of 2 and A- with a beta density function given by 

where B ( - ,  a )  denotes the beta function. Then, the restriction of the regression 
of Z on R X  to (xo, m )  is given b.y 

for some y E R\{O}, if and only if X N Pareto(0) on ( ro ,  m), with 4 + 0 - cy > 0 
and y = p ( B ( l +  0 - a , m ) / B ( t  + 8,m))  for some 8 > 0. 

Proof. The 'if' part of the assertion can he verified easily by direct calculations. 
We establish the 'only if '  part of the assertion by considering the following two 

( i )  Assume that c1! E (0.00). By taking into account (4) and ( 5 ) ,  we can express 
equation (6) for y > ro as 

cases. 

(7 )  
Differentiating both sides of (7) m times with respec.t to y, we obtain 

(8) 
almost everywhere with respect to the Lebesgue mensure, where = 1, a(,) = 
n ( a + l )  . . . (  u t r - l ) ,  ( 7 r 1 - 1 4 ~ ~ )  = (m-l)!,and theintegralinthelast expression 
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is taken as fx(y)y"+'-e-" if T = 0. By taking z = y/z in the integral and after 
some simplification, the above equation (8) can be expressed its 

where the measure p is a linear combination of certain measures with at  least 
one of them being absolutely continuous (with respect to Lebesgue measure). 
By applying the Lau-Rao theorem (see, e.g. Ramachandran & Lau, 1991) we 
conclude from (9) that 

which, in view of the relation J" fx(y)dy = 1, implies that X N Pareto distri- 
hution on (zo, m). 

(ii) Assume now that (Y E (-00~0). Then, by transferring g-a to the right hand 
side of (7) and working as above, we arrive at a functional equation similar to 

fx(y) c( Y - ~  for some 7 > 1 ( y  > zo) 

2 0  

that of (9). 
Remark 2.4. If we replace ( 5 )  in the 
tion, cited in Schultz (1975), given by 

lm,.t-l (- log T)"--l 

r (m)  
fR(T) = 

above theorem by a log-gamma distribu- 

(0 < T < 1, ! > 0, m E IN), 

where I?(.) denote the gamma function, then the conclusion of Theorem '2.2 
remains valid with the parameter 6 now being replaced by 8' > 0 such that 
l +  8* - Q > 0 and y = p ( ( l  + O * ) / ( l  + 6' - a) )m .  
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